

Università degli Studi di Cagliari

DOTTORATO DI RICERCA

INGEGNERIA ELETTRONICA ED INFORMATICA

Ciclo XXV

Integrated support for Adaptivity and Fault-tolerance in MPSoCs

Settore scientifico disciplinare di afferenza

ING-INF/01 ELETTRONICA

Presentata da: GIUSEPPE TUVERI

Coordinatore Dottorato PROF. ALESSANDRO GIUA

Tutor/Relatore PROF. LUIGI RAFFO

Esame finale anno accademico 2011 – 2012

Ph.D. in Electronic and Computer Engineering
Dept. of Electrical and Electronic Engineering

University of Cagliari

Integrated support for Adaptivity
and Fault-tolerance in MPSoCs

Giuseppe TUVERI

Advisor: Prof. Luigi RAFFO
Curriculum: ING-INF/01 Elettronica

XXV Cycle
April 2013

Ph.D. in Electronic and Computer Engineering
Dept. of Electrical and Electronic Engineering

University of Cagliari

Integrated support for Adaptivity
and Fault-tolerance in MPSoCs

Giuseppe TUVERI

Advisor: Prof. Luigi RAFFO
Curriculum: ING-INF/01 Elettronica

XXV Cycle
April 2013

EBBÉ ECCO

Abstract

The technology improvement and the adoption of more and more complex applications in
consumer electronics are forcing a rapid increase in the complexity of multiprocessor sys-
tems on chip (MPSoCs). Following this trend, MPSoCs are becoming increasingly dynamic
and adaptive, for several reasons. One of these is that applications are getting intrinsically
dynamic. Another reason is that the workload on emerging MPSoCs cannot be predicted
because modern systems are open to new incoming applications at run-time. A third rea-
son which calls for adaptivity is the decreasing component reliability associated with tech-
nology scaling. Components below the 32-nm node are more inclined to temporal or even
permanent faults. In case of a malfunctioning system component, the rest of the system is
supposed to take over its tasks. Thus, the system adaptivity goal shall influence several de-
sign decisions, that have been listed below: 1) The applications should be specified such that
system adaptivity can be easily supported. To this end, we consider Polyhedral Process Net-
works (PPNs) as model of computation to specify applications. PPNs are composed by con-
current and autonomous processes that communicate between each other using bounded
FIFO channels. Moreover, in PPNs the control is completely distributed, as well as the mem-
ories. This represents a good match with the emerging MPSoC architectures, in which pro-
cessing elements and memories are usually distributed. Most importantly, the simple op-
erational semantics of PPNs allows for an easy adoption of system adaptivity mechanisms.
2) The hardware platform should guarantee the flexibility that adaptivity mechanisms re-
quire. Networks-on-Chip (NoCs) are emerging communication infrastructures for MPSoCs
that, among many other advantages, allow for system adaptivity. This is because NoCs are
generic, since the same platform can be used to run different applications, or to run the same
application with different mapping of processes. However, there is a mismatch between the
generic structure of the NoCs and the semantics of the PPN model. Therefore, in this thesis
we investigate and propose several communication approaches to overcome this mismatch.
3) The system must be able to change the process mapping at run-time, using process mi-
gration. To this end, a process migration mechanism has been proposed and evaluated.
This mechanism takes into account specific requirements of the embedded domain such as
predictability and efficiency. To face the problem of graceful degradation of the system, we
enriched the MADNESS NoC platform by adding fault tolerance support at both software
and hardware level. The proposed process migration mechanism can be exploited to cope
with permanent faults by migrating the processes running on the faulty processing element.
A fast heuristic is used to determine the new mapping of the processes to tiles. The experi-
mental results prove that the overhead in terms of execution time, due to the execution time
of the remapping heuristic, together with the actual process migration, is almost negligible

i

compared to the execution time of the whole application. This means that the proposed ap-
proach allows the system to change its performance metrics and to react to faults without a
substantial impact on the user experience.

Contents

1 Introduction 1
1.1 Main goals and thesis organization . 1

2 State of the art 3
2.1 System adaptivity for MPSoCs . 3

2.1.1 Open issues and related works . 4
2.2 Fault-tolerance in NoC-based MPSoCs . 6

2.2.1 Open issues and related works . 6

3 The MADNESS Project 9
3.1 Framework outline . 9
3.2 High-level DSE . 11
3.3 FPGA-based evaluation environment . 13
3.4 Compilation toolchain and hardware abstraction layer 14

3.4.1 Compilation toolchain . 14
3.4.2 Hardware abstraction layer . 14

3.5 Support for Adaptivity . 15
3.6 Support for Fault-tolerance . 15

4 The MADNESS evaluation platform 17
4.1 Platform overview . 17
4.2 System-level platform description input file . 18
4.3 The soft IP cores RTL repository . 21

4.3.1 Elements of the Open Core communication Protocol (OCP) 21
4.3.2 Processing elements, memories and I/O 22
4.3.3 Interconnection elements . 23
4.3.4 Message Passing programming model . 25
4.3.5 Message Passing hardware support . 25
4.3.6 Interrupt generation support . 26
4.3.7 Software libraries . 26
4.3.8 Shared memory support: synchronization modules 28

4.4 The SHMPI platform builder . 29
4.5 Performance extraction . 30

5 Methodologies for adaptive MPSoCs 33

iii

iv CONTENTS

5.1 PPN-over-NoC communication . 34
5.1.1 Some definitions . 34
5.1.2 Inter-tile synchronization problem . 35
5.1.3 Virtual connector approach (VC) . 37
5.1.4 Virtual connector with variable rate approach (VRVC) 38
5.1.5 Request-driven approach (R) . 39

5.2 Process migration . 40
5.2.1 Migratable PPN process structure . 41
5.2.2 Process migration mechanism . 43

5.3 Experiments and results . 45
5.3.1 Case studies and MPSoC platform setup 45
5.3.2 Inter-tile communication efficiency . 47
5.3.3 Process migration benefits and overhead 50

6 Fault-tolerance support within the MADNESS framework 55
6.1 Proposed approach . 55

6.1.1 Fault detection . 55
6.1.2 Task migration hardware module . 56
6.1.3 Online task remapping strategies . 58

6.2 Experiments and results . 58
6.2.1 Case studies . 59
6.2.2 Flow control functionality assessment 60
6.2.3 Remapping heuristic and process migration execution time overhead . 61
6.2.4 Evaluation of the remapping strategy . 62
6.2.5 Architectural support hardware overhead 64

7 Conclusions and future developments 69

Bibliography 71

List of Figures

3.1 The MADNESS framework . 10
3.2 Scenario-based DSE. 12

4.1 Overview of the evaluation platform . 18
4.2 ×pipes switch architecture . 23
4.3 A general overview of an example template instance 25

5.1 Software infrastructure for each tile of the NoC. 34
5.2 Producer-consumer pair with FIFO buffer split over two tiles. 35
5.3 Example of a PPN and structure of process P2 . 35
5.4 Producer-consumer pair using the virtual connector approach. 36
5.5 Pseudocode of the VC approach. 37
5.6 Producer-consumer implementation . 38
5.7 Pseudocode of the R approach. 39
5.8 Migration diagram. 41
5.9 Migratable PPN process. 42
5.10 PPN specification of the Sobel filter. 45
5.11 PPN specification of the M-JPEG encoder. 46
5.12 Structure of middleware- and network- level packets. 47
5.13 Fixed mappings for Sobel and M-JPEG . 48
5.14 Total execution time for different communication approaches. 49
5.15 Slowdown for different communication approaches. 49
5.16 Traffic injected into the NoC by executing Sobel . 49
5.17 M-JPEG process scheduling when running on a single tile. 51
5.18 M-JPEG process scheduling while migrating P2 . 51
5.19 Execution time and generated traffic as a function of the process mapping 53

6.1 Interface and internal block diagram of the task migration hardware module . . . 57
6.2 PPN specification of the M-JPEG encoder. 59
6.3 Simplified PPN specification of the H.264 decoder. 60
6.4 Impact of the interrupt-based request messages on the RD flow control 60
6.5 M-JPEG process scheduling when migrating M1 . 61
6.6 Initial mapping and the two single-fault scenarios 63
6.7 Comparison of performance degradation when n1 is faulty 63
6.8 Comparison of performance degradation when n2 is faulty 63
6.9 Initial mapping and the two single-fault scenarios 64

v

vi LIST OF FIGURES

6.10 Comparison of performance degradation when n1 is faulty 64
6.11 Comparison of performance degradation when n2 is faulty 65
6.12 Area occupation overhead in comparison to the baseline network adapter 65
6.13 Critical path length overhead . 66
6.14 Area occupation overhead . 67
6.15 Area overhead dependence on the supported number of channels 67

List of Tables

4.1 Implemented OCP signals . 22

5.1 Middleware table example . 40
5.2 Execution times of Sobel functions . 45
5.3 Execution times of M-JPEG functions . 46

6.1 Execution times of M-JPEG processes . 59
6.2 Execution times of H.264 processes . 60
6.3 Calculation times of remapping heuristics . 62

vii

Chapter 1

Introduction

1.1 Main goals and thesis organization

Modern embedded systems become increasingly dynamic and adaptive. This is true for
both application and architecture. Regarding application, we can distinguish between two
classes of dynamic behaviour: intra-application and inter-application. An example of intra-
application dynamic behaviour is when an application aims at keeping an estabilished level
of Quality of Service (QoS) under varying circumstances. For example, a video application
could dynamically lower its resolution to decrease its computational demands in order to
reduce the battery drain. Inter-application adaptive behaviour is caused by the fact that
modern embedded systems often require to support an increasing amount of applications
and standards. Also, where such systems used to be "closed systems" in the past, today’s em-
bedded systems become more and more "open systems" for which third-party software ap-
plications can be downloaded and installed, or updated. As a consequence, the application
workload in such systems (i.e., the applications that are concurrently executing and con-
tending for system resources), and therefore the intensity and nature of the application de-
mands, can be very fluctuating. For this reason, the notion of workload scenarios has gained
considerable popularity in the past years [36], [16]. The underlying computer architectures
of embedded systems also become more and more adaptive and dynamic. For example, re-
configurable hardware components such as Field Programmable Gate Arrays (FPGAs) have
become popular architectural elements that allow for accelerating specific computational
kernels in applications (e.g., [44]). Moreover, there has been a growing interest on recon-
figurable on-chip networks (e.g., [20]). Such reconfigurable networks allow for adapting the
network (in terms of e.g. QoS requirements, topology, etc.) to the demands of the appli-
cation(s) that are being executed. Improving system reliability is another area in which the
notion of adaptivity is gaining research attention. In the case of, e.g., a malfunctioning ar-
chitecture component, other components in the system could take over the task(s) of the
faulty component. This either requires component duplication and some voting mecha-
nism (which may be undesirable for many embedded systems in which system costs play a
key role) or adaptive system behaviour that allows for a redistribution of application tasks to
architecture resources.
The above trend towards adaptivity and dynamic systems causes an important anomaly in
design methods for modern embedded systems. Traditionally, the mapping of applications

1

2 CHAPTER 1. INTRODUCTION

onto the underlying architectural components of an embedded system has always been
done in a static fashion. Here, we refer to the term "mapping" as the process of allocating
architectural resources that will be used by the application(s), and the spatial binding as well
as scheduling of application tasks to these resources. This mapping process is of primary
importance to embedded systems as it should carefully trade-off non-functional require-
ments (performance, power, costs, reliability, etc.). However, with the increasing adaptive
and dynamic behaviour of systems, such mapping decisions cannot be made at design time
anymore. A run-time system will be needed to dynamically map and re-map applications
onto the (available) underlying architectural resources. Moreover, with deep-sub-micron
technology, the possibility of experiencing faults in the circuitry is significant, requiring the
system to feature support for graceful degradation of the performance in case of malfunc-
tioning.
To cope with these issues, we have devised techniques that allow to change the mapping
of the application processes onto the processing cores at run-time. The development of
these techniques required the introduction of dedicated support at several levels. At the ar-
chitectural level, we considered a distributed-memory tile-based template, where tiles are
interconnected through a NoC, to support the high flexibility and scalability demands. The
architectural template is customizable in terms of the number of processors and network
topology. It has been extended with newly developed hardware IPs that facilitate the run-
time management and that expose to the applications the needed communication and syn-
chronization primitives, referring to a message-passing model of computation. Extensions
will be described in Chapter 4. At the software level, a specific layered infrastructure has been
devised, that is actually in charge of managing the mapping of the tasks, the communica-
tion between them and the migration process. The software/middleware infrastructure will
be described in Chapter 5. Eventually, fault-tolerance support has been introduced at both
software and hardware levels. The idea is to exploit the migration method in case of run-
time faults in the processing cores. The tasks mapped on faulty cores have to be migrated to
fault-free ones at run-time, so that the application can continue its execution without dis-
ruption. To this aim, several extensions to the process migration mechanism are required.
The details of the proposed techniques for fault-tolerance will be described in Chapter 6.

Chapter 2

State of the art

2.1 System adaptivity for MPSoCs

The technology improvement and the adoption of more and more complex applications in
consumer electronics are forcing a rapid increase in the complexity of multiprocessor sys-
tems on chip (MPSoCs). Following this trend, MPSoCs are becoming increasingly dynamic
and adaptive, for several reasons. One of these is that applications are getting intrinsically
dynamic. Another reason is that the workload on emerging MPSoCs cannot be predicted
because modern systems are open to new incoming applications at run-time. A third rea-
son which calls for adaptivity is the decreasing component reliability associated with tech-
nology scaling. Components below the 32-nm node are more inclined to temporal or even
permanent faults. In case of a malfunctioning system component, the rest of the system is
supposed to take over its tasks.

Thus, the system adaptivity goal shall influence several design decisions, that have been
listed below:

1) The applications should be specified such that system adaptivity can be easily sup-
ported. To this end, we consider Polyhedral Process Networks (PPNs) [45], a special class
of Kahn Process Networks (KPNs) [22], as model of computation to specify applications.
PPNs are composed by concurrent and autonomous processes that communicate between
each other using bounded FIFO channels. Moreover, in PPNs the control is completely dis-
tributed, as well as the memories. This represents a good match with the emerging MPSoC
architectures, in which processing elements and memories are usually distributed. Most im-
portantly, the simple operational semantics of PPNs allows for an easy adoption of system
adaptivity mechanisms. For instance, the process state which has to be transferred upon
process migration does not have to be specified by hand by the designer and can be smaller
compared to other solutions.

2) As a second design decision, the hardware platform should guarantee the flexibility
that adaptivity mechanisms require. Networks-on-Chip (NoCs) [12], which is the platform
model considered within this thesis, are emerging communication infrastructures for MP-
SoCs that, among many other advantages, allow for system adaptivity. This is because NoCs
are generic, since the same platform can be used to run different applications, or to run
the same application with different mapping of processes. However, there is a mismatch
between the generic structure of the NoCs and the semantics of the PPN model of compu-

3

4 CHAPTER 2. STATE OF THE ART

tation (MoC). Therefore, in this thesis we investigate and propose several communication
approaches to overcome this mismatch.

3) Finally, the system must be able to change the process mapping at run-time, using
process migration. To this end, a process migration mechanism has been proposed and
evaluated. This mechanism takes into account specific requirements of the embedded do-
main such as predictability and efficiency. The efficiency of the proposed process migration
mechanism depends on the design decisions discussed above, such as the MoC used to spec-
ify the applications. In this respect, the adoption of the PPN MoC ease the realization of pro-
cess migration, when using the proposed approach. During our research activities, we found
that the problem of a predictable and efficient process migration mechanism in distributed-
memory MPSoCs has not received sufficient attention. The aim of the work done over these
years is to contribute to a more mature solution of this problem.

2.1.1 Open issues and related works

Run-time resource management is a known topic in general purpose distributed systems
scheduling [9]. In particular, process migration mechanisms [40, 29], have been developed
and evaluated in this context to enable dynamic load distribution, fault resilience, and im-
proved system administration and data access locality. In recent years, run-time manage-
ment is gaining popularity and applications also in multiprocessor embedded systems. This
domain imposes tight constraints, such as cost, power, and predictability, that run-time
management and process migration mechanisms must consider carefully. [34] provides a
survey of run-time management examples in state-of-the-art academic and industrial solu-
tions, together with a generic description of run-time manager features and design space.

A relevant part of the work spent working on adaptivity topics has been focused on a spe-
cific component of run-time management strategies, namely the process migration mecha-
nism. Papers addressing process (or task) migration implementation in MPSoCs can also be
found in the literature. The closest to the presented work is [4], in which the goals of scalabil-
ity and system adaptivity are achieved through a distributed task migration decision policy
over a purely distributed-memory multiprocessor. Similar to our approach, their platform is
programmed using a process network MoC. However, in their approach the actual task mi-
gration can take place only at fixed points, which correspond to the communication primi-
tive calls. The described approach, instead, enables migration at any point in the execution
of the main body of processes. This leads to a faster response time to migration decisions,
which is preferable for instance in case of faults.

Other task migration approaches are explained and quantitatively evaluated in [7] and
[3]. Dynamic task re-mapping is achieved at user-level or middleware/OS level respectively.
In both these approaches, the user needs to define checkpoints in the code where the mi-
gration can take place. This can require some manual effort from the designer which is not
needed in the proposed approach. Moreover, a relevant difference from the presented ap-
proach is the inter-task communication realization, which exploits a shared memory system.
We argue that our approach, which uses purely distributed memory, can perform better in
emerging MPSoC platforms since it provides better scalability.

The model of computation that we have adopted (Polyhedral Process Networks [45]) not
only eases significantly the implementation of system adaptivity mechanism, but it also has
several other advantages and applications which can be found in the literature. In particular,
the proposed approach exploits the pn compiler [46] to automatically convert static affine

2.1. SYSTEM ADAPTIVITY FOR MPSOCS 5

nested loop programs (SANLPs) to parallel PPN specifications and to determine the buffer
sizes that guarantee deadlock-free execution. Thus, usage of the PPN model of computation
allows us to program an MPSoC in a systematic and automated way. Although the pn com-
piler imposes some restrictions on the specification of the input application, we note that a
large set of streaming applications can be effectively specified as SANLPs. In addition to the
case studies considered in this thesis, more application examples regard image/video pro-
cessing (JPEG2000, H.264), sound processing (FM radio, MP3), and scientific computation
(QR decomposition, stencil, finite-difference time-domain). Moreover, a recent work [41]
has shown that most of the streaming applications can be specified using the Synchronous
Data Flow (SDF) model [25]. The PPN model is more expressive than SDF, thus it can as well
be used effectively to model most streaming applications.

In general Kahn Process Networks (KPNs), of which PPNs represent a special class, are
a widely studied distributed model of computation. They are used for describing systems
where streams of data are transformed by processes executing in sequence or parallel. Pre-
vious research on the use of KPNs in multiprocessor embedded devices has been mainly
focusing on the design of frameworks which employ them as a model for application speci-
fication [33, 32, 23], and which aim at supporting and optimizing the mapping of KPN pro-
cesses on the nodes of a reference platform [6, 18]. In [33, 32], different methods and tools
are proposed for automatically generating KPN application models from programs written in
C/C++. Design space exploration tools and performance analysis are then usually employed
for optimizing the mapping of the generated KPN processes on a reference platform. A de-
sign phase usually follows in which software synthesis for multi-processor systems [23, 18],
or architecture synthesis for FPGA platforms [33] is implemented. A survey of design flows
based on the KPN MoC can be found in [17].

