
Master NIC

F
T

T-
SE

SRDB

EC registerReady
queue

Scheduler
Dispatcher

Built-in
Slave

signaling TM

NRDBs update
NRDB Memory pool

TM
DispatcherC

or
e

M
an

ag
em

en
t Connection DB

QoS DB

Queuing

Connectivity

QoS/Admission
control

In
te

rf
ac

e

Slave NIC

Stream
management

Application
threads

n

Stream
communication

m nodes

Stream
management

Universidade de Aveiro Departamento de Electrónica, Telecomunicações e
2009 Informática

Ricardo Roberto
Duarte Marau

Comunicações de tempo-real em switched Ethernet
suportando gestão dinâmica de QdS

Real-time communications over switched Ethernet
supporting dynamic QoS management

Universidade de Aveiro Departamento de Electrónica, Telecomunicações e
2009 Informática

Ricardo Roberto
Duarte Marau

Comunicações de tempo-real em switched Ethernet
suportando gestão dinâmica de QdS

Real-time communications over switched Ethernet
supporting dynamic QoS management

Universidade de Aveiro Departamento de Electrónica, Telecomunicações e
2009 Informática

Ricardo Roberto
Duarte Marau

Comunicações de tempo-real em switched Ethernet
suportando gestão dinâmica de QdS

Real-time communications over switched Ethernet
supporting dynamic QoS management

Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Doutor em Engenharia
Informática, realizada sob a orientação científica do Prof. Doutor Luís Miguel
Pinho de Almeida, Professor Associado da Faculdade de Engenharia da
Universidade do Porto e co-orientação do Prof. Doutor Paulo Bacelar Reis
Pedreiras, Professor Auxiliar do Departamento de Electrónica,
Telecomunicações e Informática da Universidade de Aveiro.

Este trabalho foi apoiado por:

Ministério da Ciência e do Ensino Superior, por meio da Fundação para a
Ciência e a Tecnologia, que me concedeu uma bolsa de Doutoramento no
âmbito do III Quadro Comunitário de Apoio, (SFRH /BD/25261/2005).

Universidade de Aveiro, que me concedeu uma bolsa de Doutoramento de
Janeiro a Dezembro de 2005 e proporcionou as condições logisticas, técnicas
e humanas para a prossecução dos trabalhos realizados no âmbito desta tese.

Instituto de Engenharia Electrónica e Telemática de Aveiro, que apoiou
financeiramente a minha participação em conferências internacionais para
apresentação de resultados parciais obtidos no âmbito desta tese.

Projectos europeus ARTIST2 (IST-2004-004527) e ArtistDesign
(ICT-NoE-214373), no âmbito dos quais se realizou parte dos trabalhos desta
tese.

Dedicatória

aos meus pais
e à minha irmã.

o júri / the jury

presidente / president Doutor Amadeu Mortágua Velho da Maia Soares
Professor Catedrático da Universidade de Aveiro
(por delegação da Reitora da Universidade de Aveiro)

vogais / examiners committee Doutor Raj Rajkumar
Full Professor da Carnegie Mellon University, Estados Unidos da América

Doutora Maria de la Soledad Garcia Valls
Associate Professor da Universidad Carlos III de Madrid

Doutor Luís Miguel Pinho de Almeida
Professor Associado da Faculdade de Engenharia da Universidade do Porto
(Orientador)

Doutor José Alberto Gouveia Fonseca
Professor Associado da Universidade de Aveiro

Doutor Paulo Bacelar Reis Pedreiras
Professor Auxiliar da Universidade de Aveiro
(Co-Orientador)

Agradecimentos /
Acknowledgements

A jornada que culminou, entre outras coisas, nesta dissertação começou
há cinco anos em Aveiro. Durante este período percorri uma viagem de
enriquecimento pessoal que me permitiu adquirir competências a vários níveis
bem como conhecer e interagir com pessoas maravilhosas que me ajudaram
e apoiaram em várias etapas da viagem. Como em qualquer viagem, houve
momentos bons e momentos menos bons, penosos e mesmo desmotivantes.
Mas quando eis chegado o momento de parar, respirar, olhar para trás e fazer
o balanço, apenas me ocorre: valeu a pena. A todas as pessoas que directa ou
directamente se envolveram nesta viagem, expresso o meu profundo e sincero
agradecimento. Contudo, dada a sua relevância, gostaria de agradecer em
particular:

I would like to thank:

a Luís de Almeida, por me ter proposto e convencido a iniciar a viagem;
pela orientação exemplar a nível técnico, ciêntifico e pedagógico; pela enorme
generosidade e paciência que sempre demonstrou ao longo destes cinco anos;
pelas acesas discussões técnicas que se alongavam pela noite e que, muitas
vezes, se misturavam com umas cervejas no Ramona.

a Paulo Pedreiras, por ter acompanhado os meus trabalhos durante estes anos
como orientador, com uma competência técnico-científica irrepreensível; por
tê-lo feito de uma forma bastante próxima, atenta e humana.

a ambos pelo empenho e dedicação profissional, bom como pelas condições
e meios oferecidos para desenvolver o meu trabalho; pelos bons momentos
de amizade, convívio e entre-ajuda, o meu sincero e sentido agradecimento.
Obrigado pela inspiração! Gostaria ainda de manifestar o meu apreço à Nani e
à Cristina, à Sofia, Joana, Pedro e Francisco, pela simpatia e compreensão.

to Michael González Harbour, to Daniel Sangorrín and to Julio L. Med-
ina, from the University of Cantabria, for the support and collaboration in part
of my work. Also, for having received me in Santander in a visit that although
short, happened in an early stage and was very helpful to clarify much of the
purpose of my work. "¡Gracias!"

to Javier Silvestre, from the Polytechnic University of Valencia (Alcoy), for
its valuable collaboration and skills in Multimedia and QoS, letting the devel-
opment of a case-study application that wraps much of my work, making it
meaningful. For having invited me to Alcoy and provided all the means and
support during my stay. "Gracias también a su familia, Mónica, Jaime y Concha
que me recibieron con mucha alegría y cariño. Moltes gràcies!"

to Raj Rajkumar Karthik and to Lakshmanan from the Carnegie Mellon Uni-
versity, for their valuable scientific contribution to the work in this dissertation
and also for having made possible and pleasant my visit to Pittsburgh. I have
to remark and be thankful for the outstanding commitment and support to my
research topics during my stay. This collaboration was determinant to the
theoretical formulation in Chapters 4 and 5. Thanks a lot!

to Thomas Nolte, Professor at Mälardalen University, Sweeden, for its
valuable collaboration in the Servers and Hierarchical composition topics that
enriched and amplified the applicability scope of this work. Thanks!

a Nuno Figueiredo, que prontamente aceitou o repto de, no âmbito da
sua tese de Mestrado, integrar o protocolo apresentado nesta dissertação
na plataforma de controlo por ele desenvolvida, permitindo desta forma uma
avaliação real de algumas propriedades do protocolo. De destacar o espírito
pro-activo e empreendedor que imprimiu no trabalho, permitindo o desenvolvi-
mento de agradáveis discussões técnicas e linhas de trabalho futuro. Obrigado!

a Isidro Calvo, a Manuel Barranco, a Iria Ayres, a Pablo Basanta, que
passaram longos períodos em Aveiro e com eles trouxeram alegria e boa-
-disposição ao laboratório. Obrigado pela vossa amizade, companheirismo e
claro... por me haber enseñado algo de español. "Gracias chicos!"

a Valter Silva, a Frederico Santos, a Rui Santos, a Margarida Urbano, a
Alexandre Vieira colegas de laboratório e amigos com quem tive o prazer de
desenvolver agradáveis discussões técnicas durante estes anos, bem como,
discussões menos técnicas que proporcionavam agradáveis gargalhadas e
momentos de descontracção. Obrigado!

a José Luís Azevedo, a José Alberto Fonseca, a Pedro Fonseca, professores
durante a minha Licenciatura que tiveram um papel relevante na definição
das minhas áreas de interesse em comunicações e sistemas embutidos e na
consequente vontade em prosseguir os meus estudos nesse âmbito. Obrigado!

a Ana Margarida, a Alexandre Santos, a Pedro Leite, a Ana Ferreira, a
Tiago Silveira, grande amigos, que sem dúvida ajudaram a vincar o início desta
viagem. Obrigado malta, jamais esquecerei!

a Rodolfo Andrade, a Nuno Letão, a Alexandra Moura, pelas muitas palavras
de apoio e pelas quartas-feiras loucas.

ao grupo de Salsa, que durante estes anos ajudou a descontrair e des-
comprimir nos momentos de maior tensão. Em particular agradeço à Luísa e
ao Hugo Leite pela amizade, pelo apoio e pelas muitas salsas animadas com
boa música. E sem esquecer o que a Salsa me deu, agradeço à Jeanette que
soube marcar a sua presença amiga e cúmplice. Obrigado!

Finalmente, agradeço às pessoas mais importantes na minha vida: os
meus pais e irmã. A base de tudo o que sou e de todo este trabalho, foram vós
que a construíram.

Ricardo Marau

Palavras-chave Tempo-real, Comunicações de tempo-real, Comunicações industriais,
Sistemas embutidos, Sistemas distribuídos, Escalonamento de tempo-real,
Gestão de Qualidade de Serviço, Ethernet.

Resumo Durante a última década temos assistido a um crescente aumento na utilização
de sistemas embutidos para suporte ao controlo de processos, de sistemas
robóticos, de sistemas de transportes e veículos e até de sistemas domóticos
e eletrodomésticos. Muitas destas aplicações são críticas em termos de
segurança de pessoas e bens e requerem um alto nível de determinismo com
respeito aos instantes de execução das respectivas tarefas. Além disso, a im-
plantação destes sistemas pode estar sujeita a limitações estruturais, exigindo
ou beneficiando de uma configuração distribuída, com vários subsistemas
computacionais espacialmente separados. Estes subsistemas, apesar de
espacialmente separados, são cooperativos e dependem de uma infraestrutura
de comunicação para atingir os objectivos da aplicação e, por consequência,
também as transacções efectuadas nesta infraestrutura estão sujeitas às
restrições temporais definidas pela aplicação.

As aplicações que executam nestes sistemas distribuídos, chamados
networked embedded systems (NES), podem ser altamente complexas e
heterogéneas, envolvendo diferentes tipos de interacções com diferentes
requisitos e propriedades. Um exemplo desta heterogeneidade é o modelo de
activação da comunicação entre os subsistemas que pode ser desencadeada
periodicamente de acordo com uma base de tempo global (time-triggered),
como sejam os fluxos de sistemas de controlo distribuído, ou ainda ser
desencadeada como consequência de eventos assíncronos da aplicação
(event-triggered). Independentemente das características do tráfego ou do
seu modelo de activação, é de extrema importância que a plataforma de
comunicações disponibilize as garantias de cumprimento dos requisitos da
aplicação ao mesmo tempo que proporciona uma integração simples dos
vários tipos de tráfego.

Uma outra propriedade que está a emergir e a ganhar importância no seio
dos NES é a flexibilidade. Esta propiedade é realçada pela necessidade de
reduzir os custos de instalação, manutenção e operação dos sistemas. Neste
sentido, o sistema é dotado da capacidade para adaptar o serviço fornecido à
aplicação aos respectivos requisitos instantâneos, acompanhando a evolução
do sistema e proporcionando uma melhor e mais racional utilização dos
recursos disponíveis.

No entanto, maior flexibilidade operacional é igualmente sinónimo de
maior complexidade derivada da necessidade de efectuar a alocação dinâmica
dos recursos, acabando também por consumir recursos adicionais no sistema.
A possibilidade de modificar dinâmicamente as caracteristicas do sistema
também acarreta uma maior complexidade na fase de desenho e especifi-
cação. O aumento do número de graus de liberdade suportados faz aumentar
o espaço de estados do sistema, dificultando a uma pre-análise. No sentido de
conter o aumento de complexidade são necessários modelos que representem
a dinâmica do sistema e proporcionem uma gestão optimizada e justa dos
recursos com base em parâmetros de qualidade de serviço (QdS).

É nossa tese que as propriedades de flexibilidade, pontualidade e gestão
dinâmica de QdS podem ser integradas numa rede switched Ethernet (SE),
tirando partido do baixo custo, alta largura de banda e fácil implantação. Nesta
dissertação é proposto um protocolo, Flexible Time-Triggered communication
over Switched Ethernet (FTT-SE), que suporta as propriedades desejadas e
que ultrapassa as limitações das redes SE para aplicações de tempo-real tais
como a utilização de filas FIFO, a existência de poucos níveis de prioridade
e a pouca capacidade de gestão individualizada dos fluxos. O protocolo
baseia-se no paradigma FTT, que genericamente define a arquitectura de uma
pilha protocolar sobre o acesso ao meio de uma rede partilhada, impondo
desta forma determinismo temporal, juntamente com a capacidade para
reconfiguração e adaptação dinâmica da rede. São ainda apresentados vários
modelos de distribuição da largura de banda da rede de acordo com o nível de
QdS especificado por cada serviço utilizador da rede.
Esta dissertação expõe a motivação para a criação do protocolo FTT-SE,
apresenta uma descrição do mesmo, bem como a análise de algumas das
suas propiedades mais relevantes. São ainda apresentados e comparados
modelos de distribuição da QdS. Finalmente, são apresentados dois casos de
aplicações que sustentam a validade da tese acima mencionada.

Keywords Real-time, Real-time communications, Industrial communications,
Embedded systems, Networked embedded systems, Distributed systems,
Real-time scheduling, Quality of Service management, Ethernet.

Abstract During the last decade we have witnessed a massive deployment of embedded
systems on a wide applications range, from industrial automation to process
control, avionics, cars or even robotics. Many of these applications have an
inherently high level of criticality, having to perform tasks within tight temporal
constraints. Additionally, the configuration of such systems is often distributed,
with several computing nodes that rely on a communication infrastructure to
cooperate and achieve the application global goals. Therefore, the communica-
tions are also subject to the same temporal constraints set by the application
requirements.

Many applications relying on such networked embedded systems (NES)
are complex and heterogeneous, comprehending different activities with differ-
ent requirements and properties. For example, the communication between
subsystems may follow a strict temporal synchronization with respect to a
global time-base (time-triggered), like in a distributed feedback control loop,
or it may be issued asynchronously upon the occurrence of events (event-
triggered). Regardless of the traffic characteristics and its activation model, it
is of paramount importance having a communication framework that provides
seamless integration of heterogeneous traffic sources while guaranteeing the
application requirements.

Another property that has been emerging as important for NES design and
operation is flexibility. The need to reduce installation and operational costs,
while facilitating maintenance is promoting a more rational use of the available
resources at run-time, exploring the ability to tune service parameters as the
system evolves.

However, such operational flexibility comes with the cost of increasing the
complexity of the system to handle the dynamic resource management, which
on the other hand demands the allocation of additional system resources.
Moreover, the capacity to dynamically modify the system properties also
causes a higher complexity when designing and specifying the system, since
the operational state-space increases with the degrees of flexibility of the
system.

Therefore, in order to bound this complexity appropriate operational mod-
els are needed to handle the system dynamics and carry on an efficient and
fair resource management strategy based on quality of service (QoS) metrics.

This thesis states that the properties of flexibility and timeliness as needed
for dynamic QoS management can be provided to switched Ethernet based
systems. Switched Ethernet, although initially designed for general purpose
Internet access and file transfers, is becoming widely used in NES-based appli-
cations. However, COTS switched Ethernet is insufficient regarding the needs
for real-time predictability and for supporting the aforementioned properties due
the use of FIFO queues too few priority levels and for stream-level management
capabilities. In this dissertation we propose a protocol to overcome those
limitations, namely the Flexible Time-Triggered communication over Switched
Ethernet (FTT-SE). The protocol is based on the FTT paradigm that generically
defines a protocol architecture suitable to enforce real-time determinism on a
communication network supporting the desired flexibility properties.

This dissertation addresses the motivation for FTT-SE, describing the
protocol as well as its schedulability analysis. It additionally covers the resource
distribution topic, where several distribution models are proposed to manage
the resource capacity among the competing services and while considering
the QoS level requirements of each service. A couple of application cases are
shown that support the aforementioned thesis.

Contents

Abstract xv

Contents xxi

1 Introduction 1
1.1 Network Flexibility . 2
1.2 E�cient resource management 3
1.3 Proposition and contributions 4
1.4 Dissertation outline . 6

2 Background 9
2.1 Real-time systems . 9

2.1.1 Real-time scheduling 10
2.1.2 Examples of scheduling policies 13
2.1.3 Schedulability analysis 15
2.1.4 Handling asynchronous events 19
2.1.5 Hierarchical schedulers 20

2.2 Real-time communications . 20
2.2.1 Event- and Time-triggered communication 21
2.2.2 Message scheduling . 23
2.2.3 Co-operation models 26

2.3 Real-Time and Switched Ethernet 27
2.3.1 Switched Ethernet . 27
2.3.2 Real-Time protocols over SE 34
2.3.3 Schedulability analysis 41

2.4 Conclusion . 45

3 The FTT-SE protocol 47
3.1 Introduction . 47
3.2 FTT-SE: An enhancement of FTT-Ethernet 48

3.2.1 FTT-SE for micro-segmented networks 49
3.2.2 Handling aperiodic transmissions in FTT-SE 51

3.3 The scheduling model . 55
3.3.1 The periodic tra�c scheduling model 55

xix

xx CONTENTS

3.3.2 Building EC-schedules 56

3.3.3 The aperiodic tra�c scheduling model 59

3.3.4 Bounding the aperiodic service latency 59

3.4 Implementation details . 62

3.4.1 Middleware abstraction 62

3.4.2 Data addressing modes 71

3.5 Simulation and experimental assessment 73

3.5.1 Periodic tra�c simulation results 73

3.5.2 Experimental results 75

3.6 Conclusion . 78

4 Tra�c schedulability analysis 81

4.1 Introduction . 81

4.2 Interference in the switch architecture 82

4.3 Interference within the FTT-SE periodic model 84

4.3.1 Window con�nement 84

4.3.2 Deferred release in the downlinks 85

4.3.3 Scheduling multiple links 86

4.4 Schedulability test - unicast 86

4.4.1 One node sending to one destination, only 87

4.4.2 One node sending to multiple destinations 88

4.4.3 Schedulability utilization bounds with release jitter . . 89

4.4.4 Upper bounding the indirect load 93

4.5 Simulation results . 95

4.6 Multicast/Broadcast analysis 98

4.7 Conclusion . 99

5 Dynamic QoS management 101

5.1 Introduction . 101

5.2 The QoS management problem 102

5.2.1 The resource capacity 104

5.2.2 The application model 105

5.3 Bandwidth distribution . 107

5.3.1 Fixed importance distribution 108

5.3.2 Weighted distribution 108

5.3.3 Need for iteration . 110

5.3.4 Application mapping models 121

5.4 Operational parameters mapping 127

5.4.1 Complete application model 128

5.4.2 Bandwidth reclaiming 129

5.5 QoS management on FTT-SE 131

5.6 Conclusion . 135

CONTENTS xxi

6 FTT-SE case studies 137
6.1 Integration in the FRESCOR framework 137

6.1.1 FRESCOR background 138
6.1.2 FRESCOR application example 142
6.1.3 FTT-SE under FRESCOR 143
6.1.4 Internals of the contracting procedure 146
6.1.5 (Re-)negotiation procedure time 148
6.1.6 Summary . 150

6.2 Industrial multimedia application 151
6.2.1 Related work . 152
6.2.2 System Architecture 155
6.2.3 QoS Management . 158
6.2.4 Experimental results 165
6.2.5 Summary . 170

6.3 Server-SE . 172
6.3.1 Server-based scheduling 173
6.3.2 The Server-SE protocol 174
6.3.3 Experimental results 178
6.3.4 Summary . 181

6.4 FTT-SE enabled switch . 183
6.4.1 Switch Architecture 183
6.4.2 Experimental results 186
6.4.3 Summary . 187

6.5 Conclusion . 189

7 Conclusions 191
7.1 Thesis, contributions and validations 191
7.2 On-going and Future research 193

List of Figures

2.1 Taxonomy of real-time scheduling algorithms. 12

2.2 Schedule generated by RM. 14

2.3 Schedule generated by EDF. 15

2.4 The ISO/OSI reference model. 24

2.5 Switch micro-segmentation. 28

2.6 Ethernet II frame. 28

2.7 Ethernet IEEE 802.3ac frame. 29

2.8 Typical switch internal architecture. 30

2.9 IEEE 802 MAC address (MAC-48). 32

2.10 IGMP basic architecture. 33

2.11 The EC structure in the original FTT-Ethernet. 35

2.12 ETHERNET Powerlink cycle structure. 36

2.13 Arbitrary release in k's busy-interval. 44

3.1 The EC structure in the original FTT-Ethernet. 48

3.2 FTT-SE system architecture. 50

3.3 Polling token. 52

3.4 FTT-SE signaling proposal. 54

3.5 The scheduling model with FTT-SE. 56

3.6 Constraining the synchronous tra�c to the synchronous window. 57

3.7 Causality constraint in the downlinks. 58

3.8 Response time to Asynchronous messages with FTT-SE (case
with Lschi = 0). 61

3.9 FTT-SE internal layering. 63

3.10 FTT-SE internal details. 64

3.11 Schedulable sets versus the aggregated submitted load with
EDF (bottom) and RM (top). 74

3.12 The experimental platform. 75

3.13 The infrastructure jitter. 77

3.14 Histogram of inter-arrival times for message 7. 78

3.15 Histogram of inter-arrival times for message 1. 79

4.1 Tra�c aggregation on switched Ethernet. 82

xxiii

xxiv LIST OF FIGURES

4.2 Inserted Idle Time on switch output queues (the numbers de-
note the destinations). 83

4.3 Impact of inserted idle time. 85

4.4 Worst-case situation with release jitter and the virtually added
task in RM. 90

4.5 Worst-case situation with release jitter and the virtually added
task in EDF. 91

4.6 Interfering task. 93

4.7 Schedulability vs. Utilization(1→1). 97

4.8 Schedulability vs. Utilization using maximum virtual load per
set (1→ 2, 3). 98

5.1 Remaining bandwidth. 107

5.2 Computational complexity, excluding services sort. 119

5.3 Discrete bandwidth to linear range mapping. 129

6.1 FRESCOR resources. 140

6.2 Network application model. 141

6.3 FRESCOR example. 142

6.4 FRESCOR example pseudocode. 144

6.5 Architecture overview. 145

6.6 FRESCOR interface for network contracts. 146

6.7 Negotiation steps. 147

6.8 Master contract negotiation procedure. 148

6.9 Generic encoding process. 152

6.10 System architecture. 156

6.11 QoS management model. 157

6.12 qi adaptation. 159

6.13 Error in frame size caused by ∆qe = 1 for di�erent values of q. 160

6.14 Frame size evolution in time (q = 55). 165

6.15 Contribution of each stream to QoS'. 169

6.16 Bandwidth evolution of stream M1. 170

6.17 Internals of the Server-SE Master. 175

6.18 Server-SE Server Hierarchy. 176

6.19 Top histogram: inter-arrival times of the AM3 requests; Lower
histogram: inter-arrival times of AM3 messages. 179

6.20 Platform connections diagram. 180

6.21 Mean Square Error of the ball with FTT-SE. 182

6.22 Mean Square Error of the ball with Raw Ethernet. 182

6.23 FTT-enabled switch functional architecture. 184

6.24 Histogram of the di�erences between consecutive NRT mes-
sages (uplink). 186

6.25 Histogram of the di�erences between the beginning of the EC
and NRT messages (downlink). 187

List of Tables

2.1 Periodic task set properties. 14

3.1 AM Response times with uniform arrival (case with Lschi +
Lpoll = 0). 62

3.2 Message set used in the FTT-SE experiments. 76

6.1 Contract Parameters. 140
6.2 Stream properties for dynamic experiments. 166
6.3 Results with dynamic scenarios. 167
6.4 Results with static scenarios. 168
6.5 QoS' results. 169
6.6 Load characterization - Controller downlink. 181

xxv

Chapter 1

Introduction

System - A group of interacting, interrelated, or interdependent
elements forming a complex whole.

The American Heritage Dictionary of the English Language,
Fourth Edition.

For the last decades we have witnessed the generalization of the automation
concept as the mean to provide comfort assistance, economic bene�ts and
even mission-critical aid, in a wide range of application domains. The grow-
ing deployment of embedded systems has been supporting such evolutionary
process, pushing the development of large-scale embedded systems that in-
teract with the environment as within a system. On the quest to realize
a completely integrated system, connectivity became the key on promoting
such interaction between electronic devices and the environment.

Large-scale networked embedded systems (NES) can be found in areas
such as transportation, industrial, medical or communications. The deploy-
ment of NES on these domains is constrained by the natural application
goal that many times poses stringent timeliness requirements, as well as by
non-technical aspects such as deployment cost and time-to-market that can-
not be neglected. Additionally, these systems are attaining complexity levels
that make them hard to be assessed with a single holistic view. To cope with
such complexity, there are methodologies that promote seamless integration
between the several individual elements, such as component-based develop-
ment that o�ers dependable modular composability and the cyber-physical
systems concept that abstracts data fusion and services ubiquity.

On the process of integrating those subsystems towards the application
goal, it is of utmost importance de�ning how they interact and the con-
sequences of such interaction. The timeliness requirements on these inter-
actions are frequently critical when there are activities to be done within
strict temporal bounds, which if not met, may result on severe consequences

1

2 CHAPTER 1. INTRODUCTION

for the system correctness. Therefore, the system must be supported with
mechanisms that enforce predictable and time-bounded interactions.

However, on this integration process other aspects must be considered
when distributing the system. Moved by economical or locality constraints,
some components such as communication networks are designed to interact
with as many components as to the limit of providing the timeliness guar-
antees. Deploying such components on dynamic environments, i.e., systems
whose requirements change at run-time, demands a whole new level of re-
source management, with mechanisms capable of maintaining the system
predictability and provide desired levels of Quality of Service.

1.1 Network Flexibility

In their early times, NES had their application scope con�ned to well de�ned
control applications, for which predictability requirements were addressed
with static o�ine scheduling, i.e., all network activities were cautiously mod-
eled and planed during the system design phase, based on a complete a priori
knowledge of the system properties [67]. During run-time the system was
then coordinated by that design-time (o�ine) plan. This planning proce-
dure is the simplest and most e�ective approach once all activities and cor-
responding activation instants are known beforehand. For this reason, many
safety-critical applications employ static o�ine scheduling.

However, many real-world systems are complex and dynamic, evolving
during their life-time and consequently changing their requirements and
properties. In order to e�ectively address this scenario, the system com-
ponents have to become more �exible, i.e., being able to evolve accordingly
and modify their run-time performance. However, typically, the higher the
�exibility degree, i.e., more con�guration options, the more complex it is
to integrate the system components and coordinate the con�guration op-
tions. Examples of con�guration options within a communication system
are the physical media, network topology, transmission rate, bu�ering and
forwarding issues or variations in the communication requirements.

During the design of the system, when to address such dynamic vari-
ability and complexity, it becomes harder or even impossible to compile a
stateful knowledge of all system con�guration options and provide an o�ine
schedule plan [119]. In such cases, the use of a full static design approach be-
comes infeasible or at least it conducts to poor resource e�ciency since the
o�ine assumptions typically over-estimate the network utilization at run-
time. A more e�cient way to manage the network while providing o�ine
predictability is deploying dynamic scheduling for use at run-time. The a
priori guarantees regarding the system timeliness are in this case based on
mathematical models of the resource properties evolution at run-time that
de�ne minimum requirements for each moment in time. Both approaches

1.2. EFFICIENT RESOURCE MANAGEMENT 3

require the same amount of information of the system evolution. However,
with the dynamic approach, based on a more accurate resource requirements
estimation, it is possible to integrate the system with less over-provisioning,
thus providing better feasibility results.

NESs rely on a communication network as the central component to
inter-connect the distributed nodes. Adding operational �exibility to the
system is not constrained to the network, it must be coordinated comprising
all related components. As an example, any data exchange is closely related
to tasks that ultimately have to be scheduled in the sending and receiving
nodes.

As referred above, the main motivation to improve the operational �ex-
ibility of a communication network is to enable its use within a dynamic
operational scenario. A similar motivation is argued by Prasad [103] et al.
and Lu et al. [80], stating that the use of static schedule plans, thus without
operational �exibility, leads to ine�cient resource usage and to non-graceful
service degradation, i.e., the services are either fully functional or inactive,
there is no solution in between. And they complement saying that it is more
e�cient to leave some operational decisions in terms of resource usage to
run-time.

Therefore, �exibility as a means to recon�gure and/or adjust the system
on-the-�y is an important property to provide e�cient resource management,
naturally extending to the network, the fundamental resource in a NES.

1.2 E�cient resource management

E�cient resource management of evolving systems requires the ability to re-
act to changes. In the scope of this thesis we will distinguish two di�erent
aspects related to the �exibility properties of a resource, namely recon�g-
uration, which means adding and removing components and subsystems,
and adaptability, which denotes the ability to adjust (semi-)autonomously
the amount of resources provided to each application subsystem, according
to the instantaneous requirements. This adaptability property becomes spe-
cially relevant when integrating application subsystems from di�erent scopes
that share common resources.

Such �exibility properties leverage the resource usage and performance,
while providing the necessary Quality of Service (QoS) levels to each appli-
cation subsystem. In one hand, it can be used in a system with variable
number of users, either human or not, to minimize the QoS levels of each
in order to minimize the total resource usage and accommodate a higher
number of users [71, 91]. In the other hand, it can be used to maximize
the resource utilization, delivering the best possible QoS level to the services
[60, 104]. Additionally, systems that can self-recon�gure dynamically are
able to cope with hazardous events by evolving to operational con�guration

4 CHAPTER 1. INTRODUCTION

states that maintain the system integrity and dependability in general (e.g.
military systems or telecommunication systems) [51, 92, 112].

This introduces the need for dynamic QoS management within a resource
framework. However, to achieve it, a proper infrastructure is required that
provides a resource with recon�guration and adaptation properties, and in
the other hand application-oriented models are also required in order to
provide seamless integration with the system changes.

1.3 Proposition and contributions

The thesis supported by this dissertation argues that using a resource that
provides recon�gurability and adaptability properties allows supporting e�-
cient QoS management in a dynamic environment.

The Flexible Time-Triggered (FTT) paradigm has been proposed in the
past to provide real-time communications in dynamic environments, having
been deployed over communication protocols such as CAN and shared Eth-
ernet. In this thesis it is proposed implementing the FTT on a switched
Ethernet communication framework, leading to the Flexible Time-Triggered
over Switched Ethernet (FTT-SE) protocol. We show that FTT-SE can
bring substantial improvements and contributions in terms of recon�gura-
bility and adaptability with respect to COTS switched Ethernet systems,
namely:

• Support for parallel multi-path tra�c forwarding in the switch (unicast
and broadcast models), while maintaining the protocol requirements
for predictability, with any scheduling policy.

• Handling the asynchronous tra�c with a novel message signaling mech-
anism that improves its scheduling �exibility, particularly supporting
open server-based scheduling approaches, and allows a seamless inte-
gration between asynchronous and synchronous tra�c.

• System analysis including the schedulability analysis of the periodic
tra�c, based on a utilization bound that accounts for the impact of
release jitter.

Finally, this work also presents a systematic methodology on the de-
ployment of dynamic QoS management mechanisms over a communication
resource such as the FTT-SE. Several bandwidth distribution approaches
are proposed to handle speci�c QoS level requirements. This methodology is
general and includes other existing QoS management techniques as particular
cases.

Some of these contributions have been published in conference proceed-
ings and journals and are listed below:

1.3. PROPOSITION AND CONTRIBUTIONS 5

• Ricardo Marau, Luís Almeida, Paulo Pedreiras, and Thomas Nolte.
Towards Server-based Switched Ethernet for Real-Time Communica-
tions. In Proc. of the WiP session of the 20th Euromicro Conference
on Real-Time Systems(ECRTS'08), 2 July 2008

• Ricardo Marau, Luís Almeida, Paulo Pedreiras, M. González Harbour,
Daniel Sangorrín, and Julio M. Medina. Integration of a �exible net-
work in a resource contracting framework. In Proc. of the WiP ses-
sion of the 13th Real-Time and Embedded Technology and Applications
Symposium (RTAS'07). IEEE, 3 April 2007

• Javier Silvestre, Luís Almeida, Ricardo Marau, and Paulo Pedreiras.
Dynamic QoS management for multimedia real-time transmission in
industrial environments. In Proc. of the 12th IEEE Int. Conference on
Emerging Technologies and Factory Automation (ETFA'07), Septem-
ber 2007

• Ricardo Marau, Luís Almeida, and Paulo Pedreiras. Enhancing real-
time communication over COTS Ethernet switches. In Proc. of 6th
Int. Workshop on Factory Communication Systems (WFCS'06), pages
295�302, Torino, Italy, 27 June 2006. IEEE

• Javier Silvestre, Luís Almeida, Ricardo Marau, and Paulo Pedreiras.
MJPEG Real-Time transmission in industrial environment using a
CBR channel. In Proc. of 16th Int. Conf. on Computer and Informa-
tion Society Engineering (CISE'06), Venice, Italy, 24 November 2006.
(also published on Enformatika Trans. on Engineering, Computing and
Technology, Vol 16, Nov. 2006 ISSN 1305-5313)

• Ricardo Marau, N. Figueiredo, R. Santos, P. Pedreiras, L. Almeida, and
Thomas Nolte. Server-based Real-Time Communications on Switched
Ethernet. In Workshop on Compositional Theory and Technology for
Real-Time Embedded Systems (CRTS-RTSS'08), 2008

• Ricardo Marau, Luís Almeida, Paulo Pedreiras, M. González Harbour,
Daniel Sangorrín, and Julio M. Medina. Integration of a �exible time
triggered network in the FRESCOR resource contracting framework.
In Proc of the 12th IEEE Conference on Emerging Technologies and
Factory Automation (ETFA'07), Patras, Greece, 25 September 2007.
IEEE

• R. Marau, P. Pedreiras, and L. Almeida. Signaling asynchronous tra�c
over a Master-Slave Switched Ethernet protocol. In Proc. on the 6th
Int. Workshop on Real Time Networks (RTN'07), Pisa, Italy, 2 July
2007

6 CHAPTER 1. INTRODUCTION

• R. Marau, P. Pedreiras, and L. Almeida. Enhanced Ethernet Switching
for Flexible Hard Real-Time Communication. In Proc. on the 5th Int.
Workshop on Real Time Networks (RTN'06), Dresden, Germany, July
2006

1.4 Dissertation outline

This chapter outlined the scope of this thesis and brie�y addressed the need
for �exibility support to deploy dynamic QoS management. To support our
thesis, this dissertation is organized as follows:

Chapter 2 introduces basic terms and concepts related to real-time
communication technology with emphasis on switched Ethernet networks.
It also addresses the types of scheduling commonly used in networked em-
bedded systems and techniques to assess the system feasibility with respect
to timeliness.

Chapter 3 presents the Flexible Time-Triggered communication para-
digm and the issues related with its implementation on a switched Ethernet
network, leading to the FTT-SE protocol. This protocol is the basis for the
remaining chapters and for this reason it is presented in detail. Particular
attention is devoted to the communication framework, tra�c and scheduling
models and interface with the application layer.

Chapter 4 presents the analysis for assessing the system timeliness us-
ing the communication model of the FTT-SE protocol. It presents a su�cient
schedulability test based on the communication load of each link. Beyond
the proof for this test, a set of simulation-based experiments is conducted
that further validate the scheduling analysis.

Chapter 5 discusses the dynamic QoS management topic within a
communication framework, with emphasis to the FTT-SE protocol model.
It addresses various bandwidth distribution mechanisms that consider the
QoS level requirements of each service along in the resource management.

Chapter 6 includes several case-studies that address the applicability
of the FTT-SE framework in di�erent scenarios. Firstly the framework is
included within a global resource management middleware. Then, the pro-
tocol is applied within a multimedia embedded system where the dynamic
QoS management plays an important role. Finally, the deployment of server-
based scheduling within the framework is discussed, as well as the possibility
of providing an FTT-SE enabled switch, i.e., an Ethernet switch that embeds
some core features of the protocol.

1.4. DISSERTATION OUTLINE 7

Chapter 7 sets the conclusion of this dissertation, discussing the con-
tributions, validating the thesis and suggesting some lines for future research.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Background

This chapter introduces basic terms and concepts related to real-time schedul-
ing and communication used throughout this dissertation.

