11 research outputs found

    Single event upset hardened embedded domain specific reconfigurable architecture

    Get PDF

    Techniques d'exploration architecturale de design à usage spécifique pour l'accélération de boucles

    Get PDF
    RÉSUMÉ De nos jours, les industriels privilégient les architectures flexibles afin de réduire le temps et les coûts de conception d’un système. Les processeurs à usage spécifique (ASIP) fournissent beaucoup de flexibilité, tout en atteignant des performances élevées. Une tendance qui a de plus en plus de succès dans le processus de conception d’un système sur puce consiste à spécifier le comportement du système en langage évolué tel que le C, SystemC, etc. La spécification est ensuite utilisée durant le partitionement pour déterminer les composantes logicielles et matérielles du système. Avec la maturité des générateurs automatiques de ASIP, les concepteurs peuvent rajouter dans leurs boîtes à outils un nouveau type d’architecture, à savoir les ASIP, en sachant que ces derniers sont conçus à partir d’une spécification décrite en langage évolué. D’un autre côté, dans le monde matériel, et cela depuis très longtemps, les chercheurs ont vu l’avantage de baser le processus de conception sur un langage évolué. Cette recherche a abouti à l’avénement de générateurs automatiques de matériel sur le marché qui sont des outils d’aide à la conception comme CapatultC, Forte’s Cynthetizer, etc. Ainsi, avec tous ces outils basés sur le langage C, les concepteurs ont un choix de types de design élargi mais, d’un autre côté, les options de designs possibles explosent, ce qui peut allonger au lieu de réduire le temps de conception. C’est dans ce cadre que notre thèse doctorale s’inscrit, puisqu’elle présente des méthodologies d’exploration architecturale de design à usage spécifique pour l’accélération de boucles afin de réduire le temps de conception, entre autres. Cette thèse a débuté par l’exploration de designs de ASIP. Les boucles de traitement sont de bonnes candidates à l’accélération, si elles comportent de bonnes possibilités de parallélisme et si ces dernières sont bien exploitées. Le matériel est très efficace à profiter des possibilités de parallélisme au niveau instruction, donc, une méthode de conception a été proposée. Cette dernière extrait le parallélisme d’une boucle afin d’exécuter plus d’opérations concurrentes dans des instructions spécialisées. Notre méthode se base aussi sur l’optimisation des données dans l’architecture du processeur.---------- ABSTRACT Time to market is a very important concern in industry. That is why the industry always looks for new CAD tools that contribute to reducing design time. Application-specific instruction-set processors (ASIPs) provide flexibility and they allow reaching good performance if they are well designed. One trend that gains more and more success is C-based design that uses a high level language such as C, SystemC, etc. The C-based specification is used during the partitionning phase to determine the software and hardware components of the system. Since automatic processor generators are mature now, designers have a new type of tool they can rely on during architecture design. In the hardware world, high level synthesis was and is still a hot research topic. The advances in ESL lead to commercial high-level synthesis tools such as CapatultC, Forte’s Cynthetizer, etc. The designers have more tools in their box but they have more solutions to explore, thus their use can have a reverse effect since the design time can increase instead of being reduced. Our doctoral research tackles this issue by proposing new methodologies for design space exploration of application specific architecture for loop acceleration in order to reduce the design time while reaching some targeted performances. Our thesis starts with the exploration of ASIP design. We propose a method that targets loop acceleration with highly coupled specialized-instructions executing loop operations. Loops are good candidates for acceleration when the parallelism they offer is well exploited (if they have any parallelization opportunities). Hardware components such as specialized-instructions can leverage parallelization opportunities at low level. Thus, we propose to extract loop parallelization opportunities and to execute more concurrent operations in specialized-instructions. The main contribution of this method is a new approach to specialized-instruction (SI) design based on loop acceleration where loop optimization and transformation are done in SIs directly, instead of optimizing the software code. Another contribution is the design of tightly-coupled specialized-instructions associated with loops based on a 5-pattern representation

    Image Processing Using FPGAs

    Get PDF
    This book presents a selection of papers representing current research on using field programmable gate arrays (FPGAs) for realising image processing algorithms. These papers are reprints of papers selected for a Special Issue of the Journal of Imaging on image processing using FPGAs. A diverse range of topics is covered, including parallel soft processors, memory management, image filters, segmentation, clustering, image analysis, and image compression. Applications include traffic sign recognition for autonomous driving, cell detection for histopathology, and video compression. Collectively, they represent the current state-of-the-art on image processing using FPGAs

    Knowledge-based web services for context adaptation.