The approaches described above, which map applications described as KPNs to cus-
tomized platforms, have a strong coupling between the application and the platform. Run-
ning a different application on the generated platform would not be possible or, even if pos-
sible, would give bad performace results. We adopt a different approach where we start by
the assumption that we have a platform equipped with (possibly heterogeneous) cores well
interconnected with a NoC. We provide a PPN API for this platform that the PPN applica-
tion processes will comply to. Most importantly, the application code remains the same in
all possible mappings of the processes. This is achieved by a proposed intermediate layer,
called middleware, that includes the mapping related information and implements the PPN
communication API.

This approach, where software synthesis relies on the high level APIs provided by the
reference platform for facilitating the programming of a multiprocessor system, can be seen
elsewhere. The trend from single core design to many core design has forced to consider
inter-processor communication issues for passing the data between the cores. One of the
emerged message passing communication API is Multicore Association’s Communication
API (MCAPI) [2] that targets the inter-core communication in a multicore chip. MCAPI is
the light-weight (low communication latencies and memory footprint) implementation of
message passing interface APIs such as Open MPI [1]. However these MPI standards are not
quite fit for the KPN semantics [13] and building the semantics on top of their primitives
brings an overhead compared to platforms with dedicated FIFO support.

The communication and synchronization problem when implementing KPNs over multi-
processor platforms without hardware support for FIFO buffers has been considered in [30]
and [18]. In [30] the receiver-initiated method has been proposed and evaluated for the Cell

6 CHAPTER 2. STATE OF THE ART

BE platform. On the same hardware platform, [18] proposes a different protocol, which
makes use of mailboxes and windowed FIFOs. The difference with the approach presented
in this thesis is that we actually compare a number of approaches to implement the pro-
cess network semantics, and that we deal with a different kind of platform, with no remote
memory access support. Moreover, in both [30] and [18] system adaptivity is not taken into
account.

In [31] the problem of implementing the KPN semantics on a NoC is addressed. However,
in their approach the NoC topology is customized to the needs of the application at design
time and network end-to-end flow control is used to implement the blocking write feature.
In this work system adaptivity is considered since the middleware enables run-time man-
agement and the platform is generic, i.e. it allows the execution of any application specified
as a PPN.

An approach to guarantee blocking write behavior is also used in [4]. That work proposes
the use of dedicated operating system communication primitives, which guarantee that the
remote FIFO buffer is not full before sending messages through a simple request/acknowledge
protocol. The communication approaches described in this thesis assume a more proactive
behavior of the consumer processes to guarantee the blocking on write compared to the
request/acknowledge protocol. We argue that the presented approach can lead to better
performance since it requires less synchronization points.

2.2 Fault-tolerance in NoC-based MPSoCs

As the possibility of experiencing run-time faults becomes increasingly relevant with deep-
sub-micron technology nodes, our research activity has been focused on the problem of
graceful degradation by dynamic remapping in presence of run-time faults. Within the pro-
posed NoC platform (that will be described in 4, fault-tolerance support has been introduced
at both software and hardware levels. The idea is to improve dependability of the system by
exploiting the migration method in case of run-time faults in the processing cores. The tasks
mapped on faulty cores have to be migrated to fault-free ones at run-time, so that the ap-
plication can continue its execution without disruption. To this aim, several extensions to
the migration mechanism are needed. Firstly, fault detection must be enabled so that the
migration can be triggered. Secondly, given that a faulty processor cannot participate in the
remapping process, dedicated hardware is needed to ensure the migration functionality to
survive in case of malfunctioning. Finally, a remapping decision must be taken in such a
way to incur the smallest performance degradation. The details of the proposed solutions
are described in Chapter 6.

2.2.1 Open issues and related works

As already said in Section 2.1.1, in [4], a framework that achieves the goals of scalability and
system adaptivity is described. Similar to our approach, their platform is programmed using
a process network model of computation. However, our approach is fundamentally differ-
ent because it enables the migration to happen at any time within the main body of the
processes. This is a basic requirement in order to allow fault-tolerance, because faults can
happen at any time. By contrast, in [4] the process migration is enabled only at fixed points
during the execution of processes.

2.2. FAULT-TOLERANCE IN NOC-BASED MPSOCS 7

Dynamic task remapping is also performed in [7], [3] by means of a task migration mech-
anism implemented at user-level or middleware/OS level respectively. Both these approaches
require the user to specify checkpoints in the code at which migration can take place. In the
presented approach this is not needed because the state that has to be migrated is automati-
cally determined, thanks to the properties of the adopted model of computation (Polyhedral
Process Networks [46]).

Task remapping for reliability purposes has been investigated in [24] with the goal of
throughput minimization on multi-core embedded systems. The fundamental difference
from the presented approach is the use of design-time analysis for all possible scenarios and
the storage of all remapping information in the memory. We argue that this technique incurs
a large memory requirement to store all fault scenarios.

In [10], a system-level fault-tolerance technique for application mapping, which aims at
optimizing the entire system performance and communication energy consumption, is pro-
posed. In particular, the authors address the problem of spare core placement and its impact
on system fault-tolerance properties, and propose a run-time fault-aware technique for al-
locating the application tasks to the available, reachable, and fault-free cores of embedded
NoC platforms. In [10], application components running on a faulty core are migrated alto-
gether to available non-employed spare cores, whereas, in our approach, tasks on the faulty
core can possibly be remapped to different fault-free cores.

Chapter 3

The MADNESS Project

This chapter features a detailed description of the MADNESS project (Methods for predictAble
Design of heterogeneous Embedded Systems with adaptivity and reliability Support), funded
by the European Commission. The whole research activity performed over the topics of this
thesis, has been driven according to the needs posed by the MADNESS project goals.

The project aims at the definition of innovative system-level design methodologies for
embedded MPSoCs, extending the classic concept of design space exploration in multi-
application domains to cope with high heterogeneity, technology scaling and system reli-
ability.

The main goal of the project is to provide a framework able to guide designers and re-
searchers to the optimal composition of embedded MPSoC architectures, according to the
requirements and the features of a given target application field. The proposed strategies
will tackle the new challenges, related to both architecture and design methodologies, aris-
ing with the technology scaling, the system reliability and the ever-growing computational
needs of modern applications.

The methodologies developed within MADNESS project act at different levels of the de-
sign flow, enhancing the state-of-the art with novel features in system-level synthesis, archi-
tectural evaluation and prototyping.

3.1 Framework outline

In figure 3.1, a block diagram of the MADNESS system-level design framework is presented.
The framework aims at efficiently and effectively performing design space exploration (DSE)
to search for the optimal composition of a multimedia NoC-based MPSoC architecture, op-
erating on a library of heterogeneous industrial-strength IP cores and exposing a large num-
ber of degrees of freedom.

The MADNESS target platform consists of a library of IP blocks, mentioned in figure 3.1 as
Hardware Library, which are explored in continuously varying configurations. The project
employs a variety of IP building blocks, among which are application-specific instruction-
set processors (ASIPs), memories, interconnects, and adapters. This hardware IP library in-
cludes industrial-strength blocks from Silicon Hive and Lantiq. Some further blocks, such
as a video motion processor, are specifically developed for the MADNESS project. Each ar-

9

10 CHAPTER 3. THE MADNESS PROJECT

Figure 3.1: The MADNESS system-level design framework for adaptive and fault-tolerant
MPSoCs.

chitecture configuration is an abstract collection of target IPs and interconnect structures.
The decisions during the optimization process are actually taken by a DSE engine, repre-
sented by the box at the top of figure 3.1 and described in detail in section 3.2. The DSE
engine iteratively selects one among multiple sets of architecture instances and applica-
tion mappings, exploiting a specific layer for rapid and accurate architectural evaluation.
The DSE engine is based on enhanced versions of several key elements from the Daedalus
system-level synthesis design flow [42]. More specifically, it deploys the Sesame simulation
environment [37] for simulative DSE and uses the PNgen/ESPAM tools for parallel applica-
tion code generation [33]. As a consequence, the MADNESS framework, like Daedalus, uses
Kahn Process Networks (KPNs) [22] to model parallel multimedia applications. As described
later in deeper detail, the Sesame simulation environment has been extended in the scope
of the MADNESS project to support DSE for MPSoCs sustaining multi-application dynamic
workloads as well as to include with novel techniques for design space pruning including
fault-tolerance aspects. As a further point of novelty, the project continuously develops an
evaluation layer which integrates a system-level synthesis flow to rapidly evaluate selected
design points using an FPGA-based emulation and evaluation platform, described in further
detail in Chapter 4. The framework allows to perform system optimization by means of ade-
quately interleaving a high-level simulative design space exploration process with the eval-
uation of selected design points synthesized on real FPGA-based prototypes. Thus, the DSE
engine can access an FPGA-based environment for on-hardware prototyping, when needed
during the optimization process, in order to obtain a detailed evaluation of a candidate ar-

3.2. HIGH-LEVEL DSE 11

chitecture by actually executing the target application on the implemented prototype. In
order to improve design predictability, the flow is improved by annotating the emulation
results on adequate analytic “technology-aware” models (energy consumption, execution
time per frequency, area obstruction). This allows to translate emulation results to a reli-
able evaluation of a prospective ASIC implementation of the system on a given technology,
before actually performing all the back-end fabrication steps. In order to allow the execu-
tion of the target application on the FPGA implementation of completely different design
points, featuring different kinds of processing elements and interconnects, the framework
includes a re-configurable compilation toolchain, depicted in figure 3.1, which is capable of
re-targeting itself according to the design point specification. Furthermore, a hardware ab-
straction layer (HAL) exposes to the programmer a convenient set of APIs that can be used to
program the system without referring to specific low-level details of the platform. The com-
pilation toolchain automatically links the appropriate implementation of the API included
in the HAL, according to the description of the design point under evaluation. The compila-
tion toolchain and the HAL are described in further detail in section 3.4. Support for system
adaptivity and fault-tolerance, and their implementation aspects, which are main topics of
this thesis, will be described in Chapters 5 and 6. The implementation of the platform is bi-
ased toward low redundancy and power consumption in order to meed the demands of the
embedded systems domain. Characteristics of the dynamic behavior and of the resilience
to faults can be taken into account by the system-level synthesis during the architectural
optimization process, exploiting the mentioned extensions to Sesame.

To allow the mentioned tools and methods to inter-operate without or with minimal
manual intervention, the IP-XACT standard [21] was selected for exchanging abstract plat-
form instance descriptions between different tools. However, with regard to this purpose,
IP-XACT has shown a number of shortcomings. As a result, several adaptations were made
to the IP-XACT standard, allowing us to capture the variability of the target architectures and
to capture the power and area consequences of DSE design choices. Finally, in order to ac-
tually construct the heterogeneous platform instances needed for FPGA-based evaluation,
the MADNESS project has resulted in novel approaches to automatically convert MADNESS
IP-XACT descriptions into RTL implementations of multi-ASIP platform instances.

3.2 High-level DSE

The MADNESS framework deploys the Sesame MPSoC simulation framework [37] for simu-
lative DSE. Sesame recognizes separate application and architecture models within a system
simulation. An application model, specified as a KPN, describes the functional behavior of
a (set of) concurrent application(s). An architecture model defines architecture resources
and captures their performance constraints and power consumption characteristics. Sub-
sequently, using a mapping model, an application model is explicitly mapped onto an ar-
chitecture model (i.e., the mapping specifies which application tasks and communications
are performed by which architectural resources in an MPSoC), after which the application
and architecture models are co-simulated to study the performance and power consump-
tion consequences of the chosen mapping.

To actually search the design space for optimum design points, Sesame utilizes heuris-
tic search techniques, such as multi-objective Genetic Algorithms (GAs). Such GAs prune
the design space by only performing a finite number of design-point evaluations during the

12 CHAPTER 3. THE MADNESS PROJECT

Figure 3.2: Scenario-based DSE.

search, evaluating a population of design points (solutions) over several iterations, called
generations. With the help of genetic operators, a GA progresses iteratively towards the best
possible solutions.

The Sesame’s DSE was focused on the analysis of MPSoC architectures under a single,
static application workload. The current trend, however, is that application workloads exe-
cuting on embedded systems become more and more dynamic. Not only is the behavior of
a single application changing over time, but the effect of the interactions between different
applications are also hard to predict. This dynamic behavior can be classified and captured
using so-called workload scenarios [15]. Workload scenarios make a distinction between two
aspects. First, intra-application scenarios describe the dynamic behavior within applica-
tions. For example, a QoS mechanism within a decoder application may dynamically lower
the bit-rate to save power while still meeting its deadlines. Second, inter-application scenar-
ios describe the interaction between different applications that are concurrently executing
on an embedded system and contending for its system resources.

In the context of MADNESS, a novel scenario-based DSE method that allows for captur-
ing the dynamic behavior of multi-application workloads in the process of system-level DSE
[43] has been developed. An important problem that needs to be solved by such scenario-
based DSE is the rapid evaluation of MPSoC design instances during the search through the
MPSoC design space. Because the number of different workload scenarios can be immense,
it is infeasible to rapidly evaluate an MPSoC design instance during DSE by exhaustively an-
alyzing (e.g., via simulation) all possible workload scenarios for that particular design point.
As a solution, a representative subset of workload scenarios can be used to make the evalu-
ation of MPSoC design instances as fast as possible. The difficulty is that the representative-

3.3. FPGA-BASED EVALUATION ENVIRONMENT 13

ness of a subset of workload scenarios is dependent on the target MPSoC architecture. But
since the evaluated MPSoC architectures are not fixed during the process of DSE, we need to
simultaneously co-explore the MPSoC design space and the workload scenario space to find
representative subsets of workload scenarios for those MPSoC design instances that need to
be evaluated. To this end, within MADNESS project a scenario-based DSE method combin-
ing a multi-objective GA and a feature selection algorithm have been developed. The GA is
used to search the MPSoC design space, while the feature selection algorithm dynamically
selects a representative subset of scenarios. This representative subset of scenarios is then
used to predict the quality of MPSoC design instances in the GA as accurately as possible.

This scenario-based DSE is depicted in Figure 3.2. As input, the scenario-based DSE
uses the application models that need to be mapped onto the MPSoC, an MPSoC platform
model, a scenario database in which all possible application scenarios are stored, and search
parameters. As output, the DSE produces candidate MPSoC design instances that perform
well when considering all the potential situations that can occur in the specified dynamic
multi-application workload. The system-level description of the candidate design points is
then translated by a utility, and can be elaborated by the FPGA-based prototyping platform,
as described in [27].

3.3 FPGA-based evaluation environment

The design flow envisioned in MADNESS raises the need for a fast and accurate evaluation
environment. Such a tool has to provide the upper layers of the design flow (i.e., the simu-
lative DSE) with feedback about the performance of any requested candidate architectural
configuration. To this aim, within the project, a flexible and fast FPGA-based emulation
framework extending the work presented in [28] has been developed. It leverages a library
of components, instantiates the desired system configuration, specified through a system-
level specification file, and generates the hardware description files for the FPGA synthesis
and implementation, automating design steps that are usually very error-prone and effort-
hungry. The mentioned feedback, namely consisting of detailed and precise event/cycle-
based metrics, is obtained from the execution of the target software application (compiled
and linked with the proper toolchains and communication libraries) on the candidate sys-
tem configuration, implemented on FPGA and adequately instrumented with counters and
hardware probes. Moreover, the prototyping environment provides support for “technology
awareness” within the DSE process, by coupling the use of analytic models and FPGA-based
fast emulation. This allows to obtain early power and execution time figures related to a
prospective ASIC implementation, without the need to perform long post-synthesis soft-
ware simulations. The FPGA emulation results are back-annotated using analytic models for
the estimation of the physical figures of interest. Timing results (cycle counts) are evaluated
according to the modeled target ASIC operating frequencies and the evaluated switching ac-
tivity is translated into detailed power numbers. Thus, the assumptions made at the system-
level design phase can be verified before the actual back-end implementation of the system,
increasing the overall convergence of the design flow. The models included in the evalua-
tion platform are built by interpolation of layout-level experimental results obtained after
the ASIC implementation of the reference library IPs, along the lines already defined for NoC
building blocks in [26]. In the latter, the accuracy of the models is assessed to be higher than
90% when complete topologies are considered, with respect to post-layout analysis of real

14 CHAPTER 3. THE MADNESS PROJECT

ASIC implementations. A detailed description of the evaluation platform will be provided in
Chapter 4.

3.4 Compilation toolchain and hardware abstrac-
tion layer

This section describes the interaction between the DSE, the compilation toolchain and the
evaluation platform. Further, a brief overview of the extensions to the available compilers is
given. Finally the key features of the hardware abstraction layer and their integration in the
compilation toolchain are described.

3.4.1 Compilation toolchain

The DSE tool passes the sources for each process and additional information like map-
ping and system description to the compilation toolchain (see Figure 3.1). The compila-
tion toolchain takes care of the correct mapping between processes and their corresponding
compilers for each processor in an automatic way. In order to determine the right compiler,
the user needs to pass an environment description to the compilation toolchain. This de-
scription defines which compilers are available and which options to use for each processor
in the system.

To meet the requirements of the framework, a hardware abstraction layer (HAL) is inte-
grated in the compilation toolchain in a retargetable manner.

3.4.2 Hardware abstraction layer

The MADNESS framework aims at generating an optimal MPSoC for given hardware com-
ponents and for a given application. Therefore, the application developer does not know the
platform during the development process. Special processor-dependent instructions cannot
be exploited during system generation. Even the realization of simple low-level functions
like communication or synchronization without knowledge of the underlying processors
and hardware components is impossible. For this reason, the MADNESS framework provides
a Hardware Abstraction Layer (HAL) which enables the developer to create portable and
processor-dependent optimized applications. The developed HAL consists of two parts, a
fixed part which covers the standard abilities of processors and a generic processor-dependent
part.

Standard abilities

Standard abilities include memory access, communication or synchronization mechanisms.
One assumes that present and future processors support these mechanisms. As a conse-
quence MADNESS defines a fixed set of standard functions which have to be implemented
for each available processor used in the proposed framework.

Special abilities

The actual advantage of heterogeneous multi-processor-systems is the composition of dif-
ferent specialized processors. To achieve the best performance one has to take into account

3.5. SUPPORT FOR ADAPTIVITY 15

that the HAL has also to cover the processor-dependent features. These features are called
special ability functions. This part of the HAL is generic and extensible by the user with-
out modifications of the used compilers. For each specialized implementation, a standard
ANSI-C implementation must be provided. Thus, the availability of a semantically equiva-
lent application, if the corresponding processor feature is not available, is ensured.

3.5 Support for Adaptivity

The term system adaptivity refers to the ability of a system to dynamically assign tasks of the
application(s) running on it to the resources available over time. This is an emerging topic in
MPSoC design due to recent evolutions in embedded systems [34]. The KPN model of com-
putation (MoC), adopted in the MADNESS framework to model multimedia applications for
mapping them onto the MPSoC, presents remarkably simple operational semantics and dis-
tributed control, which allow for a natural realization of system adaptivity mechanisms.