2.1 Real-time systems

Computer based embedded systems are already supporting a wide range of
applications that we use in our everyday life, ranging from home appliances
and o�ce equipment to communication in transportation systems, robotics
and process/manufacturing industries. These applications use sensing and
actuating devices, forming a computer-based control architecture to interact
with the environment. A control algorithm is implemented to collect sensing
data and produce correct logical output through the actuator. However,
many of such applications include time as an integral part of that algorithm
and thus the outputs have to be produced within speci�c time windows.

These systems are called real-time systems in which the correctness of
the system behavior depends not only on the value of the computation but
also on the time at which the results are produced [120]. Typically, a time
bound called deadline is de�ned, representing the instant up to which the
results must be produced. Due to its inherent importance, a considerable
research e�ort has been devoted to this issue, and thus over the last decades,
several techniques have been developed to determine whether a computation
completes within that deadline, in a worst-case scenario.

Depending on the particular system, the violation of deadlines may con-
duct to results that ultimately lead to bad or catastrophic scenarios. As an
example, consider the airbag system of a car. The purpose of the airbag is
to, in a collision scenario, absorb the shock of one's head inside the car. The
timing at which the bag in�ates is critical, if it goes o� too early, too much
gas leaves the bag before the head impact. Conversely, if it goes o� too late,
the airbag becomes useless. Therefore, all the procedure starting from the
collision sensing until in�ating the bag is critical and the intermediate steps

9

10 CHAPTER 2. BACKGROUND

for processing and communication have to be time bounded.

In [68] deadlines are classi�ed as hard, �rm or soft. If the result is some-
how valid even after the deadline passes, the deadline is classi�ed as soft,
otherwise it is �rm. Whenever failing to meet a �rm deadline leads to a
catastrophe, the deadline is called hard. Similarly, a computer system is
considered a hard real-time system if it is constrained by at least one hard
deadline, otherwise, it is considered as soft real-time system.

The execution of a real-time system can be con�ned to a single computing
unit (CPU) or comprehend several CPUs. These CPUs can either be together
and coupled with shared memory (multiprocessor system), or decoupled with
distributed memory (distributed system).

Distributed embedded systems (DES) represent a subset of embedded
applications where the sensing, computing and actuating nodes are dis-
persed, motivated by either spatial or processing constraints, and connected
by means of a network. This distributed approach to realize embedded appli-
cations has received a lot of attention from the research and industrial com-
munities due to its advantages over a centralized system, mainly in terms of
composability, maintainability, installation, cost reduction, fault-tolerance,
among others.

2.1.1 Real-time scheduling

One of the top requirements for a real-time system is timing predictability,
i.e., the ability to predict and enforce certain temporal properties of the
system. Thus, a number of real-time models have been developed to capture
the temporal behavior of the system.

A typical real-time system can be modeled as a set of tasks that interact
and cooperate with each other and the environment, towards a common and
global goal. Tasks thus represent activities handled by the computational
system.

Task

A task is the computational unit in the system that implements a part of
the application logic. One important characteristic is its triggering model.
Depending on the activation source, tasks can either be time-triggered or
event-triggered, depending whether they are activated at prede�ned time
instants or by the occurrence of an event, i.e., a signi�cant change in the
system state. Time-triggered tasks are usually periodic with a �xed inter-
arrival time. Conversely, event-triggered tasks are usually aperiodic or spo-
radic. Aperiodic tasks have no speci�c arrival pattern, i.e., can be triggered
at any time. Sporadic tasks, although having no strict periodic pattern, their
activation pattern is regulated by a known minimum inter-arrival.

2.1. REAL-TIME SYSTEMS 11

Choosing the task model to implement a speci�c part of the system de-
pends on the characteristics and requirements for each subsystem. The time-
triggered model is more oriented to tasks regularly executed synchronously
with others in the system, such as a periodic sampling in control systems. To
handle asynchronous events such as alarms or interrupts, aperiodic or spo-
radic tasks provide better performance results. However, the performance of
an aperiodic task cannot be guaranteed due to the lack of determinism on
the release pattern. Such tasks can only be considered when the system is
constructed in a way to con�ne their interference on the real-time functions.
The sporadic tra�c is one option to include asynchronous tasks with real-
time properties in the system task set. The minimum inter-arrival pattern
results either naturally from the triggering event or from some timing en-
forcement mechanism. In the worst-case they can be considered as periodic
tra�c with period equal to their minimum inter-arrival time.

A set of periodic tasks Γ can be formally de�ned as:

Γ = {τi(Ci, Ti, Phi, Di, P ri), i = 1, ..., n}

where:

• Ci is the worst-case computation time required by task τi, also referred
as Worst-Case Execution Time (WCET);

• Ti is the period of task τi;

• Phi is the initial phase of task τi;

• Di is the relative deadline of task τi;

• Pri is the priority or value of task τi.

The activation instant (ai,k) and absolute deadline value (di,k) of the
generic kth instance of the periodic task τi can be computed as follows, with
k = 1, 2,

ai,k = Phi + (k − 1) ∗ Ti
di,k = ai,k +Di

The same notation is valid for sporadic tasks, except that the period (Ti)
becomes the minimum inter-arrival time (Tmiti) and the initial phase is not
de�ned. In this case the earliest possible activation instant and absolute
deadline instants can be computed as:

ai,k ≥ ai,k−1 + Tmiti

di,k = ai,k +Di

12 CHAPTER 2. BACKGROUND

Real-Time
Scheduling

Off-Line

Static Cyclic
scheduler

On-Line

Static Priorities Dynamic Priorities

Preemptive Non-preemptive Preemptive Non-preemptive

Figure 2.1: Taxonomy of real-time scheduling algorithms.

Scheduler

The tasks in the system compete to access to system resources (e.g. proces-
sor, I/O device or communication bus). The resource scheduler is a system
component that decides the order in which the resource is assigned to the
tasks waiting for it. The procedure of selecting the task that executes at a
particular point in time is called scheduling and the set of rules that, at any
time, determines the order by which tasks are executed is called a scheduling
algorithm.

More accurately, a scheduling problem can be de�ned [37] as the compo-
sition of three sets: a set of n tasks Γ = {τ1, τ2, ..., τn}, a set of m processors
P = {P1, P2, ..., Pm} and a set of s resources R = {R1, R2, ..., Rs}. Further-
more, precedence relations among tasks can be speci�ed through a directed
acyclic graph and each task can have associated timing constraints. In this
context scheduling means to assign processors from P and resources from R
to tasks from Γ in order to complete all tasks under the imposed constraints.

The scheduling algorithms fall into two general categories, online and
o�ine [37] (Figure 2.1). The former ones can then use static (�xed) priority
scheduling policies or dynamic priority scheduling policies. The �rst ones
are based on �xed information that is available at pre-run-time. Conversely,
the second ones perform the scheduling decisions with run-time collected
information, e.g. the release instants of asynchronous tasks, hence necessarily
performed online.

In the o�ine scheduling category, all scheduling is computed prior to
execution. This approach requires a complete characterization of the system
tasks in advance, not being suitable to changes to the system requirements.
The scheduling result is a time-table with the tasks activations that is read
cyclically at run-time, with a length typically equal to one hyper-period,
i.e., the least common multiple of the periods of all tasks. This approach,
demands low run-time overhead, but the memory-size requirements to hold
the whole schedule plan can be very large when the task periods are relative

2.1. REAL-TIME SYSTEMS 13

primes or present large asymmetries.

On the other hand, online scheduling allows executing dynamic sched-
ulers and brings the ability to modify the system properties at run-time,
e.g. adjusting to environment requests. The penalty though, is the need to
execute the scheduler at run-time, which from the application point-of-view
represents overhead. Furthermore, unlike the o�ine scheduling case, the
scheduler execution must provide prompt answers within a bounded time,
which strongly constrains its complexity.

Another categorizing property refers to the blocking e�ect that a task
may cause to others when accessing a resource. In this aspect, the schedul-
ing algorithms can be preemptive or non-preemptive. Non-preemptive algo-
rithms execute tasks until completion, regardless of other tasks readiness and
priority. In this case scheduling decisions are only required after the tasks
completion instants. Preemptive algorithms can however suspend tasks dur-
ing their execution, if at some instant a task with higher priority becomes
ready. When executing in non-preemptive mode, a task, upon becoming
ready, must wait at least for the completion of the currently running task,
independently of their relative priorities. The e�ect of a higher priority ready
task waiting for a lower priority task to release a resource is called blocking.
Preemptive scheduling grants higher responsiveness to higher priority tasks,
since these tasks do not su�er blocking from lower priority ones. However, in
this case, scheduling events are generated more often, in all task activation
instants, resulting in higher overhead.

2.1.2 Examples of scheduling policies

The seminal work by Liu and Layland on real-time scheduling [76] de�nes
two of the most important algorithms for task scheduling on uniprocessor
systems, Rate Monotonic for static-priority assignment and Earliest Deadline
First for dynamic-priority systems. These algorithms are a milestone within
their classes for the fact that they are optimal in the sense that they are able
to produce a feasible schedule whenever any other algorithm of the same
class also is.

Rate Monotonic scheduling

Rate Monotonic (RM) scheduling [76] is an online preemptive algorithm
based on static priorities and with deadlines equal to periods, i.e., ∀τi∈Γ :
Di = Ti.

According to the RM algorithm, priorities are assigned monotonically
with respect to the tasks period, i.e., the shorter the period, the greater the
priority:

∀τi, τj ∈ Γ : Ti < Tj ⇒ Pri > Prj (2.1)

14 CHAPTER 2. BACKGROUND

Task T C

τ1 4 2
τ2 6 2
τ3 11 1

Table 2.1: Periodic task set properties.

0

τ3

τ1

τ2

5 10 15 20 25

Figure 2.2: Schedule generated by RM.

At run-time, whenever a task instance is activated or the running task
�nishes executing, the scheduler selects the task with shorter period among
the ready ones. The overall complexity of this algorithm is O(n) since in-
serting a new task instance in an ordered queue of n elements may take up
to n steps. The tasks are sorted according to their priority, so at dispatching
time, the task heading the queue is the one selected.

Figure 2.2 shows a timeline of an RM schedule with the task properties
stated in Table 2.1. It can be observed that task τ1 always executes �rst,
since it has the shortest period among all tasks, and thus the highest priority.
Task τ2 always executes before task τ3 because it has a shorter period.

Earliest Deadline First scheduling

Earliest Deadline First (EDF) [76] algorithm is an online preemptive algo-
rithm based on dynamic priorities with relative deadlines equal to periods,
i.e., ∀τi∈Γ : Di = Ti. According to the EDF algorithm, the earliest the
deadline the highest the priority of the task. During run-time the following
relation holds:

∀Ta ∈ R ∀τi,τj ∈ ΓTa : di < dj ⇒ Pri > Prj (2.2)

where ΓTa is the subset of Γ comprising the ready tasks at instant Ta and
(di, dj) are the absolute deadlines of tasks τi and τj , at the same instant Ta.

At run-time, whenever a task instance is activated or the running task
�nishes executing, the scheduler selects the task with highest period among

2.1. REAL-TIME SYSTEMS 15

0

τ3

τ1

τ2

5 10 15 20 25

Figure 2.3: Schedule generated by EDF.

the ready ones. Since the task priorities are dynamic, it is necessary to
sort the ready task queue whenever new task instances are activated. Thus,
the time complexity of this algorithm is O(n ∗ log(n)). It follows that EDF
scheduling requires higher run-time overhead than RM scheduling, which
can be problematic for systems based on low processing power CPUs, often
found in some embedded distributed control applications. However, as it
will be seen further on, compared to RM, the EDF algorithm is able to
achieve higher utilization factors and, at the same time, reduce the number
of preemptions. This results in a trade-o� between run-time overhead and
schedulability level, which must be evaluated case by case.

Figure 2.3 shows the EDF scheduling timeline for the same set in Ta-
ble 2.1. Comparing with the timeline in Figure 2.2, built with RM, it is
noticeable the variation of the priority with the distance to the deadline dur-
ing run-time, for instance, at time t=6 task τ3 has the shortest deadline and
thus executes before task τ2.

2.1.3 Schedulability analysis

To perform the schedulability analysis, there exist three di�erent approaches:
utilization-based tests, demand-based tests and response time tests. One ap-
proach may be more adequate than the others depending on speci�c system
aspects, such as the available computational power or the time available to
execute the analysis. Utilization-based tests are usually less computation-
ally complex and faster when compared with the others, thus being more
suitable to be used in dynamic scheduling systems. But on the other hand,
response-time-based tests are usually less pessimistic and can provide indi-
vidual response time bounds for each task.

Utilization-based

In [76] Liu and Layland propose a utilization-based test for synchronously
released periodic tasks using the Rate Monotonic (RM) priority assignment.

16 CHAPTER 2. BACKGROUND

The task model consists of independent periodic tasks with relative deadlines
equal to their periods. All tasks are released at the same time called critical
instant. Moreover, it is assumed that once started, the task instances execute
until completion or preemption and that the operating system overhead (e.g.
time required for context switching and tick handling) is small and can be
ignored. However, when required, the operating system overhead can be
accounted for in the analysis.

The utilization factor U of a task set composed of n tasks is de�ned as:

U =
n∑
i=1

(
Ci
Ti

)
According to [76] there is a least upper bound for the task set utilization

that guarantees the existence of a feasible schedule. The least upper bound,
on the right side of Inequality 2.3, supports the following schedulability test.

n∑
i=1

(
Ci
Ti

)
< n× (2

1
n − 1) (2.3)

The authors prove that if the test succeeds, the tasks will always meet
their deadlines. The lower bound given by this test tends to 69% as n
approaches in�nity. However, this is a su�cient test, only, and thus there
are task sets that may not pass the test and yet meet all their deadlines.

Several other utilization-based analysis followed for RM scheduling. For
example, Lehoczky et al. developed an exact analysis in [72] and an extension
to �t arbitrary deadlines [73]. However, these tests are much more complex
compared to Inequality 2.3. Within Inequality 2.3, a task set with nmessages
takes n steps, thus the computational complexity of this method is O(n).

In [111], Sha et al. further extended Inequality 2.3 to cover blocking-time
due to non-preemption. In this case high priority tasks can be blocked by
lower priority tasks, during a time B. This blocking, also called priority
inversion, occurs at most once in each task instance activation if a suitable
resource access protocol is used (e.g. Priority Ceiling Protocol). For these
assumptions, a set of n periodic tasks is schedulable by RM if:

∀i, 1 ≤ i ≤ n,
i−1∑
j=1

(
Cj
Tj

)
+
Ci +Bi
Ti

≤ i× (2
1
i − 1) (2.4)

whereBi is the time during which task τi is blocked by lower priority tasks
(priority inversion). The task set is supposed to be ordered by decreasing
priorities, i.e., ∀i, j : i < j ⇒ Pri ≥ Prj .

The blocking factor Bi is de�ned as follows:{
Bi = 0, P ri = minj=1..n {Prj}
Bi = max

j∈lep(i)
{Cj} , P ri 6= minj=1..n {Prj} (2.5)

2.1. REAL-TIME SYSTEMS 17

where lep(i) is the set of tasks with priority less than or equal to task i.
Liu and Layland [76] also present a utilization-based test for EDF, but

in this case they prove that the least upper bound is 1, i.e., full resource
utilization can be achieved.

Following the same model that led Inequality 2.3:

n∑
i=1

(
Ci
Ti

)
< 1 (2.6)

This is a necessary and su�cient condition (exact) that if veri�ed assures
a task set feasibility. In terms of complexity, for a task set with n tasks this
takes at most n steps, thus the complexity of this method is also O(n).

Demand-based

Demand-based schedulability analysis has been developed for EDF and it
measures the amount of computation needed by the task set, within a time
interval t ∈ [t1, t2). The processor demand h[t1,t2) is given by:

h[t1,t2) =
∑

t1≤rk,dk≤t2

Ck (2.7)

where rk and dk are the release time and absolute deadline of all the k
instances of all tasks activated at or after t1 and with deadline at or earlier
than t2.

Assuming a synchronous release, i.e., ti = 0 and t2 = t, Equation 2.7 can
be expressed as h(t), given by:

h(t) =
∑
Di≤t

([
1 +

⌊
t−Di

Ti

⌋]
× Ci

)
(2.8)

where Di is the relative deadline of task i. Given this processor demand, a
task set is feasible i�

∀t, h(t) ≤ t

This test needs to be checked at speci�c time instants, only, as proved in
[37].

Response time

Response time tests evaluate the worst-case response time of all tasks in
the set and compare it with the respective deadlines. These tests have been
particularly useful in �xed priority systems ([111] and [31, 32]). According to
Audsley et al. in [32], the longest response time of a periodic task τi, denoted
as Ri, is given by the sum of its computation time (Ci) with the amount of
interference that it can su�er from higher priority tasks (Ii), calculated at
the critical instant.

18 CHAPTER 2. BACKGROUND

For �xed-priority scheduled systems, the critical instant occurs when
releasing task i synchronously with all other higher priority tasks, typically
considered time 0. The worst-case response time is then calculated as follows:

Ri = Ci + Ii (2.9)

The amount of interference due to higher priority tasks is:

Ii =
∑

∀j∈hp(i)

⌈
Ri
Tj

⌉
Cj (2.10)

where hp(i) is the set of tasks with higher priority than task i and deadlines
are shorter than or equal to periods.

Hence, combining Equations 2.9 and 2.10 results:

Ri = Ci +
∑

∀j∈hp(i)

(⌈
Ri
Tj

⌉
× Cj

)
(2.11)

Equation 2.11 can be solved using the following iterative procedure,
where the approximation to the (n+ 1)th value happens in n steps.

Rn+1
i = Ci +

∑
∀j∈hp(i)

(⌈
Rni
Tj

⌉
× Cj

)
(2.12)

The �rst approximation step can be initialized to R0
i = Ci and the solution

is reached when Rn+1
i = Rni , or the deadline is violated.

The analysis presented in [32] also includes the e�ect of non-preemption
due to resource sharing. In this case Equation 2.9 can be used rede�ning
the interference to include the blocking factor due to lower priority tasks, as
follows:

Ii = Bi +
∑

∀j∈hp(i)

⌈
Ii
Tj

⌉
× Cj (2.13)

Note that the blocking factor Bi results from the non-preemption due
lower priority tasks that may be executing and holding a shared resource
when task i is released. Bi is given by Equation 2.5.

Contrarily to what happens in �xed priority systems, the worst-case re-
sponse time of a tasks scheduled with dynamic priorities is not necessarily
obtained considering the �rst instance released with the synchronous release
pattern. Instead, the task τi is found in a deadline-i busy period in which all
tasks but τi are released synchronously and must be computed inside. This
interval ends when all tasks with relative deadline shorter than or equal
to that of task i �nish their execution. The interval may contain several
instances of task i, one of which has the worst-case response time [56]. Fur-
thermore, Palencia and González Harbour have extended the response time
analysis for EDF scheduled systems to include o�sets [59, 98, 97].

2.1. REAL-TIME SYSTEMS 19

2.1.4 Handling asynchronous events

Periodic tasks have known activation patterns controlled and synchronized
with the scheduler framework. However, sporadic and aperiodic tasks that
handle asynchronous events are activated asynchronously with respect to
the scheduler. The challenge is scheduling jointly the synchronous and asyn-
chronous tasks while preventing the asynchronous ones from jeopardizing
the ful�llment of the timeliness requirements of the periodic tra�c and still
providing the best response times possible.

There are several approaches to handle both sporadic and aperiodic tasks
that provide bounded and predictable interference, based on �xed-priority
scheduling (namely RMS):

• Background scheduling. This is the simplest approach to handle the
aperiodic activities. It con�nes the aperiodic tasks to be scheduled in
background, i.e., when no periodic tasks are ready for execution. The
periodic guarantees are preserved, however, there are no guarantees to
the aperiodic tasks, which execute in a best-e�ort manner.

• Polling Server (PS) [124]. This approach uses a regular periodic task
to run the aperiodic handling. At any activation instance of that task,
the arrival of aperiodic events is checked which, if positive, triggers
the execution of the aperiodic task within the budget delimited by
the periodic polling task (server). The bandwidth is strictly reserved
for the aperiodic task, i.e., aperiodic tasks execute only during the
server execution. At the end of each serving instance the executing
tasks are preempted and resumed in the following serving job. The
aperiodic execution is thus constrained by the timeliness guaranties of
the periodic task.

• Deferrable Server (DS) [124]. This approach, also referred to as
preserving capacity PS, improves the average response time of the ape-
riodic requests with respect to the PS. The DS preserves the capacity
(budget) of the server periodic task until the end of its period, so
that aperiodic requests can be serviced at anytime, given that there
is enough budget. However, deferring the server execution causes a
certain schedulability penalty in the periodic task set.

• Sporadic Server (SS) [117]. This approach is bandwidth conser-
vative, as opposed to the DS. It di�ers from the DS in the way it
replenishes its capacity. Whereas the DS replenishes the server capac-
ity periodically, the SS schedules the replenishment of the server when
the budget is consumed. Hence, it preserves the reactivity of the DS
without penalizing the schedulability of the periodic tra�c.

20 CHAPTER 2. BACKGROUND

• Slack Stealing [74]. This approach substantially improves the re-
sponse time to the aperiodic events over the previous methods (SS or
DS). Instead of reserving a bandwidth as of a periodic task, it creates
passive tasks that collect the execution time for the aperiodic tasks
by promptly stealing the time to the periodic tasks, without causing
their deadlines to be missed. On the arrival of an aperiodic task the
execution of periodic tasks is delayed as far as to execute the request,
while avoiding deadline misses.

These approaches are however constrained by a low schedulability bound
inherent to the �xed-priority scheduling. Similar techniques exist to han-
dle the aperiodic events with dynamic-priority scheduling. Such techniques
provide a better resource utilization comparing with the �xed-priority ones.
An example is the Total Bandwidth Server (TBS) and the Constant Band-
width Server (CBS). A more exhaustive overview and analysis of �xed- and
dynamic-priority servers can be found in [37].

2.1.5 Hierarchical schedulers

A hierarchy of schedulers generalizes the role of CPU schedulers by allowing
them to schedule threads as well as groups of threads scheduled with their
own scheduler. A general, heterogeneous scheduling hierarchy is one that
allows arbitrary (or nearly arbitrary) scheduling algorithms throughout the
hierarchy.

This enables a better use of the system, in which in some cases one spe-
ci�c scheduling policy better �ts a part of the system whereas other parts
bene�t more from using other scheduling policies. This hierarchical sepa-
ration facilitates the system composability at design phase, which can be
particularly useful to integrate legacy applications or subsystems.

Using server-based schedulers, the budget or share capacity provided by
the server can be scheduled at the same time as the rest of the system relying
on �xed- or dynamic-priority scheduling. In this way several servers can be
integrated as a hierarchical composition that provides timeliness con�nement
domains to the whole system.

2.2 Real-time communications

Originally, computer based applications were mainly centralized using unipro-
cessor systems. The availability of low-cost micro-controllers serial intercon-
nections enabled the development of "intelligent" nodes, i.e., nodes with
processing and communication faculties, fostering the development of dis-
tributed architectures.

In these distributed architectures, the processing units need to exchange
information, thus each one is attached or integrates a network interface unit

2.2. REAL-TIME COMMUNICATIONS 21

providing access to a suitable communication system. This type of system
is loosely coupled in the sense that all information exchange is performed
exclusively via the communication system using messages.

A distributed real-time system is one distributed system that integrates
activities with strictly de�ned completion time bounds. These time-constrai-
ned activities include both tasks execution within the processors and mes-
sages exchange in the communication network that must be considered to-
gether when de�ning the system timeliness properties.

An example of a distributed real-time system is the ABS breaking system
in a vehicle. The system prevents the wheels on a vehicle from locking while
braking. There are several sensors in the wheels that sense the angular
velocity of each wheel. Then, the velocity of each wheel is compared to
detect the moment a wheel is about to lock, which triggers a mechanism
that alleviates the braking pressure on the required wheel. The system is
composed by a central computing unit and several sensors and actuators
connected by a communication network. The success of the system depends
on the time interval that goes from the wheel lock detection to the brake
actuation. Moreover, the operating control loop relies on low jitter activities,
hence the need for determinism and predictability.

Therefore, the temporal behavior of the whole distributed system de-
pends not only on the timeliness of tasks executing on each processing de-
vice but also on the capability to provide message delivery within speci�c
timing requirements [128, 96]. Communication systems able to support such
temporal requirements are called real-time communication systems. The re-
mainder of this section addresses some important issues concerning real-time
communication.

2.2.1 Event- and Time-triggered communication

The event-triggered(ET) and time-triggered(TT) communication paradigms
represent two di�erent approaches to trigger the communications within dis-
tributed systems. While in event-triggered communication, messages are sent
by the application upon the occurrence of some asynchronous event, e.g. a
sensor changing value, according to the time-triggered paradigm, messages
are sent only at precisely prede�ned time instants.

The two models can be compared as follows:

• Predictability. In time-triggered systems the system information is
normally managed within a cycle to periodically update/poll the status
of the system variables. This approach exhibits greater determinism
since it is possible to compute in advance the instants at which the
streams and communications will take place. On the other hand, such
level of knowledge is not available for event-based systems since events
may occur at arbitrary and unforeseeable time instants. Thus, the

22 CHAPTER 2. BACKGROUND

temporal predictability of this class of systems is lower. Therefore,
while TT systems allow a per job timing analysis, ET systems normally
rely on worst-case analysis.

• Resource utilization. In real-time system, resources have to be di-
mensioned to address the worst possible scenario occurring during the
system operation. For TT systems, the resources are issued with known
activation patterns, so the amount of resources can be pre-allocated
and then used at run-time. Conversely, for ET systems, since the
load activation pattern is not regular, the worst-case scenario has to
be considered in which all activations occur every Tmit (the minimum
inter-arrival time). This may result in a resource utilization penalty
for ET systems. On the other hand, in TT systems the committed
resources are e�ectively used at run-time, whereas in ET systems the
resources are used when actually needed, only. This may lead to a
rather large reduction in average resource utilization in ET systems.

• Temporal composition. This property assures that when di�erent
subsystems are integrated within the same system, the temporal be-
havior of each part is una�ected. On event-triggered subsystems, that
integration necessarily disturbs the individual temporal behavior of
each part. Events from di�erent subsystems ultimately may happen
simultaneously and interfere. The integration of time-triggered sys-
tems allows avoiding this scenario by introducing temporal o�sets that
prevent simultaneous activations.

• Alarm shower. Alarm showers are normally rare and thus di�cult
to predict. An alarm shower is typically triggered by a system failure
that triggers a large burst of asynchronous events in consequence of
that failure. This scenario may lead to overload in ET systems, while
in TT systems the load is kept constant.

Given these features, it is normally considered that time-triggered ap-
proaches are better suited to control systems [99], to cater the demands for
periodic messages with low latency and jitter, related to the periodic sam-
pling and actuation. On the other hand, event-triggered approaches are more
adequate to promptly handle asynchronous messages with low latency. In
an overload period of asynchronous requests, systems can be designed to in-
clude the so called graceful degradation, by allowing the failure of some less
important activities while striving to execute the tasks considered as more
important to the system. Another alternative is to switch to a TT approach
to handle the asynchronous events overload. This allows maintaining the
system load within a prede�ned bound.

Despite their di�erences, many applications include both periodic and
asynchronous activities and thus bene�t from a joint support for both event

2.2. REAL-TIME COMMUNICATIONS 23

and time-triggered tra�c (e.g. automotive systems [77]) and thus, a com-
bination of both paradigms in order to share their advantages is desirable.
An important aspect is that temporal isolation of both types of tra�c must
be enforced or, otherwise the asynchronous nature of event-triggered tra�c
would corrupt the properties of the time-triggered tra�c. This isolation is
achieved by allocating bandwidth exclusively to each type of tra�c.

A typical implementation makes use of communication slots called el-
ementary cycles, or micro-cycles (e.g. [105]), containing two consecutive
phases dedicated to each type of tra�c. The communication timeline be-
comes, then, an alternate sequence of time-triggered and event-triggered
phases. The maximum duration of each phase can be tailored to suit the
needs of a particular application. If each type of tra�c is forced to remain
within the respective phase then temporal isolation is guaranteed. This con-
cept is used, for example, in the WorldFIP [23], Foundation Fieldbus-H1 [23]
and FlexRay [33] �eldbuses, as well as in FTT-CAN [28] and FTT-Ethernet
[101].

2.2.2 Message scheduling

Distributed systems are normally built over a shared medium network through
which the nodes exchange data messages. Similarly to any shared resource
that integrates a real-time system, its use is subject to time constraints that
must be met. Therefore, as with tasks in microprocessors, the access to the
communication network must also be properly scheduled. Referring to the
real-time properties presented in Section 2.1, other similarities can be found
between message scheduling in communication networks and task schedul-
ing in microprocessors; messages can also be categorized according to the
timeliness requirements (soft, hard and best-e�ort) and the activation pat-
tern (periodic, sporadic or aperiodic). This allows the use of some results
obtained for processor scheduling (e.g. [127] and [47]). Additionally, also
the real-time scheduling paradigms (o�ine, online with �xed or dynamic
priorities assignment) are present in real-time message scheduling [26].

However, there are additional challenges posed by the constraints inher-
ent to a distributed architecture. One characteristic of a resource scheduler
is that it needs to keep the resource status updated to accurately control
its usage. However, due to the distributed nature of the system, complete
knowledge about the system state, including network and nodes, is hard to
gather or even unavailable, and thus scheduling decisions may have to be
taken based on incomplete information [111]. This is particularly important
when the access to the network is distributed in which case it is necessary to
assure the system status consistency when taking communication scheduling
decisions. The lack of complete information about the system state or the
substantial overhead required to get such information consistently, leads to
scheduling techniques that do not keep their optimality, comparing to the

24 CHAPTER 2. BACKGROUND

Figure 2.4: The ISO/OSI reference model.

homologous microprocessor ones [81].

Another major issue is the organization of the communication in pack-
ets that cannot be preempted during transmission. Systems that use single
packet messages are thus non-preemptive. The penalty here is e�ciency
because preemptive systems are known to provide a higher level of schedu-
lability when compared to non-preemptive ones. A partial solution to this
problem consists on limiting the maximum packet size. This way the penalty
incurred with a lower priority packet blocking the transmission of a higher
priority one is reduced. Long messages can be broken in packets that are
scheduled sequentially and then preemption can be considered between pack-
ets. The counterpart is an increased overhead, both on the network and on
the system nodes that have to fragment and reassemble the messages.

Many di�erent communication protocols and hardware are required to
enable communication in real-time networks. Similarly to general purpose
networks, the communication stack is organized in layers that carry out
speci�c operations. The application is ultimately given a set of available
services that ease and allow seamless integration of the system nodes.

Figure 2.4 illustrates the architecture of the ISO Reference Model for
Open Systems Interconnection [137]. The physical layer is responsible for
the whole transmission of raw data on the used medium. The data-link
layer is responsible for transmitting correctly the data frames and assure
any error handling related to the transmission. The network layer handles
the setup and maintenance of network wide connections, handling the nodes
addressing and message routing. The transport layer handles the end-to-
end communication. Above the transport layer the communication is fully
abstracted and independent of the underlying network.

Figure 2.4 also presents a �collapsed� OSI-based architecture where the
upper 5 layers are simpli�ed and merged into a single application layer. This

2.2. REAL-TIME COMMUNICATIONS 25

simpli�cation is frequently found when implementing real-time communica-
tion infrastructures. The OSI Reference model was developed for generic
communication systems and the reason for such simpli�cation is the need
to provide a lightweight protocol stack for low-end devices with real-time
requirements. In fact the full OSI reference model becomes too expensive in
terms of both CPU power and memory, as well as network bandwidth for
such resource-constrained devices.

When it comes to design a protocol stack with real-time performance
properties, one of the strategies to improve that performance is providing
distinct handling paths (queues and computing priority) for real-time and
non-real-time tra�c (e.g. [114]).

The Medium Access Control (MAC) protocol within the data-link layer
determines to a large extent the degree of timing predictability of the net-
work technology. Common MAC protocols used in real-time communications
networks can be classi�ed in random access protocols, �xed-assignment pro-
tocols and demand-assignment protocols. Examples of random access pro-
tocols are:

• CSMA/CD (Carrier Sense Multiple Access / Collision Detection),

• CSMA/CR (Carrier Sense Multiple Access / Collision Resolution),

• CSMA/CA (Carrier Sense Multiple Access / Collision Avoidance).

Examples of �xed-assignment protocols are:

• TDMA (Time Division Multiple Access),

• FTDMA (Flexible TDMA).

Examples of demand-assignment protocols are:

• distributed solutions relying on tokens,

• centralized solutions by the usage of masters.

A comprehensive study and classi�cation of access protocols used in real-
time communication over multiple-access networks can be found in [81]. The
MAC protocols are described as consisting of two processes: access arbitra-
tion and transmission control. The access arbitration process determines
when the node is allowed to access the communication channel to send mes-
sages, whereas the transmission control process determines for how long a
node is able to use the medium to send messages. It also provides examples
of protocols relying either in access arbitration or transmission control.

26 CHAPTER 2. BACKGROUND

2.2.3 Co-operation models

As referred in the beginning of this section, in a distributed system multiple
autonomous processing units cooperate towards a common objective. There
are di�erent ways and models to realize such cooperation. These models
de�ne who initiates a transaction as well as the number of partners involved
in the process.

Two well-known co-operation models are the producer-consumer and
client-server [133].

The producer-consumer model associates to each message stream a
unique logical value that identi�es the respective exchanges over the net-
work. Messages are generated and received based only on these logical han-
dles, without any explicit reference to the source nor destination nodes of
the messages. The producers do not need information regarding the nodes
consuming a speci�c message and vice versa.

The producer-consumer co-operation model inherently supports one-to-
one and one-to-many communication, without incurring in spatial data con-
sistency problems, since the same data message is used to update all the local
images in all the nodes in the network that need such data, the consumer.
The only requirement for the underlying network is the support for atomic
broadcast or multicast.

On the other hand, this model does not solve the problem of tem-
poral consistency that occurs when several producers interfere and cause
transmission delays, ultimately leading to outdated values. The producer-
distributor-consumer (PDC) model [126] provides the necessary synchro-
nization between the producers, by adding a coordination layer to the producer-
consumer model. A new network component is introduced to coordinate the
transmissions and minimize con�icts that lead to transmission delays. This
coordination is usually realized in one node, called master, that aggregates
the temporal requirements of the network and enforces a suitable schedule
that grants the right to transmit to each producer.

Another approach is the client-server model. According to this model
the nodes holding information to share are servers that serve the clients upon
request. The client nodes issue requests to the servers holding the desired
data and then, on turn, reply with the demanded data. This communication
model is by nature one-to-one and may lead to both spatial and temporal
data inconsistency problems when used to support one-to-many or many-to-
one communication. The server addresses the requests sequentially and when
issued to transmit, at the same time, to di�erent clients, it is inevitable the
temporal inconsistency resulting from the serialization process. Additionally,
it might occur that in this process the value changes and so the clients receive
inconsistent results, i.e., spacial inconsistency. Another related issue refers
to the asynchronous requests to the server. Inside the servers, the requests
take some time to be processed and replied. When multiple requests have to

2.3. REAL-TIME AND SWITCHED ETHERNET 27

be processed, the serving time varies and creates dependency on the requests
arrival pattern, which may be non-deterministic [133].

2.3 Real-Time and Switched Ethernet

Switched Ethernet is currently the most used technology for wired computer
communications in many domains including those that require real-time ca-
pabilities, such as Industrial Automation or Distributed Multimedia. Despite
the absence of collisions, providing real-time communication services is still
not a trivial task due to the use of First-Come-First-Served (FCFS) policies,
the existence of too few priority levels and limitations in the per stream
management.

This section generically describes the SE technology, with special high-
light to the issues related with providing real-time guarantees.

2.3.1 Switched Ethernet

Ethernet was originally developed, about 30 years ago, as an experimental
technology for computer-networking and it is now supported by a collection
of IEEE standards de�ning the physical layer, and the the data link layer.