    Get PDF
    The need for higher value, reliable online services to promote new Internet-based business models is a requirement facing many technologists and business leaders. This need coupled with the trend towards greater mobility of networked devices and consumers creates significant challenges for current and future systems developers. The proliferation of mobile devices and the variability of their capabilities present an overwhelming number of options to systems designers and engineers who are tasked with the development of next generation context adaptive software services. Given the dynamic nature of this environment, implementing solutions for the current set of devices in the held makes an assumption that this deployment situation is somehow fixed this assumption does little to support the future and longer term needs within the marketplace. To add to the complexity, the timeframes necessary to develop robust and adaptive online software services can be long by comparison, so that the development projects and their resources are often behind on platform support before the first release is launched to the public. New approaches and methodologies for engineering dynamic and adaptive online services will be necessary and, as will be shown, are in fact mandated by the regulation imposed by service level guarantees. These new techniques and technology are commercially useless unless they can be used in engineering practice. New context adaptation processes and architectures must be capable of performing under strict service level agreements those that will undoubtedly govern future business relationships between online parties. This programme of engineering study and research investigates several key issues found in the emerging area of context adaptation services for online mobile networks. As a series of engineering investigations, the work described here involves a wider array of technical activity than found in traditional doctoral work and this is reflected throughout the dissertation. First, a clear definition of industrial motivation is stated to provide the engineering foundation. Next, the programme focuses on the nature of contextual adaptation through product development projects. The development process within these projects results in several issues with the commercial feasibility of the technology. From this point, the programme of study then progresses through the lifecycle of the engineering process, investigating at each stage the critical engineering challenges. Further analysis of the problems and possible solutions for deploying such adaptive solutions are reviewed and experiments are undertaken in the areas of systems component and performance analysis. System-wide architectural options are then evaluated with specific interest in using knowledge-base systems as one approach to solving some of the issues in context adaptation. The central hypothesis is that due to the dynamic nature of context parameters, the concept of a mobile device knowledge base as a necessary component of an architectural solution is presented and justified through prototyping efforts. The utility of web ontologies and other "soft computing" technologies on the nature of the solution are also examined through the review of relevant work and the engineering design of the demonstration system. These technology selections are supported directly by the industrial context and mission. In the final sections, the architecture is evaluated through the demonstration of promising techniques and methods in order to confirm understanding and to evaluate the use of knowledge-bases, AI and other technologies within the scope of the project. Through the implementation of a context adaptation architecture as a business process workflow, the impact of future trends of device reconfiguration are highlighted and discussed. To address the challenge of context adaptation in reconftgurable device architectures, an evolutionary computation approach is then presented as a means to provide an optimal baseline on which a service may execute. These last two techniques are discussed and new designs are proposed to specifically address the major issues uncovered in timely collection and evaluation of contextual parameters in a mobile service network. The programme summary and future work then brings together all the key results into a practitioner's reference guide for the creation of online context adaptive services with a greater degree of intelligence and maintainability while executing with the term of a service level agreement