From an architectural point of view, the framework is focused on tile-based NoC [12]
systems. Among other advantages, this choice is driven by the goal of system adaptivity.
NoC-based interconnects’ flexibility allows to overcome the drawbacks exposed by point-to-
point connections classically used in multimedia. Point-to-point connections are typically
more efficient in terms of communication latency, but they are intrinsically less efficient in
supporting communication patterns varying at runtime, unless full connectivity among all
the processors in the system is provided at design time, at the price of making wiring and
buffering of the whole communication structure rather complex. Moreover, NoC communi-
cation infrastructures are physically and functionally more scalable than bus-based shared
memory systems [5].

The starting assumption is that the target platform is equipped with a heterogeneous set
of cores interconnected with a NoC. The application code must remain the same in every
possible mapping of the tasks to allow for system adaptivity. This fact implies that the used
communication primitives must be neither platform dependent nor mapping dependent.
An intermediate layer, or middleware, has been implemented to refine such communication
primitives, including mapping related information, and to respect the KPN semantics on the
NoC-based MPSoC platform.

The middleware layer and the proposed adaptivity strategies will be thoroughly discussed
in Chapter 5.

3.6 Support for Fault-tolerance

Applications of embedded systems increasingly require high availability of the systems them-
selves, possibly accepting a measure of graceful degradation. Moreover, increasing complex-
ity of the systems is reaching such levels that the probability that some manufacturing defect
will escape end-of-production testing or that faults will become evident during normal oper-
ation has to be taken into account. Standard approaches based on massive redundancy are
not directly applicable to embedded platforms, constrained by the need for solutions having
low cost and low power consumption. New approaches are therefore needed.

The MADNESS project focuses on the development of fault tolerant solutions which are
not dependent on a technology-related low-level fault model, but rather on technology-

16 CHAPTER 3. THE MADNESS PROJECT

abstracting functional-level error models. This approach allows the development of a func-
tionally identical system for two different implementation technologies - FPGA and ASIC
- such that the system’s evaluation on one technology can be immediately adoptable and
credible for the other technology.

The fault tolerant approaches focus on the detection of run-time faults and on the use
of reconfiguration strategies implemented at different levels. In the MADNESS framework,
three main types of components are taken into account, i.e., processing cores, storage ele-
ments, and the network-on-chip (NoC). While for storage components standard fault toler-
ant strategies based on error detecting and correcting codes are adopted, for the NoC and
the processing elements ad-hoc strategies for fault detection and reconfiguration have been
developed, and will be presented in Chapter 6.

Chapter 4

The MADNESS evaluation platform

4.1 Platform overview

As described in Chapter 3, within the MADNESS project, an integrated framework for the
application-driven design of MPSoCs was studied and implemented, aimed at supporting
the designer during such a complex process. Figure 4.1 gives a block decomposition the
MADNESS tool support for prototyping activity, which is based on the SHMPI system-level
FPGA-based prototyping environment, presented in [39]. A system-level platform descrip-
tion is input to the framework. The description includes processing, interconnection and
memory modules instantiation and configuration, and address space partitioning.

A high-level topology compiler is in charge of parsing the topology description file and
generating the RTL files that describe the hardware top view of the complete platform. This
stage is also intended to generate the hw/sw platform description files to be passed to the
Xilinx platform instantiation toolset. This phase of the flow will be specifically addressed and
further explained in Section 4.4. The composition and configuration of the selected platform
builds upon a repository of soft IP cores. The content of this library will be described in
detail in Section 4.3. The use of these repositories does not prevent the inclusion of further
modules into the system, since custom cores can always be added as RTL or pre-synthesized
netlists with little effort. This is a crucial feature of the RTL libraries, since extensibility is
key to the applicability range of the framework. That is also the reason why all the modules
included in the library are fully compliant to a common interfacing standard, which is a
subset of the well-known OCP-IP communication standard [35], as we will discuss in the
following sections.

Regarding the software part of the system, the Xilinx development environment includes
the standard compilation and debugging tool-chains for the soft processors that can be in-
stantiated, while the drivers of the peripherals are automatically generated already at the
platform compilation stage, according to the parameters provided by the user. The RTL files
of the components can potentially be passed, with minor modifications, to an ASIC synthe-
sis flow, in order to obtain power and area figures of the designed platform and to refine the
area and power models of the building blocks instantiated within the system. So far, this
capability is provided only for the interconnection modules. The framework operating flow
proceeds with the FPGA synthesis and implementation through the adoption of the Xilinx
proprietary tools (within the Xilinx ISE©environment). The execution of the targeted appli-

17

18 CHAPTER 4. THE MADNESS EVALUATION PLATFORM

Figure 4.1: Overview of the evaluation platform

cation on the configured FPGA can be easily profiled with deep accuracy. Moreover, the em-
ulation of the complete platform enables the rapid collection of cycle-accurate information
on the switching activity, that can be used, in cooperation with the available power models,
to obtain detailed figures related to a prospective ASIC implementation of the system.

4.2 System-level platform description input file

The designer is able to input a platform description by passing as input to the framework a
text file that describes the main system-level building blocks of the design under emulation.
The granularity of the input file is at the single processing, interconnection, I/O and mem-
orization module level. Regarding the interconnection subsystem architecture, the designer
can describe, in case a source routing NoC-based is selected (which is the case of the ×pipes
interconnection library), the number of switches, the n-arity of each switch, the number of
buffering input/output stages, the routing tables and normally has to tag the different links
connecting the switches. Regarding the memorization layer, the type of memory has to be
selected. Currently the system is able to instantiate on-FPGA Xilinx proprietary hard BRAM
modules, configuring them to emulate single- and double-port memory cores. The address
space and the related processor into which the memory module is connected have to be
specified. If the memory is shared among the different processing element, the module has
to be declared to be such. Regarding the different I/O and synchronization controller and
modules, the address spaces have to be declared as well.

4.2. SYSTEM-LEVEL PLATFORM DESCRIPTION INPUT FILE 19

The following code contains snippets taken from an actual input system description file:

//
// define the topology here
// name, mesh/torus specifier (mesh/torus/other)
//
topology(topology_2x2, other);

//
// define the cores here
// core name and number, switch number, NI clock divider, NI buffers,
// initiator/target type, type of core (if a specific one is requested),
// memory mapping (only if target), fixed specifier
// (only if target and of shared type)
//
core(core_0, switch_0, 1, 6, userdefined, initiator);
core(core_1, switch_1, 1, 6, userdefined, initiator);
core(core_2, switch_2, 1, 6, userdefined, initiator);
core(core_3, switch_3, 1, 6, userdefined, initiator);

core(pm_4, switch_0, 1, 6, double, target:0x10,high:0x1000ffff);
core(pm_5, switch_1, 1, 6, double, target:0x12,high:0x1200ffff);
core(pm_6, switch_2, 1, 6, ocpmemory, target:0x14,high:0x1400ffff);
core(pm_7, switch_3, 1, 6, ocpmemory, target:0x16,high:0x1600ffff);

core(ts_8, switch_3, 1, 6, Testandset,target:0xff,high:0xffffffff);
core(ul_9, switch_0, 1, 6, Uartlite,target:0x46,high:0x4600ffff);
core(shm_10, switch_1, 1, 6, shared, target:0x06, high:0x0600ffff);

//
// define the switches here
// switch number, switch inputs, switch outputs, number of buffers,
// core ID to which the switch performance counter is attached,
// port ID to which the switch performance counter is attached.
//
switch(switch_0, 5, 5, 6, 0, 0);
switch(switch_1, 5, 5, 6, 1, 0);
switch(switch_2, 5, 5, 6, 2, 0);
switch(switch_3, 5, 5, 6, 3, 0);

//
// define the links here
// link number, source, destination
//

link(link0, switch_0, switch_1);
link(link1, switch_1, switch_0);

20 CHAPTER 4. THE MADNESS EVALUATION PLATFORM

.

.

.

link(link6, switch_1, switch_3);
link(link7, switch_3, switch_1);

//
// define the routes here
// source core, destination core, the order in which switches need to be
// traversed from the source core to the destination core
//
route(core_0, pm_4, switches:0);
route(core_0, ts_8, switches:0,1,3);
route(core_0, ul_9, switches:0);
route(core_0, shm_10, switches:0,1);

.

.

.

route(core_3, pm_7, switches:3);
route(core_3, ts_8, switches:3);
route(core_3, ul_9, switches:3,2,0);
route(core_3, shm_10, switches:3,1);

route(pm_4, core_0, switches:0);
route(pm_4, pm_5, switches:0,1);
route(pm_4, pm_6, switches:0,2);
route(pm_4, pm_7, switches:0,1,3);

.

.

.

route(pm_7, core_3, switches:3);
route(pm_7, pm_4, switches:3,2,0);
route(pm_7, pm_5, switches:3,1);
route(pm_7, pm_6, switches:3,2);

.

.

.

route(ts_8, core_0, switches:3,2,0);
route(ts_8, core_1, switches:3,1);

4.3. THE SOFT IP CORES RTL REPOSITORY 21

route(ts_8, core_2, switches:3,2);
route(ts_8, core_3, switches:3);

The code snippet contains the description of a sample topology named topology_2x2,
which contains 4 processing elements, 2 double-port local memories, 2 single-port local
memories, a test&set synchronization module, an UART controller for interfacing with a se-
rial port and a shared memory, all declared with the same core() primitive and different
parameters. The parameters allow for specifying different clock domains (unused in this
case), the number of buffering stages in the network interface (6 in this case), the core iden-
tifier and the basic memory mapping of each device. Local memories with multiple ports
have different mappings for each port with respect to the local processor and the other pro-
cessors, if direct messaging is enabled.

The NoC switches are defined using the switch() primitive, whose parameters allow the
designer to specify a name for the switch, the number of inputs and outputs of that switch,
which define the arity of the switch itself, the number of buffering stages (output buffering
is used in this interconnection library module) and two other IDs. These two other IDs re-
spectively identify the core and the port which the switch performance counters are actually
attached to. The actual performance counter logic will be described in detail in Section 4.5.
The link() primitive enable link identification. Its parameters simply point to the inter-
connected switch modules. Links have to be declared as if they were half-duplex, meaning
that between two switches connected through a full-duplex link there must be two separate
links. In addition to that, if source routing is used, the route() primitive enables specify-
ing the routing path between every core pair inside the network, and its parameters specify
the list of switch traversed by the packets from source to destination. Direct communication
between two computing cores is not allowed. If direct messaging is intended to happen at
higher level, the underlying mechanism implies a communication from the source process-
ing element to the remote memory that is attached to the destination processing element.

4.3 The soft IP cores RTL repository

This section will describe the components currently available in the soft IP cores repository.
All the modules included in the libraries are highly parametric. This is a key feature with
respect to the prospective adoption of the framework for design exploration purposes. Dif-
ferent computing and memorization elements have been added to the libraries and they will
not be described within this thesis. The building blocks have been made compliant, where
not already done, to a subset of the well known OCP open communication standard [35]. We
will first provide a brief introduction to the main features of the standard.

4.3.1 Elements of the Open Core communication Protocol (OCP)

The Open Core Protocol (OCP) defines a bus-independent protocol between IP cores that re-
duces design time, design risk, and manufacturing costs for SOC designs. An IP core can be a
simple peripheral core, a high-performance microprocessor, or an on-chip communication
subsystem such as a wrapped on-chip bus. The OCP defines a single-clock synchronous in-
terface point-to-point interface between two communicating entities such as IP cores and

22 CHAPTER 4. THE MADNESS EVALUATION PLATFORM

bus interface modules (bus wrappers). One entity acts as the master of the OCP instance,
and the other as the slave. Only the master can present commands and is the controlling
entity. The slave responds to commands presented to it, either by accepting data from the
master, or presenting data to the master. For two entities to communicate in a peer-to-peer
fashion, there need to be two instances of the OCP connecting them - one where the first
entity is a master, and one where the first entity is a slave. The characteristics of the IP core
determine whether the core needs master, slave, or both sides of the OCP.

A transfer across this protocol occurs as follows. A system initiator (as the OCP master)
presents command, control, and possibly data to its connected slave (a wrapper interface
module that abstracts the underlying hardware details). The interface module plays the re-
quest across the on-chip physical interconnection system, which can be a bus, a crossbar, a
NoC or whatever. The OCP does not specify the underlying hardware functionality. Instead,
the interface designer converts the OCP request into a transfer for the underlying hardware.
The receiving wrapper interface module (as the OCP master) converts the underlying hard-
ware transfer operation into a legal OCP command. The system target (OCP slave) receives
the command and takes the requested action.

The OCP standard defines a huge number of signals, which are grouped in different cate-
gories, according to the functionality that the different interconnected modules provide. We
chose to implement only compliance with a small subset of the OCP signals, whose list is
reported in Table 4.1 together with a brief signal functionality description.

Name Width Driver Function
Clk 1 varies OCP clock

MAddr configurable master Transfer address
MCmd 3 master Transfer command
MData configurable master Write data

MDataValid 1 master Write data valid
MRespAccept 1 master Master accepts response
MByteEnable 4 master One-hot byte enable
SCmdAccept 1 slave Slave accepts transfer

SData configurable slave Read data
SDataAccept 1 slave Slave accepts write data

SResp 2 slave Transfer response

Table 4.1: Implemented OCP signals

Where needed, OCP-compliant wrappers modules have been developed to adapt the
original module interface to the one specified by the protocol.

4.3.2 Processing elements, memories and I/O

The computing element library has been mainly focused around the FPGA-oriented Xilinx
proprietary soft cores, that is to say the Microblaze©[47] and PowerPC©[48] cores. Within
MADNESS project, a set of other processing elements have been added to the repository,
namely a set of multi-media oriented Application Specific Integrated Processors (ASIP) pro-
vided by Intel Corporation, and a processor specifically designed for the packet processing
domain provided by Lantiq Deutschland GmbH.

4.3. THE SOFT IP CORES RTL REPOSITORY 23

As for what regards the memorization and I/O elements, standard Xilinx soft cores are
currently being used. The memory modules can be automatically configured as single- or
double-port BRAM-based modules. The separation between such cases is operated accord-
ing to the system-level description provided by the designer. In case direct processor-to-
processor message-passing is enabled, double-port memories will be selected, together with
the necessary logic to handle DMAs at the network interface level.

Regarding the I/O, standard controller modules are available, such as UART, Ethernet and
DVI/TFT controllers.

4.3.3 Interconnection elements

The ×pipes NoC component library ([11]) is a highly flexible library of component blocks
that has been chosen as baseline reference for the development activity. The library is suit-
able for the creation of arbitrary topologies, thanks to the capability of its modules of being
almost completely configured at design time. ×pipes, natively, includes three main compo-
nents: switches, network interfaces (NIs) and links. Figure 4.2 plots the basic architecture of
the ×pipes switch. It is a very simple switch configuration, where output buffer is employed
through multi-stage variable-latency FIFOs. A round-robin priority arbiter with selectable
inputs is employed to allocate the all-to-all crossbar output ports. The minimum traversal
latency per switch is 2 clock ticks per flit.

Figure 4.2: ×pipes switch architecture

The backbone of the NoC is composed of switches, whose main function is to route pack-
ets from sources to destinations. Arbitrary switch connectivity is possible, allowing for im-
plementation of any topology. Switches provide buffering resources to lower congestion and
improve performance. In ×pipes, both output and input buffering can be chosen, i.e. FI-
FOs may be present at each input and output port. Switches also handle flow control issues,
and resolve conflicts among packets when they overlap in requesting access to the same
physical links. A NI is needed to connect each IP core to the NoC. NIs convert transaction
requests/responses into packets and vice versa. Packets are then split into a sequence of flits
before transmission, to decrease the physical wire parallelism requirements. In ×pipes, two
separate NIs are defined, an initiator and a target one, respectively associated to OCP system
masters and OCP system slaves. A master/slave device will require an NI of each type to be
attached to it. The interface among IP cores and NIs is point-to-point as defined by the OCP

24 CHAPTER 4. THE MADNESS EVALUATION PLATFORM

subset described in Table 4.1, guaranteeing maximum reusability and compliance with the
interface standards.

NI Look-Up Tables (LUTs) are used to specify the path that packets will follow in the net-
work to reach their destination (source routing). Two different clock signals can potentially
be attached to the NIs: one to drive the NI front-end (OCP interface), the other to drive the
NI back-end (×pipes interface). The ×pipes clock frequency must be an integer multiple of
the OCP one. This arrangement allows the NoC to run at a fast clock even though some or
all of the attached IP cores are slower, which is crucial to keep transaction latency low. Since
each IP core can run at a different frequency of the ×pipes frequency, mixed-clock platforms
are possible. Inter-block links are a critical component of NoCs, given the technology trends
for global wires. The problem of signal propagation delay is, or will soon become, critical.
For this reason, ×pipes supports link pipelining, i.e. the interleaving of logical buffers along
links. Proper flow control protocols are implemented in link transmitters and receivers (NIs
and switches) to make the link latency transparent to the surrounding logic. Therefore, the
overall platform can run at a fast clock frequency, without the longest wires being a global
speed limiter. Only the links which are too long for single-cycle propagation will need to pay
a repeater latency penalty.

Within the development of the evaluation framework, the original ×pipes library has
been extended explicitly for adaptation and integration in MADNESS project, and to pro-
vide advanced communication capabilities required for fast prototyping. Here follows a list
of the main features that have been added to the library:

• Capability of initializing and handling DMAs (meaning direct memory to memory trans-
fers). The need for this feature has appeared in order to support, at low level, all those
models of computations that rely on direct processor-to-processor message passing.
In order to implement this added capability, additional logic has been inserted in the
processor and memory network interfaces. The way this logic works is basically that
the sending processor programs, through memory-mapped registers, a DMA transfer
from its memory to a destination memory, by specifying the destination network ad-
dress and the burst length. The transaction is then translated into an OCP burst trans-
fer, that takes place from the source memory directly to the destination one. Upon
receive, the destination network interface is able to store the incoming data on a tem-
porary memory buffer or, if the receiving processor has already reached the receiving
primitive call within the application, directly into the destination memory area. Fur-
ther detail on the software implementation of the message-passing strategy will be
provided in Section 4.3.7.

• Insertion of performance counters inside NoC modules has been enabled through ad-
dition of dedicated hardware monitors directly attached to the output buffers of the
switch. The value of the counters are then written into dedicated memory-mapped
registers through which they are accessible to the processing element.

All the mentioned additional features required some modifications of the processor-to-
NI interface circuitry. Several dedicated adapters have been developed in this aim, allow-
ing at the same time the seamless integration of the ×pipes library (natively compliant with
OCP) with the rest of the environment. Some address decoding logic has been added in-
side the core in order to detect those load/store operations that are not intended to generate

4.3. THE SOFT IP CORES RTL REPOSITORY 25

Figure 4.3: A general overview of an example template instance

traffic over the network, such as accesses to memory mapped registers or to performance
counters.

4.3.4 Message Passing programming model

Reference primitives implementing message-passing communication are built, according to
the general definition of such model, upon two base functions: send() and receive(). These
two primitives are implemented in C, and interact with the hardware structures described
in Section 4.3.5. According to the usual message-passing signatures, to send a message with
a send(), the programmer has to specify the address (SendAddress hereafter) inside the pri-
vate memory that contains the information to be sent (message data), a tag assigned to the
message (SendTag), the size of the transfer (SendDim), and the ID of the destination pro-
cessor (or process, in case of multi-context execution in the processing elements - SendID).
The receive() parameters are the tag of the expected message (ReceiveTag), the sender ID
(ReceiveID) and the address where the received message data has to be stored (ReceiveAd-
dress). Two implementations of the receive() are provided, with blocking and non-blocking
behaviour.