Ethernet is continuously evolving as new technological demands urge.
Regarding to the transmission speed, it evolved from the original 2.94 Mbps
to 10 Mbps [3, 6], then 100 Mbps [5] and more recently 1 Gbps [7] and
10Gbps [4]. As to the physical medium and network topology, Ethernet
evolved from a bus topology based on coaxial cable to a star topology [6],
�rstly with repeating hubs and since the mid-'90s with switching hubs.

Along with this evolution two fundamental properties of Ethernet were
kept unchanged, whenever a shared medium was needed:

• a single collision domain, i.e., frames are broadcast on the physical
medium so all network interface cards (NIC) can receive them, and

• the arbitration mechanism, which is a Carrier Sense Multiple Access
with Collision Detection (CSMA/CD), using Binary Exponential Back-
o� and retry (BEB).

To comply with the CSMA/CD protocol, each NIC must hold the frames
transmission until the bus becomes idle (no frame being transmitted). Only
then it starts the transmission. However, all nodes follow a similar algorithm
and thus collisions are prone to occur, specially after a message transmission.
On a collision event all transmissions are aborted triggering a special recovery
procedure. This procedure includes transmitting a jam sequence to notify
the other nodes and enforce consistency in the collision detection, wait for a
random period and only then retry transmitting the message. This procedure

28 CHAPTER 2. BACKGROUND

Figure 2.5: Switch micro-segmentation.

Preamble
(7 octets)

Destination Addr.
(6 octets)

Source Addr.
(6 octets)

EtherType
(2 octets)

SOF
(1 octet)

Data
(46..1500 octets)

FCS
(4 octets)

Figure 2.6: Ethernet II frame.

is repeated several times until the message transmission succeeds. In each
of the �rst 10 retries the width within which the random waiting period is
chosen is doubled (BEB). For the following retries that width is is constant
and after the 16th retry, the packet is dropped. This procedure is also known
as truncated exponential backo�.

The use of a single broadcast domain and the CSMA/CD protocol cre-
ates a bottleneck to the network throughput e�ciency. The higher the net-
work load, the higher the probability for collisions and re-transmissions, cas-
ing thrashing. The solution for this problem came in the early-'90s with
the technological evolution in circuit-switching that allowed using switching
hubs, commonly known as switches.

A switch de�nes multiple collision domains, one per network segment and
provides packet-switching technology. If there is a single node in each seg-
ment, collisions never occur, which grants a better network throughput since
thrashing is avoided, this is called micro-segmentation (Figure 2.5). Addi-
tionally, most nowadays switches are able to process and forward multiple
packets simultaneously, i.e., the switch delivers multiple-forwarding paths in
parallel, which signi�cantly improves the network throughput. Another posi-
tive aspect is that end-nodes no longer receive packets that are not addressed
to them.

Ethernet frame

The MAC framing in Ethernet includes the preamble, meant for clock syn-
chronization, followed by the start of frame(SOF) delimiter, see Figure 2.6.
These are hardware requirements and their management is con�ned to the
NICs, hence not software manageable. In addition to the frame de�nition,
the IEEE802.3 Standard speci�es a minimum interval of time that must be
observed by a device connected to the Ethernet bus, between the end of a
frame transmission and the start of another one. This time-slot (96 bit)

2.3. REAL-TIME AND SWITCHED ETHERNET 29

Preamble
(7 octets)

Destination Addr.
(6 octets)

Source Addr.
(6 octets)

802.1Q tag
(2 octets)

SOF
(1 octet)

Data
(46..1500 octets)

FCS
(4 octets)

Tag Control
(2 octets)

EtherType/Length
(2 octets)

PCP
(3 bits)

CPI
(1 bit)

VID
(12 bits)

Figure 2.7: Ethernet IEEE 802.3ac frame.

between transmitted frames is referred to as the minimum inter-frame gap.

There are several types of Ethernet frames, from which Ethernet II (DIX
v2.0)[3] frame (Figure 2.6) is the most widely used and the base for the other
standard types and formats that although di�erent, can coexist on the same
physical medium.

The MAC header includes the packet destination and source addresses
that denote respectively the recipient(s) and the sender of the message and
the EtherType �eld (2 octets) that holds a sub-protocol identi�er. For exam-
ple, an EtherType value of 0x0800 means that the packet contains an IPv4
datagram, or a value of 0x0806 an ARP frame. The data itself is placed in
the Data �eld, which can contain between 0 and 1500 bytes. However, there
is a minimum frame size of 64 octets and so padding may be necessary for a
minimum data of 46 octets. Finally, the Ethernet frame ends with a frame
check sequence (FCS), meant for error detection.

As the industry-developed Ethernet II passed the IEEE standardization
process, the EtherType �eld was modi�ed to hold the length �eld in the new
802.3 standard [6], which additionally includes the IEEE 802.2 LLC header,
in the �rst two bytes of the data segment. The two versions may however
coexist considering that EtherType values are greater than 0x0600, which
is a value larger than the longest frame size. In practice, both formats are
in wide use, with the original Ethernet framing being the most common
in Ethernet local area networks, since it is used by many deeply deployed
protocols and applications.

Another framing format is the Novell's "raw" 802.3 frame, that discards
the LLC header. Although, not compliant with the IEEE 802.3 standard
that de�nes the LLC header at the start of header the Data �eld, this frame
is meant to support IPX networks that use datagrams starting with "FF",
which does not occur with the LLC header. Hence, physical compatibility is
ensured.

LANs are increasingly used by new service classes, some of them with
requirements quite di�erent from the traditional ones. For instance interac-
tive voice and video are increasingly used. To address the original lack of
support for this class of services, a set of standards have been proposed to
extend the framing formats, providing tra�c di�erentiation. Such enhance-
ments include VLAN tagging (IEEE 802.1Q [20]) and a priority identi�er
(IEEE 802.1p [12]) for quality of service (QoS) purposes. The IEEE 802.3ac
[13] describes the extension to the basic frame as illustrated in Figure 2.7. In

30 CHAPTER 2. BACKGROUND

this extension, the before called EtherType is set with a �xed IEEE802.1Q
tag type (0x8100) that identi�es the extended format. The new framing
adds 4 octets preceding the Data �eld, namely the Tag Control and the new
EtherType/Length. In the former, the three most signi�cant bits of the �rst
octet (PCP-Priority Code Point) indicate the frame priority level from 0
(lowest) to 7 (highest), the following bit (CFI-Canonical Format Indicator)
is used for compatibility issues with Token-ring networks, indicating if the
MAC address is in the canonical format. The remaining 12-bit �eld (VID-
VLAN Identi�er) specify the VLAN to which the frame belongs, a value of
'0' indicates no VLAN.

Queuing model

Considering a switched Ethernet scenario with a micro-segmented topology,
i.e., one NIC connection per switch port, and full-duplex links, the medium
will always be free for transmission and thus the original medium access
protocol (MAC) of Ethernet is not used. Any contention in output ports is
sorted out using queues inside the switch that allow serializing transmissions.

Switch

In
pu

t p
or

ts Packet
handling

- Address lookup
- Traffic classification

Receiving buffers Output Queues

Scheduler

Scheduler

O
ut

pu
t p

or
ts

Figure 2.8: Typical switch internal architecture.

Typical commercial switches are based on IEEE 802.1D-2004 [19] that im-
plements FIFO queues 1 at the output ports, as shown in Figure 2.8. Hence,
a packet arriving at the queue is blocked for the time needed to transmit the
tra�c already held in the queue. Additionally, switches supporting priorities
implement several queues on each output port, one per priority level. The
tra�c is dispatched starting from the queue with highest priority, with no
preemption at the packet level. The standard de�nes up to eight priority
levels, however, most available switches implement just two or three.

Another characteristic of the implementation of the queues in commercial
switches is that they share a common memory pool [102], without any cap

1A First-In-First-Out queue implements an FCFS policy

2.3. REAL-TIME AND SWITCHED ETHERNET 31

per port. This is another source of potential interference since a burst of
low-priority messages forwarded to the same port can over�ow the memory
pool, possibly causing high-priority messages to be discarded upon queuing
[102].

Real-time applications require the knowledge of the latency that a generic
packet takes traversing the switch. The overall switch delay comprises the
switching latency and the queuing delay. The switching latency (ε) corre-
sponds to the minimum forwarding time, when no congestion is observed at
the queues. Assuming a cut-through switch and no tra�c congestion, the
switching latency (ε) is constant and independent of the packet size. Instead,
for a store-and-forward switch, the size of each packet (transmission time)
must be considered as part of the switching latency since a packet must
be fully received before being transmitted in the output ports. Regardless
of the switching type, this latency is predictable and easily accounted for.
However, the queuing delay depends on the tra�c previously issued to the
switch, which is a fraction of the arriving tra�c pattern and forwarding di-
rections. Therefore, the transmission delay analysis must be well supported
with adequate models for tra�c generation and queuing.

Tra�c forwarding

An Ethernet a network bridge that processes and routes packets at the Data
link layer (layer 2) of the OSI model. The switch connects network segments
in a star topology and isolates the respective di�erent collision domains by
interpreting and handling atomically.

The switch, as a layer 2 networking device, examines the incoming pack-
ets individually and forwards them to the appropriate segment(s) according
to their destination MAC address. For this purpose the switch maintains a
forwarding table that matches the MAC addresses of the end-nodes and the
network segment to which are connected 2. This table can be statically set
through the switch con�guration interface or it can be dynamically updated,
on every incoming packet, where the corresponding entry in the forwarding
table is updated using the sender MAC address. In this case, this procedure
is repeated on every incoming packet, creating or refreshing the forwarding
table that relates MACs and ports. An additional aging counter is pro-
vided to each entry that allows removing that entry once a given period of
inactivity elapses.

The packet forwarding can be done in either of two ways: store-and-
forward or cut-through. In store-and-forward the switch �rst receives the
full packet into a memory bu�er and only then forwards it to the correct
port(s). This technique allows discarding erroneous packets or fragments,
thus avoiding error propagation in the network. Cut-through switches start

2For convenience, we will also refer to network segments as switch ports.

32 CHAPTER 2. BACKGROUND

Organizationally Unique
Identifier (OUI)

Network Interface Controller
(NIC) specific

3 octets 3 octets

Figure 2.9: IEEE 802 MAC address (MAC-48).

forwarding the packets as soon as the destination address is received and in-
terpreted, resulting in lower switching latencies and more determinism since
the latency becomes independent of the size of packet being forwarded.

When more than one message contends for the same output port, one
of them is promptly forward while the others are queued in memory. Those
messages are arranged in a FIFO queue per output port.

There are three forwarding address types, unicast, multicast and broad-
cast. In case of a broadcast transmission, the switch forwards the packet
to all other active ports with an active link. On a unicast packet transmis-
sion, the switch �rst examines the forwarding table for the corresponding
MAC address and forwards the packet to the matching port. However, if
there is no entry with that MAC address, the switch sends it to all ports,
i.e., forwards it as with a broadcast address. This is normally referred to
as �ooding. Concerning the forwarding of multicast tra�c, until recently, a
multicast address was treated as a broadcast, being forwarded to all active
output ports. Currently, the so-called layer 3 (or 2+) switches follow the
IGMP protocol [40] that enables a true multicast forwarding.

The unique assignment of a MAC address to each network interface card
(NIC) allows addressing each device within a LAN. Each manufactured NIC
is assigned a MAC address that in Ethernet is 6-octets long (MAC-48), as
illustrated in Figure 2.9. In order to regulate such assignment, the identi�er
is partially managed by the IEEE that issues an Organizationally Unique
Identi�er (OUI) to the network manufacturers, de�ning the three most sig-
ni�cant octets of the MAC address, whereas the remaining three octets are
assigned by the manufacturers.

This universal identi�er directly supports the unicast transmissions as it
provides an individual address within a network segment. Additionally, the
IEEE de�nes special group or multicast addresses that allow the same packet
being received by several stations. The least signi�cant bit of the �rst octet
of a MAC address distinguishes individual addresses from group addresses.
If set to '1' it refers to a group address, either multicast or broadcast. A
packet sent with a multicast destination address is received by all stations
in a LAN that have been con�gured to receive from that address, whereas
a packet sent with a broadcast address (all-ones, "FF:FF:FF:FF:FF:FF") is
received by all stations within the LAN. As for the multicast addresses, the
Internet Assigned Number Authority (IANA) reserves an OUI that it uses
for mapping IP multicast addresses to MAC addresses. The result is a range

2.3. REAL-TIME AND SWITCHED ETHERNET 33

L2 Switch
IGMP snooping

Multicast Router

IP-hosts

Router

Lan

Figure 2.10: IGMP basic architecture.

of MAC addresses with OUI="01-00-5E" that is reserved to address groups
of NICs.

IGMP snooping for multicast

The Internet Group Management Protocol (IGMP) [40] is a layer 3 com-
munication protocol to manage membership associations when streaming to
IP multicast groups. This protocol integrates IP-hosts and adjacent multi-
cast routers (layer 3) that perform the multicast group membership and so
forward an outbound transmission to the speci�c network(s). This allows
setting a multicast path traversing several networks.

To set a multicast routing path, the IGMP protocol v3 includes two ba-
sic commands, the Group Membership Query and the Group Membership
Report. Within each network (Figure 2.10), there is one multicast router,
the querier, that periodically issues query messages to determine the ac-
tive members of a group. In reply the IP-hosts send membership reports.
These query and response messages allow the multicast routers to track the
membership requirements on each interface and thus forward the tra�c ac-
cordingly. The IGMP Host is responsible for maintaining a list of multicast
groups for which it requires membership, reply to the membership queries
or spontaneously trigger a membership report when it requires membership
of a new multicast group.

For each IP-multicast membership group within a network, there is a
multicast-MAC associated that is managed by the querier. On the arrival

34 CHAPTER 2. BACKGROUND

of multicast datagrams to that network, the datagrams are routed with the
associated multicast-MAC. Once a host reports a positive membership it
knows which multicast-MAC to listen to.

However, the network topology may include cascading switches, which
are layer 2 devices, thus not included in the IGMP protocol. On the ingress
of a packet with a multicast address, the switch �oods the ports to reach the
designated IP-hosts. Although not an issue for the multicast transmission,
this is not a true multicast and causes transmissions in segments that do
not need such packets thus wasting bandwidth. To deliver a true multicast,
there are layer 2+ switches capable of snooping the layer 3 IGMP protocol ex-
change (IGMP snooping [44]) between the IP-hosts and the multicast router.
These switch devices use the multicast information in the IGMP membership
report messages to build their multicast forwarding tables. When the switch
listens to an IGMP report, meaning that a multicast route was created, the
switch associates the port for the end-host to the multicast-MAC address in
matter. Conversely, when it listens to an IGMP negative report it removes
the host from the table.

2.3.2 Real-Time protocols over SE

In the quest for enforcing real-time behavior in switched Ethernet several
techniques have been proposed, most of which rely on adding a transmission
control protocol that allows controlling the tra�c submitted to the switch.
This approach allows using standard Ethernet hardware in the low-end nodes
but introduces a arising from the additional computational complexity as-
sociated to such protocols, specially when �ne-grained resolution for the
transmission instants is needed.

Several approaches of this kind for switched Ethernet are classi�ed and
brie�y addressed bellow.

Master/Slave

One of the simplest ways to enforce real-time predictability in a shared net-
work or a distributed system consists of using a master-slave approach. This
approach uses a special node, the master, that controls the network access
of all other nodes, the slaves. The problem of enforcing timeliness is reduced
to a centralized scheduling problem in the master. The master enforces its
scheduling via control messages sent to the slaves granting thus network ac-
cess at the right instants. Such mechanism introduces a considerable amount
of protocol overhead caused by themaster control messages that precede each
transmission from a slave. The protocol becomes more or less bandwidth in-
e�cient depending on the ratio between the sizes of the slave messages and
the respective control messages. Nevertheless, this strategy is easy to deploy
and provides relatively precise timeliness. It has been adopted in protocols

2.3. REAL-TIME AND SWITCHED ETHERNET 35

Figure 2.11: The EC structure in the original FTT-Ethernet.

developed for shared Ethernet but which worked seamlessly over switches,
e.g. the ETHERNET Powerlink [22] and the FTT-Ethernet [101]. However,
these protocols are based on a broadcast tra�c model and are not able to
exploit the parallel forwarding paths that a switch provides. This fact leads
to a very strong bandwidth utilization penalty, being thus rather ine�cient.

FTT-Ethernet is based on the FTT communication framework para-
digm, initially implemented over the Controller Area Network (CAN) [28].
This framework is based on a master/multi-slave transmission control ap-
proach in which the communication requirements and tra�c scheduling are
centralized in a master node. This approach facilitates the online changes of
the communication requirements and scheduling parameters, thus granting
a high level of operational �exibility.

Within the FTT framework, the bus time is divided in equally sized
time slots called elementary cycles (ECs). Each slot is further decomposed
in two windows, synchronous and asynchronous, that address tra�c with
di�erent properties, respectively, the periodic time-triggered tra�c and the
sporadic/aperiodic tra�c (Figure 2.11). The expression time-triggered when
associated to the periodic tra�c implies the existence of a common syn-
chronization pace, which in this case is set by the master with the cyclic
framework. There is a strict temporal isolation between both windows to
avoid mutual interference between both types of tra�c.

The tra�c is scheduled in a per cycle basis, i.e., message scheduling is
done for a full EC at a time. The master identi�es the messages that get
scheduled in each cycle as well as their transmission instants with a trigger
message (TM) sent at the beginning of each cycle. As depicted in Figure 2.11,
the transmission of every message is then issued by the slave at the proper
time within the right window.

Due to the global knowledge of the network requirements and the central-
ized control of the tra�c schedule, the protocol supports arbitrary scheduling
policies (e.g., rate-monotonic or earliest deadline �rst) and online modi�ca-
tions to the communication attributes with RT guarantees given that an
online admission control algorithm is provided in the master node.

36 CHAPTER 2. BACKGROUND

Figure 2.12: ETHERNET Powerlink cycle structure.

ETHERNET Powerlink (EPL) [22] is a master-slave protocol that
provides deterministic real-time communication for standard Ethernet. The
protocol was initially designed for shared Ethernet, providing a very high
precision, under 1µs. When deployed over a switch-based network, the
precision is reduced due to extra and variable latencies introduced by the
switches. The protocol also supports both periodic (isochronous) and aperi-
odic (asynchronous) tra�c in two consecutive but isolated phases in a cyclic
framework.

A master (Managing Node) controls the communications by assigning
time slots for the slaves to transmit. The slaves are passive bus stations,
reacting to the master explicit requests.

The communication scheduling is conducted by the master that issues
time-critical data exchanges in isochronous phases within consecutive cy-
cles. The overall cycle duration depends on the amount of isochronous data
to exchange in the system. Figure 2.12 illustrates one such cycle. Each
cycle is divided in four distinct phases: start, isochronous, asynchronous
and idle. In the Start Phase the master sends a synchronization message
(SoC - start of cycle) that noti�es the nodes of a new starting cycle. In the
Isochronous Phase the master triggers the periodic data transactions sending
a poll request (Preq) for each. The slaves reply with the Pres (poll response)
that is broadcasted to all nodes in a producer-distributor-consumer model.
Isochronous transmissions are repeatedly issued every cycles, however, the
transmission slots may be multiplexed in time, issuing a message every n
cycles. In the Asynchronous Phase the master grants one node the right to
transmit a message. It sends the SoA (Start of Asynchronous) message that
addresses that node, which then replies with the respective asynchronous
message. After this phase, the master introduces some idle time before the
following cycle, to enforce a precise cycle start with low jitter.

The asynchronous transmission mechanism is very limited and cannot be
used to handle time-critical communications. Unlike the isochronous tra�c,
for which the master is exactly aware of the messages to be polled at each
time, for the asynchronous tra�c, each slave has to notify the master. This
is performed piggybacking a status signal onto the isochronous messages.
Asynchronous-only nodes are also supported by the protocol, in which case

2.3. REAL-TIME AND SWITCHED ETHERNET 37

the nodes are polled by the managing node, in a best-e�ort manner. EPL
also supports TCP/IP tra�c, tunneled in the asynchronous phase.

TDMA

Another well-known technique to achieve temporal predictability on a shared
communications network is to assign strict temporal slots to the nodes in a
cyclic fashion. This is known as Time-Division Multiple Access and requires
a global synchronization of the nodes when accessing the network. The tem-
poral division is statically assigned so that all nodes can know their time slot
and use it properly. Hence, it is a way to control contention in the output
ports queues. The TDMA protocol is widely used in safety-critical applica-
tions for its simplicity. However, it requires precise clock synchronization in
all the distributed nodes and it is not suited to allow dynamic changes in the
message set, as the requirements are fully distributed. On the other hand,
this protocol e�ciently uses the bandwidth as there are no control messages
introducing overheads, beyond those for the nodes synchronization and it
is possible to exploit the parallel forwarding paths provided by the switch.
In some cases, special switches are built that are also provided with the
nodes transmission schedule so that the forwarding paths can be established
promptly, without needing to interpret the arriving packets. This, however,
does not work in COTS Ethernet switches. Examples of these approaches
include TT-Ethernet and PROFINET-IRT.

EDF scheduled switching

was proposed by Hoang et al. [62] [61] to support a mix of real-time (RT)
and non-real-time (standard IP) tra�c coexisting in a switch-based Ethernet
network. The RT tra�c is scheduled according to the Earliest Deadline First
policy and its timeliness is guaranteed by means of adequate online admission
control.

The proposed system architecture requires the addition of a real-time
layer (RT-l) on network components, either to the end nodes or to the switch.
The RT-l is responsible for establishing real-time connections, performing
admission control, providing time synchronization, and �nally managing the
message transmission and reception of both real-time and non-real-time traf-
�c classes.

The switch RT channel management layer provides time synchroniza-
tion by transmitting periodically a time reference message. Moreover, this
layer also takes part in the admission control process, both by assessing the
internal state of the switch, and consequently its ability to ful�ll the time-
liness requirements of the real-time message streams, as well as by acting
as a broker between the nodes requesting RT channels and the targets of
such requests. Finally, this layer also disseminates the internal switch state,

38 CHAPTER 2. BACKGROUND

namely in what concerns the queues status, to allow �ow-control of non-real-
time tra�c on the end nodes.

Real-time communication is carried out within real-time channels, a
point-to-point logical connection with reserved bandwidth. Whenever a node
needs to send real-time data, it issues a request to the switch, indicating both
the source and destination addresses (both MAC and IP), and the period,
transmission time and deadline of the message. Upon reception of such a re-
quest, the switch performs the �rst part of the admission control mechanism,
which consists in evaluating the feasibility of the communication between the
source node and the switch (uplink) and between the switch and the target
node (downlink). If the switch �nds the request feasible, forwards the request
to the destination node. The target node analyzes the request and informs
the switch about its will on accepting or not the real-time connection. The
switch, then, forwards this answer to the originator node. If the RT channel
is accepted, it is assigned with a system wide channel ID that univocally
identi�es the connection.

The real-time layer comprises two distinct queues, one for the real-time
tra�c, and the other for the non-real-time tra�c. The former is a priority
queue, where messages are kept sorted by distance to their deadlines. The
non-real-time queue holds the messages in a FIFO queue. Therefore, real-
time messages are transmitted according to their deadlines, while non-real-
time messages are transmitted according to their arrival instant.

The feasibility analysis proposed [61] is derived from EDF task scheduling
analysis, but with adaptations to account for some system speci�cs, such as
including the overheads due to control messages and the impact of non-
preemptive message transmission.

In the scope of that work, deadlines are de�ned on an end-to-end basis.
Since the tra�c is transmitted in two separate steps (uplink and downlink),
the analysis must assure that the total delay induced by these steps together
does not exceed the total end-to-end deadline. For a given real-time message
stream i, if diu is the deadline for the uplink and did the deadline for the
downlink, then the end-to-end deadline diee must be at least as large as the
sum of the previous two: diu + did ≤ diee. In [62], the authors assume the
end-to-end deadline equal to the period of the respective message stream,
and a symmetric partitioning of that deadline between the uplink and the
downlink. An improvement is presented in [61], where the authors propose
an asymmetric deadline partition scheme. Although more complex, this
method allows a higher e�ciency in bandwidth utilization, because a larger
fraction of the deadline can be assigned to more loaded links, thus increasing
the overall schedulability level.

2.3. REAL-TIME AND SWITCHED ETHERNET 39

EtheReal

[132] is another protocol that was proposed to achieve real-time behavior
on switched Ethernet networks. In this approach, the protocol is supported
by services implemented on the switch, only, without any changes in the
operating system and network layers of end nodes. The switch services are
accessible to the end nodes by means of user-level libraries.

EtheReal has been designed to support both real-time and non-real-time
tra�c via two distinct classes. The Real-Time Variable Bit Rate service class
(RT-VBR) is meant to support real-time applications. These services use re-
served bandwidth and try to minimize the packet delay and packet delay
variation (jitter). Applications must provide the desired tra�c characteris-
tics during the connection set-up, namely average tra�c rate and maximum
burst length. If these parameters are violated at run-time, the real-time
guarantees do not hold, and packets may be lost. The second service class
is Best-E�ort (BE), and it was developed speci�cally to support existing
non-real-time applications like telnet, http, etc., without requiring any mod-
i�cation. No guarantees are provided for this type of tra�c.

Real-time services in EtheReal are connection-oriented, which means that
applications have to follow a connection setup protocol before being able to
send data to the real-time channels. The connection setup procedure is
started by sending a reservation request to a user-level process called Real-
Time Communication Daemon (RTCD), running on the same host. This
daemon is responsible for the set-up and tear down of all connections in
which the host node is engaged in. The reservation request for RT connec-
tions contains the respective Quality of Service (QoS) requirements, namely
average tra�c rate and maximum burst length.

Upon reception of a connection set-up request, the RTCD contacts the
neighbor EtheReal switch that evaluates whether it has enough resources
to meet the QoS requirements of the new RT connection without jeopar-
dizing the existing ones, namely switch fabrics bandwidth, CPU bandwidth
for packet scheduling and data bu�ers for packet queuing. If it has such
resources and if the destination node is directly attached to the same switch,
it positively acknowledges the request. If the destination node is in another
segment, i.e., connected to another switch, the switch that received the re-
quest forwards it to the next switch in the path. A successful connection is
achieved if and only if all the switches in the path between the source and the
target node have enough resources to accommodate the new RT connection.
If one switch has not enough resources, it sends back a reject message, which
is propagated down to the requester node. This procedure serves to notify
the requester application about the result of the operation, as well as to let
the intermediate EtheReal switches to de-allocate the resources associated
with that connection request.

The EtheReal architecture employs tra�c shaping and policing, within

40 CHAPTER 2. BACKGROUND

both hosts and switches. The tra�c shaping is performed to smooth the
inter-packet arrival time, generating a constant rate �ow of tra�c. Tra�c
policing is used to ensure that the declared QoS parameters are met during
run-time. Those functions are also implemented on the switches to ensure
that an ill-behaved node, either due to malfunction or malicious software,
does not harm the other connections on the network.

With respect to the packet scheduling inside the switch, the EtheReal
architecture employs a cyclic round-robin scheduling algorithm. All real-
time connections are served within a prede�ned cycle. A part of that cycle is
also reserved to best-e�ort tra�c, to avoid starvation and subsequent time-
outs on the upper layer protocols.

Applications access the real-time services by means of a Real-Time Data
Transmission/Reception library (RTTR), which provides services for connec-
tion set-up and tear down and data transmission and reception, beyond other
internal functions already referred to, such as tra�c shaping and policing.

Another interesting feature of this protocol is its scalability and high
recovery capability, when compared with standard switches. For example,
the spanning tree protocol (IEEE 802.1D) is used in networks of standard
switches to allow redundant paths and automatic recon�guration upon a
link/switch failure. However, such recon�guration may take several tens
of seconds with the network down, typically around 30 seconds, which is
intolerable for most real-time applications. On the other hand, the authors
claim that EtheReal networks may recover nearly three orders of magnitude
faster, within 32ms [131].

Tra�c shaping

As opposed to transmission control, that strictly enforces the transmission
times for each message on the network, this technique follows an approach
based on limiting burst. Therefore, the probability of long priority inversions
in the queues is kept low.

This is a fully distributed approach technique. In each network station,
an interface layer called tra�c smoother is placed just on top of the Ethernet
driver. This layer handles and controls the message transmission rate in each
node to limit bursts. Real-Time tra�c is assumed to be well-behaved, i.e.,
periodically triggered at some control process rate, thus without bursts and
so handed to the Ethernet driver right away, bypassing the smoother.

Conversely, the non-real-time (NRT) tra�c can be bursty and has to go
through the tra�c smoother that forces an average transmission rate and a
maximum burst length. This way, at the network level, the interference on
the RT tra�c due to NRT tra�c is kept inside a bound [78].

One major drawback of this approach is that the smoothers are all dis-
tributed and it is di�cult to adapt them online. In fact, adaptive techniques
such as proposed in [70] and [41] only work in shared Ethernet. When using

2.3. REAL-TIME AND SWITCHED ETHERNET 41

switches, nodes have no information on the load in the output ports for which
they send and thus cannot adapt the level of smoothing required at each in-
stant. With switches, such adaptation must be done inside the switches
themselves.Moreover, this approach lacks explicit support for time-triggered
tra�c.

AFDX (Avionics Full DupleX switched Ethernet) [15, 16, 17] is a net-
work communication speci�cation, initially de�ned to cope with the con-
straints set by the avionic industry to deploy a secure, reliable and determin-
istic network integrating a number of system modules, already in place but
using independent networks, namely ARINC 429 buses [30]. AFDX de�nes
communication channels (VL - Virtual Link) that establish logical unidirec-
tional connections between one source and one or more destinations, thus
able to abstract an ARINC 429 style network and support legacy modules.
Each VL is statically de�ned and characterized by a Bandwidth Allocation
Gap (BAG), i.e., a minimum delay between consecutive frames and by a
minimum and maximum frame lengths (smin and smax). The enforcement
of this characteristics is conducted in the emitting nodes of each VL by means
of tra�c shapers that provide a deterministic communication behavior that
suits the T-SPEC model of network calculus (described in the following sec-
tion). Then, in o�ine the necessary communication guarantees are provided
using the network calculus that although pessimistic, easily provides deter-
ministic upper-bounds to each communication �ow. Additionally, dedicated
AFDX switches enforce �ltering, policing and forwarding functions based on
the VLs, which are statically de�ned. AFDX is thus not able to modify the
network requirements online and so not able to meet �exibility.

2.3.3 Schedulability analysis

Despite the absence of collisions on a switched Ethernet network, providing
real-time communication services is still not a trivial task due to congestion
in the output port queues. The switch aggregates the tra�c from di�erent
input ports in its output ports. For that purpose, it commonly uses FIFO
queues that generate substantial jitter in the outgoing pattern, degrading the
system real-time performance. On this regard, real-time protocols demand
for techniques to estimate the system performance. For packet switching
networks and particularly for switched Ethernet those analysis should pro-
vide bounds to the queuing delay as well as to the depth of the queues in
the switch.

In the remainder of this section we present two typical analysis tech-
niques that provide real-time guarantees in worst-case scenarios for real-time
communications over switched Ethernet namely Network Calculus (NC) and
Response Time Analysis (RTA).

42 CHAPTER 2. BACKGROUND

Network Calculus (NC)

Network Calculus, initially introduced by Cruz [45, 46] and later comple-
mented by Boudec and Thiran [34], describes an algebra for analyzing perfor-
mance in computer networks. It uses the Min-plus and Max-plus algebra to
assess the impact of network communication constraints such as the limited
links capacity, tra�c congestion in the switch, interference from background
tra�c and tra�c shaping policies enforced in the nodes. The algebra relies
on a tra�c characterization model that de�nes streams by their burstiness
peak (σ) and their long-term rate (ρ), called T-SPEC.

In the real-time community, some solutions based on the NC emerged to
target hard-real-time applications over SE. Loeser and Haertig [78, 79] use a
�ne grained tra�c shaping in the nodes to guarantee that the injected tra�c
conforms with the T-SPEC model parameters used within the NC, so that
all analysis follows naturally from that algebra. For a generic real-time job
i, modeled with aWi budget and an arrival period of Ti, the T-SPEC arrival
pattern is denoted by: σi = Wi,ρi = Wi/Ti. Once all tra�c is characterized
with (σi, ρi) i=1...N, the queuing delay for a c bit/s server comes as follows
[45]:

For �xed priorities:

Di max =

∑i
j=1 σj +maxi+1≤j≤N (Wj)

c−
∑i−1

j=1 ρj

For FCFS policy:

Di max =

∑N
j=1 σj +maxi+1≤j≤N (Wj)

c−
∑N−1

j=1 ρj

Once the tra�c is fully characterized according to T-SPEC the timeliness
analysis of a stream traversing the network is straight-forward. However,
this technique only applies when the application streams conform with the
T-SPEC model and it is not trivial to deduce the T-SPEC for certain tra�c
scenarios that are highly jittered.

Response time analysis (RTA)

Section 2.1.3 described several scheduling analysis techniques for computing
tasks. The response time analysis provides relatively accurate results on
whether a task set is schedulable or not. Section 2.2.2 then presented ways
to map a tra�c model in order to use the analysis developed in this context.
For example, Koubâa and Song [115] conduct a response-time-based analysis
for the tra�c traversing an Ethernet switch. Their work is only focused on
the switch queues. The impact of the nodes queues is modeled as release jitter
a�ecting the arrival pattern of the packets to the switch queues. However,

2.3. REAL-TIME AND SWITCHED ETHERNET 43

nothing is said concerning how to determine this release jitter, nor how to
handle di�erent streams coming from the same node with a scheduling policy
di�erent than the one in the switch. Therefore, it only addresses the impact
of the FIFO queuing policy of the switch.

The queuing delay (Rti) that a�ects a job of stream i with respect to
its periodic activation, is thus upper-bounded through the usual iterative
process for the case of a non-preemptive �xed priority queue:

In+1
i = max

i≤j≤N
(Cj) +

i−1∑
j=1

(⌊
Ini + Jj
Tj

⌋
+ 1
)
× Cj

Rti = Ci + Ii + Ji

where Ji stands for the release jitter that stream i might su�er when arriving
at the queue, which is the maximum deviation from its periodic activation,
and Ii stands for the maximum interference. Notice that we also assume
that Rti should be no greater than Ti.

For an FIFO queue, the queuing delay is obtained in the following way,
if the release is strictly periodic:

Ii =
N∑

j=1,j 6=i
Cj

Rti = Ci + Ii

If the streams su�er release jitter the analysis is rather more complex as we
will see further on.

Xing Fan et al. conduct a wider covering analysis that includes both, the
queues at the sending nodes and the queues in the switch. Both queues are
analyzed independently and the overall end-to-end delay is considered adding
up both stages. The �rst stage analysis (node queue) is easily achieved
estimating the interference caused by the streams within the same node.
As for the second stage, the analysis becomes more complex in which it is
necessary to consider all the streams that target an output link in the switch.
In this case the analysis is performed over the load submitted to the switch
queue.

The cumulative workload Wk(t1, t2) of a set of real-time streams Γ =
{τ1, τ2, . . . , τn} originating from source node k, is given by the sum of the
tra�c volume of messages released by the real-time streams during the time
interval [t1, t2),∀i, t1 ≤ t2:

Wk(t1, t2) =
n∑
i=1

max
((⌊

t2 − t1
Ti

⌋
+ 1
)
× Ci, 0

)

44 CHAPTER 2. BACKGROUND

busy-interval

t'

end of the last idle period
r1 releases a message

ri releases a message

t'+Δri

end of busy-interval

Figure 2.13: Arbitrary release in k's busy-interval.

For the switch queue analysis, given any message release pattern, without
loss of generality, assume that τi releases messages at t = t′ + ∆ri,∆ri ≥ 0,
as illustrated in Figure 2.13. The commutative workload for the incoming
link from node k during [t′, t) is derived as:

Wk(t′, t) =
n∑
i=1

(
1 +

⌊
t− (t′ + ∆ri)

Ti

⌋)
× Ci

This estimates the busy-interval for node k and so the real-time guaran-
tees can be assessed from it.

NC versus RTA

The major di�erence between the two system analysis techniques, network
calculus and response time analysis, resides in the communication model on
which each rely. The NC uses the T-SPEC model that de�nes a long-term
average transmission rate and a maximum burst that better suits the event-
based tra�c, whereas, the RTA evaluates the system feasibility by evaluating
the interference that occurs on a periodic activation basis.