    Integrated support for Adaptivity and Fault-tolerance in MPSoCs

    Get PDF
    The technology improvement and the adoption of more and more complex applications in consumer electronics are forcing a rapid increase in the complexity of multiprocessor systems on chip (MPSoCs). Following this trend, MPSoCs are becoming increasingly dynamic and adaptive, for several reasons. One of these is that applications are getting intrinsically dynamic. Another reason is that the workload on emerging MPSoCs cannot be predicted because modern systems are open to new incoming applications at run-time. A third reason which calls for adaptivity is the decreasing component reliability associated with technology scaling. Components below the 32-nm node are more inclined to temporal or even permanent faults. In case of a malfunctioning system component, the rest of the system is supposed to take over its tasks. Thus, the system adaptivity goal shall influence several de- sign decisions, that have been listed below: 1) The applications should be specified such that system adaptivity can be easily supported. To this end, we consider Polyhedral Process Networks (PPNs) as model of computation to specify applications. PPNs are composed by concurrent and autonomous processes that communicate between each other using bounded FIFO channels. Moreover, in PPNs the control is completely distributed, as well as the memories. This represents a good match with the emerging MPSoC architectures, in which processing elements and memories are usually distributed. Most importantly, the simple operational semantics of PPNs allows for an easy adoption of system adaptivity mechanisms. 2) The hardware platform should guarantee the flexibility that adaptivity mechanisms require. Networks-on-Chip (NoCs) are emerging communication infrastructures for MPSoCs that, among many other advantages, allow for system adaptivity. This is because NoCs are generic, since the same platformcan be used to run different applications, or to run the same application with different mapping of processes. However, there is a mismatch between the generic structure of the NoCs and the semantics of the PPN model. Therefore, in this thesis we investigate and propose several communication approaches to overcome this mismatch. 3) The system must be able to change the process mapping at run-time, using process migration. To this end, a process migration mechanism has been proposed and evaluated. This mechanism takes into account specific requirements of the embedded domain such as predictability and efficiency. To face the problem of graceful degradation of the system, we enriched the MADNESS NoC platform by adding fault tolerance support at both software and hardware level. The proposed process migration mechanism can be exploited to cope with permanent faults by migrating the processes running on the faulty processing element. A fast heuristic is used to determine the new mapping of the processes to tiles. The experimental results prove that the overhead in terms of execution time, due to the execution time of the remapping heuristic, together with the actual process migration, is almost negligible compared to the execution time of the whole application. This means that the proposed approach allows the system to change its performance metrics and to react to faults without a substantial impact on the user experience

    Integrated support for Adaptivity and Fault-tolerance in MPSoCs

    Get PDF
    The technology improvement and the adoption of more and more complex applications in consumer electronics are forcing a rapid increase in the complexity of multiprocessor systems on chip (MPSoCs). Following this trend, MPSoCs are becoming increasingly dynamic and adaptive, for several reasons. One of these is that applications are getting intrinsically dynamic. Another reason is that the workload on emerging MPSoCs cannot be predicted because modern systems are open to new incoming applications at run-time. A third reason which calls for adaptivity is the decreasing component reliability associated with technology scaling. Components below the 32-nm node are more inclined to temporal or even permanent faults. In case of a malfunctioning system component, the rest of the system is supposed to take over its tasks. Thus, the system adaptivity goal shall influence several de- sign decisions, that have been listed below: 1) The applications should be specified such that system adaptivity can be easily supported. To this end, we consider Polyhedral Process Networks (PPNs) as model of computation to specify applications. PPNs are composed by concurrent and autonomous processes that communicate between each other using bounded FIFO channels. Moreover, in PPNs the control is completely distributed, as well as the memories. This represents a good match with the emerging MPSoC architectures, in which processing elements and memories are usually distributed. Most importantly, the simple operational semantics of PPNs allows for an easy adoption of system adaptivity mechanisms. 2) The hardware platform should guarantee the flexibility that adaptivity mechanisms require. Networks-on-Chip (NoCs) are emerging communication infrastructures for MPSoCs that, among many other advantages, allow for system adaptivity. This is because NoCs are generic, since the same platformcan be used to run different applications, or to run the same application with different mapping of processes. However, there is a mismatch between the generic structure of the NoCs and the semantics of the PPN model. Therefore, in this thesis we investigate and propose several communication approaches to overcome this mismatch. 3) The system must be able to change the process mapping at run-time, using process migration. To this end, a process migration mechanism has been proposed and evaluated. This mechanism takes into account specific requirements of the embedded domain such as predictability and efficiency. To face the problem of graceful degradation of the system, we enriched the MADNESS NoC platform by adding fault tolerance support at both software and hardware level. The proposed process migration mechanism can be exploited to cope with permanent faults by migrating the processes running on the faulty processing element. A fast heuristic is used to determine the new mapping of the processes to tiles. The experimental results prove that the overhead in terms of execution time, due to the execution time of the remapping heuristic, together with the actual process migration, is almost negligible compared to the execution time of the whole application. This means that the proposed approach allows the system to change its performance metrics and to react to faults without a substantial impact on the user experience