4.3.5 Message Passing hardware support

The Network Adapter architecture is depicted in Figure 4.3 (left side). Both the instruction
and data private memories of the processor have two access ports, in order to allow the pro-
cessor to keep on accessing code and data from one instruction and one data port, while, at
the same time, the other ports can be used to directly load/store data from/to the memory
in case of message send/receive. In this way, communication and computation can overlap,
potentially leading to a significant speed-up. The NA integrates a local bus, that, according
to the address requested by the processor interface, enables access to:

• the private memory,

• a module called DMA message-passing handler (MPH),

26 CHAPTER 4. THE MADNESS EVALUATION PLATFORM

• a set of performance counters to obtain statistics about the application execution

In the figure, the gray part represents the additional circuitry supporting fault-tolerance,
that will be described in Chapter 6. The MPH embeds a set of memory-mapped registers
that are programmed by the processor, to control send and receive operations, setting the
previously described parameters.

It also includes an address generator in charge of generating the addresses when the pri-
vate memories must be accessed from the port reserved for message passing.

When the processor wants to call a send(), the microcode that implements the primi-
tive stores the required values into the send-related memory-mapped registers. As soon as
the registers are programmed, the address generator starts to load SendDim words from the
memory, starting from address SendAddr, and propagates them to the NI. The destination
address requested for the network transaction is obtained by the address generator accord-
ing to the content of SendID, translating the destination process ID into the network address
of the destination processor private memory.

At the other end of the communication, the processor needs to execute a receive() to com-
plete the transaction. It may happen that the receive() has not been called at the moment the
packets composing the message actually arrive to the destination network node. In this case
the message data is stored in the memory, inside a (configurable) memory buffer reserved for
such a purpose. The identification fields related to the incoming message (sender, tag, buffer
address) are stored inside an event file, in order to enable the receive() primitive to retrieve
the message from the memory when it will eventually be executed. The receive() microcode,
as a first step, stores the parameters inside three memory-mapped registers. Once such reg-
isters are programmed, the processor must keep accessing the DMA, scanning the event file
locations, to check if the message under reception is already inside the buffer. In the case of
a match, the processor copies the message data from the buffer to the ReceiveAddress. If the
message is not found in the event file, the processor keeps polling the DMA handler, where
a dedicated circuitry is in charge of comparing the incoming messages with the contents of
the three registers. In case of matching, the message data is stored in memory, directly at the
location identified by ReceiveAddress. In order to allow partial buffer de-fragmentation, the
buffer is treated as a list.

4.3.6 Interrupt generation support

A tag decoder has been instantiated inside the Network Adapter. It is in charge of detect-
ing a set of pre-determined tag configurations, that are reserved for the purpose of remote
interrupt generation. In case of matching, the tag decoder triggers an interrupt signal that
is connected to the processor interrupt controller. This feature can be used to allow a pro-
cessor in the system to generate an asynchronous event on another processor, such as the
initiation of the migration process.

4.3.7 Software libraries

As part of the library-based approach, we developed several software routines that constitute
the framework Hardware Abstraction Layer (HAL). These routines are also required to pro-
vide to the application/firmware level the necessary APIs to implement the shared-memory

4.3. THE SOFT IP CORES RTL REPOSITORY 27

model of parallel computation, and can be included through standard header files. Here
follows a list of the main software functions, along with their functionality:

• Shared memory lock/unlock primitives - these functions will be described in Section
4.3.8. They provide lock/unlock primitives for shared-memory multi-core systems and
rely on the hardware Test&Set synchronization module.

• Thread spawn and wait primitives - these functions emulate the creation of threads
of execution on remote processors. The thread creation is emulated through pointer
passing. Basically, the spawning thread calls a create() function, that sets a pointer
in a shared memory location and wakes up a remote processor that was polling on that
address. This mechanism, however, has the strong implication that all the processors
load the same instruction and initialized data regions at startup, in a SPMD fashion. In
such a way that thread instructions are already located in each processor local instruc-
tion memory. Otherwise, remote thread creation would have implied a thread load
from the shared memory or, more likely, a thread load from the off-chip memory. The
spawned thread, as already hinted, runs on a processor that was stuck waiting for the
function pointer on that specific location, by calling a wait_task() function. Upon
exit, the wait_task() function returns the pointer to the task to be executed.

• Shared memory barrier synchronization primitives - these functions implement the
barrier synchronization for shared memory systems. They rely on the specificbar_type
data type, whose struct follows:

typedef struct bar_type_ {
volatile int num_p;
volatile int counter;
volatile int lock_b;
volatile int flag;
} bar_type ;

The barrier is implemented by atomically (locking the lock_b variable) incrementing a
shared counter (counter) and by busy waiting until it reaches the predefined number
of accesses (num_p), meaning that all the desired threads have entered the barrier. The
barrier has to be first initialized by calling the barinit() function, that specifies the
locking address and the number of expected threads.

• printing functions - these functions have been designed for debug purposes and print
characters and numbers through the UART controller to the serial I/O port. Atomic
use of the controller is guaranteed both at the single character level and at entire string
level. Their names are shmpi_print() and shmpi_putnum().

• functions for accessing the performance counters - these functions access the memory-
mapped performance counters and print them on the UART controller for debugging
and elaboration purposes. There are separate functions for accessing the performance
counters related to processing/memorization elements, called print_core_pc() and
for the switching elements, called print_switch_pc(). More details on the perfor-
mance counters will be provided in Section 4.5.

28 CHAPTER 4. THE MADNESS EVALUATION PLATFORM

4.3.8 Shared memory support: synchronization modules

Every application written to exploit thread-level parallelism on top of a multi-core plat-
form, not only in the embedded field, requires synchronization among the different running
threads. In case the memory organization includes some kind of shared memory layer, this
can be implemented through well-established lock-unlock mechanisms. These mechanisms
can be implemented through full software solutions that rely on specific atomic instructions
and ISAs, or through dedicated hardware modules that handle the atomicity control. In or-
der to implement atomic memory access to specific locations, since not all the processors
included in the processing element library supported native LL/SC instructions within their
ISAs, we decided to develop hardware semaphore modules for locking/unlocking specific
memory locations. These modules implement in hardware the atomic Test&Set mechanism.

The basic idea of such mechanism is, before actually accessing the shared memory loca-
tion, to acquire a hardware lock for that location. The hardware lock is asked for acquisition
via a simple load to a specific memory address (the address of the semaphores bank). Upon
request, the bank of semaphores has specific logic to check if a request for that location has
already arrived, and if not, replies with an ACK (encoded in the data field) and atomically
locks that location. If that location is already locked, on the opposite, the reply data will con-
tain a particular encoding for a NACK. The hardware implementation for such a mechanism
requires a bank of registers (the lock registers) to store the requested location addresses and
the semaphore bits (one for each location), plus all the logic to compare in a combinatorial
fashion the desired address with all the locked addresses. The hardware Test&Set has been
implemented with a standard OCP interface and can be added as a normal I/O module, by
specifying its memory-mapping.

On the software side, two low-level functions have been implemented to lock and unlock
a specific location. The functions have been implemented as assembly microcode to opti-
mize the execution time. Their code is structured as follows, considering a network address
for the Test&Set modules of 0xF F in the address MSB:

void lock(int * lock_index){

__asm__ (
"addi r1, r1, 12 \n\t "
" sw r10, r0, r1 \n\t "
" swi r9, r1, 4 \n\t "
" swi r11, r1, 8 \n\t "
" or r0, r0, r0 \n\t "
" ori r9, %0, 0xff000000 \n\t "
" LOCK: \n\t "
" lw r10, r0, r9 \n\t "
" or r0, r0, r0 \n\t "
" or r0, r0, r0 \n\t "
" bnei r10,LOCK \n\t "
" or r0, r0, r0 \n\t "
" or r0, r0, r0 \n\t "

" lw r10, r0, r1 \n\t "
" lwi r9, r1, 4 \n\t "

4.4. THE SHMPI PLATFORM BUILDER 29

" lwi r11, r1, 8 \n\t "
" addi r1, r1, 12 \n\t "

:
:"r" (lock_index) //input
);
}

void unlock(int * lock_index){

__asm__(" UNLOCK: "
" addi r1, r1, 8 \n\t "
" sw r10, r0, r1 \n\t "
" swi r9, r1, 4 \n\t "
" or r0, r0, r0 \n\t "
" ori r9, %0, 0xff000000 \n\t "
" sw r0, r0, r9 \n\t "
" or r0, r0, r0 \n\t "
" or r0, r0, r0 \n\t "
" lw r10, r0, r1 \n\t "

" lwi r9, r1, 4 \n\t "
" addi r1, r1, 8 \n\t "

:
: "r" (lock_index) //input
);
}

4.4 The SHMPI platform builder

As illustrated in Figure 4.1, the platform instantiation stage is handled by the SHMPI topol-
ogy compiler, a tool that automatically creates the hardware/software platform description
files basing on the specification input file provided by the user, instantiating the desired set
of building modules (cores, interconnection building blocks, memories) from the library of
configurable soft-cores. The SHMPI topology compiler extends to the composition of the
entire multi-core hw/sw platform and to the integration with the Xilinx development tools
the×pipes compiler, a tool developed for the automatic instantiation of application-specific
interconnection networks [11]. In further detail, the SHMPI topology compiler able to con-
struct the desired platform, instantiating and interconnecting, through a customized ×pipes
NoC layer, an arbitrary number of processors, memories (private or shared), memory con-
trollers, I/O peripherals, buses, bridges, dedicated point-to-point communication channels,
etc.

The topology compiler automatically generates the hardware/software description files
that are necessary for the FPGA implementation of the whole hw/sw platform. Since the
Xilinx proprietary tools are used to handle the FPGA synthesis flow, the generated files must
respect the specific syntax in order to be correctly processed.

From an implementation viewpoint, the platform builder has been developed as a stand-

30 CHAPTER 4. THE MADNESS EVALUATION PLATFORM

alone sequential C/C++ code, which runs through different consecutive phases, as described
in the following list:

• a parsing phase, which scans the entire system-level description input file to build a
set of data structures that store the number and identifiers of cores, memories, inter-
connection elements, links and routing tables.

• a switch configuration phase, which calls a different program to configure the switch
according to the designer description and eventually generate their RTL description.
This phase also generates the routing tables initialization phase in order to correctly
implement source routing within the network.

• a top module generation phase, which builds the RTL description of the top level Ver-
ilog platform description file. This file contains the highest view of all the modules
included in the system to be synthesized for FPGA.

• a phase that generates all the files necessary to the Xilinx proprietary FPGA synthesis
and implementation flow.

• a simulation script generation phase. This phase generates a ModelSim script file (.do)
and the related testbench file (.v) in case software waveform simulation of the platform
needs to be performed for debugging purposes.

• a phase to generate the memory initialization files (.bmm), that direct the Xilinx toolchain
in correctly mapping the application binaries into the different BRAM modules instan-
tiated in the platform.

Upon successful execution of the SHMPI builder, all the directories and files are in place
for continuing the FPGA implementation flow down to device configuration. These phases
rely on Xilinx proprietary toolchain, therefore require its availability for the designer. If no
manual tuning is needed at this stage, the toolchain can be traversed with a single script
which is available for the designer.

4.5 Performance extraction

The extraction of the performance metrics is handled through the insertion of a dedicated
set of event-counters, directly connected to the monitored logic. The insertion of this mea-
surement subsystem does not overload the whole emulation in terms of occupied hardware
resources within the FPGA fabric, since the event-counters involve very scarce logic utiliza-
tion. Three types of performance counters are allowed, according to the architectural ele-
ment they are connected to. It is possible to insert monitors at the processing core interface,
at the switch output channel interface and at the memory port interface. The specification
of which events are intended to be monitored can be easily included in the topology file
that is passed as input to the whole framework. The MADNESS topology compiler is able to
handle the insertion of the necessary hardware modules and the automatic binding of the
event-counters to the proper signal.

4.5. PERFORMANCE EXTRACTION 31

The basic usage of the event-counters does not imply the instantiation of dedicated BRAM
buffers for the storage of event traces. However, the addition of such buffers and of the neces-
sary communication structure (a bus shared amongst the counters) is quite straight-forward,
inside the topology description file.

The overhead introduced while accessing the performance counters depends on three
utilization factors, namely which core is going to access them, when they are accessed, how
they are physically connected to the rest of the system. The allowed alternatives are:

• Regarding which core is intended to access the performance extraction subsystem, two
main options exist. A dedicated processing core can be added to the emulated system,
in order to perform the access to the event-counters without affecting the regular ex-
ecution on the other emulated processors. Alternatively, in order to save hardware
resources, the same processing cores of the emulated platform can interleave the exe-
cution of their instructions with the accesses to the performance counters.

• Concerning the time of the access to the performance counters, they can be accessed
off-line (at the end of the execution) or at runtime, in case the read values should be
used to implement runtime resources management mechanisms.

• Finally, the event-counters can be connected to the rest of the system via dedicated
point-to-point connections, at the price of additional hardware resources to be uti-
lized, or they can be accessed through the same interconnection layer already present
in the emulated system, at the price of an overhead in the actual traffic pattern gener-
ated by the application.

Chapter 5

Methodologies for adaptive MPSoCs

The starting assumption of our system adaptivity approach, as depicted in the right part of
Figure 5.1, is that we target an MPSoC composed of tiles, connected by a NoC, with com-
pletely distributed memories and no direct remote memory access. This means that the
processing element of a tile can only directly access the content of its own local memory. All
the communication and synchronization between processes mapped on different tiles can
only happen using messages sent over the NoC.

Our approach for realizing system adaptivity consists of deploying the processes of the
application(s) modeled as PPNs over the NoC-based MPSoC and allowing their run-time
remapping to adapt the system to the changing operating conditions such as variation in
quality of service requirements, availability of resources, or power budget constraints. In
particular, system adaptivity in our system is supported by using a dedicated middleware,
which is highlighted in the software infrastructure diagram in the left part of Fig. 5.1.

At the top of the software stack, applications are described by PPN processes imple-
mented as separate threads. An example of a thread representing a PPN process is given
in Fig. 5.3(b) and it will be described in detail in Section 5.1. However, in this work the basic
structure of PPN processes has been adapted to ease the realization of a predictable process
migration mechanism, as will be described in Section 5.2.

At the bottom of the software stack, the operating system (OS) is responsible for all kinds
of process management (process creation, deletion, setting its priority, suspending or re-
suming it). These features are essential for the run-time management of the system, and
in particular for the execution of process migrations. Moreover, each processor has multi-
tasking capabilities thanks to the OS. In case of many-to-one mapping, i.e. when more than
one process are mapped on the same processor, the scheduling is data-driven. This means
that a process runs as long as it blocks in reading/writing from/to a FIFO buffer. When the
process blocks, it yields the processor control to the next process in the ready queue in a
round-robin fashion.

In between the applications and the operating system, we devised and implemented a
middleware which comprises two main components. The first one is the PPN communi-
cation API, which realizes the communication and synchronization between processes lo-
cated in separate tiles, according to the PPN semantics. The second one is the Process mi-
gration API, which deals with process creation/deletion, state migration and the other ac-
tions needed for run-time process re-mapping. The two middleware components will be

33

34 CHAPTER 5. METHODOLOGIES FOR ADAPTIVE MPSOCS

PPN
communication

PPN
Processes

Local Operating System

tile1

tile3

tile2

tile4

Run-time
manager

Process
migration

P1

P2 P3

Middleware

Application(s)

Figure 5.1: Software infrastructure for each tile of the NoC.

described thoroughly in Section 5.1 and Section 5.2, respectively.

5.1 PPN-over-NoC communication

This section describes the different solutions that we have devised and explored for the im-
plementation of the PPN process communication and synchronization on a tiled NoC-based
MPSoC. Basically, the devised approaches differ in the frequency of acknowledgment mes-
sages sent from a consumer process to a producer process about the status of the consumer
FIFO buffers.

5.1.1 Some definitions

A PPN is a graph defined as a tuple (P ,C), where:

• P = {P1, ..., PN } is a set of processes;

• C = {ch1, ..., chK } is a set of FIFO channels.

Each process P ∈ P has a set of input channels ICP and output channels OCP . The
processes which write into ICP are the predecessors, the processes which read from OCP are
the successors. The processing element (PE) onto which the process is mapped is denoted as
map(P).

For each channel ch ∈C :

- we can derive, using the pn compiler [46], a buffer size B which guarantees deadlock-
free execution of the PPN;

- the producer process, which writes data to the channel, and the consumer process,
which reads data from it, are denoted respectively as pr od(ch) and cons(ch).

PPN processes communicate and synchronize using these FIFO channels. The PPN se-
mantics forces a process to block on read, when trying to get a data token from an empty
FIFO, and block on write, when trying to write data to a full FIFO.

5.1. PPN-OVER-NOC COMMUNICATION 35

Figure 5.2: Producer-consumer pair with FIFO buffer split over two tiles.

Figure 5.3: Example of a PPN (a) and structure of process P2 (b).

All PPN processes have the same code structure, an example of which is given in Fig. 5.3(b).
Nested loops iterate, for a given number of times, the body of the process, which is split in
three main parts. First, the process reads the input data tokens from (a subset of) the input
channels. This is represented by the READ statements in the figure. Second, the process
function (F) produces the output tokens by processing the input tokens. Finally, the output
tokens are written to (a subset of) the output channels (WRITE statement).

The simplicity of the PPN process structure and semantics ease the development of sys-
tem adaptivity support, as will be described further in the thesis. Only minor changes to the
PPN process structure are needed to allow a predictable process migration mechanism, as
will be described in Section 5.2.

5.1.2 Inter-tile synchronization problem

The main problem addressed in this section is the efficient implementation of a commu-
nication API allowing the execution of applications modeled as PPNs on Network-on-Chip
MPSoC platforms. The first requirement is that this API must respect the PPN semantics.
Moreover, we want our middleware to be application-independent and oriented to system
adaptivity.

36 CHAPTER 5. METHODOLOGIES FOR ADAPTIVE MPSOCS

Figure 5.4: Producer-consumer pair using the virtual connector approach.

The communication and synchronization problem when mapping PPNs on a NoC is de-
picted in Fig. 5.2. Consider a producer P and a consumer C connected through an asyn-
chronous communication FIFO buffer B . If both the producer and the consumer can directly
access the status register of this FIFO buffer, to check whether it is empty or full, implement-
ing the PPN semantics is straightforward. However, in NoC implementations with no direct
remote memory access, processes can exchange tokens only via the network. Thus, we have
to split the buffer B in B P and BC , one on the producer tile and one on the consumer tile.
We want to implement the PPN semantics without a dedicated support from the underlying
architecture that allows checking for the status of the remote queues. If si ze(B) is the mini-
mum buffer size that guarantees deadlock-free execution of the original PPN graph, the size
of B P and BC must be set such that si ze(B P)+ si ze(BC) ≥ si ze(B).

We do not require support for multiple hardware FIFOs on each NoC tile. The only hard-
ware buffer of a tile resides in the Network Interface (NI). We just rely on the ability to transfer
tokens, in both directions, from this buffer to the software FIFOs which implement the chan-
nels of our PPN.