The T-SPEC model, despite its limitations, is very general and allows
modeling large range of real tra�c scenarios. However, in some cases a
more precise but more limited model can be used such as in control-oriented
or multimedia applications in which a periodic activation model is natural.
A relationship method to map the periodic model onto the NC model is
proposed in [115]. Using the pseudo-periodic model (periodic with release
jitter), the authors conduct a work for �xed priorities scheduling inside the
switch in which two queuing delay analysis are compared, the NC algebra
and the classical RTA. They conclude by saying that RTA analysis is less pes-
simistic than the use of NC with the penalty of being more computationally
demanding.

2.4. CONCLUSION 45

2.4 Conclusion

Ethernet is the most popular technology for LANs today. Due to its low
cost, high throughput, high availability and easy deployment, among other
features, Ethernet is wide spread in multiple application domains, even those
for which it was not initially designed. An example is industry automation in
which Ethernet is used in a variety of applications, including those that im-
pose critical real-time constraints. The CSMA/CD arbitration protocol used
in shared Ethernet, which con�icts with the requirements for timing, was by-
passed introducing switched Ethernet that additionally provides full-duplex
communication and allows multiple parallel forwarding paths. Despite the
absence of collisions, it is still necessary to control the tra�c admission in
the switch queues. Several real-time protocols emerged for this purpose in
order to obtain the timeliness guarantees.

This chapter presented a brief overview of real-time systems modeling
with focus on real-time communications. It introduced some background
concerning real-time operating models, scheduling and the necessary anal-
ysis techniques that support timeliness guarantees. Speci�cally concerning
the real-time communications deployment over switched Ethernet, this chap-
ter described a communication model suited to characterize the switch and
covered some paradigmatic techniques to control the tra�c admission to
prevent over�ow in the switch queues, while supporting the designation of
worst-case delay bounds.

46 CHAPTER 2. BACKGROUND

Chapter 3

The FTT-SE protocol

This chapter presents the Flexible Time Triggered protocol over Switched
Ethernet (FTT-SE). It describes the overall system architecture, including
the mechanisms that support it, and presents a formulation for the global
tra�c scheduling problem.

The chapter includes a section with some details of an hardware imple-
mentation and the distributed middleware abstraction.

It, �nally, presents a set of simulations and experimental results con-
ducted to illustrate and validate the advantages of using the FTT-SE.

3.1 Introduction

As mentioned in Section 1.1, there is a trend towards the development of
�exible protocols as a mean to e�ciently address dynamic and evolving en-
vironments. The protocol hereby proposed for switched Ethernet is based on
the Flexible Time-Triggered communication paradigm to enforce such oper-
ational �exibility. At the switching level, it globally coordinates the tra�c
submitted at each instant, avoiding potential queue over�ow problems and
bypassing the tra�c scheduling performed by the switch allowing thus, any
desired policy. The FTT-SE (FTT over Switched Ethernet), follows the same
paradigm that has already been used over shared Ethernet to overcome the
non-determinism of its MAC, namely the FTT-Ethernet protocol [101].

Therefore, it is proposed an adaptation of that protocol to micro-segmen-
ted networks, i.e., based on switches and with only one station connected to
each port. As common to all FTT implementations [100], the main advan-
tages of this protocol are the global tra�c coordination in a common timeline,
the possibility for fast and atomic online updates to the set of streams, the
capability to support wide ranges of streams periods, the support of arbitrary
tra�c scheduling policy and the capability of handling periodic, aperiodic
and non-real-time tra�c with temporal isolation.

47

48 CHAPTER 3. THE FTT-SE PROTOCOL

Figure 3.1: The EC structure in the original FTT-Ethernet.

3.2 FTT-SE: An enhancement of FTT-Ethernet

As discussed in Section 2.3.2, there are several ways to achieve real-time
communication over switched Ethernet. However, some of them are based
on non-standard hardware, a solution that con�icts with some of the key
arguments supporting the use of Ethernet in real-time applications (cost,
availability, compatibility with general purpose LANs). Therefore, we focus
on COTS-based solutions, only, but still aiming at a high level of tra�c
control toward more predictable timing behavior. Particularly, we propose
adapting FTT-Ethernet, originally developed to operate over shared Ether-
net, to achieve tighter tra�c control than with existing solutions based on
COTS switches, e.g. Ethernet/IP or tra�c shaping. The use of the FTT ar-
chitecture brings other important bene�ts such as the support for arbitrary
tra�c scheduling policies, priority levels beyond the eight levels speci�ed in
IEEE 802.1D, o�sets among streams, online admission control and band-
width management and, �nally, prevention of memory over�ows inside the
switches. On the other hand, FTT-Ethernet is still a master/slave proto-
col and, as such, introduces an additional overhead caused by master polls.
However, the FTT architecture employs an improved technique, called mas-
ter/multi-slave, according to which the master addresses several slaves with
a single poll, considerably alleviating the protocol overhead.

Brief review of FTT-Ethernet

FTT protocols [100] organize the communication in �xed duration slots
called Elementary Cycles (ECs), which are triggered with a master mes-
sage called Trigger Message (TM), containing the periodic schedule for that
EC. The periodic messages, called synchronous, are synchronized with the
periodic tra�c scheduler. The protocol also supports aperiodic tra�c, called
asynchronous, which is managed in the background, in the time left within
the EC, after the periodic tra�c (Figure 3.1).

The tra�c scheduling activity is carried out online and centrally in the
master and the tra�c schedules are disseminated by means of the TM. Since
the tra�c scheduling is local to one node, it is easy to enforce any kind
of scheduling policy as well as perform atomic changes in the communica-

3.2. FTT-SE: AN ENHANCEMENT OF FTT-ETHERNET 49

tion requirements. This last feature allows for online stream admission and
removal under guaranteed timeliness as well as online bandwidth manage-
ment. Similarly to the freedom with respect to the tra�c scheduling policy,
the speci�c bandwidth management scheme can also be any. These features
are the kernel of the FTT paradigm and are the justi�cation for the �exible
attribute.

The EC schedules are built considering a broadcast transmission model
as common in shared segments. Moreover, in order to bypass the non-
deterministic CSMA/CD arbitration of Ethernet, the EC schedules also con-
tain an o�set from the start of the EC for the transmission of each message
that grants a collision-free medium access. The slaves transmit the scheduled
messages with the speci�ed o�sets and for an e�cient use of the bandwidth
such o�sets must be respected with a good precision.

3.2.1 FTT-SE for micro-segmented networks

FTT-Ethernet can be seamlessly deployed over shared or switched Ethernet
networks but it uses a full broadcast communication model. Important e�-
ciency gains may be achieved by tailoring the FTT-Ethernet protocol to take
advantage of the distinctive features of micro-segmented topologies, namely
the absence of collisions and the existence of parallel transmission paths.

The inherent absence of collisions that results from the existence of pri-
vate collision domains for each port leads to a noteworthy simpli�cation of
the protocol implementation in the slave nodes, which no longer need to en-
force a collision-free medium access. Messages are transmitted immediately
after decoding the TM, with the switch taking care of the serialization within
each EC. Consequently the contents of the TM itself is also simpli�ed, since
the speci�cation of the transmission instants is no longer needed.

On the other hand it becomes possible to take full advantage of multiple
transmission paths by abandoning the pure broadcast architecture of FTT-
Ethernet as long as we provide the FTT Master with information about
the nature of the data exchanges, i.e., unicast, multicast and broadcast,
and which end nodes are involved. With this information the master can
compute which messages follow disjoint paths, i.e., non-overlapping source
and destination nodes, and thus build schedules that exploit this parallelism,
increasing the aggregated throughput.

This new feature corresponds to move from the broadcast-based pro-
ducer/consumer cooperation model in FTT-Ethernet to a multicast pub-
lisher/subscriber scheme in FTT-SE. The master keeps a data structure with
the currently existing groups of publisher/subscribers, with the identi�cation
of the respective streams and the associated physical addresses and ports.
Speci�c calls issued by the publishers and subscribers allow creating groups
and binding nodes to groups. Two di�erent cases must be considered ac-
cording to the type of switches uses. For non-multicast switches only unicast

50 CHAPTER 3. THE FTT-SE PROTOCOL

Ethernet switch

Trigger message

TM

FTT master

Figure 3.2: FTT-SE system architecture.

and broadcast streams can be considered. For true multicast switches the
standard Internet Group Multicast Protocol (IGMP, RFC 2236) is used to
setup up multicast groups. The binding process for subscribers uses IGMP
messages sent explicitly to the FTT Master, which are also snooped by the
switch, allowing both master and switch to build coherent forwarding tables.
The master must be correctly con�gured to the type of switch being used.

Figure 3.2 shows the communication system architecture, with the FTT
Master attached to one switch port and scheduling the transmission of the
remaining stations.

The previous FTT-Ethernet protocol manages two distinct tra�c classes,
the periodic tra�c and the aperiodic tra�c. They have di�erent scheduling
models, thus being managed separately. However, in both classes the trans-
mission is issued only upon a dispatching order that polls the messages cycle
by cycle. For the periodic tra�c, polling is natural since the master knows
when to transmit as well as the bus status. However, the master does not
have such knowledge concerning the asynchronous tra�c, since it is triggered
by local events in the slave nodes. Thus, asynchronous messages are blindly
polled by the master, which may result or not on a message transmission,
depending on whether there is a pending request.

In the case of FTT-SE, the management of both types of tra�c is sub-
stantially simpli�ed and enhanced in several aspects.

Concerning the periodic tra�c, all slaves answer the master polls in the
TMs transmitting as soon as possible the scheduled tra�c, i.e., after the
turn-around time. The precise transmission instants inside the synchronous
window are not known since they depend on the speed of the slaves answer-

3.2. FTT-SE: AN ENHANCEMENT OF FTT-ETHERNET 51

ing the poll. However, the scheduled periodic tra�c will be transmitted in
a burst, or nearly, with practically no wasted intervals between consecutive
messages. This was not the case in FTT-Ethernet in which the speci�ca-
tion of the transmission o�set could lead to such wasted intervals due to
limitations in timing resolution of the operative system in the slaves.

Concerning the aperiodic tra�c, its management is also substantially
improved with respect to FTT-Ethernet due to a new signaling mechanism.

3.2.2 Handling aperiodic transmissions in FTT-SE

The asynchronous management is a problem for a variety of protocols seeking
low communication jitter and latency in switched Ethernet. Unconstrained
aperiodic communication may generate bursts that �ll in the output queues,
leading to long priority inversions in typical FIFO queues and possibly to
queues over�ow and consequent packet losses. One way to improve this
situation is constraining the transmission of aperiodic tra�c in the nodes
using tra�c shaping or smoothing. This way, transmission instants are not
constrained but the amount of tra�c generated within a given time window is
bounded. Alternatively, a more robust and timely accurate but less e�cient
mechanism, is the one used originally in FTT-Ethernet, based on polling.
In this case, the transmission instants are adequately planned by the global
scheduler. However, this approach is not very e�cient given the possible
long latency periods to serve the aperiodic requests, which result from the
periodic polling and also the bus bandwidth that is wasted by unsuccessful
polling attempts.

The polling mechanism encompasses two di�erent phases. In the �rst
one, called signaling phase, the master inquires the nodes about the exis-
tence of asynchronous tra�c ready to be transmitted. In the second one,
called transmission phase, the master polls the transmission of that tra�c in
adequate instants in time. These two phases can either be separately imple-
mented, where the transmission phase comes as consequence of the signaling
phase in which case the transmission phase only occurs if the signaling phase
indicated the presence of pending aperiodic tra�c, or merged in a single pe-
riodic poll that leads to unused bandwidth when no messages are pending
at the poll instant.

Note that, whether the two phases are jointly or separately implemented,
in both there is an intrinsic compromise between responsiveness and over-
head; a higher responsiveness requires polling at higher rates, but polling at
higher rates potentially implies a higher bandwidth overhead.

To improve the aperiodic tra�c management, we propose exploring the
full duplex features of common Ethernet switches to implement a new sig-
naling mechanism in master/slave switched Ethernet protocols that does not
su�er from the referred responsiveness versus overhead compromise and may
dramatically improve the QoS given to the asynchronous tra�c.

52 CHAPTER 3. THE FTT-SE PROTOCOL

Figure 3.3: Polling token.

The out-of-band signaling mechanism

Switches with full-duplex capabilities provide the possibility of simultaneous
transmissions in opposite directions in each link without interference. This
feature is used to e�ciently deploy a signaling path between the slaves and
the master in a master/slave architecture that does not collide with the
common polled transmissions.

Another property intrinsic to a master/slave architecture is the overhead
that comes in two forms, one due to the need to transmit the master poll and
another caused by the time spent by the slaves decoding and preparing the
reply to the poll, which is normally called the turnaround time. This interval
of time, which mediates between the poll reception and the beginning of the
reply transmission, depends on the slave implementation technology. For
standard PC-based solutions and network interface cards (NICs) can reach
200µs [83], even using RT kernels and stacks. Reducing this value to a few
tens of microseconds is possible with special hardware support, only.

Yet another common property of master/slave architectures is the strict
slaves synchronization on the master tokens. This behavior is typically
achieved reserving a window (guard window) for transmitting the token with
no interfering tra�c nor software blocking activities in the nodes, thus avoid-
ing jitter.

In a full-duplex switch, the master download link, i.e., the link that

3.2. FTT-SE: AN ENHANCEMENT OF FTT-ETHERNET 53

transmits from the switch to the master, is not included in the poll token
forwarding path. Therefore, messages transmitted in unicast to the mas-
ter do not interfere with the actual token message transmission (see Fig-
ure 3.3). The slave nodes may safely report to the master node the internal
state of their asynchronous queues during the guarding and the turn-around
windows, provided that these messages �nish transmission within the turn-
around window.

Regarding the computing requirements within the slaves, there is also
no interference whatsoever on the regular protocol messages and the slaves
turn-around time is also not a�ected, since the report messages are submitted
to the NIC during the transmission of the poll message by the master. The
NIC seamlessly handles both transmission and reception with no interference.
Then, when it comes to receive and decode the TM, the processor is no longer
in use by the transmitting handler, thus no interference. Figure 3.3 shows
one situation in which two nodes send their status messages (A and B) to
the master. Both messages are completely received within the time interval
de�ned by the poll message transmission plus the turn-around windows, thus
not interfering with the normal protocol operation.

Thus, the mechanism herein proposed relies on this transmission scheme
to handle the backward signaling information containing the asynchronous
queuing status in the slaves. It can be applied to any master/slave full-duplex
switched Ethernet protocol, as long as the slaves are able to synchronize with
the transmission instant of the following master polls.

Signaling of asynchronous tra�c in FTT-SE

Within the FTT-SE protocol, the master token is the Trigger Message (TM),
transmitted periodically, polling the slaves for messages in that cycle, both
synchronous and asynchronous. There is one TM heading each Elementary
Cycle (EC), the interval that de�nes the system periodic granularity. The
TM is followed by the turn-around time, the Synchronous and the Asyn-
chronous windows. Figure 3.4 sketches the EC structure with an example of
the signaling scheme herein proposed.

The signaling channel uses the reverse path of the periodic TM, virtually
avoiding interference with the normal protocol operation. The slaves are
thus required to synchronize with the previous TM in order to trigger the
signaling message properly, i.e., under the following TM from the master
(Figure 3.4).

Each signaling message includes information regarding the asynchronous
queues status of the associated node and shall not use more than the mini-
mum payload required for an Ethernet frame, for the sake of �tting as many
messages within the signaling window as possible. The limited size of the
signaling window may constrain the number of nodes, consider that each
node can send one signaling message per EC.

54 CHAPTER 3. THE FTT-SE PROTOCOL

Figure 3.4: FTT-SE signaling proposal.

The turn-around time plays a signi�cant role in this scheme. In FTT-SE
this parameter is con�gurable and must be properly tuned according to the
node's performance. Typically it must be set to a value not lower than the
worst-case turn-around time among all the nodes present in the system.

The following equation allows computing the maximum number of nodes
(MaxN) with respect to a system s with a given turn-around time, Tr:

MaxN(s) =
Tr(s) + TM_size(s)

SIG_size(s)

where TM_size(s) stands for the trigger message transmission time and
SIG_size(s) for the signaling message transmission time. For a Fast Ether-
net network (100 Mbps) TM_size(s) equals 24µs and SIG_size(s) takes
the minimum Ethernet frame transmission time, 6.72µs. Assuming also a
system based on standard PCs with regular NICs and using an RT kernel
and stack. In such case, the turn-around time (Tr) can be bounded to 200µs
[83], leading a maximum number of signaling messages, and thus of nodes,
of MaxN = 33.

For applications requiring more nodes or exhibiting lower turn-around
times (specialized hardware) two approaches can be used to avoid this scala-
bility constraint. One is to reduce the rate at which nodes issue the signaling
messages e.g., only once every 'n' cycles. This approach has a negative im-
pact on the signaling latency but allows supporting an arbitrary number of
nodes. Another possibility would be to enlarge the signaling window in the
master downlink beyond the turn-around window, i.e., allow the signaling
messages to use the synchronous exclusive window. In many cases this ap-
proach is feasible since most of the periodic tra�c is unicast or multicast,

3.3. THE SCHEDULING MODEL 55

thus not being forward to the master, leaving the downlink of the master
node partially unused. In this case, this extra tra�c in the master downlink
must also be considered by the synchronous messages scheduler.

3.3 The scheduling model

The scheduler speci�es the order with which the messages are transmitted
in the network, once activated. The master node handles such operation
taking into account the individual priorities of each message that may either
be static or dynamic as in EDF scheduling. We have seen that the scheduling
plan is enforced by means of the TM that polls the messages in the slaves.

Such model supports strict priority scheduling but at a coarse time scale,
only, with a resolution of ECs. Priority inversion may occur within the EC
since the master does not control the speci�c instants at which the messages
are transmitted by the slaves and queued in the native FCFS queues within
the switch output ports.

3.3.1 The periodic tra�c scheduling model

The periodic scheduling model considers Ns periodic streams (SMi) that
are stored in a structure called Synchronous Requirements Table (SRT) as
shown in 3.1.

SRT =
{
SMi : SMi = (Ci, Di, Ti, Oi, P ri, Si, {R1

i ..R
ki
i }), i = 1..Ns

}
(3.1)

Each stream is characterized by the total transmission time of each in-
stance Ci, the relative deadline Di, the stream period Ti, the o�set Oi. Pri
is an optional parameter that allows associating explicitly a priority to the
message. Both Di, Ti and Oi are expressed as integer numbers of ECs. Then,
Si is the sender node and {R1

i ..R
ki
i } is the set of ki receivers for stream i.

The calculation of Ci deserves a special note because the protocol automat-
ically fragments large messages in a sequence of packets that are scheduled
sequentially and individually by the master. This is particularly useful to
transmit regularly large amounts of data such as video frames.

The set of streams in the SRT is scheduled by the FTT Master according
to any online policy, implementing a single queue of ready periodic messages.
This queue is used to build the EC-schedule that will be encoded in the TM
and broadcast through the switch. The periodic scheduling though con�nes
the tra�c to the synchronous window, with duration of LSW , within the
EC.

The reception of the TM causes all nodes that are senders in that EC to
feed the scheduled streams to the switch through a set of M upload links luj .
When these streams arrive at the switch they are conveyed, with latency ε, to

56 CHAPTER 3. THE FTT-SE PROTOCOL

TM

Sched

FP, EDF, RM, ...

streams
 m1 (...)
 m2 (...)
 ...
 mi (...)



Switch with M portsM nodesFTT-SE Master

l j
u l j

d

Figure 3.5: The scheduling model with FTT-SE.

the respective output ports and queued for transmission in the M download
links ldj (Figure 3.5). The transmission of each packet is non-preemptive,
as usual, but the transmission of long messages, i.e., those with multiple
packets per instance, can be preempted between packets.

Scheduling over this model becomes a two-fold problem. In one hand,
it is necessary to build the EC-schedules so that the transmission of the
periodic messages �ts within the synchronous window of that EC, while in
the other hand, it is important to to have schedulability bounds adequate to
the scheduling policy.

The former issue is covered in the remainder of this chapter, including
scheduling multiple links simultaneously, while the schedulability bounds are
addressed in the following chapter.

3.3.2 Building EC-schedules

One issue that needs to be addressed in order to carry out the tra�c schedul-
ing online is how to build the EC-schedules considering the multiple queues
associated to the M upload and download links.

The �rst aspect to note is that most of the current switches are full-
duplex, which permits overlapping transmissions in the download and upload
links. Additionally, switches are many times capable of performing cut-
through forwarding, from the uplinks to the downlinks with a small latency
shift, the switch latency ε.

The second aspect is the initial constraint that limits the communication
activity to the synchronous window, whose maximum duration is LSW ,
meaning that no link can be used more than LSW − ε (Figure 3.6). The
turnaround time tr is the time needed by the stations to decode the TM and
start their own synchronous transmissions.

A third aspect is that the transmissions in the downlinks are causal with

3.3. THE SCHEDULING MODEL 57

TM Sync window

tr LSW

EC

time

LSW



...
LSW


l j
u

uplinks

l j
d

downlinks

...

Figure 3.6: Constraining the synchronous tra�c to the synchronous window.

respect to those in the uplinks and thus must always occur after them, at
least an amount of time ε. This means that, if a set of packets arrive close
to the end of the synchronous window at a given queue, their transmission
might extend beyond the end of that window, even if the total load in that
downlink takes less than LSW . Therefore, when constraining the tra�c in
the downlinks to LSW it is necessary not only to account for the transmission
duration but also for the respective transmission instants.

This leads to the case of a modi�ed bin packing problem, where each link
is represents a bin that accumulates the transmission times of the respective
streams, while constructing of the EC-schedule. For the uplinks, consider-
ing that the nodes are able to transmit sequentially, immediately after tr,
the EC-schedule �lling procedure is only required to check the load in each
bin until the LSW − ε threshold. As for the downlinks, as referred above,
the �nishing instant of the latest transmission (f) must be considered and
checked not to override the transmitting window (Figure 3.6) set to (LSW).
To determine such instant, it is necessary to keep track of the transmission
instants of the previous packets sent in that queue, detect whether there
is an overlap and add the respective transmission time (Figure 3.7). The
approach followed to determine the instant f considers the tra�c submitted
to the switch in priority order in each uplink, which is easy to enforce in
the slaves. Knowing this order, it is straightforward to detect overlapping
transmissions in the downlinks and act properly. Note that the speci�c order
with which the overlapping transmissions are serialized is not relevant since
only the end of the transmissions of each group of messages matters.

Given these constraints, the EC scheduling plan is built probing each
message in the ready queue, one by one, until any of the limits is overridden,

58 CHAPTER 3. THE FTT-SE PROTOCOL

TM

TM

TM

TM

m1

m4

m4

m2

m2
m5

m3

m3

m6

m6

LSW

 tr

time

Node C

u
d

u
d

u
d

u
d

Synchronous window

f6

m6

Node B

Node A

Master

Figure 3.7: Causality constraint in the downlinks.

in the uplinks or downlinks. If including a message overrides a link boundary,
that message is held back in the queue and the speci�c link is closed, i.e.,
no more messages are assigned to it in this EC. The EC-schedule building
proceeds, checking the remaining messages in the ready queue until no more
message can be scheduled. This procedure copes with multiple �ows with
di�erent forwarding paths being handled simultaneously. The condition that
stops the EC-schedule construction in each EC is given in 3.2, where the top
condition concerns the uplinks and the one below concerns the downlinks.
Basically, the scheduler includes in the EC-schedule all ready messages that
is possible without violating condition 3.2.

max
j

(∑
SMi∈luj

Ci

)
≤ LSW − ε

max
j

(
max
SMi∈ldj

(fi)

)
≤ LSW

(3.2)

Another characteristic that emerges from this scheduling approach is that
the memory requirements for any switch port µpj and for any node µnj (at
the network driver level), are known and bounded as de�ned in bytes by 3.3,
where r stands for the links transmission rate in bits per second, considered
equal for all.

max
j=1..M

(µnj , µ
p
j) < (LSW − ε) ∗ r/8 (3.3)

Note that the scheduling model is such that the synchronous load submit-
ted to the switch in each EC always �ts inside the respective synchronous

3.3. THE SCHEDULING MODEL 59

window. Thus there will be no synchronous messages left in the switch
queues at the end of each EC.

3.3.3 The aperiodic tra�c scheduling model

The aperiodic scheduling model is similar to the periodic one with similar
parameters having similar meaning. Equation 3.4 shows the model of an
aperiodic stream (AMi), stored in a structure called Asynchronous Require-
ments Table (ART), holding Na streams. Opposed to the periodic model,
there are no o�sets and instead of a period there is a minimum inter-arrival
time Tmiti, also expressed as an integer number of ECs. Large aperiodic
messages are similarly fragmented and scheduled in a packet basis.

ART =
{
AMi : AMi = (Ci, Tmiti, P ri, Si, {R1

i ..R
ki
i }), i = 1..Na

}
(3.4)

The set of streams in the ART is scheduled by the FTT Master according
to any online policy, possibly using periodic servers, implementing a single
queue, also similarly to the periodic tra�c. The di�erence to the periodic
scheduling is that messages are no longer activated implicitly, as a function
of time, but upon an explicit application request. The master receives those
requests through the signaling mechanism described in Section 3.2.2. Once
scheduled, the aperiodic messages are similarly polled via the TM in each
EC and then transmitted in the respective window.

Non-real-time (NRT) messages are handled as a special case of aperiodic
messages, being handled with the lowest priority and having the deadline set
to in�nity, in order to avoid the generation of deadline violation exceptions.
Thus NRT messages are transmitted in background with respect to the real-
time messages, both periodic and aperiodic. One particular aspect to note
is that the sender and the receivers of these messages are not known ahead
of time. However, the respective MAC addresses are sent to the master in
the associated signaling message, which allows it to carry out the respective
poll, later on, when such tra�c is scheduled.

Note, again, that the aperiodic and NRT tra�c is scheduled in a given
EC only if it can be transmitted in that EC. This means that, by the end of
the EC, there will be no tra�c queued in the switch. This is very important,
being the feature that e�ectively allows bypassing the tra�c scheduling car-
ried out by the switch in its internal queues, on a sparse time-base, with EC
resolution.

3.3.4 Bounding the aperiodic service latency

The Tmit parameter sets the maximum transmission rate with which a given
AM may arrive at the switch and, in conjunction with the message length,
bounds the message maximum bandwidth utilization (C/Tmit). However,

60 CHAPTER 3. THE FTT-SE PROTOCOL

the sporadic messages frequently have average activation rates signi�cantly
lower than the maximum one. The aperiodic signaling scheme presented
in Section 3.2.2 yields for a better use of the bandwidth, which is only used
upon explicit requests, allowing other messages to reclaim the slack wasted by
messages activated at lower rates. However, RT tra�c is typically admitted
considering the worst-case scenario and so the reclaimed extra bandwidth
does not result in better schedulability levels for the RT asynchronous tra�c.
The advantage of this signaling mechanism for the RT asynchronous tra�c
is the reduction of the average response time, specially for the lower priority
tra�c that is promptly scheduled whenever there is slack. Furthermore, the
reclaimed bandwidth may also be used by the background non-RT tra�c,
improving its average throughput signi�cantly.

The response time of an asynchronous message (AM_Rt), de�ned as
the time lapse between the instant in which the application generates the
message, i.e., the message becomes ready at the sender interface, and the
instant in which its transmission �nishes, depends on the signaling latency
(Lsig), on the scheduling latency (Lschi) and on the message size (3.5).
Lsig is the time required for the aperiodic transmission request to arrive at
the master and be included in the scheduling structures and Lschi is the
delay induced by the tra�c scheduler until the message is actually included
in a TM (integer number of ECs) and Lpoll is the time for the respective
producer to answer to the poll in that TM (Lpoll < 1EC).

AM_Rt = Lsig + Lschi + Lpoll (3.5)

While the scheduling delay depends on the particular scheduling algo-
rithm and current tra�c load, the signaling latency is independent of the
particular tra�c con�guration and can be bounded approximately between
1 and 2 ECs (Figure 3.8b), corresponding to the situations in which the AM
message is queued just before or after the transmission instant of the signal-
ing message. Notice that 1 EC is always needed after the signaling message
arrives at the master so that it is inserted in the scheduling structures.

To compare the impact of the signaling mechanism in the AMs response
time with respect to the common periodic polling mechanism, Figure 3.8
sketches a timeline with the worst-case situation for the response time of an
asynchronous message (AM_Rt) in the two cases. In (a) a periodic polling
mechanism is used in which the master periodically schedules the AM in a
blind way, while (b) represents the proposed aperiodic signaling mechanism.
In both scenarios the asynchronous message is registered with a minimum
inter-transmission time of 3 ECs.

When activations are periodically triggered (a), the slave may ultimately
have an AM transmission request right after the last poll, leading to a re-
sponse time (AM_Rt) as given by Equation 3.6, where δ is an in�nitesimal

3.3. THE SCHEDULING MODEL 61

δ

Sched. TM

AM_Rt

AM arrives

AM transmitted

idle

Sched.

Lpoll

(a) Periodic Polling

δ

Sched. TM

LpollLsig

AM arrives
AM polled

AM transmitted

(b) Signaling + Aperiodic Polling

Figure 3.8: Response time to Asynchronous messages with FTT-SE (case
with Lschi = 0).

and LEC is the EC length.

AM_Rt = Tmit− δ+Lschi +Lpoll = 3×LEC − δ+Lschi +Lpoll (3.6)

In this scenario the response time varies linearly with the message Tmit.
However, when the proposed signaling scheme is applied (b), once an AM
transmission is requested it produces a signal that is transported in the
following EC and then handled by the master scheduler. The worst-case
delay is, in this case, independent of the message Tmit and given by Equation
3.7

AM_Rt = 2× LEC − δ + Lschi + Lpoll (3.7)

The message activation signal takes at most (worst-case) 1 EC to reach
the master. Afterward, the request is made eligible for scheduling and pos-
sibly dispatched in the following EC if space permits (Lschi = 0).

The best-case response time activation delay occurs in (a) when the mes-
sage is queued right before its poll, as given by Equation 3.8, and in (b) when
it is queued before the signaling message transmission, resulting in 3.9.

AM_Rt = δ + Lschi + Lpoll (3.8)

62 CHAPTER 3. THE FTT-SE PROTOCOL

scenario Worst Best Average

(a) Tmit 0 Tmit/2
(b) 2× LEC 1× LEC 1.5× LEC

Table 3.1: AM Response times with uniform arrival (case with Lschi +
Lpoll = 0).

AM_Rt = 1× LEC + δ (3.9)

If the asynchronous messages are randomly triggered by the application
with uniform distribution, the average response time will vary uniformly
between the best and the worst-cases.

Table 3.1 outlines the response times for the two scenarios in the worst,
best and average cases. The proposed signaling scheme (b) induces a better
asynchronous responsiveness for values of Tmit greater than 2 ECs. The
bene�t for messages registered with longer Tmit is obvious.

3.4 Implementation details

The FTT-SE protocol integrates a communication framework that provides
a set of services possibly directly to the application. These services are
part of a speci�c middleware that addresses distribution and system startup
recon�guration.

3.4.1 Middleware abstraction

In a distributed system the middleware provides the means to abstract the
complexity of bringing together several services running on di�erent nodes,
towards an integrated computational platform.

The FTT-SE middleware provides the abstraction for synchronization
mechanisms as well as a logical abstraction that associates services and the
nodes, guarantees a consistent resource allocation and provides network load
accounting, which yields an admission control for new sessions, specially im-
portant in dynamic and open environments. Basically the idea with this
layer is to bring forth a common application interface available at all nodes,
handling the communication details and providing seamless design composi-
tion.

Such abstraction layer is a valuable tool for an easier and more e�cient
application development and deployment. Figure 3.9 depicts a layered view
of the protocol structure, including the management, interface and core lay-
ers. The protocol lies over a full-duplex Switched Ethernet network. Inter-
nally, the FTT-SE core layer represents the protocol basic communication

3.4. IMPLEMENTATION DETAILS 63

Switched-Ethernet

Application

Core

Management

Interface
F
T
T-
S
E

Figure 3.9: FTT-SE internal layering.

mechanisms, namely the transmission control and the tra�c scheduling. The
FTT-SE management performs a high level session control, establishing the
connections registered for each stream. The idea is to avoid associating the
application and the physical nodes when designing the application and de-
coupling the stream and the endpoint threads, which can register as producer
or consumer of a given stream, independently of their location in the dis-
tributed network. Still in this layer, a QoS management module regulates
online the amount of network resource assigned to each stream based on
the rules set by the application. The adjustments are controlled by a QoS
manager that distributes the network capacity among the streams, based on
the needs and importance of each. The QoS management is covered further
in Chapter 5. Finally, the FTT-SE interface layer provides the set of com-
munication and management services to the application e.g., send, receive,
bind, as well as resource reservation and de-registration that allow using the
FTT-SE protocol.

The FTT-SE implementation is modular, allowing the coexistence of
both master and slave components in the same node. This aspect has prac-
tical relevance since it allows saving on the hardware platform cost, specially
when comparing to a standard implementation over switched Ethernet that
does not require a master node. Note that, in such case, the master function-
ality can be performed by an existing application node, without requiring an
extra node.

Figure 3.10 provides a detailed overview of the fundamental software

64 CHAPTER 3. THE FTT-SE PROTOCOL

Master NIC

F
T

T-
SE

SRDB

EC registerReady
queue

Scheduler
Dispatcher

Built-in
Slave

signaling TM

NRDBs update
NRDB Memory pool

TM
DispatcherC

or
e

M
an

ag
em

en
t Connection DB

QoS DB

Queuing

Connectivity

QoS/Admission
control

In
te

rf
ac

e

Slave NIC

Stream
management

Application
threads

n

Stream
communication

m nodes

Stream
management

Figure 3.10: FTT-SE internal details.

building blocks that compose the FTT-SE framework. Regarding the mid-
dleware abstraction, there are several aspects that deserve a special mention
since they contribute to a better application integration. The functional
details of each block in Figure 3.10 are described next.

The protocol basic implementation

The basic components of the protocol are pretty much identical to the ar-
chitecture proposed by Pedreiras [99] for the FTT-Ethernet.

In the master, a system requirements database (SRDB) holds the running
tra�c properties, either synchronous or asynchronous. A Scheduler period-
ically scans the SRDB, pushes transactions into the ready queue and builds
transaction plan for the trigger message (TM), which is stored in the EC-
register. This register is then read by the Dispatcher and inserted in the TM
transmitted at the beginning of the following EC. For each tra�c class there
is an independent ready queue and a corresponding scheduler, which follows
any policy with a resolution set by the length of the EC (LEC). Regardless
of the scheduling policy, the messages are activated di�erently whether they
follow the synchronous or asynchronous model.

Messages within the synchronous model get activated, i.e., enter the ready
queue, in a periodic basis. A counter for each variable triggers that activa-

3.4. IMPLEMENTATION DETAILS 65

tion every Ti. As for the asynchronous messages, their activation is related
to asynchronous triggering of messages in the node, which are intercepted
and kept waiting for transmission order. As previously described in Sec-
tion 3.2.2, at the end of the EC, a signaling message is sent to the master
with an indication of the asynchronous messages queued in the node. The
master then schedules those messages according to their tra�c class. This
mechanism allows enforcing minimum inter-transmission time speci�ed for
real-time asynchronous messages. Therefore, similarly to the synchronous
tra�c, a counter tracks the last transmitting time of such message, and
enforces a separation of at least Tmiti between consecutive transmissions.
Referring to the asynchronous tra�c without real-time requirements that op-
erates in the background in a best-e�ort basis, it is handled through a FIFO
queue, �lling the slack left unused by the other tra�c, without schedulabil-
ity or over�ow-free guarantees. All the remaining procedures, mainly the
polling with the TM, are similar for all messaging models.

In the slaves, the TM is received, decoded and its contents compared
against the node requirements database (NRDB). For each message that is
polled by the TM, if the node is a producer of it, the dispatcher fetches
the message from the memory pool and orders the its transmission. Con-
versely, when a slave receives a data message, it checks whether the node
is a consumer and, if not, stores the message contents in the memory pool.
The memory pool operates di�erently whether the message being stored is
synchronous or asynchronous. Synchronous messages have state semantics
and each message is associated to a bu�er holding the latest state update.
Asynchronous messages have an event semantics and so are stored in a FIFO
queue, both in the sender and receiver. Therefore, the memory pool addi-
tionally holds the dynamic information related to each stream, such as the
queuing status or the message freshness. Still in the memory pool compo-
nent, application signals are associated to each bu�ering entity in order to
support synchronization events to the application upon a transmission or
reception of a message.