    Prioritizing Content of Interest in Multimedia Data Compression

    Get PDF
    Image and video compression techniques make data transmission and storage in digital multimedia systems more efficient and feasible for the system's limited storage and bandwidth. Many generic image and video compression techniques such as JPEG and H.264/AVC have been standardized and are now widely adopted. Despite their great success, we observe that these standard compression techniques are not the best solution for data compression in special types of multimedia systems such as microscopy videos and low-power wireless broadcast systems. In these application-specific systems where the content of interest in the multimedia data is known and well-defined, we should re-think the design of a data compression pipeline. We hypothesize that by identifying and prioritizing multimedia data's content of interest, new compression methods can be invented that are far more effective than standard techniques. In this dissertation, a set of new data compression methods based on the idea of prioritizing the content of interest has been proposed for three different kinds of multimedia systems. I will show that the key to designing efficient compression techniques in these three cases is to prioritize the content of interest in the data. The definition of the content of interest of multimedia data depends on the application. First, I show that for microscopy videos, the content of interest is defined as the spatial regions in the video frame with pixels that don't only contain noise. Keeping data in those regions with high quality and throwing out other information yields to a novel microscopy video compression technique. Second, I show that for a Bluetooth low energy beacon based system, practical multimedia data storage and transmission is possible by prioritizing content of interest. I designed custom image compression techniques that preserve edges in a binary image, or foreground regions of a color image of indoor or outdoor objects. Last, I present a new indoor Bluetooth low energy beacon based augmented reality system that integrates a 3D moving object compression method that prioritizes the content of interest.Doctor of Philosoph

    Wireless sensor systems for sense/decide/act/communicate.

    Full text link

    Real-time communications over switched Ethernet supporting dynamic QoS management