Consider again Fig. 5.2. Even if the consumer process C can only access the status of BC ,
implementing the blocking read is trivial because every time process C wants to access BC

and this buffer is empty, the consumer just has to wait until tokens arrive from the producer
tile. However, since the producer process B can only access the status of B P , implementing
the blocking on write behavior is more difficult. The producer must know that the remote
buffer BC is not full before sending tokens to C over the NoC. There are several ways to notify
the producer about the status of the buffer on the consumer side, and we will compare the
approaches that we have investigated in the remainder of this section.

Furthermore, we want the communication API to take care of the distribution of pro-
cesses among the NoC tiles with no influence on the application designer. This means that
we want to maintain the code structure of the PPN application processes, an example of
which is shown in Fig. 5.3(b). In particular, we want the communication primitives (read,
write) of PPN processes to remain generic, without the notion of process mapping or plat-
form details. These generic primitives are then translated by the communication API imple-
mentation in mapping- and platform- dependent function calls.

In all of the communication approaches described below, system adaptivity is taken into
account by using dedicated middleware tables that list, among other information, the source
and destination tile for each channel of the PPN graph. For instance, when a process is up

5.1. PPN-OVER-NOC COMMUNICATION 37

Figure 5.5: Pseudocode of the VC approach.

to send a packet to the consumer via a specific channel, the implementation of the write
primitive will check in the middleware table what is the current destination of that channel.
Then, it will place the packet in the NI output buffer, with the appropriate destination field
of the header. As described in Section 5.2, these middleware tables are updated at run-time
to allow run-time remapping of application processes over the tiles.

5.1.3 Virtual connector approach (VC)

In the virtual connector communication approach, which is depicted in Fig. 5.4, for every
channel in the original PPN graph we add a virtual one in the opposite direction. This vir-
tual connector is used for acknowledging the producer about the status of the FIFO buffer
on the consumer tile. We adapted this approach, previously proposed in [13], to the needs
of our system implementation. In that work the proposed communication middleware is
active, meaning that it is implemented using separate threads which deal with the PPN com-
munication, while in our implementation the middleware is static, with no separate threads
for communication. Although a comparison of the static and active implementations may
be worthwhile to do, for the moment we adopt the static approach with the argument that
the scheduling and synchronization of additional middleware processes may introduce an
additional overhead due to the context switching times.

For each channel in the original PPN graph we instantiate a software FIFO buffer on the
consumer tile. The sizes of these buffers are set to the value of the original buffer size in
the PPN graph. On the producer tile there are no software FIFOs when using this approach,
because tokens can be directly sent over the network via the NI. This is due to the fact that
the credit-system guarantees that enough locations are free on the remote buffers before
sending a token. Therefore, referring back to Fig. 5.2, in this approach for each channel i ,
si ze(BC

i) = si ze(Bi) and si ze(B P
i) = 0.

In our implementation, we store on the producer side a variable for each channel, called
cr edi t , which represents the number of free slots in the remote FIFO buffer implementing
that channel. At startup, the credit is set to the size of the remote FIFO (cr edi ti = si ze(BC

i)),
because all of its slots are free. For each token sent over the network by the producer, the

38 CHAPTER 5. METHODOLOGIES FOR ADAPTIVE MPSOCS

P C

ch1
B1

NI NI

P

tile1 tile2

ch2
B2

requests

tokens ch1, ch2

C
B1

B2

C

C

B1
P

B2
P

PE PE

Figure 5.6: Producer-consumer implementation: when using the VRVC, the producer re-
ceives back virtual tokens (a); when using R, it receives requests (b).

credit of the corresponding channel is decreased by one. The producer is allowed to send
tokens over the network only if the credit is positive, otherwise it blocks. This implements
the blocking write behavior. On the consumer side, for every token consumed from that
channel, a virtual token (VT) is sent back to the producer via the virtual connector. For
every virtual token received on the producer tile, the credit of the corresponding channel
is increased by one. In this way the producer is constantly updated about the status of the
remote FIFO buffers.

The pseudocode of the VC approach is shown in Fig. 5.5. Both the read and write primi-
tives use an auxiliary function, process_NI_msgs(), that is used when blocking on read or on
write. This function checks the status of the NI buffer for incoming packets. If the buffer is
not empty, it processes one packet at a time, until all the incoming packets are consumed, in
the following way. If the packet is an incoming token for channel i, it stores the token in the
software FIFO which implements channel i. If it is a virtual token for channel j, it consumes
the packet and increase the credit of channel j.

In Fig. 5.5, lines 1-2 of the read primitive implement the blocking read. If the FIFO buffer
corresponding to the calling channel (in the example, CH1) is empty, process_NI_msgs() is
executed until new tokens for that channel reach the NI input buffer. Lines 3 and 4 complete
the read primitive: the token is transferred from the software FIFO to in1, and a virtual token
is sent back to the producer of CH1. This is actually done by putting in the NI outgoing buffer
a packet representing a virtual token for channel CH1, as shown in Fig. 5.12.

Similarly, in the write primitive in Fig. 5.5, lines 1-2 implement the blocking write be-
havior. If the credit is zero, process_NI_msgs() is executed. If virtual tokens for the blocked
channel are received, the credit is then increased and this condition unblocks the write to
that channel. Lines 3-4 complete the write procedure. The credit for the considered channel
is decreased, and the token is sent over the network, which is actually done by putting in the
NI outgoing buffer a packet representing the token (refer again to Fig. 5.12).

5.1.4 Virtual connector with variable rate approach (VRVC)

This approach represents a variant of the virtual connector described above. The basic idea
is that instead of sending one virtual token to the producer for every consumed token of
channel i , the consumer sends it after ni consumed tokens, where ni is a parameter that

5.1. PPN-OVER-NOC COMMUNICATION 39

Figure 5.7: Pseudocode of the R approach.

can be set such that ∀i ∈ {1, · · · , Nch} 1 ≤ ni ≤ si ze(Bi), where Nch represents the number of
channels in the PPN graph. The credit variable for channel i will then be increased by ni

for every virtual token received for that channel. This approach leads to a reduced traffic on
virtual connectors, which can be beneficial in NoC implementations to avoid congestion of
packets.

Since the sending back of virtual tokens does not happen for every consumed token, in
some cases the PPN graph properties require to store, also at the producer side, tokens for
the channels in order to avoid deadlocks. This requires the adoption of software FIFO buffer
also on the producer side. In the most generic case, the size of these buffers should be as
large as the original buffer in the PPN graph. This means that ∀i ∈ {1, · · · , Nch} si ze(B P

i) =
si ze(BC

i) = si ze(Bi), as depicted in Fig. 5.6, case (a).

5.1.5 Request-driven approach (R)

This method is very similar to the approach used in [30] for realizing the FIFO communica-
tion on the Cell BE platform. In this approach, the transfer of tokens from the producer tile
to the consumer tile is initiated by the consumer. This means that every time the consumer
is blocked on a read at a given FIFO channel, it sends a request to the producer to send new
tokens for that channel. The producer, after receiving this request, sends as many tokens as
it has in its software FIFO implementing that channel.

Since also in this case we need to store tokens both on the producer side and on the
consumer side, we need software FIFO structures on both sides. The size of these buffers is
set, for each channel i , to match the size of the queue in the original PPN graph (Bi), such
that ∀i ∈ {1, · · · , Nch} si ze(B P

i) = si ze(BC
i) = si ze(Bi). This condition guarantees deadlock-

free execution on the NoC and it is the same as in the VRVC approach. The structure of
a producer-consumer pair using the R approach is shown in Fig. 5.6, case (b). Since the
consumer buffer of a channel is empty when a request is made, and given that the FIFO
buffers for that channel have the same size on both sides, there is always enough space to
store tokens sent by the producer as a consequence of the request.

Fig. 5.7 shows the pseudocode of this communication approach. Similarly to the VC ap-

40 CHAPTER 5. METHODOLOGIES FOR ADAPTIVE MPSOCS

Table 5.1: Middleware table example

ch prod(ch), cons(ch) map(prod(ch)), map(cons(ch))
1 P1, P2 t i le0, t i le1

2 P2, P3 t i le1, t i le2

proach, it makes use of the auxiliary function process_NI_msgs() to process incoming packets
of tokens or requests. The main difference in this case is that this function is in charge of re-
acting to a received request message for a channel with the immediate sending of all the
tokens contained in the software FIFO that implements that specific channel.

The blocking on read behavior is implemented in lines 1-4 of the read primitive in Fig. 5.7.
When the software FIFO of the calling channel is empty, a request is sent to the producer
tile of that channel, and the processor keeps executing process_NI_msgs() until a packet of
tokens for the calling channel arrives. The blocking on write is implemented in lines 1-2 of
the write primitive in Fig. 5.7. When the FIFO of the calling channel (in the example, CH3) is
full, the processor keeps executing process_NI_msgs() until a request for that channel arrives.

5.2 Process migration

This section provides a description of the proposed PPN process migration mechanism over
the MADNESS NoC-based MPSoC system. It is a fundamental part of the middleware de-
picted in Fig. 5.1 because it realizes the run-time re-mapping of processes, which in turn
allows system adaptivity strategies.

The migration mechanism depends on the considered communication approach. As a
starting assumption to devise the migration mechanism, we consider the request-driven (R)
communication approach described in Section 5.1.5. This choice is made because the R
approach leads to a considerably easier implementation of the migration mechanism since
it requires less synchronization points. At the same time, it gives performance comparable
to the other approaches for computation-dominant applications, as will be shown in Section
5.3.

We recall that to take into account the run-time remapping of processes over the NoC,
each PE stores in its local memory a middleware table which is used to refine the generic
communication primitives to mapping-dependent function calls. An example of a middle-
ware table generated for the initial mapping in Fig. 5.8 is given in Table 5.1. For each channel
of the PPN, the producer and consumer process IDs are stored, together with their current
mapping in the system. Auxiliary information, for instance pending requests during migra-
tion execution, is also saved for each channel.

Mainly two kinds of process migration mechanism can be considered, namely process
replication and process recreation. In process replication, the program code of a process
that can be migrated is copied in each tile, thereby creating replicas of the process. When
a process needs to be migrated from one tile to another, the process is suspended on the first
tile and restarted on the second. The state of the process must be copied from the first tile to
the second because the process cannot be just restarted from scratch.

The second kind of process migration mechanism is based on the so-called process recre-
ation. In this case, if a migration is needed, the process is killed on the original tile it runs on
and created on another tile by moving both the process code and state. The OS/middleware

5.2. PROCESS MIGRATION 41

tile0

P1
tile1 tile2

P3P2
B1

P
B1

C
B2

P
B2

C

tile3

P2
B1

C
B2

P

Run-time
Manager

migration

Predecessor tile Source tile Successor tile

Destination tile

ï

Figure 5.8: Migration diagram.

in this case must support dynamic loading of processes to processors. This way, only one
instance of the process code exist at a given time in the system.

On the one hand, the process replication mechanism is less efficient in terms of memory
usage, compared to the process recreation. On the other hand, it offers significant advan-
tages such as easier implementation and faster migration procedure. We chose the process
replication mechanism because we consider the fast execution of process migration more
important. Moreover, the memory constraint in our system is not critical.

A simple diagram showing the migration of a PPN process is depicted in Fig. 5.8. Even
though this is a simple example, it can be easily generalized for more complex PPN topolo-
gies. The diagram highlights the tiles involved in the process migration procedure, which are
referred to as:

- the source tile, namely the tile which runs the process before the migration takes
place;

- the destination tile, which is the tile that will execute the process after the migration;

- the predecessor tile(s), which runs the predecessor process(es);

- the successor tile(s), which executes the successor process(es).

The structure of PPN processes, modified to allow migration at any point during the ex-
ecution of the process main bodies, and the proposed process migration mechanism are
described in the following two subsections.

5.2.1 Migratable PPN process structure

Our goal is to allow the migration to be performed at any time during the execution of the
process main body, in order to improve the migration response time. To this end, we ex-
tended the NI interface of a tile with the ability to generate an interrupt for the processing
element when a message with a reserved tag is received, as described in Subsection 4.3.6.
This extension has been made because the detection of migration decisions by polling at

42 CHAPTER 5. METHODOLOGIES FOR ADAPTIVE MPSOCS

Figure 5.9: Migratable PPN process.

specific migration points in the code may cause undesired latency in the migration proce-
dure.

With the requirement that migration may happen at any point within the execution of
the processes main body, we devise the structure of a migratable PPN process as shown in
Fig. 5.9. It is based on the structure shown in Fig. 5.3(b), which we will refer to as basic process
structure.

We comment and motivate the migratable PPN process structure shown in Fig. 5.9 in
the following. When the thread starts, in line 1, it checks if the migration flag is set. If the
checking is positive, it means that a migration has been performed, so the process state is
reloaded.

Since the PPN model definition requires a stateless process function, for example F2 in
Fig. 5.9, i.e., a function whose execution does not depend on the previous iterations, the
state of a PPN process is represented only by:

• the content of its input and output FIFOs;

• its iterator set, namely the values of the nested loop iterator variables, see (i , j) in
Fig. 5.9, lines 2-3;

When a function requires to have a state, it is represented in the PPN model by a stateless
function with FIFO self-edges, which represent the function state.

Both state components listed above are transferred from the source tile to the destina-
tion tile upon migration. If the migration flag is false, it means that the process starts from
scratch, with empty input and output FIFOs and i0 = j0 = 0.

Lines 2 and 3 differ from the basic process structure in Fig. 5.3(b) because the iterators
inside the for loops do not start from zero in case of migration. Instead, they start from the
values i0 and j0, which represent the iteration at which the process was interrupted by the
migration while running on the source tile. After the first complete execution of the inner for
loop, starting from j0, the value of j0 is set to zero in line 11 such that the next execution of
the inner loop starts correctly with j = 0.

The communication primitives are different from the ones used in the basic process
structure. The read primitive, for instance, is split into three separate operations (see lines
4, 5, 10). First, the input channel (CH1) is tested to verify the presence of an available data
token, using the acquireData function (acqData(CH1) in line 4). Then, the token is actually

5.2. PROCESS MIGRATION 43

copied from the software FIFO to the input variable which will be processed by the pro-
cess function F2. The copy operation is performed in line 5. However, differently from the
normal read primitive, the memory locations occupied by the read token are not released
immediately. The actual release, which consumes the data from the FIFO by increasing the
read pointer, takes place only in line 10 (relSpace(CH1)). This way, if a migration is triggered
before the release instruction, the process can be correctly resumed on the destination tile
since it will read again the same input token, because the read pointer is not changed. Sim-
ilarly, the write primitive is split in three operations, see lines 7, 8, 9, of which only relData
affects the write pointer. Finalizing the read and write operations at the end of an iteration al-
lows the process migration to happen anywhere within lines 4-8 correctly. Note that, in case
of multiple input or output channels, the release operations should be grouped together and
placed right after the main body of the process, in order to guarantee a consistent process
state.

Process migration cannot happen within the lines 9-11 and 2-3 because that would cause
an inconsistency in the migrated process state. This is because lines 9 and 10 can be con-
sidered as an update of the output and input FIFOs state, while lines 11, 2 and 3 represent
the iterator set update. If, for instance, a migration happens after the FIFO state update
but before the iterator set update, the migrated process will re-start the execution with the
FIFO status corresponding to the next iteration, but with the iterator set of the current (in-
terrupted) iteration. This condition will certainly cause a deadlock. Although the process
migration cannot happen within lines 2-3 and 9-11, we note that these sections represent
a minimal part of the process execution, because performing the update of read and write
pointers and iterator sets is a matter of a few simple instructions. Therefore, disabling the
migration within these sections does not increase the response time significantly.

The principle behind the proposed migratable process structure is that the state of a
process must be consistent and up-to-date when a migration is performed. This allows the
migrated process to correctly resume its execution on the destination tile. Leveraging the
PPN process structure, our approach does not require the designer to specify the context
that has to be transferred upon migration as in [7]. This burden is neither moved to the
OS/middleware level as in [3]. Determining the state to be migrated is not needed because
the PPN process state simply consist of the two components described above. Moreover, our
approach does not need designer-generated checkpoints/migration points. The resource
manager in Fig. 5.8 can interrupt the process execution at any time during the execution of
the process main body. The migrated process will then resume its execution from the be-
ginning of the interrupted iteration. On the one hand, this implies that if the migration is
triggered in the middle of the function execution, the time since the start of the iteration is
lost. On the other hand, this approach leads to a more efficient implementation and pre-
dictable migration response time, which we consider more important for our goals.

5.2.2 Process migration mechanism

The migration mechanism requires actions from all the tiles depicted in Fig. 5.8. The mi-
gration decision is taken by the resource manager, which sends a specific control message
to the source tile. How the resource manager takes the migration decision will be described
in further detail in Chapter 6. The source tile then broadcasts this control message to the
destination, predecessor and successor tiles to complete the migration procedure.

44 CHAPTER 5. METHODOLOGIES FOR ADAPTIVE MPSOCS

The control messages which notify the process migration to the involved tiles contains
the ID of the migrated process (ctrl_msg.migProc_ID) and the new mapping of that process
(ctrl_msg.dest_PE). On all of the involved tiles, and on the resource manager, the middleware
tables are then updated by executing the following operations, for each channel in the list:

• if (prod(ch)==ctrl_msg.migProc_ID)
update map(prod(ch)) to ctrl_msg.dest_PE

• if (cons(ch)==ctrl_msg.migProc_ID)
update map(cons(ch)) to ctrl_msg.dest_PE

For each of the tiles involved in the migration procedure, the detailed list of required
actions are explained below.

Actions on the source tile

On the source tile, the process has to be stopped, and its state saved and forwarded to the
destination tile. Moreover, the middleware table is updated as described above. The source
tile takes also care of propagating the migration decision to the other tiles involved in the
migration procedure. This propagation is depicted by the dashed arrows in Fig. 5.8.

Actions on the destination tile

The destination tile receives a specific message for process activation. The migration proce-
dure is handled by creating the required software FIFOs and by activating the replica of the
migrated process using the corresponding OS call. Before the process replica is started, the
migration flag is set to 1 so that the state of the migrated process is resumed (see line 1 in
Fig. 5.9). This implies that the input and output FIFOs of the migrated process are copied,
and the iterator set (in the figure, i0 and j0) are set such that the execution starts from where
it was suspended on the source tile. The middleware table is also updated in the way de-
scribed above.

Actions on predecessor tile(s)

On these tiles, the only required step is the update of the middleware tables according to the
new mapping of the migrated process. This way, new tokens meant for the migrated PPN
process will be sent to the destination tile.

A corner case of the communication between the migrated process and its predeces-
sors may happen when the process has sent a request for new tokens just before the migra-
tion command arrives. If that request has been served, it means that new tokens are either
traversing the NoC or they are already stored in the source tile. The predecessor tile in this
case has to send another interrupt-generating message to the source tile, in order to force
the forwarding of these data tokens to the destination tile.

Actions on successor tile(s)

Similarly, the successor tiles have to update the middleware tables so that the new requests
for data tokens will be sent to the destination tile. A particular case in the protocol between
successor processes and the migrated process is represented by requests which are sent to

5.3. EXPERIMENTS AND RESULTS 45

Figure 5.10: PPN specification of the Sobel filter.

Table 5.2: Execution times of Sobel functions

Process Execution time (c.c.)
readPixel 5
gradientX 31
gradientY 31
absValue 118
writePixel 5

the source tile just before the interrupt decision takes place. In this case, if the requests are
not served before the migration, they have to be forwarded to the destination tile.