The NRDB component records the model properties of all streams re-
lated to that node, i.e., all the static (long-term lasting) information. Such
information must be consistent with the information present in the master
SRDB. There is a clear bound between the streams set in the NRDB and
the items in the memory pool.

As proposed in Section 3.2.2 the slave nodes additionally produce a sig-
naling message that reports the status of the queues of the streams for which
the node is a producer. That message, a unicast message is sent to the mas-
ter node at approximately the same instant as the master sends the TM.
For this purpose, the dispatcher, which is the same component that decodes
the TM and issues the message productions, synchronizes with the every
received TM in order to program the instant of transmission of the next
signaling message, slightly less than 1 EC later.

66 CHAPTER 3. THE FTT-SE PROTOCOL

Resource allocation consistency

The basic infrastructure described before has no mechanism supporting the
requirements consistency between the master SRDB and the nodes NRDB.
If no automatic mechanism is provided, the application necessarily has to
ensure that streams are registered consistently across the master and the
related slaves. This coordination requires an agreement between these el-
ements in the distributed network specially when addressing the dynamic
changes that may occur in the network requirements. Note that the proper-
ties of a given stream may vary at run-time, with data being generated, and
that not only the FTT-SE stack must be consistent but also the application
threads must be aware of the updates taking place and react accordingly.

To address this issue the FTT-SE framework is provided with mecha-
nisms that transparently update the protocol internal databases (NRDB)
that report to the application threads the updates on the streams to which
they are bound. In a way, this is a synchronization mechanism between the
distributed threads in a recon�guration procedure.

The network management interface is con�ned to the FTT-SE core layer
in the master node, as illustrated in Figure 3.10. All the con�guration com-
mands that modify the network requirements are issued through the master.
This facilitates consistency and alleviates the application in the slaves side,
suppressing the need for additional synchronization (logic and time) between
the distributed nodes.

Every time the master SRDB is updated, all related NRDBs are noti�ed,
using a broadcast channel established within the FTT-SE core and connect-
ing the master and the slaves. The channel is created along with the FTT-SE
core layer, making use of the Built-in Slave component in the master that
requests the creation of an asynchronous broadcast channel. This channel
is unique and serves all slaves. It is con�gured in all nodes with a reserved
default ID that is �xed and hard-coded. The master registers a producing
endpoint whereas each slave registers a consuming one.

The SRDB interface mechanisms guarantee that the updates are simulta-
neously committed in the master and all slaves, within the system resolution
(one EC). Moreover, depending on the nature of the update, changes may
not be considered immediately, having to wait, for instance, for asynchronous
messages already queued. In such cases the two instances may co-exist in
the databases, to provide a soft transition to the application. For exam-
ple, consider a thread producing messages considering a set of properties A
for the channel. Meanwhile, the stream requirements are modi�ed to ex-
hibit properties B. The producing thread is immediately noti�ed for the new
properties and the receiving thread is informed right after the last reception
of the message already queued with properties A. Another mechanism pro-
vided by the SRDB interface is group handling. It provides the ability to
perform atomic changes of several modi�cation requests, i.e., the commands

3.4. IMPLEMENTATION DETAILS 67

are committed by the system all at once.

The Built-in Slave component in the master node is introduced to handle
the asynchronous communications of this node, as needed for the network
management. In fact, this component provides a full asynchronous com-
munication interface to the master, allowing the registration of synchronous
or asynchronous endpoints. The interface to this component is alike in all
nodes, except for the NRDB updates received in the slaves and the asyn-
chronous signaling messages received in the master that bypass the need for
message exchange in the network.

activations that go directly to the master without a transporting mech-
anism through the network.

With these mechanisms the slave nodes are automatic and accurately
synchronized with each other and the master node that de�nes the network
requirements, at the basic protocolar level.

Plug 'n Play

When addressing �exible and, particularly, open systems, the network starts
executing without any pre-con�guration or knowledge about the system
topology. The architecture must be prepared to support the online con-
nection and disconnection of services and nodes in a random order. This
demands for mechanisms that detect and act on such events, without dis-
rupting nor jeopardizing the ongoing communications.

When booting-up the system, each of the layers described in Figure 3.9
starts in a bottom-up order, preparing the software components to operate
properly. Some of the local components are related and dependent and so
they follow a hierarchical boot procedure. Moreover, some components are
distributed and also related and dependent, more speci�cally, between the
master node and the slave nodes.

It is thus necessary to provide the mechanisms to �rstly detect changes to
the network topology and then discover the streams provided by each node.
We shall now focus on the former, covering the latter afterwards, along with
the FTT-SE interface layer.

The boot-up procedure is conducted individually in each distributed node
and globally in the distributed system, where the nodes (including the mas-
ter) may be randomly included. It is however obvious that the network only
operates after the master connection and that this cannot be disconnected af-
terwards. Each node enters the network with zero-con�guration, i.e., a plug
'n play procedure has to be conducted. Hence, the slaves must suspend their
boot until a Master is detected and resume it afterwards simultaneously, as
if they were connected at time zero.

When starting the slave's FTT-SE core layer the �rst procedure, after
sensing the master, is to become visible to the Master's FTT-SE core. The
master aggregates the system con�guration and thus requires the knowledge

68 CHAPTER 3. THE FTT-SE PROTOCOL

of all the nodes connected. Only then the slave may prepare all the commu-
nication infrastructure upwards. However, the slaves have no communication
channels established to inform the master. The only hard-coded con�gura-
tion is the asynchronous broadcast channel, to which all slaves register as
consumers to receive the SRDB updates. To notify the master about the
presence of slaves, each slave uses the aperiodic signaling mechanism as de-
scribed before. This channel only conveys minimum sized packets, one per
node and per EC, thus not requiring scheduling and being adequate for use
on this Plug 'n Plug phase. Hence, on boot, the slaves inform the master
through this channel using a special message that contains the node's Eth-
ernet unique address (MAC). The master, then associates an internal ID
to that node, updating the network topology, and acknowledges the slave
noti�cation through the asynchronous broadcast channel.

After this procedure, the nodes are ready to operate using the basic
communication primitives provided by the FTT-SE core interface that in-
clude binding to an existing endpoint and sending or receiving accordingly.
However, the stream must already be registered in the slave and so must
have been registered through the master interface. The upper layers assess
this registration procedure and agreements between the slaves and the mas-
ter. There is though an additional service provided within the FTT-SE core
layer that leverages the connection of the upper layers on this distributed
scenario. It basically provides a noti�cation and acknowledgment mecha-
nism from each slave to the master. It extends the hereby described Plug
'n Play procedure for the upper layer (the FTT-SE interface). It uses the
same channels, i.e, the signaling and the asynchronous broadcast channels,
to notify the FTT-SE interface in the master whenever a new node is regis-
tering and so trigger the respective session establishment procedure, handled
within the FTT-SE interface layer.

In an open system scenario, in the same way as the nodes are connected
asynchronously, they may also be disconnected with no previous report, e.g.
on a system failure or just because there is not a soft deallocation proce-
dure, with all the implications that may result to the application. It is thus
of utmost importance that the network, particularly the master, is able to
maintain its knowledge on the current network topology and act accordingly
when changes occur without previous noti�cation, which includes readjusting
its network, deallocating the broken streams and reporting to the application
about those. Again, we will focus on the former, covering streams dealloca-
tion to the FTT-SE interface layer.

In the FTT-SE core layer, since the slave is not able to notify the mas-
ter when removed, the master must follow a discovery procedure to detect
missing nodes. A simple mechanism to that end comprehends the use of an
activity aging counter, easily implemented with the signaling message fresh-
ness, which is sent every EC. The master, reading the counter for each node,
is able to discover when the node becomes inactive. Upon a pre-speci�ed

3.4. IMPLEMENTATION DETAILS 69

sequence of inactivity events, the master removes the slave from the network
topology, letting the FTT-SE interface layer to be aware of the change and
apply the necessary measures that exclude the node from all the running
services.

Application interface and management

The purpose of a middleware layer is to provide to the application a com-
munication interface that fully abstracts the protocol internals providing a
uniform and transparent access to the communication services throughout
the distributed system.

The FTT-SE interface layer plays an important role to support such
distribution and network abstraction. It provides the interface for the net-
work management and the data communication transactions then estab-
lished, where it entirely abstracts the network internal namespace for nodes
and streams, creating a full separation with the application-de�ned names-
pace. The abstraction mapping is achieved with a binding process that
associates the namespaces and allows, for instance, application threads to
be node independent regarding execution.

Referring to the internal implementation of the communication prim-
itives, the FTT-SE interface simply redirects the interchanged data and
control signals to/from the FTT-SE core layer. It should be noted, though,
that these transactions are optimized to minimize the number of copies when
going through the protocol stack. Depending on the Ethernet driver, it is
possible to accomplish the whole process with a single memory copy trans-
action.

The management related requests are triggered by the slaves and go
through the master, before reaching the FTT-SE management layer. The
interface layer assures the abstraction of this communication with the mas-
ter, serializing the requests in a queue and allowing the submission of several
requests as a group. This serialization and group handling mechanism is
necessary if we consider the need for atomic changes and the fact that nodes
may compete asynchronously for the opportunity of modifying the network
requirements. This mechanism demands a direct communication link be-
tween the slaves and the master. Hence, whenever a node is attached, two
asynchronous message streams per node are automatically created. These
form a bidirectional channel that is transparent to the application and al-
lows carrying out the requests and acknowledgment with the Master FTT-SE
interface layer.

Synchronization properties

Regarding to the middleware and services made available to ease the appli-
cation design, there are three synchronization aspects to highlight related to

70 CHAPTER 3. THE FTT-SE PROTOCOL

the streams communication. The �rst aspect refers to the synchronization
of the threads that handle the streams directly. There are three kinds of
threads supporting a stream, the producing thread, one or more receiving
threads and one management thread, being the latter the one that negoti-
ates and de�nes the stream requirements with the FTT-SE network. These
threads can execute on any node, all apart in di�erent nodes or even share
the same node. The issue here is that all threads are attached to the same
logical entity, the stream, and so have to be set together and run as a whole,
e.g. there is no point in issuing a transmission if there is no thread receiving
and handling the data.

As part of the communication endpoints establishment procedure, each
application thread, either producer or consumer, registers itself in the mas-
ter. However, a single endpoint registration is not enough to set a stream.
The stream only becomes valid once associated to one producer and at least
one consumer. Therefore, each thread individually, after registering the end-
point, must wait on a binding procedure until the stream is fully registered.
In the slaves this binding procedure becomes possible when the stream prop-
erties are visible in the NRDB.

This stream registration procedure takes place in the Master FTT-SE
management layer that collects each registered endpoint to build the stream
connectivity table, associating the stream application ID Si with the node
IDs. When the stream becomes fully described it is issued to the network,
which eventually unblocks all threads synchronously. This mechanism pro-
vides a full synchronization of the application right from the stream startup.

The second synchronization feature refers to the noti�cation of commu-
nication events on a channel already established and running. In the slaves,
whenever a message, synchronous or asynchronous, is transmitted or re-
ceived, a signal is raised that unblocks any blocked thread waiting for that
event. This allows an easier and simpler interaction with the network, spe-
cially in event-triggered communication scenarios.

Finally the third synchronization aspect refers to getting all threads up-
dated regarding the stream requirements. When the management thread
sets the base requirements, all threads have access to that information, as
they share the same design scope. Each thread then produces and receives
data according to those requirements, for example a video frame with a given
size. However, when the requirements set by the application allow instanta-
neous variations, as a result of a QoS manager, the application is not able
to directly control the properties of a stream on the network. The result of
the QoS manager depends on the global requirements set for each stream as
well as the current network load. Furthermore, these variations may occur
asynchronous, e.g. upon adding or removing another stream that ultimately
a�ects the network current load, forcing the network re-con�guration. After
a re-con�guration all the involved threads must be properly noti�ed of those
changes. Failing to do so, may lead to potentially catastrophic consequences,

3.4. IMPLEMENTATION DETAILS 71

since the application threads may inconsistently address the produced and
consumed data. Another implication of this kind of synchronization is that
the application does not stop while updating the running properties of a given
stream. The architecture must be able to support those changes online and
interact with the application. This latter topic was brie�y introduced when
describing the online synchronization between the SRDB and the NRDBs
within the slaves.

This online synchronization issue is handled using an tagging mechanism
that associates a unique tag to the requirements of a stream. Whenever the
characteristics of the stream change, so does the tag. During the transition
phase from one state into the other, i.e., one tag to another, the two require-
ment sets co-exist in the SRDB as well as in the corresponding NRDBs.
This is necessary for a smooth transition, where from one side the pending
messages (old-tagged) have to be scheduled and transmitted, and from the
other, newly-tagged messages are being produced.

For the application, this tagging mechanism allows a friendly synchro-
nization of each thread to the environment dynamics. Production of old-
tagged data is denied from the moment the new tag is visible in the NRDB,
guaranteeing that no old-tagged messages are bu�ered. The thread produc-
ing that message must then poll the new tag requirements and rearrange
the data being produced. In the consuming side, threads get all messages
along with the associated tag that informs how the message must be han-
dled and so they are explicitly noti�ed of any changes on the current stream
properties.

Figure 3.10 shows some of the components that play a part supporting
these synchronization mechanisms. In the FTT-SE management layer, the
Connections_db stores the connectivity of the streams. After a complete con-
nectivity registration, the stream passes an admission control and the QoS
management that determines the �nal properties submitted to the network.
In the slaves, the memory pool bu�ers the transactions data and holds the
signaling �ags that trigger the communication activity events. These events
pass through the FTT-SE interface layer where the stream ID is translated
and passed to the application layer. Still in the slave nodes, the NRDB holds
the streams requirements currently registered in the network.

3.4.2 Data addressing modes

The centralized architecture of FTT-SE relies on the master to coordinate
the tra�c that crosses the switch. In this task, the scheduler handles the
switching queues independently, building timelines for each, while allowing
parallel forwarding paths.

The Ethernet switch operates in the data link layer, routing Ethernet
packets according to the destination MAC address, see Section 2.3. The
packets can be forward as unicast, multicast or even broadcast. A unicast

72 CHAPTER 3. THE FTT-SE PROTOCOL

packet is forward to a single output queue, corresponding to the packet des-
tination MAC in the forwarding table. A broadcast packet uses a special
destination address, reserved to replicate the packet into all the output port
queues, except for the one from where the packet arrives. Finally, the mul-
ticast transmission also uses a special MAC address type to forward packets
to multiple destination ports. This address is taken out of a range reserved
for multicast transmissions, where each address designates a multicast class.
The switch forwarding table registers the ports that refer to each multicast
group. However, the building procedure of this forwarding table is more
complex, as the receivers have to establish a registration to the multicast
group. The IGMP protocol, detailed in Section 2.3, handles this registra-
tion that is supported by switches with IGMP snooping capability. Once
the forwarding addresses are properly set in the table, the multicast packets
that match the indexed forwarding addresses are replicated to the respective
output queues, similarly to the broadcast address.

In general, broadcast messaging better suits the producer-consumer com-
munication model, which is not the model followed by the FTT-SE protocol.
It can also be used as a trade-o� replacement for when multicast is not sup-
ported and using multiple unicast messages becomes too expensive. Another
application scenario for broadcast messaging is on network discovery services,
where polls are required to �ood the network through all its branches.

The FTT-SE protocol, follows the publisher-subscriber model, which is
more e�ciently supported by the multicast transmission model. Multicast
messaging lies between the unicast and broadcast models that are the two
opposite addressing extremes. In fact, it generalizes both, since a multicast
can address either a single port (unicast) or all the other ports (broadcast),
without additional penalty other than the layer 2 subscription required for
the receivers.

The two tra�c models within the FTT-SE architecture, synchronous
and asynchronous, de�ne for each stream a sending node and one or more
receivers, as de�ned in Equations 3.1 and 3.4. Depending on the speci�cs of
each variable it is possible to enforce a unicast, multicast or even broadcast
transmission. Thus, the multicast transmission, if supported by the switch
device, is the preferable choice since it is more resource e�cient de�ning the
message stream.

Section 3.4.1 described the procedure necessary to register a messaging
stream in the protocol. The registration procedure is centralized in the mas-
ter node and then unfolded to all the nodes that take part in each transaction.
During the process, the producer and consumers of each stream get to know
the transition details, among which, the destination MAC address. That
address can either be a broadcast directive, a speci�c node MAC address or
a multicast de�ned group. When de�ning a multicast, the master associates
the stream to a multicast group, from the range of MAC addresses reserved
by the IGMP protocol, which is then used in the stream destination �eld.

3.5. SIMULATION AND EXPERIMENTAL ASSESSMENT 73

To complete the multicast session, the receivers have to be associated to the
multicast group membership in the switch. Each registered receiver sends an
IGMP Host membership report packet to the switch. The switch, snooping
the IGMP tra�c, associates the ingress port to the multicast group in its
forwarding table.

3.5 Simulation and experimental assessment

This section presents both simulation and experimental results that allow
assessing the potential of FTT-SE to e�ciently use the aggregated switch
throughput and to verify the correctness of the implementation as well as
the protocol capability to enforce jitter control in synchronous tra�c when
compared to using a COTS switch without any further transmission control.

3.5.1 Periodic tra�c simulation results

The tra�c scheduling model used in FTT-SE enforces a strict priority order
in the scheduling of messages, even if it leads to the insertion of idle time in
the synchronous windows of the ECs. This happens whenever the scheduler
moves on to the next EC while there is still capacity left in some links and the
ready queue is not empty. Such idle time depends on the speci�c scheduling
policy used and introduces a degradation of the e�ciency in the use of the
switch aggregated throughput.

To assess such degradation several simulations were carried out with ran-
domly generated message sets using both RM and EDF scheduling. The
operational parameters considered an EC duration of 5ms and a maximum
synchronous window duration (LSW) of 85% of the EC (4.25ms). The mes-
sage sets were generated with uniform distributions according to the follow-
ing parameters: period between 1 and 4 ECs, deadline equal to period, single
packet messages with payload between 1200 and 1450 data bytes, Publisher
chosen from {A, B, C, D, E, F, G, H} and Subscriber chosen from {A, B,
C, D, E, F, G, H, Broadcast}\{Publisher} and considering three di�erent
cases: no broadcasts, 50% broadcasts and 100% broadcasts. The two �rst
cases verify the capability for taking advantage of the parallel forwarding
paths. Moreover, despite the protocol supporting the speci�cation of o�sets
among the synchronous streams the simulations considered a synchronous
release of all messages since we were interested in detecting worst-case re-
sponse times.

The message sets were generated in order to obtain a given utilization
value of the most loaded link. Thus, new messages were continually ap-
pended to the set until one link reached the prede�ned maximum load. This
generation method was used because it prevents queue over�ows with an
appropriate load threshold.

74 CHAPTER 3. THE FTT-SE PROTOCOL

Figure 3.11: Schedulable sets versus the aggregated submitted load with
EDF (bottom) and RM (top).

Each of the generated sets was simulated using both EDF and RM
scheduling policies. The simulations were carried out until a deadline was
missed or the full macro-cycle elapsed in which case the set was considered
schedulable. The ratio of schedulable sets for EDF and RM with respect
to the total number of generated sets is shown in Figure 3.11. This ratio is
shown as a function of the total load submitted to the switch, corresponding
to the generated sets. In general, as expected, EDF (bottom) generates more
schedulable sets than RM (top) despite the di�erence being relatively small
(less than 10% of the schedulability ratio). Nevertheless, this experiment
shows how easy it is to inherit the bene�ts of EDF tra�c scheduling over
COTS switches using FTT-SE.

Also as expected, the switch utilization with broadcast tra�c is rather
low since parallel forwarding paths are not exploited. There can still be a
small level of parallelization between the uplinks and downlinks inherent to
full duplex but it is rather limited. Conversely, without broadcasts the switch
allows for a substantial increment in the utilization of its aggregated band-
width. In this case, there were 8 publishers connected to the switch through
100 Mbps ports and generating tra�c further constrained by the synchronous
window with a maximum duration of 85% of the EC. In these circumstances,
the maximum aggregated throughput is 680 Mbps. The �gures show that,
in the unicast-only case, EDF and RM are capable of successfully scheduling
all generated sets with aggregated utilization of 55% and 50% of that abso-

3.5. SIMULATION AND EXPERIMENTAL ASSESSMENT 75

Publishers 1-9

Rx 1

FTT-SE
master

Figure 3.12: The experimental platform.

lute maximum and, in some cases, up to 80% and 73%, respectively. These
numbers, however, cannot be generalized since they depend on the evenness
of the load distribution across the switch links. Nevertheless, these values
show that FTT-SE is capable of e�ciently exploiting the switch aggregated
capacity, whenever the load is evenly distributed across the links.

The values obtained with 50% broadcasts are intermediate values that
illustrate the penalty that these transmissions cause. It is interesting to
observe that the schedulability ratio grows approximately 50% when moving
from the 100% broadcasts to the 50% broadcasts case but when moving to no
broadcasts, such improvement is near 450%. This indicates that broadcasts
impose a severe penalty on tra�c schedulability even if in low number.

3.5.2 Experimental results

The prototype implementation of the FTT-SE protocol was carried out on
the RT-Linux [54]1 real-time operating system over the Ethernet layer pro-
vided by the LNet network stack [53]1. Several practical experiments were
carried out to verify the correctness of the implementation as well as the level
of jitter control. The experimental platform, shown in Figure 3.12, comprises
eleven computers interconnected by an Allied Telesyn model 8024 Ethernet
switch, with 24 ports and 2 priority levels. The computers included one
Celeron at 2.2GHz, one Pentium III at 550MHz, six Celeron at 735MHz as
well as three SBCs with Pentium MMX at 266MHz. The network interface

76 CHAPTER 3. THE FTT-SE PROTOCOL

ID C(bytes) T(=D)(ms) maxjw(µs) maxjwo (µs)
2 1000 1 483 996
7 1000 1 174 984
8 1000 1 170 1003
3 3840 3 92 932
1 3840 4 893 559
4 3840 4 316 446
5 3840 4 1000 521
6 3840 4 137 561
9 1480 8 4132 436

Table 3.2: Message set used in the FTT-SE experiments.

cards (NICs) were Intel 8255 and 3Com 3C905B.

One of the computers was dedicated to the FTT Master, nine computers
were data publishers, publishing one message each, and the last computer
was a subscriber of all those nine message streams. Only one subscriber is
used in this experimental assessment to maximize the messages concurrency
in a single link, creating a worst-case latency, and probably jitter, situation.
The message set is detailed in Table 3.2 and mixes messages with di�erent
periods as well as single-packet (messages 2 and 7 to 9) and multi-packet
(messages 1 and 3 to 6). Remember that FTT-SE handles transparently the
fragmentation and re-assembly of multi-packet messages, allowing preemp-
tion between packets. The total load submitted by this set is approximately
68,6 Mbps. Concerning the operational con�guration of FTT-SE, the EC
duration was set to 1ms and the LSW to 85% of the EC, i.e., 0,85ms. The
tra�c scheduling was RM.

The same experiments were also carried out with the publishers sending
information at the same rate but without the transmission control mecha-
nisms provided by FTT-SE. The inter-arrival instants of all messages at the
subscriber node were recorded for both of these con�gurations referred to as
with and without FTT.

Firstly, an experiment was carried out to assess the infrastructure jitter,
i.e., the jitter due to the operating system, network device drivers and packet
switching. This is the base jitter of the system without any scheduling in-
terference. This preliminary experiment consisted in the transmission of a
single periodic message, with 1500 data bytes, transmitted every EC (1ms)
by one of the slower computers, during 560s. In this case there is no schedul-
ing jitter and thus the jitter observed is only caused by the communication
infrastructure. As depicted in Figure 3.13, the infrastructure jitter is lower

1RTLinux and LNET were by 2006 supported by FSMLabs Inc. They are currently
distributed by Wind River Systems Inc.

3.5. SIMULATION AND EXPERIMENTAL ASSESSMENT 77

Figure 3.13: The infrastructure jitter.

than 5µs for 99% of the samples, with a single occasional maximum of 43µs.

The following experiments consisted on the transmission of the full mes-
sage set de�ned in Table 3.2 during approximately 300s, both with and
without the FTT-SE protocol. The maximum measured jitter is also shown
in the same table in columns maxjw and maxjwo , for the cases of with and
without FTT-SE, respectively. The jitter jw and jwo was measured taking
the modulus of the di�erence of consecutive message arrival timestamps.
This is also know as the relative jitter.

Figure 3.14 and Figure 3.15 show the histograms of two selected messages,
one high priority and the other with lowest priority, respectively, both with
and without FTT-SE. The results obtained are illustrative. In the absence of
transmission control, i.e., the case without FTT-SE, the clocks of the various
publishers are not synchronized and the respective relative drifts lead to
situations that vary from high contention periods, in which all transmissions
arrive at the subscriber uplink within a short interval and are queued and
thus delayed, to other situations in which the transmissions are de-phased,
thus with practically no mutual interference and no delay. This explains the
large spread in the inter-arrival time observed in the respective histograms.

Conversely, with FTT-SE the system nodes are globally synchronized
by the TM and the submitted load is always within the capacity of the syn-
chronous window of each EC. However, within the EC, the tra�c is managed
solely by the switch, without control of the FTT-SE. The jitter that results
from the system is of two types, sub-EC, caused by interference among the
streams in the FIFO queues in each EC, and scheduling induced, caused by
the actual FTT-SE scheduling activity on a time scale with a resolution of
1 EC. The former type is clearly visible in messages 2, 7 and 8, generated
by di�erences in the speed of the respective computers in responding to the

78 CHAPTER 3. THE FTT-SE PROTOCOL

Figure 3.14: Histogram of inter-arrival times for message 7.

TM. In some cases, e.g., multi-packet message 3, the jitter value is especially
low because it refers to the last packet, which is sent later in the EC, being
queued after all others and thus in a relatively constant position in the FIFO
queue. The latter type of jitter, i.e., scheduling jitter, is visible in message
9 which has the lowest priority, thus being sometimes scheduled several ECs
later by RM scheduler.

Finally, the transmission control enforced by FTT-SE may also be bene-
�cial under highly bursty loads. Without the transmission control the level
of contention at the receivers might be too high for many network device
drivers, which simply crash. The transmission control of FTT-SE prevents
this abnormal situation by maintaining the submitted load under manage-
able levels per EC, obviously at the expense of enlarging the processing time
for the same load. Nevertheless, this is su�cient to avoid such crashes and
keep the system running. This phenomenon has been observed several times
during the practical experiments.

3.6 Conclusion

The advent of switched Ethernet has opened new perspectives for real-time
communication over Ethernet. However, a few problems subsist related with
queue management policies, queue over�ows and limited priority support.
Meanwhile, several techniques were proposed to overcome such di�culties
but they require speci�c hardware, are in�exible with respect to commu-
nication parameters or do not enforce timeliness guarantees. This chapter
proposed using the FTT paradigm to achieve �exible communication with
high level of control to guarantee timeliness and provide adequate queues

3.6. CONCLUSION 79

Figure 3.15: Histogram of inter-arrival times for message 1.

management in micro-segmented Ethernet networks. This resulted in the
FTT-SE protocol. The chapter presented the mechanisms used to handle
the periodic and aperiodic tra�c and provided rules that allow building EC-
schedules that respect the duration of the prede�ned transmission windows.
Moreover, it described some implementation-oriented mechanisms intrinsic
to the protocol that must be considered when instantiating the protocol in a
system. Finally, several simulation and experimental results were obtained
that exhibit the e�ciency of the proposed approach in terms of using the
aggregated switch throughput and enforcing di�erent tra�c scheduling poli-
cies. The results achieved also highlight the higher level of jitter control
possible with FTT-SE when compared with COTS switches. However, for
applications that are highly sensitive to jitter, further mechanisms might be
required to also enforce low sub-EC jitter.

80 CHAPTER 3. THE FTT-SE PROTOCOL

Chapter 4

Tra�c schedulability analysis

This chapter presents RM and EDF schedulability tests for the FTT-SE pro-
tocol. As described in the previous chapter, the schedulability tests have to
be executed online. For this reason, the research has focused on utilization-
based tests, which can be implemented with linear time complexity. Ad-
ditionally, the nature of utilization-based tests facilitates their adoption in
dynamic Quality of Service (QoS) management mechanisms supporting a
bandwidth-based QoS distribution through the services.

4.1 Introduction

Despite the relatively large amount of work on network-induced delay caused
by switches, particularly on Ethernet switches [78][49], low attention has
been devoted to utilization-based tests.

Utilization-based analysis are typically more pessimistic, compared to
other analysis such as Network Calculus (NC) and Response Time Analysis
(RTA), but on the other hand, they are faster, thus more appealing for use in
dynamic frameworks such as the FTT-SE. Moreover, utilization-based anal-
ysis provide information on the amount of resource, bandwidth in this case,
that can be used without compromising the system schedulability, which is
of paramount importance to carry out bandwidth distribution among di�er-
ent streams within a dynamic QoS management framework. This topic is
extensively described in Chapter 5.

In Ethernet switches, the usual presence of FCFS policy queues compli-
cates using utilization-based tests. The works that consider such tests are
built upon modi�ed switches that carry out di�erent scheduling policies such
as RM or EDF. Conversely, FTT-SE overrides the e�ect of those FCFS pol-
icy queues and supports any scheduling policy on a COTS switch such as
those that are suited for utilization-based tests. Nevertheless, these policies
are implemented on a coarse scale (EC) and thus the use of utilization-based
schedulability tests in FTT-SE requires some adaptations to the tra�c model

81

82 CHAPTER 4. TRAFFIC SCHEDULABILITY ANALYSIS

Figure 4.1: Tra�c aggregation on switched Ethernet.

of such protocol.

4.2 Interference in the switch architecture

Multiple services competing for a common shared resource inevitably cause
interference on each other. Contention among services is managed serializing
the access to the resources under consideration. The most common approach
to handle serialization is by using a ready queue, where all services wanting
to use the resource are placed. The order in which the services are placed is
de�ned by the scheduling policy.

On a switched Ethernet network, the nodes are connected by means of
parallel links with each link being an active shared resource. The �ows
that traverse the switch establish interdependencies that make the tra�c
scheduling more complicated than just the scheduling of multiple indepen-
dent resources.

Figure 4.1 sketches the interference path for a generic message mi, when
issued to a switched Ethernet network. The interference appears when aggre-
gating tra�c from di�erent sources into bandwidth limited channels. Firstly,
in the output queue of the sending node, mi competes for the access in the
uplink that conveys all messages from node Srci to the switch. Once in
the switch, mi is forward to the destination link, Dsti, where it eventually
competes with messages from other source nodes.

Therefore, the transmission delay results from combining the delays on
both queues, from the moment the application issues the packet transmission
until it arrives at the destination node. Unless stated otherwise, in the
following analysis the propagation times and switching delays are neglected,
as they are �xed and easily accounted within the packet size. Also the
computational delay within the nodes, sender and receiver, is included within
the propagation time.

4.2. INTERFERENCE IN THE SWITCH ARCHITECTURE 83

The scheduler within the FTT-SE protocol controls both, the nodes out-
going queues and the switch forwarding queues. However, while the former
ones are directly managed by the scheduler, the latter ones, that are typically
FIFO queues can only be overridden indirectly by controlling the submitted
tra�c.

a)

b)

c)

Figure 4.2: Inserted Idle Time on switch output queues (the numbers denote
the destinations).

The interference in the nodes outgoing queues is easily assessed given the
scheduler and the tra�c activation models. However, evaluating the impact
of the switch queues depends on the tra�c pattern generated by the other
nodes. As depicted on Figure 4.1, message mi su�ers interference on Dsti
from messages issued by nodes other than Srci, but equally forwarded to
Dsti. To further complicate the analysis, these messages also accumulate
the interference pattern from the �rst queuing step in the respective sources.
Evaluating the interference becomes a complex task that depends on how the
patterns are merged in the switch FIFO queues. Figure 4.2 illustrates the
problem under consideration, by showing di�erent interference patterns and
the resulting message latencies. The scenario denotes a dual port switch. On

84 CHAPTER 4. TRAFFIC SCHEDULABILITY ANALYSIS

the left side are represented the uplinks and on the right side the downlinks.
The boxes represent messages and the numbers inside, the destination port.
On this example, packets are supposed to be ready at t = t0 and issued
as described on the uplinks. For instance, on Figure 4.2.a, the packets are
issued in such a way that at each instance, packets are sent to di�erent
destinations. Clearly, in this case, there is no contention and the packets
are immediately forward. On Figure 4.2.b, at t = t0 the �rst transmissions
are issued to the same output port (port 1). The switch promptly sends one
of them while storing the other. After a complete transmission, the second
transmissions are issued, with one of the messages forward to port 1 and
queued. On the following transmitting steps, the same transmitted pattern
is repeated but for the other output port (port 2). Finally, 4.2.c exacerbates
this interference phenomena issuing consecutive sets of messages for the same
port, leading to a maximum momentaneous backlog of 2 units. It is also
noticeable the inserted idle time (IIT) of 2 units in the output port 2 caused
by the non-existence of tra�c to that port, which extends the transmission
time by 2 units. Comparing these three scenarios it is noticeable the �nal
transmission delay that varies according to the transmitting tra�c patterns
and how they correlate in time. It is evident the relationship between the
additional transmission delay, the IIT and the message transmission pattern.

4.3 Interference within the FTT-SE periodic model

The previous section generically described the interference phenomenon that
occurs with several tra�c sources in a switched Ethernet network. To ad-
dress this interference within the FTT-SE, the analysis has to conform with
the periodic activation model, address the simultaneous scheduling of mul-
tiple inter-dependent links and �t additional constraints of the architecture,
namely the additional inserted idle time (IIT) that results of strictly enforc-
ing the synchronous window duration. The periodic scheduling model in
FTT-SE considers Ns message streams (mi) which descriptors are stored in
the Synchronous Requirements Database Γ (Equation 3.1).

The streams are mainly characterized by the periodic activation release
(Ti), message size (Ci) that can extend over several Ethernet packets and
the forwarding directions that include the sending link (Si) and one or more
receivers (

[
R1
i ..R

ki
i

]
).

4.3.1 Window con�nement

The FTT-SE scheduler strictly con�nes the periodic tra�c to the synchronous
window, with maximum size of LSW . This means that when a message can-
not be fully transmitted within this window, it is kept in the ready queue
and the scheduling is suspended and resumed in next EC, as illustrated in

4.3. INTERFERENCE WITHIN THE FTT-SE PERIODIC MODEL 85

1

time

2 4 7
X n

ECn

Periodic window S

1 3 8

8
ECn+1

Figure 4.3: Impact of inserted idle time.

Figure 4.3. This property prevents the window overrun but it introduces idle
time that must be accounted for in the analysis.

The e�ect of such inserted idle time has been thoroughly studied in [27]
for �xed-priorities scheduling and [28] for EDF. Therein, it was shown that
when scheduling within a periodic partition of length S and period E, as long
as the message transmission time Ci is in�ated with a compensation factor,
becoming C ′i, as in Equation 4.1, with X being the maximum inserted idle
time upper-bounded by the maximum packet length. Any schedulability
analysis for preemptive scheduling with �xed or dynamic priorities applies.

C ′i = Ci
E

S −X
(4.1)

When considering utilization-based tests, the compensation factor can be
applied to reduce the utilization least upper bound while the transmission
times Ci are kept unchanged as shown in Equation 4.2. We will use this
approach in the remainder of this chapter.∑ Ci

Ti
≤ U lub × S −X

E
(4.2)

4.3.2 Deferred release in the downlinks

The interference between messages referred to in Section 4.2 also a�ects the
FTT-SE periodic tra�c. Such interference is responsible for the appearance
of deferred release with jitter (Ji) in the downlinks. In fact, while in the
uplinks, i.e., in the nodes, the periodic activation pattern can be enforced
easily by the tra�c scheduler, the same is not true in the downlinks. The
amount of time that a message can be deferred in a downlink is directly
related to the interference that it can su�er in the respective uplink from the
messages that are sent to di�erent destinations (Figures 4.3 and 4.2). This
interference may vary from instance to instance, leading to a jittered arrival
of the message at the downlink.