    Get PDF
    Doutoramento em Engenharia InformáticaDurante a última década temos assistido a um crescente aumento na utilização de sistemas embutidos para suporte ao controlo de processos, de sistemas robóticos, de sistemas de transportes e veículos e até de sistemas domóticos e eletrodomésticos. Muitas destas aplicações são críticas em termos de segurança de pessoas e bens e requerem um alto nível de determinismo com respeito aos instantes de execução das respectivas tarefas. Além disso, a implantação destes sistemas pode estar sujeita a limitações estruturais, exigindo ou beneficiando de uma configuração distribuída, com vários subsistemas computacionais espacialmente separados. Estes subsistemas, apesar de espacialmente separados, são cooperativos e dependem de uma infraestrutura de comunicação para atingir os objectivos da aplicação e, por consequência, também as transacções efectuadas nesta infraestrutura estão sujeitas às restrições temporais definidas pela aplicação. As aplicações que executam nestes sistemas distribuídos, chamados networked embedded systems (NES), podem ser altamente complexas e heterogéneas, envolvendo diferentes tipos de interacções com diferentes requisitos e propriedades. Um exemplo desta heterogeneidade é o modelo de activação da comunicação entre os subsistemas que pode ser desencadeada periodicamente de acordo com uma base de tempo global (time-triggered), como sejam os fluxos de sistemas de controlo distribuído, ou ainda ser desencadeada como consequência de eventos assíncronos da aplicação (event-triggered). Independentemente das características do tráfego ou do seu modelo de activação, é de extrema importância que a plataforma de comunicações disponibilize as garantias de cumprimento dos requisitos da aplicação ao mesmo tempo que proporciona uma integração simples dos vários tipos de tráfego. Uma outra propriedade que está a emergir e a ganhar importância no seio dos NES é a flexibilidade. Esta propiedade é realçada pela necessidade de reduzir os custos de instalação, manutenção e operação dos sistemas. Neste sentido, o sistema é dotado da capacidade para adaptar o serviço fornecido à aplicação aos respectivos requisitos instantâneos, acompanhando a evolução do sistema e proporcionando uma melhor e mais racional utilização dos recursos disponíveis. No entanto, maior flexibilidade operacional é igualmente sinónimo de maior complexidade derivada da necessidade de efectuar a alocação dinâmica dos recursos, acabando também por consumir recursos adicionais no sistema. A possibilidade de modificar dinâmicamente as caracteristicas do sistema também acarreta uma maior complexidade na fase de desenho e especificação. O aumento do número de graus de liberdade suportados faz aumentar o espaço de estados do sistema, dificultando a uma pre-análise. No sentido de conter o aumento de complexidade são necessários modelos que representem a dinâmica do sistema e proporcionem uma gestão optimizada e justa dos recursos com base em parâmetros de qualidade de serviço (QdS). É nossa tese que as propriedades de flexibilidade, pontualidade e gestão dinâmica de QdS podem ser integradas numa rede switched Ethernet (SE), tirando partido do baixo custo, alta largura de banda e fácil implantação. Nesta dissertação é proposto um protocolo, Flexible Time-Triggered communication over Switched Ethernet (FTT-SE), que suporta as propriedades desejadas e que ultrapassa as limitações das redes SE para aplicações de tempo-real tais como a utilização de filas FIFO, a existência de poucos níveis de prioridade e a pouca capacidade de gestão individualizada dos fluxos. O protocolo baseia-se no paradigma FTT, que genericamente define a arquitectura de uma pilha protocolar sobre o acesso ao meio de uma rede partilhada, impondo desta forma determinismo temporal, juntamente com a capacidade para reconfiguração e adaptação dinâmica da rede. São ainda apresentados vários modelos de distribuição da largura de banda da rede de acordo com o nível de QdS especificado por cada serviço utilizador da rede. Esta dissertação expõe a motivação para a criação do protocolo FTT-SE, apresenta uma descrição do mesmo, bem como a análise de algumas das suas propiedades mais relevantes. São ainda apresentados e comparados modelos de distribuição da QdS. Finalmente, são apresentados dois casos de aplicações que sustentam a validade da tese acima mencionada.During the last decade we have witnessed a massive deployment of embedded systems on a wide applications range, from industrial automation to process control, avionics, cars or even robotics. Many of these applications have an inherently high level of criticality, having to perform tasks within tight temporal constraints. Additionally, the configuration of such systems is often distributed, with several computing nodes that rely on a communication infrastructure to cooperate and achieve the application global goals. Therefore, the communications are also subject to the same temporal constraints set by the application requirements. Many applications relying on such networked embedded systems (NES) are complex and heterogeneous, comprehending different activities with different requirements and properties. For example, the communication between subsystems may follow a strict temporal synchronization with respect to a global time-base (time-triggered), like in a distributed feedback control loop, or it may be issued asynchronously upon the occurrence of events (eventtriggered). Regardless of the traffic characteristics and its activation model, it is of paramount importance having a communication framework that provides seamless integration of heterogeneous traffic sources while guaranteeing the application requirements. Another property that has been emerging as important for NES design and operation is flexibility. The need to reduce installation and operational costs, while facilitating maintenance is promoting a more rational use of the available resources at run-time, exploring the ability to tune service parameters as the system evolves. However, such operational flexibility comes with the cost of increasing the complexity of the system to handle the dynamic resource management, which on the other hand demands the allocation of additional system resources. Moreover, the capacity to dynamically modify the system properties also causes a higher complexity when designing and specifying the system, since the operational state-space increases with the degrees of flexibility of the system. Therefore, in order to bound this complexity appropriate operational models are needed to handle the system dynamics and carry on an efficient and fair resource management strategy based on quality of service (QoS) metrics. This thesis states that the properties of flexibility and timeliness as needed for dynamic QoS management can be provided to switched Ethernet based systems. Switched Ethernet, although initially designed for general purpose Internet access and file transfers, is becoming widely used in NES-based applications. However, COTS switched Ethernet is insufficient regarding the needs for real-time predictability and for supporting the aforementioned properties due the use of FIFO queues too few priority levels and for stream-level management capabilities. In this dissertation we propose a protocol to overcome those limitations, namely the Flexible Time-Triggered communication over Switched Ethernet (FTT-SE). The protocol is based on the FTT paradigm that generically defines a protocol architecture suitable to enforce real-time determinism on a communication network supporting the desired flexibility properties. This dissertation addresses the motivation for FTT-SE, describing the protocol as well as its schedulability analysis. It additionally covers the resource distribution topic, where several distribution models are proposed to manage the resource capacity among the competing services and while considering the QoS level requirements of each service. A couple of application cases are shown that support the aforementioned thesis
    corecore