5.3 Experiments and results

In order to evaluate the proposed middleware, we perform two experiments to assess both
its main components. In the first experiment, described in Section 5.3.2, we compare the
efficiency of the different approaches for the PPN communication API in two case studies.
In the second experiment, described in Section 5.3.3, we assess the process migration ben-
efits and overhead by applying our migration mechanism in one of the case studies. Before
presenting these two experiments, we describe the case studies and the experimental setup
that we used to obtain the results.

5.3.1 Case studies and MPSoC platform setup

We evaluate the three communication approaches presented in Section 5.1 on two applica-
tions modeled as PPNs with extremely different communication/computation characteris-
tics. The reason is that we want to compare the overhead of the different approaches be-
tween two extremes. The Sobel filter application described in Section 5.3.1 represents the
worst case (the first extreme), when the computation/communication ratio is low and the
PPN topology is complicated. The M-JPEG encoder application described in Section 5.3.1,
on the other extreme, is computation dominant and with relatively simple PPN topology,
therefore represents the best case. We describe briefly the two case studies in order to allow
a better understanding of the obtained results. We also provide an overview of the generated
platform instance that we use to run the experiments.

46 CHAPTER 5. METHODOLOGIES FOR ADAPTIVE MPSOCS

Figure 5.11: PPN specification of the M-JPEG encoder.

Table 5.3: Execution times of M-JPEG functions

Process Execution time (c.c.)
initVideoIn 18

videoIn 1910
DCT 126386

Q 69238 (avg)
VLE 46688 (avg)

videoOut 1292 (avg)

Sobel filter

The Sobel application is an edge-detection algorithm for digital images. Its PPN graph is
shown in Fig. 5.10, where the numbers over edges indicate the minimal buffer sizes needed
for processing a 200x122 pixel input image. The PPN processes which comprise this applica-
tion are very lightweight in terms of computation. The numbers of clock cycles required for
one execution of each function are summarized in Table 5.2. For all of the channels in the
graph, the size of exchanged tokens is 4 bytes, and the number of written tokens is 23760.
From these metrics it is clear that the Sobel application is largely communication-dominant.

M-JPEG encoder

The PPN specification of this application is shown in Fig. 5.11. The size of tokens ranges
between 16 and 1024 bytes, and all of the channels are written 128 times, except the out-
put of initVideoIn which is written only once. The numbers of clock cycles required for the
execution of each function of the M-JPEG application are summarized in Table 5.3. This ap-
plication shows a much simpler communication and synchronization pattern compared to
Sobel, and it also has a much higher computation/communication ratio.

MPSoC platform setup

The system on which we evaluated our communication approaches is based on a 2x2 mesh
of tiles with NoC interconnection, generated through the MADNESS framework. Each tile
is composed by a MicroBlaze processor, with its local program and data memories, and a
Network Interface.

The Network Interface contains only two hardware FIFOs, one for packets which are in-
coming from the NoC, and one for packets that have to be injected in the NoC. The processor
is able to quickly access the status of the incoming hardware FIFO, via a dedicated signal, to
see if there are messages to be forwarded from the NI buffer to the SW FIFO buffers that im-
plement channels of the PPN graph. In the opposite direction, when a packet has to be sent

5.3. EXPERIMENTS AND RESULTS 47

Figure 5.12: Structure of middleware- and network- level packets.

over the NoC, the processor forwards data from its local data memory to the outgoing NI
hardware FIFO. Then the NI injects the packet in the network with the appropriate header
(destination tile and payload size fields). The packets, as already described in Chapter. 4, are
sent over the NoC using wormhole routing.

The actual structure of the different kind of messages that are sent over the NoC is rep-
resented in Fig. 5.12 for the VC and R communication approaches. At NoC-level, the packet
comprises a NoC header that indicates the destination tile and the size of the payload, and
the payload itself, which is the middleware-level packet (denoted as MW-level packets in
the figure). The structure of middleware-level packets depends on the communication ap-
proach. In the R approach, a request for channel number i is implemented as a single flit,
with value −i . By contrast, a packet used for transferring tokens has a header composed
of two flits (channel number, number of sent tokens) and a payload with the sent tokens.
The field that indicates the number of sent tokens (n_tokens) is necessary because this num-
ber is determined at run-time, when a request for that channel is received. The structure of
middleware-level packets in VC is very similar, the only difference is that there is no need for
a n_tokens field because in this method there is no packetization of tokens, i.e., n_tokens is
always equal to one.

5.3.2 Inter-tile communication efficiency

The MPSoC generated platform described in Section 5.3.1 has been implemented on a Vir-
tex5 FPGA prototyping board. We run the two application case studies using all the com-
munication approaches proposed in Section 5.1 to obtain the results described below. The
experiments for process migration are also described later in this section. Note that the pro-
posed migration mechanism is generic, meaning that it is not dependent on a particular NoC
implementation.

In order to compare the efficiency of the inter-tile communication of the different com-
munication approaches, we execute the two case study applications with fixed mappings
shown in Fig. 5.13. We chose these mappings because they expose the maximum amount
of inter-tile communication. Therefore, the obtained results are largely dependent on the
efficiency of the communication approach.

48 CHAPTER 5. METHODOLOGIES FOR ADAPTIVE MPSOCS

Figure 5.13: Fixed mappings for Sobel (a) and M-JPEG (b) to test the different communica-
tion approaches.

We found out experimentally that the parameter ni of the VRVC approach gives the best
performance when it is set to its maximum value, i.e. when ∀i ∈ {1, · · · , Nch} ni = si ze(BC

i).
The performance results, summarized in Fig. 5.14, show a large difference of the execution
time for the Sobel application when using different communication approaches. However,
in the M-JPEG case all of the communication approaches yield to similar performance re-
sults. The VC approach performs much better, compared to the others, in the Sobel applica-
tion because its implementation does not require storing of tokens on the producer tile. This
leads to a faster communication process, because it avoids the double copy (output variable
→ software FIFO → NI buffer) that is necessary in the other cases. We argue that the ob-
tained results may change for NoC platforms with Direct Memory Access (DMA) cores that
can benefit more from the packetization of tokens allowed in the VRVC and R approaches.

In order to evaluate the overhead imposed by the use of the NoC interconnection and our
communication approaches, we implemented customized point-to-point systems, for both
applications, as a baseline reference. In point-to-point systems, generated using the ESPAM
tool [33], a dedicated hardware FIFO is instantiated for each channel of the PPN graph. In
this way, the hardware platform perfectly matches the PPN MoC semantics. Obviously, cus-
tomized point-to-point implementations do not allow for system adaptivity because all the
design decisions (e.g., process mapping) have to be made at design time. It is clear that in
our NoC system we sacrifice performance (especially for communication intensive applica-
tions) for adaptivity, the ability of managing the system at run-time, and generality, since
the system is able to execute any kind of application modeled as PPN. The performance
slowdown, when comparing the NoC system with the point-to-point systems, is shown in
Fig. 5.15. It is noticeable that the Sobel application is highly penalized in the execution on
our NoC system, whereas the M-JPEG application performs well because of its higher com-
putation/communication ratio and its regular communication pattern.

The reasons why the communication onto the NoC platform is less efficient are mainly
twofold. The first reason is that in this implementation, several PPN channels have to share
the same physical channel (the NoC link). The second reason is a consequence of the first
one. In the NoC case, the presence of only one physical link, being shared between differ-
ent PPN channels, poses the need for a flow-control policy. To optimize for low hardware

5.3. EXPERIMENTS AND RESULTS 49

Figure 5.14: Total execution time for different communication approaches.

Figure 5.15: Slowdown for different communication approaches.

Figure 5.16: Traffic injected into the NoC by executing Sobel with different communication
approaches.

overhead, we chose to implement the control flow at the middleware level, based on soft-
ware FIFOs on the producer and on the consumer side. This requires additional memory
copy operations to dispatch/multiplex the communication tokens to/from the correct soft-
ware FIFO. Such copies are unnecessary in the case of adoption of multiple point-to-point
connections with hardware FIFOs.

Another important metric when executing applications on a NoC-based MPSoC is the
amount of generated control traffic overhead. In the VC case, for instance, this overhead is

50 CHAPTER 5. METHODOLOGIES FOR ADAPTIVE MPSOCS

represented by the NoC-level and MW-level headers, together with all the traffic generated
by the virtual tokens. Ideally, the middleware should be designed to generate as less control
traffic overhead as possible.

Focusing on the Sobel application, since it has the most complex communication pat-
tern, we profiled the amount of traffic injected in the network, depending on the communi-
cation approach that is used. The results, depicted in Fig. 5.16, show two extremes: the VC
and R approaches. This large difference can be explained by two factors. The first factor is
the overhead of packet headers. On the one hand, in the VC approach, since there is no pack-
etization of tokens, each token travels in the NoC with its own header. On the other hand,
in the R approach, the producer sends as many token as present in its software FIFO in the
same packet and therefore with the same header. The second factor is that the traffic on vir-
tual channels in VC is much more than the traffic generated by requests in R. This is because
in the VC approach a virtual token is sent back to the producer for every consumed token,
whereas in the R approach the requests are made less frequently, just when the consumer is
blocked on reading.

5.3.3 Process migration benefits and overhead

System adaptivity requires the ability to change the process mapping at runtime in a pre-
dictable and efficient way. To illustrate the benefits of our migration approach presented in
Section 5.2, we compare our proposed migration mechanism, driven by interrupt-generating
control messages, with a migration approach based on migration points.

In the latter case, process migration can take place only at fixed points in the code. The
setup of this experiment is shown in the left part of Fig. 5.18. We use as a case study the
M-JPEG application described in Section 5.3.1. T i l e1 initially runs all of M-JPEG processes,
which are listed in Fig. 5.19. P1 is derived by merging initVideoIn and videoIn processes,
P2 and P3 represent respectively the DCT and Q processes, and P4 is obtained by merging
the VLE and videoOut processes. We use the M-JPEG application as a case study because,
compared to the Sobel application, in M-JPEG processes are coarse-grained with high com-
putation/communication ratio and therefore M-JPEG represents better the kind of applica-
tions which are likely to be mapped on a NoC-based MPSoC. The scheduling of the M-JPEG
processes on T i le1 before the migration is represented in Fig. 5.17. Scheduling charts have
been obtained using the GRASP [19] trace visualization tool to plot the information gathered
at run-time. The trace shows the periodic scheduling which is executed when all the pro-
cesses are mapped on one tile and the scheduling policy is data driven. The buffer size of all
the FIFO channels is set to two in this experiment. In this scenario, the process scheduling
iterates in the following way. First, P1 executes two times, until it blocks on writing because
its output buffer is full. Then P2 is scheduled. It completes two iterations, consuming the
tokens created by P1 and producing two tokens for P3. It then blocks while reading its in-
put FIFO which is empty by then. Similarly, P3 and P4 execute twice before blocking on
read. This scheduling repeats until the end of the application execution if no migration is
performed.

In Fig. 5.17, the arrows over the bars of process P1 represent the start of an iteration of
that process (for the sake of clarity, see line 4 in Fig. 5.9). Assume that these points corre-
spond to migration points, namely where the process checks if migration-messages have
been sent by the resource manager. Given that the migration request can reach T i l e1 at any
time, the latency of the actual process migration can vary. In the best case, the migration re-

5.3. EXPERIMENTS AND RESULTS 51

Figure 5.17: M-JPEG process scheduling when running on a single tile.

Figure 5.18: M-JPEG process scheduling while migrating P2 using the proposed migration
mechanism.

quest reaches the tile right before a migration point. In the worst case, the migration request
arrives just after a migration point, for instance the one which is reached around clock cycle
275,000. The actual migration would not take place until the next migration point, which
happens to be after 2 executions of P3, P4 and P1, and one execution of P2. In this simple
case, an upper bound of the process migration response time can be found, based on the
process scheduling, which in turn depends on the workload of processes, the buffer sizes
and the scheduling policy. In more complex cases, where the scheduling on one tile is af-
fected by the scheduling on other tiles because of data dependencies, even finding an upper
bound for the response time practically would not be possible.

By contrast, the interrupt-driven migration mechanism that we propose in Section 5.2
has a predictable behavior. As shown in Fig. 5.18, the system has a faster response time to
migration requests. At time τ1, which is the worst case for the fixed point migration strategy
discussed above, the resource manager sends a control message which triggers the migration
of P2 to T i le2. The process can be restarted on the destination tile within a predictable
amount of time represented by the difference (τ1−τ2). This is the time it takes the source tile
and the destination tile to execute the steps described in Section 5.2, such as the movement
of the process state and the activation of process P2 on the destination tile. This migration
overhead in time (τ1 −τ2), as shown in Fig. 5.18, is way smaller than a single execution of
the DCT function in process P2. The migration procedure in this example actually takes less
than 12% of a single execution of the DCT process.

52 CHAPTER 5. METHODOLOGIES FOR ADAPTIVE MPSOCS

Note that an upper bound of the migration procedure overhead can be derived for guar-
anteed throughput (GT) NoCs. In fact, the migration duration Tmi g of a process P ∈P can
be split in two main components:

Tmi g (P) = Tst ateMi g (st ateSi ze(P))+Tpr oc Act (5.1)

Tpr oc Act is a constant value which represents the time required to activate the migrated pro-
cess using OS system calls, to update the middleware table, and complete all the actions
described in Section 5.2 on the destination tile. Tst ateMi g is the time it takes to transfer the
state from the source to the destination tile. Its worst case, for GT NoCs, depends only on the
state size. The largest state size of a process P is obtained when both the input and output
FIFO buffers of P are full. This worst-case value can then be derived from the PPN topology
and buffer sizes:

max(st ateSi ze(P)) = ∑
ch∈IOCP

si ze(B(ch)) (5.2)

where IOCP = ICP ∪OCP as defined in Section 5.1.1, si ze(B(ch)) is the size of the buffer
which represents the channel ch on the source tile. The value si ze(B(ch)) is obtained by
multiplying the number of tokens of B(ch) by the token size of a channel ch. An upper
bound of the migration time Tmi g of a process P can be calculated using max(st ateSi ze(P))
in Equation 5.1.

The worst case, for our interrupt-driven migration mechanism, is represented by the ar-
rival of a migration request just before the end of a function execution in a process that has
to be migrated. In this case, the migration still takes place in a predictable amount of time
but the process execution has to roll back to the beginning of the interrupted iteration. All
the time spent in the function execution is wasted in this scenario.

The proposed process migration mechanism allows our system to change its configura-
tion at run-time. The resource manager triggers process migrations such that the system
dynamically moves from the configuration (a) to (b), then to (c) in Fig. 5.19. By doing this,
the resource manager is capable of changing, at run-time, the total execution time (Texe

in Fig. 5.19) and total exchanged traffic over the NoC (NoC traffic in Fig. 5.19). Both Texe

and NoC traffic correspond to the processing of a single input frame using the M-JPEG ap-
plication. The resource manager, for instance, can decide to change system configuration
because of a quality of service requirement demanded at run-time by the user.

In detail, in Fig. 5.19(a), all the processes of the M-JPEG application are executed on one
tile, and the communication between processes does not happen via the NoC. In this config-
uration, the execution time per one frame is Texe = 33.073 millions of clock cycles. However,
in Fig. 5.19(b) processes P1, P3, P4 are executed on one tile and process P2 runs on a separate
tile. Since process P2 (the DCT) is the most computationally intensive in M-JPEG, account-
ing for 51% of the total workload, the obtained speedup compared to (a) is close to 2. In fact
the execution time per frame drops to Texe = 17.342 millions of clock cycles. The mapping
in Fig. 5.19(c) does not show a relevant further performance improvement because P2 repre-
sents the bottleneck of the M-JPEG application, such that even just migrating it to a separate
tile as in (b) gives almost optimal performance. This experiment shows the efficiency of the
proposed process migration procedure. The system is allowed to substantially change its
execution time per frame, at run-time, with an almost negligible overhead. As explained
above, the process migration overhead is way smaller than a single execution of the DCT

5.3. EXPERIMENTS AND RESULTS 53

Figure 5.19: Execution time and generated traffic as a function of the process mapping. Only
inter-tile communication links are depicted.

process. The negligible performance speedup obtained when changing the system configu-
ration from (b) to (c) does not depend on the migration overhead. It is actually caused only
by the intrinsic structure of the M-JPEG application.

Chapter 6

Fault-tolerance support within the
MADNESS framework

6.1 Proposed approach

The MADNESS project focuses on the development of fault-tolerance solutions which are
not dependent on a technology-related low-level fault model, but rather on technology-
abstracting functional-level error models. The implemented fault-tolerance approaches fo-
cus on the detection of run-time faults and on the use of reconfiguration strategies at differ-
ent levels. In the MADNESS platform, three main types of components are considered, i.e.,
processing cores, storage elements, and NoC modules. In this thesis, the solutions proposed
for the case of processing cores are described.

6.1.1 Fault detection

For the detection of faults in the processing cores, one of the two approaches are used de-
pending on the criticality of the application.

Self-testing module

If the application is not critical and a limited amount of error propagation is acceptable, a
self-testing routine is executed periodically by the processing element to detect its perma-
nent faults [38]. The self-testing module (shown in grey in Figure 4.3) calculates a signature
of the results of the execution of the software routine, and compares it with a pre-calculated
and pre-loaded correct signature. In case of a mismatch, a fault detection signal is raised.
The self-testing routine should have a high fault coverage, a small code size and a fast exe-
cution time.

PPN-level self-checking patterns

For critical applications, concurrent self-checking techniques are employed at the process
network level [13]. In the case of the N-modular redundancy (NMR) pattern, N instances of
the same task are created and guarded within a fork and a voter task. The fork task simply
forwards same copies of the token to each redundant instance of the task, whereas the voter

55

56 CHAPTER 6. FAULT-TOLERANCE SUPPORT WITHIN THE MADNESS FRAMEWORK

task determines the most recurring result produced by the redundant task instances. For
N ≥ 3, the voter is able to detect the faulty node and mask the error. In order to yield higher
reliability, the redundant instances should be mapped onto different processing elements.
The task graph can be transformed with patterns in various ways leading to different levels
of reliability.

6.1.2 Task migration hardware module

Task migration support, described in detail in Chapter 5 can be used as a reconfiguration
mechanism to survive in presence of faulty processing cores. However one fundamental
restriction in such a scenario is that the faulty processor cannot aid in carrying out the mi-
gration procedure. As a remedy to this problem, a task migration hardware (TMH) module
is proposed which is responsible for extracting the critical data from the faulty tile.

As shown in Figure 4.3, the TMH resides alongside the network adapter of each tile. It
receives a fault detection signal from the self-testing module. Upon the detection of the
fault, the TMH initiates the migration procedure that consists of the following steps:

1. the TMH isolates the faulty processing core,

2. the TMH notifies the run-time manager (RM) that resides on the fault-free core with
the nearest bigger index,

3. the RM calculates the new mapping of the tasks according to the remapping heuristic,

4. the RM informs the predecessor, successor and all other tiles for the new mapping of
each task on the faulty node,

5. the predecessor and successor tiles send a flush message to the faulty node,

6. the TMH receives the flush messages from all predecessor and successor tiles,

7. the TMH sends the state of all tasks and channels (pending requests and FIFO tokens)
to the RM,

8. the RM receives the state and tokens of the tasks on the faulty node,

9. the RM carries out the software-based task migration (without updating the predeces-
sors and successors again) as described in Section 5.2.