The deferred release phenomenon also occurs at intra-EC scale, as shown
in Figure 3.7 and discussed in Section 3.3.2, when building each EC-schedule.
However, here we do not account for any intra-EC aspects and we deal solely
with the tra�c scheduling at an EC scale and thus the deferred release jitter
we are now concern with also occurs at this scale.

86 CHAPTER 4. TRAFFIC SCHEDULABILITY ANALYSIS

4.3.3 Scheduling multiple links

The scheduler operates over the message requirements data-base (SRDB)
and builds a single global ready queue, serializing messages according to their
priority, either static or dynamic. However, when dispatching the messages
in the global ready queue, the protocol attempts to �ll up the uplinks and
downlinks in each EC in order to exploit as much as possible the parallel
forwarding paths available in the switch.

This scheduling methodology approximates the model to a link oriented
scheduling. The global ready queue is parsed in several ready queues, one
per link, with the messages that traverse that link, and a scheduler that
operates quasi-independently on each link with the restriction of scheduling
messages together (in the same EC) in the uplinks and the downlinks. The
intra-EC scheduling is handled according to the rules in Equation 3.2 that
enforce the window protection and the causality e�ect between the uplink
and the downlink.

Therefore, the tra�c on a speci�c downlink is in fact constrained by the
tra�c explicitly submitted to that port and also the tra�c scheduled in the
uplinks of each message, causing interference. In a multicast or broadcast
transmission scenario, messages are only scheduled if �tting the uplink and
all downlinks in a given EC. In this case, it is enough to have one downlink
full to prevent that message from being transmitted in that EC even if the
other downlinks and uplink are lightly loaded. This represents a very strong
interference. In a unicast message scenario this type of interference does not
apply, since only one uplink and one downlink are involved. The interference
veri�ed in the uplink does not propagate to other downlinks.

In terms of schedulability analysis of a downlink, in the unicast scenario,
only the interference from the uplinks is considered. However, in a multicast
or broadcast messaging scenario, a multitude of interfering sources a�ecting
the downlink must be considered. The interference in the downlinks is not
con�ned to the tra�c in the uplinks but also to the tra�c in other down-
links, which by themselves may su�er interference from other uplinks and
downlinks in a cascade procedure, pushing the complexity of the analysis to
a higher magnitude.

Therefore, in this work we focus in the unicast scenario, only. At the
end of this chapter a few considerations are done addressing the multi-
cast/broadcast scenario.

4.4 Schedulability test - unicast

This section presents a schedulability test for the unicast only scenario.
For all messages we consider the deadline equal to the activation period
(∀i, Di = Ti) to prevent excessive e�ciency degradation of RM and EDF
schedulability utilization tests, and the release o�sets equal to zero, i.e.,

4.4. SCHEDULABILITY TEST - UNICAST 87

synchronous release. The simpli�ed tra�c model is thus de�ned as:

SRT =
{
mi : mi = (Ci, Ti, Si, {R1

i }), i = 1..Ns

}
(4.3)

As described in Section 4.3.1, the packet transmission within this Ethernet-
based implementation is non-preemptive. However, the FTT-SE framework
allows the de�nition, at the logical level, of multi-packet messages, which
can be preempted between packet transmissions.

The scheduling model is issued at the EC resolution scale. Without loss
of generality, we consider the SRT to be sorted by ascending periods, i.e.,
∀mi 6= mj : i < j ⇒ Ti < Tj .

We now consider two di�erent cases that create di�erent dependencies
and interference. In the �rst case, each sender sends to a single destination,
only, i.e., one uplink cannot issue tra�c to distinct downlinks. In the second
one, more general, the sender may generate messages to di�erent destina-
tions. Note that for both cases only unicast messaging is considered. A
schedulability bound is then derived for each of the cases.

4.4.1 One node sending to one destination, only

In this �rst scenario all tra�c generated within a node is sent to a single
destination, only. Although simple, this is a frequent scenario where nodes
send one or more data streams to a single destination node. In this case the
tra�c and interference in the uplinks is exactly transposed to the downlinks,
with the plus that one downlink might hold tra�c from di�erent uplinks,
which increases the interference. In this scenario, downlinks come to be
the operational bottleneck. Hence, the schedulability of the system can be
checked applying the utilization-based test in Equation 4.2 to each of the
downlinks, as follows:

∀j
∑
mi∈ldj

Ci
Ti
≤ U lubRM,EDF ×

LSW −max(Ci)
E

(4.4)

The rationale behind this test is that the model considers a strictly peri-
odic generation of messages in the uplinks thus, schedulability under RM or
EDF can be checked with an utilization test as in Equation 4.2. From the
uplinks, two situations can occur in the downlinks. If the downlink receives
from just one uplink, its tra�c pattern will be the same, thus testing the
downlink is enough and the test in Equation 4.4 applies. Similarly, if the
downlink receives from several uplinks, there is higher interference in the
downlink but without any deferred release e�ect since all interfering packets
go to the same downlink. Moreover, there is no queuing inside the switch
(across ECs) since the master polls the uplinks at a su�ciently low rate to
prevent an overload in the downlink and following strictly the scheduling

88 CHAPTER 4. TRAFFIC SCHEDULABILITY ANALYSIS

criterion, be it RM or EDF. The uplinks always have similar or lower load
and need not to be tested, thus test (4.4) also applies.

4.4.2 One node sending to multiple destinations

This is a more general and complex situation since the downlinks can now
exhibit deferred release with jitter, which prevents the direct use of the
existing utilization-based tests, as in the previous case. As mentioned in
Section 4.3.3, the downlinks are subject to variations in the message arrival
patterns due to scheduling in the uplinks that introduces variable delays,
de�ecting the strictly periodic pattern that is underlying the easily-coped
tests in the previous scenario, in which there was no additional interference
in the uplinks.

Despite the existence of several analysis that take release jitter into ac-
count, such analysis are mostly response time based, being hard to use online
and particularly for dynamic QoS distribution.

Therefore, we developed a new utilization-based analysis that incorpo-
rates the release jitter of a task as a new virtual task that is added to the
task set and we use such analysis for the downlinks. The analysis for the
uplinks is still as presented in Equation 4.2. The schedulability test for this
scenario is, then, the one in Equation 4.5.

∀j



∑
mi∈luj

Ci
Ti
≤ U lubRM,EDF ×

LSW −max(Ci)
E

(uplink)

∑
mi∈ldj

Ci
Ti︸ ︷︷ ︸

real load

+

max
mi∈ldj

Ji

T1

︸ ︷︷ ︸
virtual load

≤ U lubRM,EDF ×
LSW −max(Ci)

E
(downlink)

(4.5)

Looking at the the lower condition in Equation 4.5, which applies to the
downlinks, we see that it includes the actual utilization load of all messages
forward to the downlink in analysis (real load), plus a term that represents
the interference load (indirect load), computed dividing the maximum jitter
(maxJi) among the various messages issued to the downlink by the period
of the fastest message (T1). Together, both components represent the vir-
tual load in the downlink. We call it "virtual" in the sense that it includes
the indirect load, which is not physically present in the link and corresponds
to the inserted idle times caused by the interference in the uplinks. The
proof for this test is presented in the following section.

4.4. SCHEDULABILITY TEST - UNICAST 89

4.4.3 Schedulability utilization bounds with release jitter

In this section we present the new utilization bounds for RM and EDF
scheduling for general periodic and preemptive task sets with release jitter.
For the sake of generality, the theorems use the expressions such as task
(symbol τ) referring to message and execution time referring to transmission
time.

These bounds directly support the lower schedulability condition in Equa-
tion 4.5, after applying the compensation factor due to the inserted idle time
inside the synchronous window ((LSW −max(Ci))/E).

Theorem 4.1. A preemptive task set Γ ≡ {τi (Ci, Ti, Ji) , i = 1..n} with Di =
Ti is schedulable under RM if:

∀i=1..n

i∑
j=1

Cj
Tj

+
max
j=1..i

Jj

Ti
≤ U lubRM (i) (4.6)

Proof:

In this model, the worst-case situation occurs when all tasks su�er the
maximum release delay and are activated all at the same time and from
then on, all following activations su�er no release delay [31]. Consider that
t = 0 corresponds to the virtual periodic activation of some generic task
τi that is released Ji later, in a worst-case interference scenario, illustrated
in Figure 4.4 (top). Under these circumstances, the response time of task
τi is upper bounded by the earliest instant t after t = Ji that satis�es the
following equation (Rwci):

Rwci= min
t>Ji

: t =
i−1∑
j=1

⌈
t− Ji + Jj

Tj

⌉
Cj + Ci + Ji

Let us now advance the time scale so that t′ = 0 will coincide with the
earliest virtual periodic arrival among all tasks with priority equal to or
higher than τi, i.e., t → t′ = t + maxj=1..i Jj − Ji. In this situation, the
response time Rwc′i is now given by:

Rwc′i= min
t′>maxj=1..i Jj

: t′=
i−1∑
j=1


t′−max

k=1..i
Jk+Jj

Tj

Cj + Ci + max
j=1..i

Jj

Since t′ −maxj=1..i Jj = t− Ji, we can conclude that Rwc′i ≥ Rwci.
The sum can be upper bounded by replacing Jj with maxj=1..i Jj . Let

90 CHAPTER 4. TRAFFIC SCHEDULABILITY ANALYSIS

Figure 4.4: Worst-case situation with release jitter and the virtually added
task in RM.

Rwc′′i be the solution to the equation:

Rwc′′i = earliest t′ > max
j=1..i

Jj :

i−1∑
j=1

⌈
t′

Tj

⌉
Cj + Ci + max

j=1..i
Jj = t′

Necessarily, Rwc′′i ≥ Rwc′i ≥ Rwci. However, this last equation corresponds
to a response time equation of a set of periodic tasks, without release jitter,
but with task τi in�ated to Ci + maxj=1..i Jj . This transformation is shown
in Figure 4.4. Thus, if this adapted task set is schedulable, so is the original
task set with release jitter.

Finally, since the transformed task set is purely periodic, the Liu and
Layland's utilization-based schedulability test applies [37], which proves the
theorem. �

Corollary 4.1. A preemptive task set Γ ≡ {τi (Ci, Ti, Ji) , i = 1..n} with Di =

4.4. SCHEDULABILITY TEST - UNICAST 91

Figure 4.5: Worst-case situation with release jitter and the virtually added
task in EDF.

Ti is schedulable under RM if:

n∑
i=1

Ci
Ti

+
max
i=1..n

Ji

T1
≤ U lubRM (n) (4.7)

Proof: Just note that ∀i,maxj=1..i (Jj)/Ti ≤ maxj=1..n (Jj)/T1,

∀i, U lubRM (i) ≥ U lubRM (n)

�

Theorem 4.2. A preemptive task set Γ ≡ {τi (Ci, Ti, Ji) , i = 1..n} is schedu-
lable under EDF if:

∀i=1..n

i∑
j=1

Cj
Tj

+
max
j=1..i

Jj

Ti
≤ U lubEDF = 1 (4.8)

Proof:
With this model, the worst-case situation in terms of highest consecutive

processor demand also occurs in a similar manner as in the previous theorem
[121]. The situation is also illustrated in Figure 4.5 (top), in which all tasks

92 CHAPTER 4. TRAFFIC SCHEDULABILITY ANALYSIS

are released as late as possible and all at the same instant. Let us de�ne
such instant as t = 0. Then, following a processor demand approach, this
set is schedulable if:

∀t, h(t) =
∑

i:(Ti−Ji)≤t

⌊
t+ Ji
Ti

⌋
Ci ≤ t

⇔ ∀t, h(t) + max
i=1..n

Ji ≤ t+ max
i=1..n

Ji

Now, let us carry out a scale shift making t′ = 0 coincide with the
earliest virtual periodic arrival, i.e., t′ → t′ = t+ maxi=1..n Ji. The previous
schedulability condition can be written as:

∀t′ , h(t′ − max
i=1..n

Ji) + max
i=1..n

Ji ≤ t′ ⇔

∑
i:(Ti−Ji+ max

j=1..n
Jj)≤t′

 t′−max
j=1..n

(Jj)+Ji

Ti

Ci + max
j=1..n

(Jj)≤ t′

Again, the sum is upper bounded by replacing Ji with maxj=1..n Jj . Thus,
the following condition implies the previous one and still guarantees task set
schedulability.

∀t′ ,
∑
i:T i≤t′

⌊
t′

Ti

⌋
Ci + max

j=1..n
(Ji) ≤ t′

In order to obtain an utilization-based expression we divide both sides by t′

leading to:

∀t′ ,
∑
i:Ti≤t′

⌊
t′

Ti

⌋
Ci
t′

+
max
j=1..n

(Ji)

t′
≤ 1

Observe that,⌊
t′

Ti

⌋
≤ t′

Ti
⇒
⌊
t′

Ti

⌋
Ci
t′
≤ C ′i

t′
∗ t
′

Ti
=
C ′i
Ti

(as
C ′i
t′
≥ 0)

Therefore, the term inside the sum is upper bounded by Ci/Ti. Thus,
the following condition also implies the previous and still guarantees task set
schedulability.

∀t′ ,
∑
i:T i≤t′

Ci
Ti

+
max
j=1..n

(Ji)

t′
≤ 1

This condition needs to be evaluated at the instants in which t′ is an integer
multiple of any of the tasks periods. This is particularly relevant for T1 ≤
t′ ≤ Tn. Within this interval, each time t′ reaches the �rst period of any
task, say τi, the corresponding term Ci/Ti is included in the sum. At the
same time, the term maxj=1..n Jj/Ti becomes lower as i grows since the set

4.4. SCHEDULABILITY TEST - UNICAST 93

timeTi

Ci

Jj

Figure 4.6: Interfering task.

is sorted by ascending periods. For t′ > Tn, the left term in the condition
decreases monotonically and the condition is trivially veri�ed if it was veri�ed
in the previous interval. �

Corollary 4.2. A preemptive task set Γ ≡ {τi (Ci, Ti, Ji) , i = 1..n} is schedu-
lable under EDF if:

n∑
i=1

Ci
Ti

+
max
i=1..n

Ji

T1
≤ U lubEDF = 1 (4.9)

Proof: Again just note that

∀i, max
j=1..i

(Jj)/Ti ≤ max
j=1..n

(Jj)/T1

�

4.4.4 Upper bounding the indirect load

Inequalities 4.6 and 4.8, for RM and EDF respectively, are computed con-
sidering the real load directly obtained from each task utilization load and
the indirect load that represents the interference. The latter term is not as-
sessed using each task utilization load though. For this reason, the following
proposed test aims at upper bounding this indirect load in a way to become
utilization-based.

The indirect load in Inequalities 4.6 and 4.8 is equivalent to the impact
of an additional task with a load given by U indi (Equation 4.10).

U indi =
max
j=1..i

Jj

Ti
, ∀i = 1..n

= max
j=1..i

Jj
Ti

(4.10)

For simplicity let U indi,j =
Jj
Ti

be the interference caused by the jth task

(τj) in τi. Figure 4.6 illustrates one such task for which the load is U indi,j .
Coming back to the switch case, remember that the release jitter that

a�ects message mj in its downlink is a consequence of messages in the same

94 CHAPTER 4. TRAFFIC SCHEDULABILITY ANALYSIS

uplink that are transmitted to other downlinks. Call CRM and CEDF the set
of such messages for RM and EDF scheduling, respectively. For each case,
we can also express Jj as the sum of the transmission times of the interfering
messages leading to an indirect load that can be expressed as in Equation
4.11 and 4.12 for RM and EDF, respectively.

U indRMi,j =

∑
CRM

⌈
Jj
Tk

⌉
Ck

Ti
, where CRM ≡ ∀mk :


Sk=Sj

Rk 6=Rj
k<j

(4.11)

U indEDFi,j =

∑
CEDF

⌈
Jj
Tk

⌉
Ck

Ti
, where CEDF ≡ ∀mk :

{
Sk=Sj

Rk 6=Rj
(4.12)

Knowing that Jj < Ti − Ci < Ti an upper bound to the interfering load
is given by Equation 4.13, as follows 1:

U indi,j <

∑⌈
Ti
Tk

⌉
Ck

Ti

<

∑(
Ti
Tk

+ 1
)
Ck

Ti
=
∑ Ck

Tk
+
∑ Ck

Ti
⇔

U indi,j <
∑

Uk +
∑ Ck

Ti
(4.13)

Thus, we obtain the schedulability test for RM and EDF given by In-
equalities 4.14 and 4.15 that must be conducted to each message mi of a
given downlink.

RM:

∀i=1..n

i∑
j=1

Uj + max
j=1..i

(∑
CRM

Uk +
∑
CRM

Ck
Ti

)
≤ U lubRM (i) (4.14)

EDF:

∀i=1..n

i∑
j=1

Uj + max
j=1..i

(∑
CEDF

Uk +
∑

CEDF

Ck
Ti

)
≤ U lubEDF (i) (4.15)

This test, that requires the veri�cation of n conditions, can be simpli�ed
to one condition, only, upper bounding the terms in the sums leading to a

1For the sake of clarity we omit the indexes in the sums.

4.5. SIMULATION RESULTS 95

pair of tests, for RM and EDF, that contain one single condition, Equations
4.16 and 4.17.

RM:

∑
mi∈ldj

Uj + max
mi∈ldj

(∑
CRM

Uk

)
+

max
mi∈ldj

(∑
CRM

Ck

)
T1

≤ U lubRM (i) (4.16)

EDF:

∑
mi∈ldj

Uj + max
mi∈ldj

(∑
CEDF

Uk

)
+

max
mi∈ldj

(∑
CEDF

Ck

)
T1

≤ U lubEDF (i) (4.17)

These tests only contain additive utilization terms that particularly well
suited to our purpose of supporting dynamic QoS management. In order
to use these terms in FTT-SE we just need to include the idle time com-
pensation factors in the right side of the inequalities, and replace the lower
condition in 4.5.

4.5 Simulation results

The previous analysis provides the conditions to assess the schedulability of
the tra�c submitted to the switch. However, the conditions contain several
approximations that introduce a non-negligible level of pessimism. In order
to validate the analysis and develop a notion of the pessimism embedded in
these schedulability tests we carried out simulations with randomly generated
tra�c. For each generated set, it is veri�ed whether the set passes the
schedulability tests and if so, the message set is submitted to the scheduling
simulator that runs for the LCM of the message periods to determine the
set schedulability (note that simulations consider a synchronous release).

The message sets are pseudo-randomly generated with a load around
the theoretical schedulability bound, in order to have schedulable and non-
schedulable sets. The pseudo-random generation uses the following param-
eters:

• 4 ports switch with 100 Mbps links
• Packet length uniformly distributed within [100 1500] bytes
• EC of 1ms
• Periods uniformly distributed within [1, 5] ECs
• Unicast messages, only
• 1, 2 or 3 destinations per uplink (source)
• Scheduling with EDF and RM

96 CHAPTER 4. TRAFFIC SCHEDULABILITY ANALYSIS

• Inserted idle time compensation factor of 88% (already including EC
length, TM transmission, turnaround, and maximum packet length)
• 200000 points per utilization point in the graphs in the part where
schedulability starts to reduce.

The theoretical tests in Equations 4.5 and the extension to the down-
link test in Equations 4.16 and 4.17 compare the tra�c utilization with the
EDF or RM utilization bounds. The simulation procedures di�er only in
the pseudo-random generator that for each case generates message/task sets
around the respective schedulability limits.

For the sake of clarity, note that the designation virtual load is de�ned
in the downlinks to include real load plus the interference load given by

max
mi∈ldj

(∑
CRM,EDF

Uk

)
+

max
mi∈ldj

(∑
CRM,EDF

Ck

)
T1

,

in Equations 4.16 and 4.17. For simplicity, let us extend this designation to
the uplinks in which case virtual load coincides with the real load. The switch
links, either uplinks or downlinks, can now be analyzed inter-changeably with
the same per link utilization limit U lub. The virtual load is the per link load
used to verify the schedulability in the uplinks and downlinks on each of the
switch ports (4 ports in this simulation scenario).

Each message set was generated computing random messages that were
sequentially added to the set while keeping the virtual load on each link
under a given value, lets say x Mbps. New messages were continuously
added until there were 1000 consecutive failed attempts,i.e., attempts that
cause an excess to the desired load. This guarantees that the virtual load
generated in any link is no more that x Mbps and yet very close to that
limit on most of the links, mainly in the downlinks that tend to reach the
limit before, given the interference load. In fact, the real tra�c load on the
downlinks is much lower than the corresponding virtual load.

The generated sets were simulated with synchronous release during LCM
of the periods and the percentage of schedulable sets was plotted as a function
of the maximum virtual load (x Mbps). The following plots were obtained
forcing the maximum allowed virtual load per link. They also show the Liu
and Layland schedulability bounds for RM and EDF, after the inserted idle
time compensation factor, which become 61% and 88%, respectively. Note
that the analysis only guarantees positive scheduling results when the vitual
load in all links is below these thresholds. The points of virtual load larger
than the schedulability bounds with 100% schedulable sets is a measure of
the pessimism that is implicit in the analysis.

Figure 4.7 shows the case of one destination per source, i.e., messages
from one uplink go all to the same downlink, for which schedulability test in

4.5. SIMULATION RESULTS 97

70 75 80 85 90 95 100
Maximum load per link (Mbps)

0

20

40

60

80

100
%

EDF bound -->

<--

61 Mbps
RM bound

88

RM EDF

Figure 4.7: Schedulability vs. Utilization(1→1).

Equation 4.4 applies. In this case, the virtual load coincides with the real
load which is necessarily less than the links capacity of 100 Mbps. These
results are similar to those for RM and EDF scheduling in one CPU, as
expected, showing close to optimal performance for EDF (93 Mbps actually
schedulable against the test bound of 88 Mbps) and a larger deviation from
optimal for RM (79 Mbps against 61 Mbps respectively).

Figure 4.8 shows the cases of 2 and 3 destinations per source with the
impact of interference included in the virtual load, which can now grow
beyond the link capacity of 100%. As shown in the plots, Figure 4.8, positive
scheduling results are obtained with virtual load beyond the 100 Mbps of the
link capacity. This happens because the considered worst-case scenario for
the interference in the uplinks may never occur in practice. Note that the
real load is much smaller, not exceeding the physical limits as illustrated also
in Figure 4.8 (dotted plot).

In all scenarios plotted in Figure 4.8 we may observe that the �rst dead-
line misses (with growing utilization) occur for message sets with a maximum
virtual load above the 61 Mbps and 88 Mbps schedulability bounds of RM
and EDF scheduling, respectively. No violation of these bounds was found,
considering the maximum virtual utilization per link, con�rming the schedu-
lability analysis. The �rst deadline misses occur for virtual loads of 89 Mbps
and 97 Mbps, for RM and EDF, respectively.

The number of schedulable sets beyond the proposed scheduling bounds
reveals the bounds schedulability penalty. There are three sources for this
penalty, the one already included in Liu and Layland's RM test, the intra-

98 CHAPTER 4. TRAFFIC SCHEDULABILITY ANALYSIS

50 100 150 200 250
0

20

40

60

80

100

%

88

1->2 1->3
real load

-> <-9Mbps

EDF

50 100 150 200 250
Maximum virtual load per link (Mbps)

0

20

40

60

80

100

%

61

1->2 1->3
real load

-> <-28Mbps

RM

Figure 4.8: Schedulability vs. Utilization using maximum virtual load per
set (1→ 2, 3).

EC inserted idle time compensation and the interference term maxi(Ji)/T1

in the downlinks. For EDF scheduling only the two latter factors apply,
thus resulting in a lower degree of pessimism. This is con�rmed by the
simulations observing the di�erence between the �rst non-schedulable sets
and the respective bounds, which is 28 Mbps for RM and 9 Mbps for EDF.

In Figure 4.8 we may also observe that when increasing the diversity
of destinations per source (range of downlinks per uplink) the scheduling
penalty also grows. This is revealed by the observation that with the scenario
of 3 possible destinations (1->3) there are more schedulable sets beyond
the bounds than with the scenario of 2 possible destinations (1->2). In
fact, with more downlinks per uplink the number of uplinks interfering in a
downlink may grow and thus we are increasing the chance for a higher term
maxi(Ji)/T1 in Equation 4.5. Moreover, the impact of the deferred release
on each downlink is more visible at run-time when all interfering uplinks are
sending to di�erent downlinks, which, for a higher diversity of downlinks per
uplink, is more likely to happen.

4.6 Multicast/Broadcast analysis

Considering a pure unicast messaging model greatly simpli�es the system
analysis, specially when it comes to evaluate the interference in the down-

4.7. CONCLUSION 99

links. When considering a multicast or broadcast scenario, the tra�c inter-
ference observed in the downlinks is due to other tra�c patterns triggered to
the respective uplinks, as well to tra�c issued to downlinks, other than the
one in analysis. The reason is that all transmissions in all involved downlinks
must occur in the same EC.

Referring to the downlinks analysis test within the unicast model, when
it comes to include the interference as release jitter, it is considered the
maximum possible jitter generated on each of the uplinks. In the multicast
scenario however, evaluating the jitter is not as simple. In this case, the jit-
ter must include the interference within the uplinks, which may additionally
su�er interference related to the scheduling on other downlinks and recur-
rently other uplinks. This recurrent procedure may reach high complexity
levels that vary with the system scale and with the message dependencies
across the resource components used (uplinks and downlinks).

The strong penalty that this kind of tra�c can have was already illus-
trated in Section 3.5.1 in Figure 3.11. In the limit, if usinf only broadcast
messages, the throughput of the switch is reduced to that of a single link.
The analysis for this situation is out of the scope of this thesis.

4.7 Conclusion

In order to support e�ciently dynamic QoS distribution, the FTT-SE frame-
work needs a fast schedulability analysis tool that provides operational bounds,
supporting quantitative information on the amount of free resources. Often
associated to the periodic activation model, utilization-based tests are one
possible choice to meet such requirements.

However, on switched Ethernet, the switch queues introduce distortion
to the periodic model and so the well known utilization-based analysis does
not directly apply. This chapter addressed this topic and proposed a new
schedulability test based on the well known utilization bounds for EDF and
RM preemptive scheduling. These tests have very low time complexity and
can be performed online in dynamic environments. Another property of this
analysis is the ability to consider the links as di�erent resources. These prop-
erties make this analysis an important building block to support dynamic
QoS management. However, due to the large complexity of analyzing the
multicast/broadcast transmissions, only the unicast transmission model was
analyzed and validated with simulations. The former models are left for
future work.

This theoretical work, for the schedulability test that includes considering
the interference on a periodic message caused by release jitter is general and
applicable to the FTT-SE framework as well as to a set of periodic tasks
scheduled preemptively with RM or EDF and su�ering release jitter. The
exact-case characterization of the proposed analysis and comparison with

100 CHAPTER 4. TRAFFIC SCHEDULABILITY ANALYSIS

other known ones, such as response time based tests, is also left for future
work.

Chapter 5

Dynamic QoS management

This chapter discusses QoS adaptation techniques suitable for use within a
dynamic real-time network. Existing network QoS management techniques
either cannot cope with dynamic communication requirements or lack ef-
�ciency in bandwidth utilization. In this regard, some generic models are
proposed for the QoS distribution among communication streams, as well as
the corresponding optimization. Finally, this chapter discusses the integra-
tion of these QoS management techniques within the FTT-SE protocol.

5.1 Introduction

Real-time systems have traditionally neeb designed considering worst-case
requirements that are �xed throughout the system lifetime. However, real-
time systems may have to deal with dynamic environments. In this case,
considering �xed worst-case requirements (static) penalizes the resource uti-
lization e�ciency since, even when not required, the resources are perma-
nently reserved for the worst-case scenario (over-provisioning). Pushed both
by the need to reduce costs or by deployment constraints, there has been a
greater interest on providing more �exibility to the resource allocation, sup-
porting dynamic recon�gurations and dynamic adaptability based on Quality
of Service (QoS) rules.

Nevertheless, predictability is still an issue in the the design of real-
time systems. Hence, the introduction of operational �exibility demands for
appropriate models for both the application platform sides, capable of guar-
anteeing minimum QoS levels. This introduces a di�erent design paradigm,
where the application should be able to specify acceptable service ranges as
well as utility functions to relate the provided service levels with the applica-
tion performance. On such scenario, predictability can still be assured using
the minimum usage levels, while at run-time, a dynamic QoS manager dis-
tributes the remaining capacity among the subscribed services, to maximize
the global performance.

101

102 CHAPTER 5. DYNAMIC QOS MANAGEMENT

The focus of this work is on studying such dynamic QoS management
schemes, given the requirements for operational �exibility. In this regard,
several distribution models are presented and compared according to their
computational complexity. While some of the results are generic, the work
herein presented is mainly focused on the FTT-SE framework, addressed in
this thesis. Therefore, the QoS models and distribution schemes are pre-
sented within this framework.

5.2 The QoS management problem

Consider a system composed of several subsystems that compete for the
access to system resources, e.g., network links or nodes CPUs. For a broad
range of applications of this kind there is a direct relationship between the
amount of resources allocated to the application services and their individual
performance. This is the case of many control systems in which, within
certain limits, higher sampling frequencies and thus higher CPU utilization
and network bandwidth in distributed architectures, provide a better control
quality (lower error, more stable control signals,...)[29].

A natural and simple solution for the resource capacity distribution would
be to give maximum service level to each of the service subsystems involved.
However, if done without control, it would eventually end up with an overload
or a worst-case situation. If the system becomes overloaded, ultimately, the
services get degraded in an uncontrolled manner, which is not acceptable in
most systems.

Another simple approach would be to give only the minimum possible
service level to each subsystem. In this case, it is possible to have a situation
where there are available resources that are not allocated to subsystems that
could take advantage of them, thus the global application performance is
sub-optimal.

A third option can be followed by enforcing service degradation in a
controlled manner. Modeling the services with QoS ranges allows managing
the QoS degradation of each speci�c service with respect to its maximum
requirements in order to maximize the overall resource usage and assure the
system correctness. Along with this model, it is essential the deployment of
proper management policies with speci�c strategies regarding the resource
capacity distribution.

This section describes such resource capacity distribution strategy based
on Quality of Service management rules associated to the service model. Yet,
one question raises:

What exactly do we mean by Quality of Service?

Quality of Service (QoS), in a broader sense, is a measure of the perfor-
mance level provided by a generic server. The term is sometimes confused

5.2. THE QOS MANAGEMENT PROBLEM 103

with service quality, which more closely refers to the quality experienced by
the user [64]. QoS frequently denotes a more precise and objective measure,
usually associated to a negotiation contract between a service vendor and
the respective client [50].

There are di�erent metrics to measure the QoS level, varying with the ap-
plication class and purpose. For example, in generic processing it is common
having, for general purpose jobs, metrics that minimize the time by which a
job is delayed, or in control-oriented applications metrics that minimize the
sampling execution jitter.

In the communication networks domain, a direct relationship is com-
monly established between the service bandwidth and the QoS delivered.
For example, in video streaming, within certain limits, higher bandwidth
results in higher user perceived quality or Quality of Experience [55].

The role of the QoS manager comprehends the coordination and manage-
ment of all resource parameters that play actively in the QoS level. In the
networking domain, it includes the management of the communications load,
that must be kept within the network capacity, and the tra�c scheduling.

In real-time systems, the QoS guarantees come along with the ability
to meet the timeliness constraints set within the service description model.
Those guarantees are the result of a schedulability analysis performed at the
admission phase. The role of a QoS manager on such a real-time network is
then focused on the bandwidth distribution and enforcing QoS di�erentiation
between the services, while maximizing the global system performance [39].

For the networking and multimedia communities the QoS management is
often considered a service broker [93] that analyzes the resource status and
accepts or rejects a service request with a given QoS level. Several negotia-
tion protocols are example of this, Di�Serv [94], IntServ [36] or RSVP [136].
These approaches however, do �xed provisioning of network resources at ser-
vice startup that remains constant for the service duration, thus resulting in
a �xed QoS. If a QoS variability range is considered in the reservation con-
tract, de�ning when the service is practicable, it becomes possible adjusting,
at run-time, the QoS of currently active services in order to better accom-
modate more service requests and maximize the throughput of the resource
[65]. This is hereby designated as dynamic QoS management.

Notwithstanding, the following question raises:

When free network bandwidth is available, how to distribute it
among the current services?

And conversely:

When the network bandwidth is overloaded, how to manage the
QoS degradation of current services, needed to eliminate the over-
load?

104 CHAPTER 5. DYNAMIC QOS MANAGEMENT

These are two perspectives of the same problem: the QoS distribution
among a set of services that individually seek for the best QoS, within the
resource capacity.

This work focuses on online QoS management schemes for dynamic net-
worked environments. This imposes a constraint since the QoS algorithms
must be su�ciently fast to enable fast adaptation.

5.2.1 The resource capacity

Resource capacity is one key property of a shared resource. It de�nes the
resource sharing limits for providing services. Communication networks are
resources which the capacity limit is given by the maximum data they can
transmit per time unit, i.e., the network bandwidth. However, the use of
speci�c scheduling models poses additional constraints that may reduce such
capacity.

A scheduler is an important piece in the resource management, being re-
sponsible for temporally organizing the execution of services in the resource,
given the services run-time constraints. It is thus an integral and determi-
nant component for the system analyzability.

The schedulability test conducted within the system analysis phase ulti-
mately determines whether a service is admitted or not, which thus means
that this test is based on the de�nition of the resource capacity.Schedulability
tests can be more or less accurate and complex.Usually, there is an interde-
pendency between the test accuracy and the associated computational com-
plexity. More accurate tests often imply higher computational overhead, e.g.
tests that mimic the scheduler execution or perform a response time analysis.
Pessimism is sometimes the price to pay for a faster analysis, meaning tests
that are just su�cient, thus potentially rejecting services QoS combinations
that would be schedulable.

Dynamic real-time systems often require a bounded response time to
the system modi�cation requests. Hence, the amount of time spent in this
process must be as low as possible. In a QoS management procedure, this
time must allow quantifying the amount of available resource and �nding a
resource distribution that leads to a global utilization as large as possible
and is schedulable.

Therefore the scheduling analysis must rely on a per service metric that
represents simultaneously the quality-level and the respective share of the
resource capacity. This direct relationship between the quality-level and the
share of the resource capacity with an appropriate schedulability test, assures
the system correct behavior.

Resources such as networks or processors commonly make use of sched-
ulers with feasibility tests that de�ne bandwidth bounds as guarantees for
the system schedulability. Hence, as long as the resource utilization load
stays within those limits, the system schedulability is assured. In this case

5.2. THE QOS MANAGEMENT PROBLEM 105

the resource capacity may be de�ned as that schedulability utilization bound.
Then, the bandwidth distribution mechanism becomes independent from the
schedulability test that is implicitly enforced by using a resource capacity
equal to that bound.

5.2.2 The application model

Dynamically changing the quality level of a service requires a tight coopera-
tion with the application. For example, if in a video surveillance application
the bandwidth allocated to a given stream is suddenly reduced, the applica-
tion has to adapt accordingly, e.g. by reducing the frame-rate or increasing
the compression factor.

Therefore, a re�exive model is needed according to which the resource
informs the application of its current QoS level allowing the application to
adjust to it.

Such model is compatible with a �exible use of the resource and it allows
the application to operate with di�erent requirements and adapt online. In
this regard, the application services are categorized in two classes, the inelas-
tic services that only operate under �xed requirements and the elastic ones
that operate with di�erent con�gurations within a prede�ned requirements
range [39].

For the elastic class of services, several service/task models have been
proposed toward the extension of the timing requirements beyond the usual
hard and soft real-time, based on the assumption that services can have their
performance degraded without jeopardizing the application. Generically, the
model speci�es the services with minimum requirements, i.e., least required
QoS, which are granted once the service is admitted. The quality level may
then be improved depending on the resource availability given the other
admitted services that compete for the shared resource.

Chapter 2 described several of these models in detail. Some of them
are based on the enforcement of speci�c job skipping patterns to alleviate
the system load when in overload. For example a control system can skip
cycles occasionally or a video transmission that can skip frames. However,
these models cause a sudden drop in the instantaneous QoS provided to the
application whenever a skip is done that might produce undesired e�ects.
Moreover, there is not a univocal and direct relationship between the cho-
sen skipping patterns and the QoS that is obtained [42]. Additionally, the
schedulability analysis techniques become computationally heavier as they
require a careful analysis of the patterns and the impact of the interference.