In step 6, TMH waits for all flush messages which guarantees that the tokens (from the
predecessor tiles) and the requests (from the successor tiles), which may be in transit on
the NoC at the time of fault detection, are received at the faulty node before TMH sends the
migration data to the RM.

The TMH and the software-based task migration procedure are loosely coupled such that
the modifications to the software-based task migration procedure in the later stages would
not affect the functionality of the TMH, thus incurring minimal changes to the TMH, if any.

The TMH module carrying out this functionality (except step 6) has been designed and
integrated into the MADNESS platform. The main figure of merit adopted when designing
this module has been circuit complexity, so as to guarantee that failure rate will be much
lower than the processing core.

6.1. PROPOSED APPROACH 57

Register
 file

addr

dest

size

tag

to_dma_addr

to_dma_size

to_dma_tag

to_pu_data

rstclk

to_dma_dest

shmpi_send registers

to_pu_stall

from_pu_data

from_pu_addr

rstclk

en

from_tmh_data

from_tmh_addr

from_tmh_r/w

from_tmh_en

sel

Mux

rst

clk

Controllerdma_done

fault_detected

rstclk

data

addr

r/w

en

to_dma_enable

to_pu_accept

4

from_pu_select

from_pu_r/w

Figure 6.1: Interface and internal block diagram of the task migration hardware module

The interface and the internal block diagram of the TMH is shown in Figure 6.1. The in-
terface consists of ports allowing:

i. to receive the fault detection signal from the self-testing module (fault_detected),

ii. to isolate the processor (to_pu_stall),

iii. to be read/written by the processing element from/to the register file inside the TMH
(from/to_pu_*),

iv. to send data via the NoC (to_dma_*).

The TMH consists of a control unit implementing the finite state machine, a register file,
a multiplexer and shmpi_send registers. The register file contains memory-mapped regis-
ters which store:

i. a pointer to the fault detection control message stored statically in the main memory,

ii. the tile ID that acts as the RM for the tile,

iii. the size of the control message,

iv. the special tag value used to send data carrying interrupt messages over the NoC,

v. the tasks mapped on the tile,

vi. the pointer to the array storing task states,

vii. the size of the task state,

viii. the special tag value used to send task states to the RM,

ix. the channels mapped on the tile,

58 CHAPTER 6. FAULT-TOLERANCE SUPPORT WITHIN THE MADNESS FRAMEWORK

x. the special tag value used to send channel data to the RM,

xi. a reduced middleware table containing for each channel the pointer to the software
FIFO, the number of tokens in the channel, the size of the token type and a pending
request flag.

When an application is launched, the PE initializes the TMH registers. During normal
execution (when the PE is not faulty), whenever there is a read or a write, the number of
tokens is updated in the TMH register for the corresponding channel. The read and write
operations of the TMH take only cycle in order to reduce the overhead of the update oper-
ation. After the fault detection, TMH carries out a number of shmpi_send operations using
the programmable DMA to notify the RM, to send states of mapped tasks and the data of
mapped channels.

6.1.3 Online task remapping strategies

A fundamental step in the fault-tolerance support is determining the new cores where the
tasks formerly executed by the faulty cores shall continue their execution. In order to pro-
vide a graceful degradation, the remaining fault-free cores of the platform should be used as
optimally as possible. The remapping problem can be solved by an exhaustive analysis done
at design-time that evaluates all possible fault scenarios of the system and embeds in the
memory the optimal remapping results to be used when faults are encountered. An alter-
native approach is using online task remapping heuristics, whereby the decision is taken by
a remapping heuristic executed at run-time. Such an approach requires less memory, does
not require a heavy design time analysis and can work even if the application running on the
platform is not known a priori. However the degradation estimations may not be as accurate
due to the usage of an analytical model rather than more detailed simulation models. In the
MADNESS project, we have been investigating both approaches. However, in this case, we
adopt the online heuristics approach, in particular, the NMS-A/B/C heuristics proposed in
[14].

To examplify, the NMS-A heuristic can be summarized as follows: let L j be the set of
tasks assigned to core n j . L f is the set of tasks to be migrated from the faulty node n f . T N

j

is the sum of the execution times of tasks assigned to node n j . T T N
cap i j

is the execution time

of task ti if assigned to node n j . The task ti ∈ L f is remapped on the core that minimizes
its finishing time. Inputs to the NMS-A algorithm are the initial mapping L, faulty node
set n f , and T N before the fault occurrence. The output is the new mapping L. All of the
NMS-A/B/C heuristics are implemented on the MADNESS platform as a part of the run-
time manager shown in Fig. 5.1, and a selected one is called upon the reception of the fault
detection message from the TMH.

6.2 Experiments and results

In this section we describe a set of experiments that we performed in order to evaluate the
implemented system adaptivity and fault-tolerance techniques. The application case stud-
ies are described in Section 6.2.1. We map these applications onto a 2x2 mesh of general-
purpose processors, as detailed in Chapter 4, implemented on an Virtex-6 FPGA board.

6.2. EXPERIMENTS AND RESULTS 59

videoIn DCT Q

videoOutinitVideoIn

VLE

M0 M1 M2 M3

Figure 6.2: PPN specification of the M-JPEG encoder.

Table 6.1: Execution times of M-JPEG processes

Process Avg execution time (c.c.)
M0 1923
M1 123626
M2 69254
M3 47989

Firstly, we verify that the PPN communication API enables inter-tile communication ac-
cording to the PPN semantics and we compare the passive and active implementation of the
middleware. Then, we present a remapping process, exploiting the migration mechanism
detailed in Section 5.2. according to the on-line remapping strategies. Finally, we test the
accuracy of such strategies to verify the optimality of the chosen migration decision.

6.2.1 Case studies

We chose as case studies two streaming applications in the multimedia domain, M-JPEG
encoder and H.264 decoder. The two applications are described below.

M-JPEG encoder

The PPN specification of the M-JPEG encoder is shown in Fig. 6.2. The size of tokens ranges
between 16 and 1024 bytes, and all of the channels are written 128 times, except the output
of initVideoIn which is written only once per frame. Fig. 6.2 also shows how some processes
have been merged to map the application on the NoC platform, e.g. VLE and videoOut pro-
cesses have been merged into process M3. The numbers of clock cycles required for the
execution of each process of the M-JPEG application are summarized in Table 6.1. Compar-
ing these numbers with the amount of inter-process communication one can infer that this
application has a high computation/communication ratio.

H.264 decoder

The simplified PPN specification of this case study is shown in Fig. 6.3. In the final imple-
mentation, the nodes g et_d at a, par ser , and cavl c have been merged into a single process,
H0. In this case study, the size of the exchanged tokens ranges between 1 and 5000 bytes. The
execution time of each process of the H.264 decoder application are shown in Table 6.2.

60 CHAPTER 6. FAULT-TOLERANCE SUPPORT WITHIN THE MADNESS FRAMEWORK

get_data
parser

cavlc idct deblock
intra
pred

H0 H1 H2 H3

printMB

H4

Figure 6.3: Simplified PPN specification of the H.264 decoder.

Table 6.2: Execution times of H.264 processes

Process Avg execution time (c.c.)
H0 95643
H1 55775
H2 33645
H3 9724
H4 4075

Sobel M-JPEG

0,00E+000

5,00E+007

1,00E+008

1,50E+008

2,00E+008

2,50E+008

3,00E+008

3,50E+008

Benchmark Applications

E
x
e
c
u

ti
o
n
 C

y
c
le

s

RD

RD-int

Figure 6.4: Impact of the interrupt-based request messages on the Request-driven flow con-
trol on two benchmark applications.

6.2.2 Flow control functionality assessment

Mapping the application on the hardware platform allowed us to test the functionality of
the PPN communication APIs. We show the results obtained for the M-JPEG application. As
mentioned earlier, the M-JPEG encoder is computation-intensive, so communication laten-
cies due to the flow control do not have a deep impact on the overall performances [8]. We
tested the Request-driven flow control by comparing the previously proposed approach with
interrupt-based implementation. The two approaches did not lead to significant differences
in the M-JPEG case study, as shown in Fig. 6.4. Thus, in order to compare them over a more
communication-intensive benchmark, we repeated the experiment executing a Sobel filter-
ing kernel on the platform. In this case, the execution time was significantly reduced (ca.
64%), as expected.

6.2. EXPERIMENTS AND RESULTS 61

Figure 6.5: M-JPEG process scheduling when migrating M1 using the proposed remapping
heuristic and migration mechanism.

6.2.3 Remapping heuristic and process migration execution
time overhead

We evaluate the proposed process migration mechanism and remapping heuristic overhead
using the setup shown in the left part of Fig. 6.5. Processes M0 −M3 in the figure refer to the
specification represented in Fig. 6.2. Initially, M0 is mapped on t i le3, M1 on t i l e1, M2 and
M3 on t i le4. This process mapping results in a total execution time of the M-JPEG applica-
tion of Texe (noMi g) = 17,332,807 clock cycles (c.c.) in case of no migration.

However, in this experiment at time τ0 we trigger an interrupt on t i le3, which activates
the run-time manager. This interrupt emulates a message sent from the TMH of t i l e1, in-
dicating that the processing element is faulty. Thus, the processes running on it have to be
migrated on other tiles. The migration procedure is then started. It can be divided in the
timing intervals shown in the right part of Fig. 6.5 and described below.

• [τ0,τ1]: this is the time required by the run-time manager to make the remapping de-
cision

• [τ1,τ2]: in this time interval the source tile (t i le1) sends all the process state to the
destination tile

• [τ2,τ3]: between these two instants the destination tile (t i l e2) copies the process state
to its local memory and starts the execution of the migrated process

In total, the migration procedure takes (τ3 −τ0) = 28,934 clock cycles. Note that the ex-
ecution of the migrated process has to be restarted from the beginning of the interrupted
iteration. Thus, all the time spent since the beginning of the interrupted iteration on t i le1

has to be added to the total overhead. The worst case overhead due to the re-execution of the
interrupted iteration is as large as the execution time of a whole iteration of the interrupted
process, in this case M1. The worst-case total overhead in the scenario depicted in Fig. 6.5
then grows up to (τ3−τ0)+Texe (M1) = 152,560 clock cycles. Compared to the total execution
time of the application without migration (Texe (noMi g)), this represents only 0.88% of the
time.

To evaluate the calculation time of the remapping decision, the two remapping scenar-
ios given in Fig. 6.6 and 6.9 are used for M-JPEG and H.264 applications. The NMS-A/B/C
heuristics from [14], which aim at minimizing the throughput degradation, are implemented

62 CHAPTER 6. FAULT-TOLERANCE SUPPORT WITHIN THE MADNESS FRAMEWORK

Table 6.3: Calculation times of remapping heuristics

Heuristic
Avg execution time (c.c.)
M-JPEG H.264

NMS-A 8198 8172
NMS-B 19608 19603
NMS-C 6403 6664

on the platform. Their calculation time are displayed in Table 6.3. The results reveal that
their execution time constitutes a relatively small portion of the migration overhead.

6.2.4 Evaluation of the remapping strategy

In this section, the quality of the heuristic is evaluated using the M-JPEG and H.264 case
studies by comparing the remapping obtained by the NMS-A/B/C heuristics with actual
measurements.

M-JPEG remappings

Given a 2x2 NoC-based platform with processing elements (t i le1 = n1, t i le2 = n2, t i le3 =
n3, t i le4 = n4) and an initial mapping of M-JPEG tasks I : M0 → n3, M1 → n1, M2 → n2, M3 →
n4 as shown in Fig. 6.6(a), we consider two single fault scenarios for n1 and n2. As shown in
Fig. 6.6(b), for the case of n1 faulty, all possible remappings are R1 (M1 → n2), R2 (M1 → n3)
and R3 (M1 → n4). Similarly, Fig. 6.6(c) shows the case of n2 faulty for which all possible
remappings are R1 (M2 → n1), R2 (M2 → n3) and R3 (M2 → n4). The total execution times of
the M-JPEG application for all possible remappings, TRi , are measured on the platform using
the RD-int flow control and also calculated by the analytical model.

The performance degradation with respect to the execution time of the initial mapping,
TI , is calculated according to Equation 6.1.

Per f or mance deg r ad ati on(Ri) = TRi −TI

TI
(6.1)

Measured and calculated values are used in Equation 6.1 for calculating the measured
and analytical model degradation results shown in Fig. 6.7 and 6.8 for faulty n1 and faulty n2

cases, respectively. Note that in some cases, for instance R2 in Fig. 6.7, the remapping can
lead to a performance speedup. In R2, this is because the reduction of the communication
time over the NoC overcompensates the increased computational workload on n3.

The optimal remapping is the one which yields to the smallest performance degradation.
For the faulty n1 scenario, all of the NMS-A/B/C heuristics yield to the remapping R2 which
is the optimal decision. For the faulty n2 scenario, it yields to the remapping R2 which is only
.07% worse than the optimal one (R3). NMS-A/B/C heuristics make the optimal decision
according to the analytical model and the discrepancy between the analytical model and
the actual measurements causes a very slightly sub-optimal decision in reality. However, as
shown in Fig. 6.7 and 6.8, the analytical model estimates the degradation within 3% of the
measured values. The inaccuracy of the analytical model is due to the blockings in the com-
munication and the unaccounted context switching times when several tasks are running on
a processor.

6.2. EXPERIMENTS AND RESULTS 63

(a)

M1 M2

M0

(c)

M1 M2

M0

R1

R2

R3

fault

(b)

fault

R1

R3

R2

M1 M2

M0

tile1 tile2

tile3 tile4

tile1 tile1tile2 tile2

tile3 tile3tile4 tile4

M3 M3 M3

Figure 6.6: Initial mapping and the two single fault scenarios showing all possible remap-
pings.

Figure 6.7: Comparison of measured and calculated performance degradation of all possible
remappings when n1 is faulty as shown in Fig. 6.6(b).

Figure 6.8: Comparison of measured and calculated performance degradation of all possible
remappings when n2 is faulty as shown in Fig. 6.6(c).

H.264 remappings

We use the same procedure to assess the NMS-A/B/C remapping heuristics in the H.264
case study. The initial mapping is shown in Fig. 6.9(a). Then, we consider the case of a fault

64 CHAPTER 6. FAULT-TOLERANCE SUPPORT WITHIN THE MADNESS FRAMEWORK

(a)

H1 H2

H4

H0

(c)

H1 H2

H4

H0

R1

R2

R3

fault

(b)

fault

R1

R3

R2

H1 H2

H4

H0

tile1 tile2

tile3 tile4

tile1 tile1tile2 tile2

tile3 tile3tile4 tile4

H3 H3 H3

Figure 6.9: Initial mapping and the two single fault scenarios showing all possible remap-
pings.

Figure 6.10: Comparison of measured and calculated performance degradation of all possi-
ble remappings when n1 is faulty as shown in Fig. 6.9(b).

occurring either in n1 or n2. In each of these cases there are three possible remappings (R1

to R3), which are depicted in Fig. 6.9(b) and Fig. 6.9(c).
In case of a fault occurring on n1, all of the NMS-A/B/C heuristics yield to remapping R3,

which is the optimal one as shown in Fig. 6.10. In the other considered case, faulty n2, all the
heuristics suggest remapping R3. Also in this case, the suggested remapping represents the
optimal one, as can be deduced by Fig. 6.11. Similar to the M-JPEG experiments, the inac-
curacy of the analytical model is due to the abstraction of the overheads related to context
switches and communication over the platform.

6.2.5 Architectural support hardware overhead

Obviously, the circuitry implementing the support for adaptivity and fault-tolerance at ar-
chitectural level incurs an overhead in terms of area obstruction, power consumption and
critical path length. To evaluate the overhead, we consider the basic ×pipes mesh as a base-
line architecture. As mentioned earlier, with respect to the baseline, the Network Adapter
has been enriched with the DMA message-passing handler (MPH). It provides all the mes-
sage passing capabilities that are needed to implement the inter-processor communication,
the triggering of the migration process and the migration process itself. Moreover, this mod-

6.2. EXPERIMENTS AND RESULTS 65

Figure 6.11: Comparison of measured and calculated performance degradation of all possi-
ble remappings when n2 is faulty as shown in Fig. 6.9(c).

ule allows the possibility of intra-processor multitasking. Controlling the local memory, to
store the incoming messages when a receive() has not been performed, the MPH allows, at
the producer side, scheduling a different task when waiting for requested tokens, without
stalling on a blocking receive primitive. Thus, the MPH can be considered as a first level of
architectural support for adaptivity. The second level is represented by the insertion of the
TMH, that has to take care of sending the migration data of the processes in case of faulty
processing element. In Figure 6.12 and Figure 6.13, a preliminary estimation of the overhead
due to the introduction of these modules is shown in terms of area occupation and maxi-
mum working frequency, respectively. The implementation results are obtained by means of
the Xilinx tools during the protoyping phase.

Figure 6.12: Area occupation overhead in comparison to the baseline network adapter due
to the support for system adaptivity and fault-tolerance

It can be noticed that the overhead is not negligible. In terms of timing, the baseline ar-
chitecture can be more than 25% faster than the NA featuring full support for fault-tolerance,

66 CHAPTER 6. FAULT-TOLERANCE SUPPORT WITHIN THE MADNESS FRAMEWORK

Figure 6.13: Critical path length overhead related with support for system adaptivity and
fault-tolerance

especially due to the introduction of the the MPH. During the design of the MPH architecture
we tried to reduce as much as possible the latency related with message passing operations.
This required the introduction of combinational logics which resulted in the mentioned fre-
quency drop. A retiming of the control circuitry inside the MPH could be used to improve
the achievable working frequency, at the price of an increment of the communication la-
tency for each packet. The overhead in terms of used logic is also significant. Such overhead
is mitigated when we consider the area of the entire tile, as shown in Figure 6.14. In this
case the area overhead in a tile with full support for adaptivity and fault-tolerance is almost
60% with respect to a tile instantiating the baseline NA. This overhead would be even smaller
if we consider in the baseline area all the obstruction related to the memory modules, not
accounted in the presented plot. It is also worth to notice that the baseline architecture can-
not provide complete message-passing capabilities, thus is not completely sufficient even in
static message-passing systems.

Moreover, it is useful to point out that both the MPH and the TMH can be customized at
design time, according to the communication graph of the target application, instantiating
only the circuitry needed to control the required number of channels and tasks. As an exam-
ple, we show how the TMH is customized for the H264 and the MJPEG applications. In the
first design case, the TMH has to support 4 tasks and 4 channels, requiring 35 registers to be
instantiated. In the second, the circuitry must control 5 tasks and 8 channels, requiring 51
registers. The overhead comparison with the default configuration is shown in Figure 6.15.

6.2. EXPERIMENTS AND RESULTS 67

Figure 6.14: Area occupation overhead in comparison to the baseline tile architecture due to
the support for system adaptivity and fault-tolerance

Figure 6.15: Area overhead dependence on the supported number of channels

Chapter 7

Conclusions and future
developments

In this thesis, we addressed the problem of achieving system adaptivity on generic tiled NoC-
based MPSoC platforms, by proposing an approach that enables the run-time migration of
processes among the available platform resources. We also described how the use of re-
configuration strategies can be exploited when detecting run-time faults, to cope with the
problem of graceful degradation of the system.
At first, in Chapter 2, we provided an in-depth survey concerning the state-of-the-art in sys-
tem adaptivity and fault-tolerance, highlighting the challenges posed by modern embedded
systems, that often need a guaranteed degree of fault-tolerance. Then, in Chapter 3, we pre-
sented a comprehensive overview of the MADNESS project, ranging from the scenario-based
DSE methodologies, to the introduction of the strategies that take profit from the flexibility
of the NoC-based platform. The described techniques allow a DSE driven by the require-
ment of different workloads, and also support the coexistence of different mapping config-
urations. In Chapter 4, we described the FPGA-based MADNESS evaluation platform for
the exploration and characterization of adaptive and fault-tolerant MP-SoC architectures.
We have been particularly focused on the hardware extensions added in order to support
the PPN MoC. We also developed a predictable and efficient process migration mechanism,
that should allow the system to survive in case of permanent faults, as described in detail
in Chapter 5. We introduced a middleware support for the execution of Polyhedral Process
Networks on Network-on-Chip MPSoCs allowing system adaptivity. Two main middleware
components have been devised and implemented.

The first one is the PPN communication API, which realizes the PPN semantics on NoC
implementations. Three communication approaches have been evaluated experimentally
on two applications with very different computation and communication characteristics.
The results show that the virtual connector approach outperforms the others when imple-
menting communication-dominant applications. However, especially for this kind of ap-
plications, the price we pay for system adaptivity and generality is large in terms of perfor-
mance, if compared to customized point-to-point systems. On the contrary, when the com-
putation/communication ratio of an application is higher, the overhead introduced by the
execution on NoC with all the proposed communication approaches is much lower.

The second middleware component concerns the process migration procedure, which

69

70 CHAPTER 7. CONCLUSIONS AND FUTURE DEVELOPMENTS

is essential for system adaptivity. A reactive and predictable process migration mechanism
has been devised and developed. The proposed mechanism does not need user-specified
checkpointing since it exploits the simple structure of PPN processes, whose state is only
represented by iterator sets and the content of input/output FIFO buffers. Moreover, it al-
lows the execution of a migration at any time during the execution of the main body of pro-
cesses, since it does not rely on fixed migration points. The proposed migration mechanism
is predictable because an upper bound of its overhead can be derived, for GT NoCs, from the
process network topology and buffer sizes. Moreover, we show that the migration mecha-
nism allows the system to change its performance metrics at run-time with almost negligible
overhead.

Finally, in Chapter 6 we described how the presented process migration mechanism can
be exploited by the run-time manager to cope with permanent faults by migrating the pro-
cesses running on the faulty processing element. A fast heuristic is used to determine the
new mapping of processes to tiles. We also proved, with a real-life case study, that this heuris-
tic is able to find near-optimal remappings. Moreover, the experimental results prove that
the overhead in terms of execution time due to the execution of the remapping heuristic,
together with the actual process migration, is almost negligible compared to the execution
time of the whole application. This means that the MADNESS fault-tolerance approach al-
lows the system to react to faults without a substantial impact on the user experience. On
the other hand, the support at architecture level has a significant overhead that would have
to be carefully assessed and limited.

To conclude, we can say that the presented use cases, and their stable results confirm the
usefulness of the developed approaches. Nevertheless, the proposed techniques have been
tailored targeting application domains characterized by multimedia streaming workloads.
The execution on the same platform of applications with different levels of criticality deeply
impacts the complexity of the design process, in a variety of aspects, that require specific
support at different levels: the hardware architecture should provide specific mechanisms to
ease time-predictability and adaptation of spatial and temporal allocation of the computing
resources; moreover, the software run-time should provide specific scheduling and mapping
support, in order to optimize the execution of the non-critical workload part. We already
planned to face the challenge of adding mixed-criticality support to the developed platform,
by researching and developing novel design methods that will allow for combining these
new different requirements, models and techniques into a single, automated design flow for
MPSoCs.

Bibliography

[1] A high performance message passing library. [cited at p. 5]

[2] Multicore associations communication api. [cited at p. 5]

[3] Andrea Acquaviva, Andrea Alimonda, Salvatore Carta, and Michele Pittau. Assessing task migra-
tion impact on embedded soft real-time streaming multimedia applications. EURASIP J. Emb.
Sys., 2008, 2008. [cited at p. 4, 7, 43]

[4] Gabriel Marchesan Almeida, Gilles Sassatelli, Pascal Benoit, Nicolas Saint-Jean, Sameer Varyani,
Lionel Torres, and Michel Robert. An Adaptive Message Passing MPSoC Framework. Int. J. of
Reconfigurable Computing, 2009:20, 2009. [cited at p. 4, 6]

[5] Federico Angiolini, Paolo Meloni, Salvatore M. Carta, Luigi Raffo, and Luca Benini. A layout-
aware analysis of networks-on-chip and traditional interconnects for mpsocs. Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on, 26(3), march 2007. [cited at p. 15]

[6] Iuliana Bacivarov, Wolfgang Haid, Kai Huang, and Lothar Thiele. Methods and Tools for Mapping
Process Networks onto Multi-Processor Systems-On-Chip. In Shuvra S. Bhattacharyya, Ed F.
Deprettere, Rainer Leupers, and Jarmo Takala, editors, Handbook of Signal Processing Systems,
pages 1007—1040. Springer, October 2010. [cited at p. 5]

[7] Stefano Bertozzi, Andrea Acquaviva, Davide Bertozzi, and Antonio Poggiali. Supporting task mi-
gration in multi-processor systems-on-chip: a feasibility study. In Proceedings of the conference
on Design, automation and test in Europe, DATE ’06, pages 15–20, 2006. [cited at p. 4, 7, 43]

[8] Emanuele Cannella, Onur Derin, Paolo Meloni, Giuseppe Tuveri, and Todor Stefanov. Adaptivity
Support for MPSoCs based on Process Migration in Polyhedral Process Networks. VLSI Design,
2012:17 pages, 2012. [cited at p. 60]

[9] Thomas L. Casavant, Jon, and G. Kuhl. A taxonomy of scheduling in general-purpose distributed
computing systems. IEEE Transactions on Software Engineering, 14:141–154, 1988. [cited at p. 4]

[10] Chen-Ling Chou and R. Marculescu. Farm: Fault-aware resource management in noc-based
multiprocessor platforms. In Design, Automation Test in Europe Conf. Exh. (DATE), 2011, pages
1 –6, march 2011. [cited at p. 7]

[11] Matteo Dall’Osso, Gianluca Biccari, Luca Giovannini, Davide Bertozzi, and Luca Benini. Xpipes:
a Latency Insensitive Parameterized Network-on-Chip Architecture for Multi-Processor SoCs.
In Proc. of the 21st Int. Conf. on Computer Design, ICCD’03, pages 536–, Washington, DC, USA,
2003. [cited at p. 23, 29]

71

72 BIBLIOGRAPHY

[12] Giovanni De Micheli and Luca Benini. Networks on Chips: Technology and Tools. Morgan Kauf-
mann, 2006. [cited at p. 3, 15]

[13] Onur Derin, Erkan Diken, and Leandro Fiorin. A middleware approach to achieving fault-
tolerance of kahn process networks on networks-on-chips. International Journal of Reconfig-
urable Computing, 2011(Article ID 295385), February 2011. [cited at p. 5, 37, 55]

[14] Onur Derin, Deniz Kabakci, and Leandro Fiorin. Online task remapping strategies for fault-
tolerant network-on-chip multiprocessors. In Proc. of the 5th ACM/IEEE Int. Sym. on Networks-
on-Chip, pages 129–136, 2011. [cited at p. 58, 61]

[15] S. V. Gheorghita, M. Palkovic, J. Hamers, A. Vandecappelle, S. Mamagkakis, T. Basten, L. Eeck-
hout, H. Corporaal, F. Catthoor, F. Vandeputte, and K. De Bosschere. System-scenario-based
design of dynamic embedded systems. ACM Transactions on Design Automation of Electronic
Systems, 14(1):1–45, 2009. [cited at p. 12]

[16] Stefan Valentin Gheorghita, Martin Palkovic, Juan Hamers, Arnout Vandecappelle, Stelios Ma-
magkakis, Twan Basten, Lieven Eeckhout, Henk Corporaal, Francky Catthoor, Frederik Van-
deputte, and Koen De Bosschere. System-scenario-based design of dynamic embedded systems.
ACM Trans. Des. Autom. Electron. Syst., 14(1):3:1–3:45, January 2009. [cited at p. 1]

[17] Wolfgang Haid, Kai Huang, Iuliana Bacivarov, and Lothar Thiele. Multiprocessor SoC software
design flows. IEEE Signal Processing Magazine, 26, 2009. [cited at p. 5]

[18] Wolfgang Haid, Lars Schor, Kai Huang, Iuliana Bacivarov, and Lothar Thiele. Efficient execution
of kahn process networks on multi-processor systems using protothreads and windowed fifos.
In Proc. IEEE Workshop on Embedded Systems for Real-Time Multimedia (ESTIMedia), pages 35–
44, Grenoble, France, 2009. IEEE. [cited at p. 5, 6]

[19] Mike Holenderski, Martijn M.H.P. van den Heuvel, Reinder J. Bril, and Johan J. Lukkien. Grasp:
Tracing, visualizing and measuring the behavior of real-time systems. In International Workshop
on Analysis Tools and Methodologies for Embedded and Real-time Systems (WATERS), July 2010.
[cited at p. 50]

[20] J.Y. Hur, S. Wong, and S. Vassiliadis. Partially reconfigurable point-to-point fpga interconnects.
International Journal of Electronics, 95:725–742, July 2008. [cited at p. 1]

[21] IEEE Computer Society and IEEE Standards Association Corporate Advisory Group. IEEE Stan-
dard for IP-XACT, Standard Structure for Packaging, Integrating, and Reusing IP within Tool
Flows, February 2010. [cited at p. 11]

[22] G. Kahn. The semantics of a simple language for parallel programming. In J. L. Rosenfeld, editor,
Information Processing ’74: Proceedings of the IFIP Congress, pages 471–475. North-Holland, New
York, NY, 1974. [cited at p. 3, 10]

[23] Seongnam Kwon, Yongjoo Kim, Woo-Chul Jeun, Soonhoi Ha, and Yunheung Paek. A retargetable
parallel-programming framework for mpsoc. ACM Trans. Des. Autom. Electron. Syst., 13:39:1–
39:18, July 2008. [cited at p. 5]

[24] Chanhee Lee, Hokeun Kim, Hae-woo Park, Sungchan Kim, Hyunok Oh, and Soonhoi Ha. A task
remapping technique for reliable multi-core embedded systems. In Proc. of the 8th Int. Conf. on
Hardware/software codesign and system synthesis, pages 307–316, 2010. [cited at p. 7]

[25] E. A. Lee and D. G. Messerschmitt. Synchronous data flow. Proceedings of the IEEE, 75(9):1235–
1245, 1987. [cited at p. 5]

BIBLIOGRAPHY 73

[26] P. Meloni, I. Loi, F. Angiolini, S. M. Carta, M. Barbaro, L. Raffo, and L. Benini. Area and power
modeling for networks-on-chip with layout awareness. VLSI DESIGN, 2007, 2007. [cited at p. 13]

[27] P. Meloni, S. Pomata, L. Raffo, R. Piscitelli, and A. D. Pimentel. Combining on-hardware pro-
totyping and high-level simulation for dse of multi-asip systems. In Proc. 12th International
Conference on Embedded Computer Systems (SAMOS-XII), 2012. [cited at p. 13]

[28] P. Meloni, S. Secchi, and L. Raffo. An fpga-based framework for technology-aware prototyping of
multicore embedded architectures. Embedded Systems Letters, IEEE, 2(1):5 –9, 2010. [cited at p. 13]

[29] Dejan S. Milojičić, Fred Douglis, Yves Paindaveine, Richard Wheeler, and Songnian Zhou. Pro-
cess migration. ACM Comput. Surv., 32:241–299, September 2000. [cited at p. 4]

[30] Dmitry Nadezhkin, Sjoerd Meijer, Todor Stefanov, and Ed Deprettere. Realizing FIFO Commu-
nication When Mapping Kahn Process Networks onto the Cell. In Proceedings of the 9th Inter-
national Workshop on Embedded Computer Systems: Architectures, Modeling, and Simulation,
SAMOS ’09, pages 308–317, Berlin, Heidelberg, 2009. Springer-Verlag. [cited at p. 5, 6, 39]

[31] A. B. Nejad, K. Goossens, J. Walters, and B. Kienhuis. Mapping kpn models of streaming appli-
cations on a network-on-chip platform. In ProRISC 2009: Proceedings of the Workshop on Signal
Processing, Integrated Systems and Circuits, November 2009. [cited at p. 6]

[32] André Nieuwland, Jeffrey Kang, Om Prakash Gangwal, Ramanathan Sethuraman, Natalino Busá,
Kees Goossens, Rafael Peset Llopis, and Paul Lippens. C-heap: A heterogeneous multi-processor
architecture template and scalable and flexible protocol for the design of embedded signal pro-
cessing systems. Design Automation for Embedded Systems, 7:233–270, 2002. [cited at p. 5]

[33] H. Nikolov, T. Stefanov, and E. Deprettere. Systematic and Automated Multiprocessor System
Design, Programming, and Implementation. Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 27(3):542–555, 2008. [cited at p. 5, 10, 48]

[34] Vincent Nollet, Diederik Verkest, and Henk Corporaal. A Safari Through the MPSoC Run-Time
Management Jungle. Signal Processing Systems, 60(2):251–268, 2010. [cited at p. 4, 15]

[35] (OCP-IP). Open Core Protocol Standard, 2003. http://www.ocpip.org/home. [cited at p. 17, 21]

[36] Gianluca Palermo, Cristina Silvano, and Vittorio Zaccaria. Robust optimization of soc architec-
tures: A multi-scenario approach. In ESTImedia, pages 7–12, 2008. [cited at p. 1]

[37] A. D. Pimentel, C. Erbas, and S. Polstra. A systematic approach to exploring embedded system
architectures at multiple abstraction levels. IEEE Transactions on Computers, 55(2):99–112, 2006.
[cited at p. 10, 11]

[38] M. Psarakis, D. Gizopoulos, M. Hatzimihail, A. Paschalis, A. Raghunathan, and S. Ravi. System-
atic software-based self-test for pipelined processors. In 43rd Design Automation Conf.,, pages
393–398, 2006. [cited at p. 55]

[39] S. Secchi, P. Meloni, and L. Raffo. Exploiting FPGAs for technology-aware system-level evaluation
of multi-core architectures. In Performance Analysis of Systems Software (ISPASS), 2010 IEEE
International Symposium on, pages 194 –202, march 2010. [cited at p. 17]

[40] Jonathan M. Smith. A survey of process migration mechanisms. SIGOPS Oper. Syst. Rev., 22, July
1988. [cited at p. 4]

74 BIBLIOGRAPHY

[41] William Thies and Saman Amarasinghe. An empirical characterization of stream programs and
its implications for language and compiler design. In Proceedings of the 19th international con-
ference on Parallel architectures and compilation techniques, pages 365–376, 2010. [cited at p. 5]

[42] M. Thompson, T. Stefanov, H. Nikolov, A. D. Pimentel, C. Erbas, S. Polstra, and E. F. Depret-
tere. A framework for rapid system-level exploration, synthesis, and programming of multime-
dia MP-SoCs. In Proc. of the Int. Conference on Hardware-Software Codesign and System Synthe-
sis (CODES+ISSS ’07), pages 9–14, 2007. [cited at p. 10]

[43] P. van Stralen and A. D. Pimentel. Scenario-based design space exploration of MPSoCs. In Proc.
of the IEEE International Conference on Computer Design (ICCD ’10), Oct. 2010. [cited at p. 12]

[44] Stamatis Vassiliadis, Stephan Wong, Georgi Gaydadjiev, Koen Bertels, Georgi Kuzmanov, and
Elena Moscu Panainte. The molen polymorphic processor. IEEE Trans. Comput., 53(11):1363–
1375, November 2004. [cited at p. 1]

[45] Sven Verdoolaege. Handbook on signal processing systems, chapter Polyhedral process networks.
Springer, 2010. [cited at p. 3, 4]

[46] Sven Verdoolaege, Hristo Nikolov, and Todor Stefanov. pn: a tool for improved derivation of
process networks. EURASIP J. Embedded Syst., 2007, January 2007. [cited at p. 4, 7, 34]

[47] Xilinx. MicroBlaze Processor Reference Guide UG081.(v 9.0), 2010.
http://www.xilinx.com/support/documentation/sw_manuals/mb_ref_guide.pdf. [cited at p. 22]

[48] Xilinx. PowerPc Processor Reference Guide UG011.(v 1.3), 2010.
http://www.xilinx.com/support/documentation/user_guides/ug011.pdf. [cited at p. 22]

List of publications related to the
thesis

Published papers

Journal papers

• E. Cannella, O. Derin, P. Meloni, G. Tuveri and T. Stefanov, Adaptivity Support for MPSoCs based
on Process Migration in Polyhedral Process Networks VLSI Design, vol. 2012, Article ID 987209,
17 pages. (Relation to Chapter 5)

Conference papers

• P. Meloni, G. Tuveri, L. Raffo, E. Cannella, T. Stefanov, O. Derin, L. Fiorin and M. Sami, System
Adaptivity and Fault-tolerance in NoC-based MPSoCs: the MADNESS Project Approach in 15th
Euromicro Conference on Digital System Design Cesme, Turkey, September 2012 (Relation to
Chapter 6)

• O. Derin, P. Kuncheerath, P. Meloni, G. Tuveri A Low Overhead Self-adaptation Technique for
KPN Applications on NoC-based MPSoCs in 3rd International Conference on Pervasive and Em-
bedded Computing and Communication Systems (PECCS) - Special Session on Self-Adaptive
Networked Embedded Systems (SANES) Barcelona, Spain, February 2013 (Relation to Chap-
ter 6)

Posters with published proceedings

• G. Tuveri, S. Pomata, S. Secchi and P. Meloni A configurable and scalable multi-core architec-
ture template supporting hybrid model of computation in Advanced Computer Architecture
and Compilation for Embedded Systems (ACACES 2011), Fiuggi, Italy, July 2011 (Relation to
Chapter 4)

75

List of publications unrelated to the
thesis

Published papers

Journal papers

• P. Meloni, S. Pomata, G. Tuveri, S. Secchi, L. Raffo, and M. Lindwer Enabling fast ASIP design
space exploration: an FPGA-based runtime reconfigurable prototyper VLSI Design, vol. 2012,
Article ID 580584)

Conference papers

• S. Pomata, P. Meloni, G. Tuveri, L. Raffo and M. Lindwer Enabling fast ASIP design space explo-
ration: an FPGA-based runtime reconfigurable prototyper in Design, Automation and Test in
Europe Conference Exhibition(DATE 2012), Dresden, Germany, March 2012)

• L. Jozwiak, M. Lindwer, R. Corvino, P. Meloni, L. Micconi, J. Madsen, E. Diken, D. Gangadharan,
R. Jordans, S. Pomata et al., ASAM: Automatic Architecture Synthesis and Application Mapping
in 15th Euromicro Conference on Digital System Design, Cesme, Turkey, September 2012)

Posters with published proceedings

• S. Pomata, G. Tuveri, P. Meloni, M. Lindwer Fast ASIP Design Space Exploration on FPGAs
through Binary Translation in Advanced Computer Architecture and Compilation for Embed-
ded Systems (ACACES 11, Fiuggi, Italy, July 2011)

77