Therefore, other techniques have been proposed to distribute the resource
capacity based on the utilization load, mostly by changing the tasks periods.
These schemes aim at providing a fair and correct bandwidth distribution of
the resource. However, they are either speci�c to a QoS metric, or require a
complex and computationally heavy structure, a problem aggravated by the

106 CHAPTER 5. DYNAMIC QOS MANAGEMENT

fact that in some cases it is necessary to manage multiple resources, thus
a multi-dimensional problem. Similarly to the elastic task model (ETM)
proposed by Butazzo et. al. [38], we propose several QoS distribution models
that use the bandwidth as the di�erentiation metric. However, our proposal
goes beyond the speci�c ETM model that uses a single distribution model to
manage the tasks periods since we allow an integrated management of both
periods and execution times.

Another important aspect to add relates to the de�nition of the operat-
ing range. The proposed schemes de�ne a continuous bandwidth range, or
period range in the ETM, wherein the application operates. However, some
applications pose additional constraints to the operating range, for exam-
ple being only able to operate with discrete bandwidth values. Example of
this are video cameras that sometimes operate under certain speci�c frame
sizes and frame rates. This topic is further detailed in Section 5.4, where
the application service model is extended to include a discrete model that
de�nes multiple operating points. For now, consider the existence of a valid
continuous bandwidth range describing the minimum and the maximum (or
preferred) requirements.

Let St denote the set of services concurring for a resource R and UR
denote the resource capacity.

St ≡ {Sti (Umini , Ulaxi , qosi) , i = 1..n}

Each service Sti de�nes a minimum bandwidth Umini , maximum band-
width (Umini +Ulaxi) and importance, qosi. The system integrity is assured
as long as the minimums �t the resource capacity, de�ned within the schedu-
lability analysis, i.e.,

∑n
i=1 Umini ≤ UR. After distributing those minimums,

the remaining bandwidth Uspare is available to be distributed by the QoS
manager, being given by:

Uspare = UR −
n∑
i=1

Umini (5.1)

The resource is overloaded when the services maximum load exceeds the
resource capacity, i.e.,

∑n
i=1 Ulaxi > Uspare, leading to a lack of bandwidth

given by:

Uspare =
n∑
i=1

Ulaxi − Uspare (5.2)

Figure 5.1 depicts the distribution model for two concurrent services St1
and St2. Ulax1 and Ulax2 represent the bandwidth �exible part of each service
and Uspare the resource bandwidth that remains free for distribution.

The distribution problem is now reduced to distribute Uspare by the ser-
vices given their Ulaxi operating ranges. In many applications, di�erent

5.3. BANDWIDTH DISTRIBUTION 107

Figure 5.1: Remaining bandwidth.

services have di�erent purposes and impact on the global application perfor-
mance and thus should be di�erentiated on that regard. The qosi parameter,
used by several techniques, serves this purpose, allowing to di�erentiate the
importance of di�erent services.

Based on this model, there are several techniques that can be used to
distribute the Uspare bandwidth among the services and obtain the set of
current utilizations {Ui, i = 1..n}.

5.3 Bandwidth distribution

Online QoS distribution within dynamic real-time networks has to be fast.
For this reason, the service bandwidth utilization (load) is used as the QoS
metric for the distribution procedure. The bandwidth utilization can be
directly computed from the periodic service model, re�ecting the impact of
the respective task or service in the overall capacity of the resource. The
use of this metric also takes advantage of the existence of fast and reliable
schedulability analysis techniques based on resource utilization.

The bandwidth that is available for distribution, Uspare, is de�ned by the
load of the submitted services and by the resource capacity. That distri-
bution can be achieved using di�erent policies, all based on the parameters
provided for each service. Di�erent policies may result in distinct QoS provi-
sioning for the services. Therefore, when specifying the service parameters,
the distribution model must be considered, too.

This section addresses the bandwidth distribution among the services.
The materialization of such bandwidth into the operational parameters, valid
for the services, is addressed in Section 5.4.

Two algorithmic procedures carrying out the bandwidth distribution are
presented, one that assigns bandwidth in a greedy basis (Section 5.3.1 - Fixed
importance distribution) and another one that considers each service impor-
tance in terms of a weighted share (Section 5.3.2 - Weighted distribution).
The �xed approach presents a lower computational complexity but is not
fair. For systems in which fairness is important the weighted distribution
policy is more appropriate. However, this technique presents a higher com-

108 CHAPTER 5. DYNAMIC QOS MANAGEMENT

putational complexity and may require an iterative procedure, discussed in
Section 5.3.3, to converge to an optimal solution.

5.3.1 Fixed importance distribution

Perhaps the simplest and most direct policy to discriminate the services when
assigning free bandwidth is the one that, starting from the most important
(highest qosi), sequentially concedes all the bandwidth that each one may
use until exhausting the resource capacity. However, if the most important
services drain all the spare bandwidth, the low rated services get no extra
bandwidth share.

This model appears in resource management frameworks such as FRES-
COR, see Section 6.1, where an importance parameter is included along with
the contract negotiation of each service. The FRESCOR framework further
provides a quality weight that di�erentiates services within the same impor-
tance class, i.e., hierarchical composition of two distribution mechanisms.

5.3.2 Weighted distribution

The weighted distribution technique contrasts with the greedy technique by
providing a fair distribution based on weights. The weights are the applica-
tion speci�cations and in�uence the bandwidth share obtained.

Each service weight wi is obtained through service application parame-
ters, namely the qosi parameter and the bandwidth laxity parameter, Ulaxi .
This section only covers the impact of using such weights. Section 5.3.4 ad-
dresses the weights formulation based on the application parameters. Notice
though that we assume the weights to be normalized, i.e., given a set of
services

∑
i=1..nwi = 1.

After the distribution, a service i gets the bandwidth given by:

Uvi = Umini + Vi (5.3)

where Vi represents the share allocated to Sti from Uspare.
Now, two bandwidth distribution mechanisms are presented:

• Direct Share, in which the services are given a direct weighted share
from Uspare (equation 5.4);

∀Sti : V ′i = w′i.Uspare (5.4)

• Indirect Share, where a weighted share of Uspare is taken from each of
the Ulaxi (equation 5.5).

∀Sti ∈ St : V ′′i = Ulaxi − w
′′
i .Uspare (5.5)

= Ulaxi − w
′′
i .

 n∑
j=1

Ulaxj − Uspare

 (5.6)

5.3. BANDWIDTH DISTRIBUTION 109

These are two bandwidth distribution schemes, with distinct mathemati-
cal formulation, that fully distribute the resource capacity (Uspare), given the
proper weights. However, each scheme perceives di�erently the weights and
so produces distinct results. The wi weights have in fact opposite meanings
in the two schemes. While in Equation 5.4, w′i is proportional to the amount
of resource that is granted to service i, in Equation 5.5, w′′i controls the
amount of resource that is taken from the maximum resource requirements.
Besides the semantic di�erence on the wi parameter, there is another, more
factual, di�erence between the direct and the indirect approaches. While in
the former one, the Ulaxi parameter has no in�uence on the resource distri-
bution, besides constraining the maximum amount of the resource one can
use, in the latter approach, Ulaxi is a direct part of the equation, since it is
the baseline from which the bandwidth is taken, upon overload.

However, despite of the di�erences between both models it is still possi-
ble to, from the application perspective, map the models one into the other.
By putting both equations (5.4 and 5.5) together and assuming equal distri-
bution results (V ′i = V ′′i) leads to Equation (5.7) that maps w′′i into w′i.

w′i =
Ulaxi
Uspare

− w′′i .
Uspare
Uspare

(5.7)

Notwithstanding, from a design perspective, there are di�erences between
the models. The same variation on the weights results on di�erent distribu-
tion, as can be easily shown by taking the respective derivatives (Equation
5.8): ∣∣∣∣ δV ′iδw′i

∣∣∣∣ 6= ∣∣∣∣ δV ′′iδw′′i

∣∣∣∣ (5.8)

Therefore, despite the similarities, the two techniques are di�erent and
are worth a separate analysis. Moreover, there are QoS distribution schemes
in the literature, as mentioned further, that are based on both of these
schemes.

Both the direct and indirect approaches are formulated in terms of linear
equations, which, at a �rst glance, makes these QoS distribution techniques
exhibit a low computational complexity (O(n)). However, the bandwidth
speci�cation is upper and lower bounded, and the distribution results of
equations 5.4 and 5.5 may fall o� those limits. Respectively, they may lead
to situations where services receive an amount of bandwidth that exceeds or
falls bellow the minimum speci�ed requirements.

Optimality

As mentioned before, each service de�nes a range of allowed bandwidth val-
ues. Assuming that the distribution procedure is optimal if the available
bandwidth is fully assigned, the direct application of equations 5.4 and 5.5

110 CHAPTER 5. DYNAMIC QOS MANAGEMENT

does not provide an optimal solution, per se. Take for instance the following
example, where three services compete for a resource with Uspare = 5.

i Ulaxi wi V ′i V ′′i

1 2 0.5 2.5 2− 2.5 = −0.5
2 5 0.25 1.25 5− 1.25 = 3.75
3 3 0.25 1.25 3− 1.25 = 1.75

Each service is provided a weight wi equally provided to both mech-
anisms, the Direct Share and the Indirect Share. As referred before, the
weights have distinct meanings for each scheme, however, for the purpose of
this example this aspect is not relevant. Columns V ′i and V

′′
i list the distribu-

tion results from equations 5.4 and 5.5 respectively. Focusing, e.g. on service
i = 1, it is noticeable that for the �rst approach V ′i is greater than the ad-
missible bandwidth (Ulaxi), i.e., this service cannot handle such an amount
of bandwidth. Conversely, the result for the second approach (V ′′i) shows
a negative bandwidth, which indicates that instead of providing additional
bandwidth, the service is not receiving the minimum speci�ed bandwidth.
Therefore, in both mechanisms there is a violation of the requirements set by
the application. It is necessary to create an additional constraint that veri-
�es if the output of equations 5.4 and 5.5 does not violate the speci�cations
(Equation 5.9).

0 ≤ Vi ≤ Ulaxi (5.9)

When vi needs to be clipped there is either bandwidth being wasted, lead-
ing to non-optimality, or a requirements fault. In either case the bandwidth
distribution must be recalculated to con�ne Vi within the limits. This re-
quires an iteration process to re-adjust the distribution whenever a maximum
or a minimum is hit, until the spare bandwidth is assigned. Consequently,
the process is no longer linear with respect to the number of services.

5.3.3 Need for iteration

Let i be a service for which Vi at a given moment exceeds its limits. To clip
Vi in one of the boundaries, wclipi is formulated as follows:

wclipi =

{
0 if Vi < 0
Ulaxi
Uspare

if Vi > Ulaxi
(5.10)

This clipping compensation re�ects on the weights the distortion intro-
duced by the clipping. Basically, when a service bandwidth reaches its limit,
its bandwidth is kept �xed and the available bandwidth recomputed. Nec-
essarily, the weights of the remaining services must be recomputed too, to

5.3. BANDWIDTH DISTRIBUTION 111

assure they continue being normalized for the distribution of the remaining
bandwidth. This requires an iterative procedure, repeated until the band-
width is fully distributed.

The iterative procedure herein presented is similar to the one proposed
for the Elastic Task Model (ETM) [38]. However, this model is generalized,
comprising the ETM as well as other speci�c techniques. Furthermore, some
improvements on the iterative procedure are presented further on, aiming at
reducing its computational overhead.

The iterative procedure is described as follows. Consider a service set
Γ that, at every instant, is divided in two subsets: Γclip, comprising the
jobs that have been clipped, and Γunclip holding the ones still manageable
(unclipped). The iterative procedure starts with all services unclipped, as
sketched in Algorithm 5.3.1. For now, assume that those starting services
are randomly sorted and computed sequentially. Then, at each step k the
distribution is computed for the unclipped services. The bandwidth resulting
for each service in Γunclip is analyzed and whenever a service gets clipped,
i.e., Vi di�ers from (alg. 5.3.1-(2)), a new iteration step is issued and that
service moved from Γunclip to Γclip. The procedure completes after a round
with no services being clipped.

Algorithm 5.3.1: (Procedure for a full bandwidth distribution)

comment: Γ is an unsorted list of St

comment:BWfunction computes either (5.11) or (5.14)

Γunclip ← Γ
Γclip ← {}
repeat
for each Sti ∈ Γunclip

do


Vi = BWfunction() (1)
if not 0 ≤ Vi ≤ Ulaxi (2)

then


Γunclip ← Γunclip \ {Sti}
Γclip ← Γclip ∪ {Sti}
break

until no break occurs

A simple rationale can be followed to understand the iteration process.
The occurrence of clipping means that part of the initial bandwidth block
Uspare or part of Uspare was not correctly distributed on one or more services
and had to be �xed overriding the initial linear distribution. Therefore, for
each new iteration, the remaining bandwidth from Uspare or Uspare has to
be re-computed to account for the services that have moved to the Γclip set,

112 CHAPTER 5. DYNAMIC QOS MANAGEMENT

and so the individual weights of each service, yet in Γunclip, to satisfy the
normalization constraint, as follows:∑

Sti∈Γunclip

wk+1
i = 1

For the Direct Share, BWfunction() model is given by:

∀Sti ∈ Γunclip :

V ′i
k+1 =

{
w′i

k+1 × Usparek+1 , if
(
w′i

k+1 × Usparek+1
)
< Ulaxi ,

Ulaxi , else.
(5.11)

where,

Uspare
k+1 = Uspare −

∑
Sti∈Γclip

V ′i
k

= Uspare −
∑

Sti∈Γclip

Ulaxi (5.12)

w′i
k+1 =

w′i
k∑

Stj∈Γunclip

w′j
k

=
w′i

0∑
Stj∈Γunclip

w′j
0 , ∀Sti ∈ Γunclip (5.13)

And for the Indirect Share, BWfunction() model given by:

∀Sti ∈ Γunclip :

V ′′i
k+1 =

{(
Ulaxi − w′′i

k+1.Uspare
k+1
)

if
(
Ulaxi − w′′i

k+1.Uspare
k+1
)
> 0,

0 else.
(5.14)

where,

Uspare
k+1 = Uspare −

∑
Sti∈Γclip

V ′′i
k

= Uspare −
∑

Sti∈Γclip

0 (5.15)

Uspare
k+1 =

∑
Sti∈Γunclip

Ulaxi − Uspare
k+1

=
∑

Sti∈Γunclip

Ulaxi − Uspare (5.16)

5.3. BANDWIDTH DISTRIBUTION 113

w′′i
k+1 =

w′′i
k∑

Stj∈Γunclip

w′′j
k

=
w′′i

0∑
Stj∈Γunclip

w′′j
0 , ∀Sti ∈ Γunclip (5.17)

Equations 5.11 and 5.14 describe the bandwidth distribution for each
service within an iteration step. Only unclipped services are computed. The
clipped services, remain constant through the rest of the procedure.

The unclipped weights are permanently modi�ed in each iteration, how-
ever, as denoted by Equation 5.13 and 5.17, the weights can be assessed
given the initial application weights and still re�ect the application speci�-
cation. Thus, this process respects the relative importance of the services
throughout the iterative procedure.

Each wi
k+1 uniquely depends on the distribution status between Γclip

and Γunclip. Given k = m to be the last iteration, the weights in m are given
by:

wmi =
wi∑

Stj∈Γunclip

wj
,∀Sti ∈ Γunclip

These weights refer to the distribution of the bandwidth portion left for
the last iteration. Translating those �nal values into the scope of the initial
Uspare bandwidth, gives:

For the Direct Share model:

wfinali =


Ulaxi
Uspare

, ∀Sti ∈ Γclip

wiP
Stj∈Γunclip

wj

(
1−

∑
Stj∈Γclip

wj

)
, ∀Sti ∈ Γunclip

(5.18)

And for the Indirect Share model:

wfinali =

0 ,∀Sti ∈ Γclip
wiP

Stj∈Γunclip

wj
,∀Sti ∈ Γunclip (5.19)

Given this �nal distribution, the respective weights are still normalized:∑
Sti∈Γunclip

wfinali +
∑

Sti∈Γclip

wfinali = 1

Observing equations (5.18) and (5.19), the �nal weights regarding Uspare,
do not depend on the procedure steps, but only on the result of the distri-
bution between Γclip and Γunclip. This is important to understand that the

114 CHAPTER 5. DYNAMIC QOS MANAGEMENT

order by which the services are accounted for during the bandwidth distri-
bution is irrelevant to the �nal result. However, it is still required to prove
that the separation result between Γclip and Γunclip is unique given the initial
parameters.

The following subsection shows such proof. Then, the bandwidth dis-
tribution procedure is evaluated and ways to improve its performance are
discussed.

Existence of a unique solution

Theorem 5.1. There exists a unique solution to the bandwidth distribution
problem.

Proof. The solution generated by the bandwidth distribution procedure is of
the format {Wclip,Wunclip}, where Wclip is the set of weights corresponding

to services (Sti ∈ Γclip) that have a �nal bandwidth share of (Uspare.w
clip
i),

and Wunclip is the set of weights corresponding to services (Stj ∈ Γunclip)
that have a �nal bandwidth share of (Uspare.w

unclip
j).

The sets are given by

Wclip = {wclipi : Sti ∈ Γclip} (5.20)

The remaining weights (1 −
∑

Sti∈Γclip
wclipi) are shared proportionally

by the applications in Γunclip. The weights allocated to Γunclip are therefore
given by:

Wunclip =

wj .


1−
∑

Sti∈Γclip

wclipi∑
Stp∈Γunclip

wp

 : Stj ∈ Γunclip

 (5.21)

As can be seen from the above expression, the weights in Γunclip are
equally scaled by a factor of k, where k is given by,

k =

1−
∑

Sti∈Γclip

wclipi∑
Stp∈Γunclip

wp
(5.22)

This value k is a �ngerprint of the solution to the bandwidth distri-
bution problem. There is a one-to-one mapping between k and the sets
{Wclip,Wunclip}. So far, it has been shown that given {Wclip,Wunclip} (Equa-
tions 5.20 and 5.21), a �ngerprint k can be found (Equation 5.22). Now, it
is shown the other way around, i.e., there cannot be two distribution results
with the same k.

5.3. BANDWIDTH DISTRIBUTION 115

From the de�nitions of the sets {Wclip} and {Wunclip}, observe that

∀Sti ∈ Γclip : wi.k ≥ wclipi (5.23)

∀Stj ∈ Γunclip : wj .k < wclipj (5.24)

Also, ∑
Sti∈Γclip

wclipi +
∑

Stj∈Γunclip

wj .k = 1 (5.25)

We can observe a one-to-one mapping between the �ngerprint k and any
solution of the QoS maximization problem {Wclip,Wunclip}.

In order to prove the uniqueness of the solution, it is su�cient to prove
the uniqueness of the �ngerprint.

Case 1: Assume that there exists a solution (k + δ), where δ > 0.
Let the corresponding solution to the bandwidth distribution problem be
{W ′clip,W ′unclip}.

In this case, the following relationships should also hold:

∀Sti ∈ Γ′clip : wi.(k + δ) ≥ wclipi (5.26)

∀Stj ∈ Γ′unclip : wj .(k + δ) < wclipj (5.27)

∑
Sti∈Γ′clip

wclipi +
∑

Stj∈Γ′unclip

wj .(k + δ) = 1 (5.28)

Observe that all services that satisfy Inequality 5.23 also satisfy the In-
equality 5.26, hence

Γclip ⊂ Γ′clip (5.29)

Γclip = Γ′clip \ Sδ (5.30)

since Γclip is the complement of Γunclip,

Γunclip = Γ′unclip ∪ Sδ (5.31)

Γ′unclip ⊂ Γunclip (5.32)

Sδ ⊂ Γunclip (5.33)

116 CHAPTER 5. DYNAMIC QOS MANAGEMENT

Rewriting (5.25), gives∑
Sti∈(Γ′clip−Sδ)

wclipi +
∑

Stj∈(Γ′unclip+Sδ)

wj .k = 1 (5.34)

∑
Sti∈Γ′clip

wclipi −
∑

Stp∈Sδ

wclipp +
∑

Stj∈Γ′unclip

wj .k +
∑

Stq∈Sδ

wq.k = 1 (5.35)

Subtracting (5.28), gives

−
∑

Stp∈Sδ

wclipp −
∑

Stj∈Γ′unclip

wj .(δ) +
∑

Stq∈Sδ

wq.k = 0 (5.36)

∑
Stj∈Γ′unclip

wj .δ =
∑

Stq∈Sδ

wq.k −
∑

Stp∈Sδ

wclipp (5.37)

Using the fact that Sδ ⊂ Γunclip and Inequality 5.24,∑
Stj∈Γ′unclip

wj .δ < 0 (5.38)

Which is not possible, since the weights wj are positive.

Case 2: Assume that there exists a solution (k−δ), where δ > 0. Let the
corresponding solution to the QoS maximization problem be {W ′′clip,W ′′unclip}.

In this case, the following relationships should hold good:

∀Sti ∈ Γ′′clip : wi.(k − δ) ≥ wclipi (5.39)

∀Stj ∈ Γ′′unclip : wj .(k − δ) < wclipj (5.40)

∑
Sti∈Γ′′clip

wmaxi +
∑

Stj∈Γ′′unclip

wj .(k − δ) = 1 (5.41)

Observe that all the applications that satisfy Inequality 5.39 also satisfy
the Inequality 5.23, hence

Γ′′clip ⊂ Γclip (5.42)

Γ′′clip = Γclip −Rδ (5.43)

Rδ ⊂ Γclip (5.44)

5.3. BANDWIDTH DISTRIBUTION 117

since Γclip is the complement of Γunclip,

Γ′′unclip = Γunclip +Rδ (5.45)

Γunclip ⊂ Γ′′unclip (5.46)

Rewriting (5.25), gives∑
Sti∈(Γ′′clip+Rδ)

wclipi +
∑

Stj∈(Γ′′unclip−Rδ)

wj .k = 1 (5.47)

∑
Sti∈Γ′′clip

wclipi +
∑

Stp∈Rδ

wclipp +
∑

Stj∈Γ′′unclip

wj .k −
∑

Stq∈Rδ

wq.k = 1 (5.48)

Subtracting (5.41), gives∑
Stp∈Rδ

wclipp +
∑

Stj∈Γ′′unclip

wj .δ −
∑

Stq∈Rδ

wq.k = 0 (5.49)

∑
Stj∈Γ′′unclip

wj .δ =
∑

Stp∈Rδ

wclipp −
∑

Stq∈Rδ

wq.k (5.50)

Using the fact that Rδ ⊂ Γclip and Inequality 5.23,∑
Stj∈Γ′′unclip

wj .δ < 0 (5.51)

Which is not possible, since the weights wj are positive.
Hence, once proved that there exists a unique �ngerprint to the band-

width distribution problem, the solution to the problem is also unique since
there is a one-to-one mapping between the �ngerprints and solutions to the
QoS maximization problem.

Computational complexity of the iterative procedure

The QoS distribution mechanisms addressed in this work aim at online use,
thus their computational complexity is a key factor.

The computational complexity is related to the number of times Vi is
computed (alg. 5.3.1-(1)). In a scenario where the result appears with no
need for iterations, the number of times Vi is computed equals the number
of services, which is in fact the best-case scenario.

Every time a new iteration is triggered the remaining services in Γunclip
are re-computed, requiring new Vi results. Therefore, given a generic set St
and the number of iterations, the worst scenario occurs when Vi is computed

118 CHAPTER 5. DYNAMIC QOS MANAGEMENT

in each iteration as many times as the number of services in the unclipped
set.

From the algorithm (5.3.1), the number of iterations is given by the
number of times condition (alg. 5.3.1-2) is not veri�ed, i.e., the number of
jobs that are clipped.

Let Γ1,Γ2 ⊆ St be two arbitrary subsets of St. As previously shown,
the number of iterations (or breaks) that result when running the iterative
algorithm will be the same for both lists, even though the number of times
Vi is computed varies. For each new iteration, Vi is re-calculated for the
services not yet clipped. Therefore, depending on the list arrangement, the
computational time might vary. If the list is sorted in such a way that the
services that might be clipped head the list, the number of re-calculations
is minimized. Conversely, if the list is reversely sorted the number of re-
calculations will be the highest, leading to the worst-case situation.

For a given list Γ, let TΓ be the number of times Vi is computed and n
the number of services in the list. If Γ is sorted as in the best-case scenario,
the services that do not clip are computed in the last iteration. Therefore
there are no services for which Vi is computed more than once. The number
of times Vi is computed is then given by:

StBest-case : TΓ(sorted) = n (5.52)

To evaluate the impact of Γ being reverse-sorted, leading to a worst-
case scenario, we have to estimate the total number of iterations that occur.
We have seen that, no matter the sorting order, the number of iterations is
unique for a given set St. Let ItSt represent that number. In the worst-case
scenario, we have a situation where in the �rst iteration all services pass the
condition but the last one breaks, causing Vi to be computed n times. Then,
in the second iteration, with one less element, it might be that the, now
last element (previously last but one), breaks the condition. The number of
times Vi is computed is now n− 1. Assuming this worst scenario for all the
following iterations, we have in fact a decreasing arithmetic progression that
starts with the value n and ends with n − ItSt. The overall number of Vi
computations is then given by:

TΓ(rev−sorted) = (2.n− ItSt).
ItSt + 1

2

Yet, in a real scenario, for a generic St there is no way of predicting ItSt
without computing through all services. Thus, a priori, we have to assume
the maximum number of iterations, ItSt = n− 1:

StWorst-case : TΓ(rev−sorted) =
n+ 1

2
.n (5.53)

5.3. BANDWIDTH DISTRIBUTION 119

Figure 5.2: Computational complexity, excluding services sort.

Figure 5.2 plots the complexity growth with the number of services, both
for the best-case (Equation 5.52) and the worst-case (Equation 5.53). It is
clear the advantage of having the list sorted before applying the algorithm.
While the best-case is computed with an O(n) complexity, the worst-case
requires an O(n2).

The di�erence between the two cases is noticeable. However, there are
two aspects that so far have not been considered, the sorting computational
overhead and the conditional parameters that de�ne the sorting. For now
assume that there is a static parameter to guide the sorting. In other words,
a parameter constrained to the scope of a single service speci�cation and not
in�uenced by the number nor the parameters of other services.

Regarding the sorting computational time, if appropriate measures are
taken in the implementation, such as keeping the list always sorted from
the beginning, the sorting procedure is reduced to a binary search with
complexity O(log n). Hence, the full procedure can be classi�ed as having
an O(n log n) complexity, which is still better than the unsorted approach,
with complexity O(n2).

Sorting the services - Overview

The sorting algorithm is still relying on the existence of a conditional expres-
sion that enables an e�cient and fast sorting procedure, otherwise, it cannot
be neglected when addressing the iterative procedure complexity.

To �nd that sorting parameter, we must understand what triggers the
conditions failure, and the subsequent new iteration.

120 CHAPTER 5. DYNAMIC QOS MANAGEMENT

Direct Share: From (5.4) and (5.9), the necessary condition for having
an iteration is given by:

Vi > Ulaxi ⇔

Uspare >
Ulaxi
wi

(5.54)

Indirect Share: From (5.5) and (5.9), the necessary condition for having
an iteration is given by:

Vi < 0 ⇔

Uspare >
Ulaxi
wi

, wi > 0 ⇔
n∑
j=1

Ulaxj − Uspare >
Ulaxi
wi

(5.55)

The QoS weights are provided by the application and are normalized.
Each weight is obtained comparing certain parameters across all the services.
For the sake of simplicity, assume for now, that wi, the QoS weight of Sti, is
uniquely dependent from Sti parameters, i.e, its calculation does not depend
on Stj parameters, for instance.

Based on that assumption, in both inequalities, (5.54) and (5.55), the
left member re�ects the global impact of all the services set, whereas the
right member depends only on Sti service parameters. Generalizing the
inequalities members, follows that:

∀Sti ∈ Γ Const (Γ) > V ar (Sti) (5.56)

where Const() function is determined by all the current services, and thus
�xed regarding Sti, the service being compared, while the V ar() function
depends on Sti only.

To de�ne the sorting condition, consider two services Stj , Stk ∈ Γ, so
that V ar(Stj) > V ar(Stk). Comparing Inequality 5.56) when applied to
both, j and k, we may say that if Stj meets Inequality 5.56, so does Stk,
since Const(Γ) is the same for both. But the reverse is not valid. Therefore,
Stk is more likely to cause an iteration than Stj . Generalizing to the Γ list,
if the services are sorted in ascending order regarding the V ar(Sti) value,
the services that most probably cause an iteration will be heading the list,
hence being analyzed �rst in the iterative algorithm 5.3.1.

Therefore, by assuming wi independent from other services, it is possible
to have a parameter, V ar(Sti), that determines if a service is more likely
to break the condition, i.e., the sorting condition. However, the previous
assumption may not be valid for the QoS mapping models, a subject that is
investigated in the next section.

5.3. BANDWIDTH DISTRIBUTION 121

5.3.4 Application mapping models

Section 5.3.3 addressed two distribution models that use parameter wi (w
′
i

and w′′i) to distribute the spare load among the services. This section ad-
dresses how that parameter is obtained from the application model parame-
ters, i.e., how the application indications are interpreted when to distribute
the bandwidth.

The weights are assessed with a function δ of application parameters, as
follows:

wi = δ([qosj , Stj ∈ St], [Ulaxj , Stj ∈ St])

Function δ has the only constraint of providing weights such that
∑
wi =

1. Given this constraint, three mapping models are proposed to be applied
along with the distribution models, either the Direct Share or the Indirect
Share.

The combination of the application mapping models and the bandwidth
distribution techniques, results on some QoS management techniques similar
to other techniques already formulated in the literature. In this case, they are
placed side by side and the axiomatic analogy is discussed. For each model it
is also addressed the iterative optimization issue, discussed in Section 5.3.3.

Mapping model A

Weighted fair queuing (WFQ) [122] is a data packet scheduler that enforces
reduced latency in a per packet basis. It prioritizes services in order to
give bandwidth guarantees based on an application given parameter. The
approach hereby described, although in a di�erent context, is based on the
same principle. When a resource is shared by several services and we want to
distinguish between the performance quality of these, the easiest approach
is to make a direct mapping between the application requirements and the
resource shares.

In this model the QoS level weights, {wi : Sti ∈ Γ}, are obtained nor-
malizing the service application parameter, qosi as follows:

∀Sti ∈ Γ : wi =
qosi∑

Stj∈Γ

qosj

The model is very simple and easy to understand from the application
perspective: the higher is the qosi, the higher wi becomes. However, as
we have seen that w′i and w

′′
i , the weights within the Direct Share and the

Indirect Share models respectively, have opposite meanings regarding the
bandwidth distribution. Therefore, to equalize those meanings, we obtain:

For Direct Share:

∀Sti ∈ Γ : w′i =
qosi∑

Stj∈Γ

qosj
(5.57)

122 CHAPTER 5. DYNAMIC QOS MANAGEMENT

For Indirect Share:

∀Sti ∈ Γ : w′′i =
(qos−1

i)∑
Stj∈Γ

(qos−1
j)

(5.58)

Hence, we have for both models the parameter qosi directly controlling
the bandwidth obtained.

Regarding the sorting optimization issue, Section 5.3.3 discussed the ex-
istence of a sorting condition given by the Inequality 5.56. Such inequality
is characterized by having a member that is constant to all services being
compared and another one that is unique to each service. However, it was
assumed that wi depends solely on Sti service parameters, which is not valid
for this mapping model, as illustrated in Equations 5.57 and 5.58, since wi
depends on parameters from all the services. Yet, it is possible to obtain
an inequality similar to Equation 5.56 with a member depending on Γ and
a separate one depending on Sti parameters. The proof is applied for both
distribution techniques using this model.

Const (Γ) >
Ulaxi
wi

,∀i ∈ Γ

Direct Share:

Const (Γ)∑
Stj∈Γ

qosj
>
Ulaxi
qosi

Const (Γ)′ > V ar (i)′ (5.59)

Indirect Share:

Const (Γ)∑
Stj∈Γ

(qos−1
j)

>
Ulaxi

(qos−1
i)

Const (Γ)′′ > V ar (i)′′ (5.60)

Both inequalities are similar to (5.56) where the leftmost members are
constant and the rightmost depend only on application given parameters, as
sought. This result validates the assumption that led the original condition

(5.56) and identi�es the sorting parameter, V ar(i)′ =
Ulaxi
qosi

for the Direct

Share and V ar(i)′′ = Ulaxi .qosi for the Indirect Share.
The integration of this mapping model with the Direct Share or the In-

direct Share distribution mechanisms and the sorting optimization scheme
described in Section 5.3.3, results in a QoS distribution procedure with com-
plexity O(n log n).

The QoS distribution scheme that results from the Direct Share method
is perhaps the simplest and most intuitive to understand from the application

5.3. BANDWIDTH DISTRIBUTION 123

point of view, thus being used in resource management frameworks such as
FRESCOR [52].

The integration with the Indirect Share method is not entirely novel,
either. Buttazzo et al proposed a mechanism that addresses the problem of
overload in task sets that tolerate service degradation, the elastic task model
(ETM) [38]. The model is analogous to the physical model of springs being
compressed. A generic task (spring) i with a nominal size Ui0 is compressed
with a QoS level (elastic coe�cient) ei. The task i is compressed along with
all other tasks until a �nal distribution balance is found, with all tasks �tting
Ud, the desired total task utilization. Similarly to the iterative procedure
in Section 5.3.3, a task is given Uimin when the maximum compression is
reached. Consider a task set Γ divided in two subsets: a set Γf with the
�xed tasks, the ones that reached the minimum requirements, and a set Γv
with the tasks that are still adaptable. Ui denotes the bandwidth given to
task i in each iteration, as follows:

∀Sti ∈ Γv Ui = Ui0 − (U0 − Ud + Uf)
ei
Ev

(5.61)

where U0 is the nominal utilization load and

Uf =
∑

Sti∈Γf

Uimin

Ev =
∑

Sti∈Γv

ei

The ETM is thus analogous to the one that results integrating this map-
ping model A along with the Indirect Share distribution technique, without
loss of generalization. We can map one model into the other, comparing
Equations (5.61) and (5.5) results:

Ui = V ′′i + Uimin
ei
Ev

= w′′i

Ui0 = Ulaxi + Uimin

(U0 − Ud + Uf) = Uspare

To complete this comparison, keep in mind that our model distributes
the spare bandwidth after having reserved the minimum requirements, while
the ETM operates with the full bandwidth. This small di�erence introduces
an o�set in the iterative procedure, which does not a�ect the result nor the
algorithm e�ciency.

There is however an e�ciency di�erence regarding the iterative procedure
complexity that is reduced from O(n2) in the ETM to O(n log n) in our
approach.

124 CHAPTER 5. DYNAMIC QOS MANAGEMENT

Mapping model B

For diverse application domains, e.g. multimedia, there is a direct relation-
ship between the dynamic QoS range that a given service can accept and
its importance to the global system performance. Consider, for instance,
a video surveillance application, comprising diverse services with identical
quality expectations, except for one stream with higher quality level require-
ments. This particular service is able to operate with higher bandwidth
requirements, higher QoS range (laxity) and should be getting more band-
width than the others. It is thus reasonable to establish the relation between
the QoS range with which services are speci�ed and the di�erentiation level
of each one.

This is a simple approach to the service di�erentiation problem that
in this case further simpli�es the bandwidth distribution procedure. The
model uses simple calculus to obtain the weighted parameters based on the
bandwidth laxity of each service. While the previous model uses a parameter
directly issued to handle QoS management (qosi), this mechanism instead,
uses the slack value, Ulaxi , to obtain the distribution weights, as follows:

∀Sti ∈ Γ : wi =
Ulaxi∑

Stj∈Γ

Ulaxj
(5.62)

This model can be seen as a particular case of the previous model, pro-
vided that qosi = Ulaxi . However, there are a few characteristics that make
this mechanism special.

The �rst particularity of this mechanism is that there is no di�erence
between integrating this model with the Direct Share or the Indirect Share
mechanism. They become mathematically equal given Equation 5.62. Merg-
ing equations (5.4) and (5.5) with the same wi, follows:

V ′i = V ′′i , wi = w′i = w′′i

wi.Uspare = Ulaxi − wi.

∑
j=1

n
Ulaxj − Uspare


wi =

Ulaxi∑
Stj∈Γ

Ulaxj

Comparing Direct Share and Indirect Share models for when the result
is the same, the only possible weights are the ones given by Equation 5.62,
which makes both schemes equal.

Another characteristic that emerges from this model is that the band-
width distribution procedure executes with no iterations, i.e., the inequal-
ities in (5.9) are always met. This is because each wi denotes the ratio of

5.3. BANDWIDTH DISTRIBUTION 125

the service bandwidth laxity among all the services that must be shrunk
to �t Uspare. The proof for this statement is easily followed showing that
conditions in (5.9) are always met.

For the Direct Share, or Indirect Share, we have to show that given the
overload condition, the following conditions are always true:

∀Sti ∈ Γ : 0 ≤ Vi ≤ Ulaxi (5.63)

where (Umini + Vi) is the bandwidth allocated to the service Sti, and
(Umini + Ulaxi) is the maximum possible bandwidth allocated to it.

For the �rst condition, from (5.5) and (5.62) we have,

Ulaxi − wi.

 ∑
Stj∈Γ

Ulaxj − Uspare

 >= 0

Ulaxi −

 Ulaxi∑
Stj∈Γ

Ulaxj

 .

 ∑
Stj∈Γ

Ulaxj − Uspare

 >= 0

Ulaxi .Uspare∑
Stj∈Γ

Ulaxj
>= 0

which is always met since both, Ulaxi and Uspare are always positives. This
veri�es the �rst condition.

Similarly, for the second condition, from (5.4) and (5.62) we have,

wi.Uspare ≤ Ulaxi Ulaxi∑
Stj∈Γ

Ulaxj

 .Uspare ≤ Ulaxi

Uspare ≤
∑
Stj∈Γ

Ulaxj , ∀Sti ∈ Γ : Ulaxi > 0

which is the necessary overload condition. This makes the second condition
in (Equation 5.63) to be always valid, and proves that using the weights
proposed for this model, the distribution procedure goes with no iterations.

Thus, the use of this mapping model within the bandwidth distribution
scheme introduces a substantial reduction on the computational complexity.
Avoiding the iterations, it eliminates the need to sort the services sequen-
tially, and so the complexity is reduced to O(n).

Mapping model C

The QoS distribution approach followed for the previous model assumes a
tight relationship between the importance given to one service and the re-
quirements range in which that service operates.

126 CHAPTER 5. DYNAMIC QOS MANAGEMENT

However, some applications are strictly con�ned to operate under spe-
ci�c requirements, which constrains the manageability of the requirements
speci�cation towards a given di�erentiation level. As an example of this
constraint, consider a video surveillance system similar to the one presented
for the previous model, but where a given service is constrained to operate
on a speci�c range of frame rates, hence not able to increase the bandwidth
laxity and so increase the resource share with respect to other services.

To address this class of applications, a model is proposed that uses a vir-
tual operating bandwidth laxity for the QoS management, while the service
operates within the real laxity. Compared to the previous approach, this
model provides extra �exibility to, at design time, adjust the importance of
services with operational constraints. The virtual range is obtained apply-
ing a scaling ratio to the e�ective operational range. The ratio, speci�ed by
qosi, increases or decreases the base operational range (Ulaxi), i.e., qosi > 1
or qosi < 1 respectively. The weighted parameters for this model are given
by:

∀Sti ∈ Γ : wi =
(Ulaxi .qosi)∑

Stj∈Γ

(
Ulaxj .qosj

)
From a designing perspective, the presented model is easily mapped into

the �rst model (A), giving qos′i = (Ulaxi .qosi). The only di�erence for this
model is the way the designer distributes the qosi importance. Addressing
separately the Direct Share and the Indirect Share models, follows:

For Direct Share:

∀Sti ∈ Γ : w′i =
(Ulaxi .qosi)∑

Stj∈Γ

(
Ulaxj .qosj

) (5.64)

For Indirect Share:

∀Sti ∈ Γ : w′′i =
(Ulaxi .qosi)

−1∑
Stj∈Γ

(
Ulaxj .qosj

)−1 (5.65)

Similarly to model A, the optimal bandwidth distribution is not guaran-
teed in a single iteration step. It is necessary to follow the iteration procedure
as described in Section 5.3.3. For the mapping model A, the performance
impact is minimized by having the service list sorted. The same is true with
this model.

The performance impact minimization results from the validation for this
mapping model of the assumption that led to (5.56). So, taking (5.56) and
(5.64) for the Direct Share, or (5.65) for the Indirect Share:

Const (Γ) >
Ulaxi
wi

, ∀Sti ∈ Γ

5.4. OPERATIONAL PARAMETERS MAPPING 127

Direct Share:

Const (Γ)∑
Stj∈Γ

(
qosj .Ulaxj

) > 1
qosi

Const (Γ)′ > V ar (Sti)
′ (5.66)

Indirect Share:

Const (Γ)∑
Stj∈Γ

(
qosj .Ulaxj

)−1 > U2
laxi

.qosi

Const (Γ)′′ > V ar (i)′′ (5.67)

Here also, V ar(Sti)′ and V ar(Sti)′′ are isolated in the rightmost member
and depend uniquely on Sti parameters. The iterative impact is minimized
if the service list is sequentially issued and sorted by 1

qosi
and U2

laxi
.qosi,

respectively for the Direct Share and the Indirect Share. The resulting com-
putational complexity is reduced to O(n log n).

5.4 Operational parameters mapping

For many applications there is a direct correspondence between the band-
width that is served and the quality experienced by the application. How-
ever, despite being the bandwidth that determines the QoS distribution, the
application model demands for an explicit timing speci�cation, beyond the
bandwidth, that includes a maximum per job utilization transmission time,
Ci that is repeated periodically with period Ti. Additionally, evolving to-
ward dynamic adaptability demands for a model extension to comprise the
requirements variability, thus includes ranges or sets of discrete points for
both period and transmission time.

Section 5.2.2 introduced a simpli�ed model addressing the requirements
variability and the QoS distribution. For each service, Umini denotes the
minimum bandwidth required and Umini+Ulaxi denotes the maximum band-
width. Upon distribution, each service receives a bandwidth Uvi (Equation
5.3) within the speci�ed operating range. Then, it is necessary to map that
given bandwidth in terms of the service operational parameters, C and T ,
knowing that C/T denotes the bandwidth being used. For a service Sti,
let Uvi denote that given utilization bandwidth and let Cvi and Tvi be the
materialization of such bandwidth in operational parameters. Let f be the
function that does such mapping.

f : (Uvi) 7→ (Cvi, T vi) : ∀i,
Cvi
Tvi
≤ Uvi

However, f is not bi-univocal since for a given Uvi there is a virtually
in�nite range of pairs (Cvi, T vi).

128 CHAPTER 5. DYNAMIC QOS MANAGEMENT

However, this mapping function may be subject to additional constraints
derived from the application operational limitations. The application may
constrain the function co-domain to speci�c value sets. An example is a video
camera streaming that de�nes speci�c discrete values for the frame size (Cv)
as well as for the frame-rate (Tv). It is thus necessary for each service Sti,
not only, to include such limitations within the application model, specifying
a space region of allowed (Cvi, T vi) pairs that correspond to a bandwidth
space BWi, but also, to enforce those limitations within the f function.

When the allowed operational space is discrete, further constraints are
imposed as the bandwidth distribution scheme that decrease the e�ciency in
assigning bandwidth, typically leading to waste. This situation is addressed
next.

5.4.1 Complete application model

Section 5.2 presented a QoS-oriented service model Sti (Umini , Ulaxi , qosi),
according to which each service gets a bandwidth Uvi within the range
Umini ≤ Uvi ≤ Umini + Ulaxi

Let us now focus on the case in which the service operational space is
restricted to a set of discrete points.

Let Ci denote a discrete list of Cs available for Sti and Ti denote a
discrete list of T s. Zi denotes the list of pairs available for Sti, such that:

Zi ≡ {(Cj , Tm),∀Cj ∈ Ci, ∀Tm ∈ Ti}

The service model can thus be written as:

Sti (Zi, qosi)

For each service, it is speci�ed a list of admissible pairs and the QoS
importance parameter, qosi.

Opposed to the linear bandwidth range referred in the simpli�ed model,
in this model, the available bandwidth is denoted with a discrete domain
as the basis for the bandwidth distribution. For this reason, the bandwidth
distribution urges for a �ne-grained procedure that assigns the bandwidth
based on such domain.

In order to use the QoS distribution models described in Section 5.3,
which are based on a continuous bandwidth adaptation range, we propose
de�ning a continuous range that contains all the discrete points.

Thus, considering the set BW′i with all discrete bandwidth points allowed
for Sti, such that:

bw : zki ∈ Zi 7→ BW′i ≡ bw(zki) =
Ck
Tk

5.4. OPERATIONAL PARAMETERS MAPPING 129

Figure 5.3: Discrete bandwidth to linear range mapping.

we de�ne the bandwidth range BWi = [Umini , Umaxi], where:

Umini = min
zki ∈Zi

bw(zki)

Umaxi = max
zki ∈Zi

bw(zki)

Figure 5.3 illustrates the BW′i space and the corresponding continuous
range BWi for a service Sti.

After applying the bandwidth distribution to BWi we obtain, for each
service Sti, the bandwidth Uvi, which then needs to be mapped onto a point
Uv′i < Uvi. This condition is necessary to maintain the schedulability of the
bandwidth distribution.

This procedure is non-optimal in terms of bandwidth distribution and
resource usage because the di�erence between the granted bandwidth and
the one actually used, Uvi − Uv′i, is wasted.

For systems where wasting bandwidth means a signi�cant degradation
penalty on the resource management, it is possible to reclaim that bandwidth
and reassign it in one or more iterations. This topic is further addressed in
Section 5.4.2.

However, we still need to address the assignment of a concrete (C, T) pair
whenever there are several possible pairs for the same given Uv′i bandwidth
value. In this case, given a bandwidth Uv′i, there must be a policy that
chooses the pair that best meets the application goals.

The option for any mapping rule is independent from the bandwidth
distribution scheme in place. In fact, it is even possible to allow that di�erent
services be managed by di�erent rules. For this purpose and since the choice
for these rules is mainly application oriented, an additional parameter is
attached to the service description model, Pi, to denote this policy. The
�nal service model used for the bandwidth distribution is thus:

Sti{Zi, qosi, Pi},∀k : Zki ∈ Zi

5.4.2 Bandwidth reclaiming

At this point we address the reclaiming of bandwidth left free because of
using discrete operational points as refered in the previous section.

130 CHAPTER 5. DYNAMIC QOS MANAGEMENT

For a service Sti, with granted bandwidth Uvi and allowed discrete band-
width Uv′i, we de�ne the wasted bandwidth Wi as follows:

Wi = Uvi − Uv′i
The basis of the bandwidth reclamation is to group all the individual

wastes of all services and redistribute it again.

Wsum =
∑
i=1..n

Wi

As mentioned in Section 5.3, there are two possible distribution schemes,
the greedy scheme and the weighted one. For the greedy scheme, the spare
bandwidth is allocated to each service in sequence, staring from the highest
priority to the lowest priority one. Each service either gets all the bandwidth
it can use or the remainder. Going through all services the wasted bandwidth
Wsum will eventually be completely allocated to the services or a certain
amount will remain that cannot be used by any service.

However, the situation is di�erent with the weighted scheme. I this case,
repeating the bandwidth distribution over Wsum with the same di�erentia-
tion weights (wi), will result in a distribution for each service equal to Wi,
thus unusable. Therefore, a distortion to the weights must be done for the
sake of e�ciency. We proposed two methods. One is to distribute Wsum to
the services sequentially based on their weight (wi), from the largest to the
smallest one, and grant them the bandwidth that they can , until all Wsum

is assigned. This procedure is identical to the greedy bandwidth distribu-
tion scheme in which the weights (wi) are used as priorities. Therefore, the
procedure is performed in a single pass with reduced complexity (O(n)).

Despite simple, the above procedure violates the weighted bandwidth
distribution principal. The other method tries to improve the approximation
of the reclaimed bandwidth distribution to the initial weights by sequentially
removing some services from the process and distribute the bandwidth by
the remaining ones. Each time a service j is removed from the process, its
bandwidth share (Wj) is made available to others that might be promoted
to the discretized output bandwidth, Uv′i, reducing Wi.

When iterating this process, in order to improve the chances of assigning
more bandwidth to the services with larger weight, in each iteration we re-
move from the service set the one with the lowest weight. Therefore, after the
main bandwidth distribution and the related discretization mapping, where
all services are included, the distribution is re-issued with one less service,
the one with lower weight coe�cient. The process is repeated iteratively,
removing the services one by one, starting from the lower weighted service,
until all the wasted bandwidth is fully distributed or all services have been
removed. For each new iteration the remaining services adjust the distri-
bution parameters in order to account with the already assigned bandwidth

5.5. QOS MANAGEMENT ON FTT-SE 131

and so the next distribution focus on the wasted bandwidth. Algorithm 5.4.1
depicts this procedure.

Algorithm 5.4.1: (Weighted redistribution)

comment: Γ ≡ {Sti (Zi, qosi, Pi) , i = 1..n}
comment: UR - the resource capacity.

Γ′ ← Γ : Γ′ =

St′i


Umini = minj
(
bw(Zji)

)
Ulaxi = maxj

(
bw(Zji)

)
qosi = qosi

 , i = 1..n


U ′R ← UR
repeat
{Uv1...Uvn} = BW_distribution(U ′R, Γ′)
{Uv′1...Uv′n} = Discretization({Uv1...Uvn}, Γ){
U ′R ← U ′R − Uv′k
Γ′ ← Γ′ \ {Stk}

, k : wk = min
St′j∈Γ′

(wj)

until Γ′ = {} or (∀i = 1..n, Uv′i = Uvi)

This iterative procedure to re-assign the wasted bandwidth increases the
overall complexity of the QoS management. Despite the fact that it reduces
the services cardinality on each step, this procedure still increases the com-
putational complexity of the inner distribution algorithm by a power of 2,
thus O(n2).

This bandwidth redistribution problem is in fact a bin-packing problem,
where the bandwidth to be distributed (Wsum) is the bin and the discretized
bandwidth levels of each service the packages. The problem is known to be
NP-hard.

Given the limitations to bound the time complexity of this procedure, it is
not possible to get an optimal solution regarding the resource distribution.
The purpose of the proposed redistribution methods is thus to, improve
the distribution e�ciency in a best-e�ort fashion, while following a logical
distribution policy. The penalty incurred by the second method may not
be worth since the redistribution may refer to a small share of the overall
bandwidth distribution.

5.5 QoS management on FTT-SE

The dynamic QoS management model presented in this chapter focused a
constrained resources. At this level, the QoS management provides to each
service the best possible quality along with a more e�cient resource usage.

132 CHAPTER 5. DYNAMIC QOS MANAGEMENT

However, there are limitations to the deployment of this model regarding
the type of resource since it must be able to support online recon�gurability,
while enforcing the requirements setup for each given service. Additionally,
when addressing a distributed resource, it demands for a consistent dis-
tribution agreement in order to globally enforce the resource management.
Finally, and perhaps the most demanding feature is, related to the sched-
uler and the schedulability test that is part of the admission control. The
admission test must be fast and execute in bounded time in order to be
suited for dynamic environments. Moreover, in order to accomplish the QoS
distribution and maximize the resource usage, the schedulability test must
be based on the individual load of each service and their sum, which must
be compared with the resource capacity, i.e., there must exist a utilization
bound de�ning the schedulability region.

The FTT-SE protocol, described in Chapter 3, supports all these fea-
tures. It is a hard real-time communication protocol deployed on top of a
switched Ethernet network, suited for dynamic environments and enforcing
the service requirements by means of a centralized tra�c control architecture
that consistently issues the services transmissions. Additionally, the proto-
col supports any tra�c scheduling policies, namely EDF and RM, for which
there are utilization-based schedulability tests.

However, given the multiple links of a switch the analysis has the partic-
ularity of addressing the network as a multi-dimensional scheduling problem,
where each uplink and downlink represents a resource with dependent rela-
tionships. Nevertheless, the problem is reduced to several uni-dimensional
utilization-based analysis, in spite of being assessed globally for the complete
switch.

Similarly, the integration of the QoS distribution has to be conducted
individually on each link. In the following we discuss this integration within
the FTT-SE protocol.

The QoS distribution is intimately related to the capacity provided to
each link by the schedulability bound. Although the links have similar initial
capacity, the utilization load is irregular with the di�erent forwarding paths
generated and the dependencies that thereby result.

Recalling the distribution base model described in Section 5.2.2, for a
single resource, after assigning the default bandwidth of each service, the
Uspare bandwidth is distributed among the services according to a distribu-
tion policy. The same principle applies here to each individual link. The
di�erence though, is that di�erent links have distinct loads and the same
service may be seen in di�erent links, resulting on multiple bandwidth reser-
vations for the same service. There may be a di�erent reservation value for
each resource where a service takes part.

The distribution model is generically de�ned as follows. Let M be the
list of m individual resources, uplinks and downlinks, and St the list of s
services following the QoS distribution model. Each Mj resource holds a list

5.5. QOS MANAGEMENT ON FTT-SE 133

of services from St, denoted by SMj , which may appear in di�erent resources,
co-existing with di�erent other services. Therefore, assessing each resource
individually results on di�erent reservation values for the same service.

However, despite the variety of reservation values per service, there must
exist a global agreement regarding the resources assigned to the service that
must be unique since it is not possible to execute a service with di�erent
characteristics across resources. Therefore, the bandwidth reserved for a
service is determined by the resource that provides the lowest reservation
level, as follows:

Uvi = min
∀Mj∈M

(Uv(i,j))

where Uv(i,j) denotes the bandwidth reserved within the resource j for service
i.

The consequence of such limitation is the bandwidth being left unused,
leading to a more ine�cient distribution. For each resource, the wasted
bandwidth is given by:

∀Mj ∈M, Wsumj =
∑

Sti∈SMj

(Uv(i,j) − Uvi)

This bandwidth waste is inevitable when addressing the distribution
of the resources independently. Though, when considering the distribu-
tion method that assigns the bandwidth on a �xed importance basis (Sec-
tion 5.3.1), it is possible to avoid this waste, comprising all the resources
together in the same distribution �ow. Starting from the most important
service, the bandwidth is reserved with the exact amount, relating all the
resources. This avoids inconsistency on reserving across several resources
and leverages a more e�cient distribution.

However, the same reasoning cannot be followed when addressing the
weighted distribution method. The resource distribution is resource indepen-
dent and cannot be merged in a single procedure �ow. Yet, the bandwidth
can be reclaimed and redistributed among the services, following a simi-
lar procedure as when mapping the bandwidth onto operational parameters
(Section 5.4). In this case, after distributing and truncating the bandwidth
by the minimums, the remaining bandwidth can be redistributed as depicted
in the following algorithm.

134 CHAPTER 5. DYNAMIC QOS MANAGEMENT

Algorithm 5.5.1: (Multi-resources weighted redistribution)

Given:
m ≡ number of resources

ri ≡ {aj , j = 1...m} : aj =
{

1⇐ Sti ∈ SMj

0⇐ otherwise
St ≡ {Sti (Umini , Ulaxi , qosi, ri) , i = 1...s}
and UR = {URj , j = 1...m} , denoting the capacity per resource.

Γ← St
U ′R ← UR

repeat

Uv(S,M) =

Uv(1,1) · · · Uv(s,1)
...

. . .
...

Uv(1,m) · · · Uv(s,m)

 = BW_distribution(U ′R, Γ)

{Uv′′1 · · ·Uv′′n} ← Uv(S,M) : Uv′′i = min
j=1...m

Uv(i,j)

{
U ′R ← U ′R − (Uv′′k × rk)

Γ ← Γ \ {Stk}
, k : wk = min

l=1...#Γ
(wl)

until Γ = {} or (∀Sti∈Γ,Mj∈M , Uv
′′
i = Uv(i,j))

The function referred as BW_distribution distributes the capacity of
each resource (URj), by the related services, listed in SMj = {Sti : ri(j) = 1}.
The result is a set of bandwidth reservations per service and per resource.

The bandwidth assigned to each service is then derived in Uv′′i , taking
the minimum reserved values across all the related resources. The bandwidth
reclaiming procedure is �nally conducted, issuing new distributing iterations
while removing services to the Γ set of services. In each new iteration, the
service to be removed is the one with minimum distribution weight, for which
the bandwidth obtained in the previous iteration is kept. Simultaneously, the
share corresponding to the outgoing service is removed from the distributing
capacity. The iterative procedure ends when either no bandwidth is being
wasted or Γ becomes empty.

In terms of complexity, the procedures hereby presented are similar to
the ones presented in Section 5.4, addressing the bandwidth reclaiming for
the discrete model mapping. Similarly, the procedure that reassigns band-
width in a �xed importance basis adds an O(n) complexity order, while the
weighted distribution procedure increases the complexity of the individual
distribution by a power of 2.

5.6. CONCLUSION 135

5.6 Conclusion

The embedded systems in general and the network communications in partic-
ular are following a trend that includes making a better use of the resources,
by e�ciently adjusting online the requirements according to the application
dynamics, while guaranteeing the system correct behavior regarding timeli-
ness issues.

On this regard, applications have to be supported with models that de�ne
the environment dynamics and how each individual application service or
job adapts facing those dynamic changes. However, the search for these
models is con�ned to the ability of delivering fast and reliable adjustments
as demanded by the online properties of the system.

This chapter aims to categorize several of those models, oriented in a
design perspective of providing quality-levels that distinguish the preferred
services when the resource, or network, is overloaded. The models provide
the means so the application may de�ne the quality of service requirements
for each service contract as well as de�ning how that quality evolves before
other competitor services.

This whole QoS management problem is decomposed in several concep-
tual phases, 1) the application interpretation and mapping of the model into
actual quality-levels, 2) the bandwidth distribution of the resource capacity
that based on those quality-levels assigns bandwidth to the services, 3) the
mapping of the obtained bandwidth into the operational parameters used
by the application, and �nally, 4) the management of a resource in a multi-
dimensional perspective as in the FTT-SE protocol.

The models are categorized according to their distribution fairness on
regard to the application speci�cations and according to the computational
complexity overhead. Through the QoS management decomposition layers
several approaches are conducted to minimize the impact on that complexity
and optimize the bandwidth distribution, where one of the issues compre-
hends the minimization of bad resources allocation, i.e., bandwidth waste.

Concerning the deployment of these models within the FTT-SE frame-
work, the proposed models �t under the constraint that distribution has to
be carried on multi-dimensionally. To validate such integration Chapter 6
carries an experiment with surveillance cameras where this QoS distribu-
tion is actually implemented as the mean to deliver the best instantaneous
throughput of the network and considering the application de�ned expecta-
tions concerning QoS.

136 CHAPTER 5. DYNAMIC QOS MANAGEMENT

Chapter 6

FTT-SE case studies

This chapter compiles a collection of case-studies developed on top of the
FTT-SE architecture. Firstly, it addresses the integration of the protocol
within a wider-scoped resource management framework, which includes re-
serving for multiple resources with distinct class types (Section 6.1). In Sec-
tion 6.2 the FTT-SE framework is used in a real application scenario where its
recon�gurability and QoS management properties play an active role. Then,
Section 6.3 shows how the protocol is able to support complex scheduling
structures such as aperiodic servers and hierarchical composition, in order
to ease the application design. Finally, Section 6.4 describes a preliminary
validation of a work-in-progress and future work related implementation that
includes the master node within the switch.

6.1 Integration in the FRESCOR framework

Networked Embedded Systems (NES) were originally associated with indus-
trial supervision and control applications, which employed simple sensors,
actuators and controllers. However, a steep evolution in this application
domain is being experienced, pushed by the growing number of sensors and
overall complexity present at the plant level. As an example, the use of imag-
ing sensors, both for supervision and control purposes, is spreading widely in
classes of applications such as mobile robotics, tra�c control and assembly
lines inspection. Consequently, the sensors become inherently more complex,
so as the �ows of information exchanged at the cell and plant levels, integrat-
ing periodic and aperiodic �ows of short and large data, some of multimedia
nature, with considerable variability during run-time.

The new demands and increased complexity posed by these applications
pushed the development on new techniques and design methodologies. Two
key aspects in this regard are the complexity management and the resource
management. Complexity management is being addressed by the adoption
of adequate middleware layers in NES (e.g. CORBA, Java RMI, DCOM,

137

138 CHAPTER 6. FTT-SE CASE STUDIES

etc)[134], which abstract away distribution, aiming at transparent interaction
mechanisms between objects, components or applications. Regarding the
resource management (e.g. CPU, memory, network, energy, etc) several
approaches have been proposed recently, aiming at ful�lling the needs of
those emerging applications in aspects like dynamic con�guration and QoS
management, support for new and more e�cient scheduling techniques, etc.

The FIRST Scheduling Framework (FSF) [25] provides a high-level ab-
straction for real time resource schedulers while maintaining predictability
and performance e�ciency. It provides a homogeneous interface so it can
be used in di�erent platform architectures. This framework was initially
designed to cope with the application needs for processor and network man-
agement, although with some limitations in the latter. The Framework for
Real-time Embedded Systems based on COntRats (FRESCOR) [66] aims
at extending the FSF framework for multi-resource reservation, comprising
various classes of resources commonly found in NES applications.

Regarding the communication subsystem, an early implementation has
been proposed to address negotiation over an Ethernet resource. This is the
Real-Time Ethernet Protocol (RT-EP) [90]. The proposed Flexible Time
Triggered communication over Switched Ethernet (FTT-SE) (Chapter 3)
provides �exible and deterministic real-time communication services com-
bined with dynamic Quality of Service (QoS) management. This protocol
has been developed speci�cally to address the requirements presented by the
emerging applications referred above, combining real-time requirements with
a high degree of adaptability. It looks, thus, a natural network candidate
for inclusion in a contracting framework, to e�ciently exploit and enrich the
high level of �exibility that it already o�ers.

This section the integration of the FTT-SE protocol in the scope of the
contract model framework and describes how this integration can be per-
formed ful�lling issues like distribution consistency, reservation guarantees
and run-time �exibility. The work has been carried out in cooperation with
Michael González Harbour, Daniel Sangorrín e a Julio L. Medina from the
University of Cantabria in Spain [86].

6.1.1 FRESCOR background

The FRESCOR framework is based on the notion of contracts between the
application and the system resource manager. These contracts are created,
managed and enforced by a Contract Layer, which assures that su�cient re-
sources capacity is available. The framework is divided in modules that allow
abstracting away the speci�cities of the resources typically found in NES. Of
particular interest to this work are the Core module, which contains the basic
contract information that must exist in all contracted resources, the Spare
capacity module, which de�nes how the application may take advantage of
currently unused resource capacity, and the Distribution module that deals

6.1. INTEGRATION IN THE FRESCOR FRAMEWORK 139

with issues of distributed applications.

The main contract parameters associated to these modules are referred
in Table 6.1. The Label is a unique identi�er inside one resource (here a net-
work resource) that distinguishes the contracts globally, the Resource type
and the Resource id inform about the kind of, and which resource the con-
tract refers to. The Spare capacity is meant to provide some operational
�exibility for Quality of Service (QoS) management by maximizing the num-
ber of running services in the system while complying with their minimum
requirements, and simultaneously getting the maximum usage from the re-
sources. In this scope, theMinimum budget/Maximum budget andMaximum
period/Minimum period de�ne the minimum and maximum application re-
source requirements, respectively, limiting the contract negotiation range. It
is also possible, inside such range, to de�ne discrete utilization tuples using
the Utilization set parameter. As more and more services are bound to a re-
source, the allocation eventually reaches an utilization limit and the system
becomes overloaded. At this point the services utilizations are readjusted
within the speci�ed ranges, according to a given QoS management policy,
possibly degrading performance of the already admitted services. The QoS
policy can make use of several parameters to discriminate the application
services, namely the parameters Importance and Weight, which allow pri-
oritizing the contracts associated to one resource when distributing spare
bandwidth, and the parameter Stability time that de�nes the settling time
that must be respected before re-adjusting each contract bandwidth. The
Distribution module allows de�ning network dependent information, which,
in this work, will be used to support FTT-SE parameters. It also speci�es
the Queuing info parameter that describes the size of the message queue
used for sending messages through the contract, in terms of the maximum
number of messages that it can hold, and the rejection policy used when a
message arrives at a full queue: oldest, or newcomer. A value-based commu-
nication in which the most recent value of a given variable is transmitted can
be easily implemented by specifying a maximum queue size of one message,
and a rejection policy of oldest.

FRESCOR network adaptation layer

The FRESCOR architecture is designed to be modular in terms of support-
ing a wide range of resource types while maintaining the same application
interface. The contract itself is divided in several modules, each associated
to a di�erent resource type, and which can be plugged into the proper re-
source class interface. The network is one such class that joins all possible
network types, possibly using di�erent topologies, di�erent media, di�erent
medium access and even di�erent communication semantics. The network
class interface is called the FNA (FRESCOR Network Adaptation layer) to
which di�erent networks are plugged to.

140 CHAPTER 6. FTT-SE CASE STUDIES

Core

Label
Resource type
Resource id
Minimum budget
Maximum period
Deadline

Spare capacity

Granularity
Maximum budget
Minimum period
Utilization set
Importance & Weight
Stability time

Distribution
Protocol dependent information
Queuing info

Table 6.1: Contract Parameters.

Figure 6.1: FRESCOR resources.

The FNA speci�es services for negotiation and renegotiation of contracts,
for creating endpoints for sending and receiving messages, for binding the
endpoints to contracts, and for sending and receiving messages through the
endpoints.

FRESCOR application model

FRESCOR uses a simple application model based on threads that need to
acquire the necessary resources, such as CPU, memory or energy, by means
of negotiated contracts. Those threads access the system resources by means
of Virtual resources (Vres) residing in the Contract Layer. Each Vres holds
one associated contract.

In distributed applications, this layer is also distributed comprising the
network resource management. A notion of Stream is introduced to model

6.1. INTEGRATION IN THE FRESCOR FRAMEWORK 141

Figure 6.2: Network application model.

the network transactions. In the application model a Stream is associated to
several Threads (Figure 6.2), i.e., one sender and one or more receivers, which
must also be negotiated in the subsystem environment of their respective
nodes. A Stream negotiation is conducted as a multi-resource group contract
that includes the network and the CPU contracts at the end nodes. Such
multi-resource contracts are handled within FRESCOR in an horizontal layer
that spans across all the distributed system.

For the sake of clarity in the remainder of this section the network re-
source is addressed alone, excluding the CPU resources at the end nodes.
It is thus considered the Stream negotiation as a simple contract that, if
succeeded, is mapped onto a single Vres in the contract layer. Each stream
has a unique identi�er mapped on the Label and used as a stream descriptor
by the application when accessing the Contract Layer.

For all network resources, the Vres objects are stored in the associated
module plugged to the FNA interface, but they can also be instantiated in a
remote node, as seen later on. Inside the same network resource (Resource
type + Resource id) several contracts may also be atomically negotiated as a
group, ensuring that they are either all accepted, or all rejected as a whole.

Finally, the network contract negotiation for a given stream can be initi-
ated by any network node and even by more than one node but in this case
the application must ensure the respective consistency. Figure 6.2 shows the
FRESCOR distributed application model with a network resource highlight-

142 CHAPTER 6. FTT-SE CASE STUDIES

Figure 6.3: FRESCOR example.

ing the network contracts in two possible situations: when a contract Virtual
resource is created in a transmitter node (Stream 1), or in a contract group
situation (Streams 2 .. (2+n)). Details on the FRESCOR interface services
for networked applications are better described in Section 6.1.3

6.1.2 FRESCOR application example

The following example illustrates the use of FRESCOR through a very simple
distributed system that integrates a welding system. The system captures an
array of points from a laser pro�ler representing the depth of the welding area
and then send it to another node where a controller activates an actuator,
for moving the welding torch. The distributed system is supported by an
FTT-SE network, which provides communication channels upon negotiation.

As shown in Figure 6.3, three contracts must be negotiated:

• Network contract: this is the contract needed to send the array
of points to the controller. It speci�es a range of budgets so that
if the network has enough capacity it can send all the points, but if
the network becomes overloaded, e.g. in consequence of new contracts
being negotiated, a lower capacity would be granted by the system,

6.1. INTEGRATION IN THE FRESCOR FRAMEWORK 143

although always over the minimum required. This is the functionality
provided by the Spare Capacity module.

• Laser thread CPU contract: this is the thread in charge of captur-
ing, processing and sending the points obtained from the laser pro�ler.
In each period it reads the current budget assigned to the network
contract to see how many points can be sent. Depending on this infor-
mation it will process and send more or less points.

• Controller thread CPU contract: this is the thread in charge of re-
ceiving the data from the network and actuating on the motors control-
ling the movement of the welding torch. Its budget must be prepared
for processing the maximum size of the array.

On the other hand, CPU budgets are �xed and must cover the require-
ments for processing the whole set of points of the laser. When only a subset
of the points is needed to be used in the transaction, threads will use less
capacity and the FRESCOR dynamic reclamation module will give that ca-
pacity to other threads.

The pseudocode of the threads involved is depicted in Figure 6.4. In
this simple example, where FRESCOR is used at a low level of abstraction,
all the contracts involved in the transaction have a �xed period. If rene-
gotiations in the transaction were necessary to switch to di�erent periods,
they should be made through the FRESCOR high-level transaction man-
ager which will provide the necessary distributed coordination for a global
negotiation of the diverse resources involved in the transaction (including
CPU, networks, memory or even bus accesses). A deeper discussion of the
FRESCOR renegotiation mechanisms description is outside the scope of this
work.

6.1.3 FTT-SE under FRESCOR

One important goal of the integration is to keep the performance level of the
FTT-SE real-time communication services throughout the abstraction pro-
cess associated with the creation of a middleware. The FRESCOR frame-
work was selected as middleware because it facilitates achieving this goal
given its simple and generic application interface and real-time concerns.
Moreover, its modular �exibility extends the resource management to an
holistic application perspective which reduces the project design complexity.

This section describes how the FTT-SE protocol can be integrated as a
FRESCOR pluggable resource. This integration allows abstracting away the
network access from the application perspective. It de�nes two sets of ser-
vices, the negotiation procedure and the communication access primitives.
The former handles the contract (re-)negotiations requested by the appli-
cation to change the Stream properties provided by the network resource.

144 CHAPTER 6. FTT-SE CASE STUDIES

Main threads

vres := negotiate CPU contract

create thread & bind to vres

Laser thread

n_vres := negotiate network contract

create send_endpoint & bind to n_vres

loop

c := get budget (n_vres)

read laser profiler

process points (c)

send points (c)

frsh_timed_wait

end loop

Controller thread

create receive_endpoint

loop

read points

process points

send command to actuator

end loop

Figure 6.4: FRESCOR example pseudocode.

Once a contract is accepted the application may start using the respective
communication Stream through the services provided by the latter.

As referred before, the FRESCOR modules used when integrating FTT-
SE are the Core, Spare capacity and Distribution modules. Each of these
takes its role in the contract negotiation with the parameters described in
Table 6.1. The Distribution module needs special attention since it con-
tains network protocol dependent information. For the RT-EP distributed
resource no special parameters were required, thus the Core parametersMin-
imum period and Maximum Budget were enough to carry out the network
management. However, FTT-SE includes several features that require ap-
propriate con�guration and management, which must thus be included in
this module:

• Two communication triggering models are provided by the network,

6.1. INTEGRATION IN THE FRESCOR FRAMEWORK 145

Figure 6.5: Architecture overview.

namely time-driven and event-driven, which must be de�ned in the
contract speci�cation;

• To take advantage of the multiple forwarding paths in the network
switch and still provide real-time guarantees, the contract must include
the speci�c switching path used by each channel, i.e., the identi�cation
of the producer and consumers involved and the switch ports they are
connected to;

• To exploit the explicit synchronization between time-driven channels
supported by the network, the contracts, or contract groups, must
include two additional parameters, one describing the Label of the
channel to synchronize with, and another one specifying the desired
synchronization o�set. If no synchronization is speci�ed the channel
is considered as �oat and the network will arbitrarily allocate relative
o�sets to the contract;

The integrated FRESCOR / FTT-SE architecture is sketched in Fig-
ure 6.5. The network contract negotiation procedure is centralized in the
FTT master node and it is handled by the Master Contract Layer. This is
a natural choice since the FTT master centralizes all the real-time require-
ments of current communication channels and controls the network access.
The contracts are then re�ected on the involved slave nodes. The Slave Con-
tract Layer handles network contract requests, holds local contract copies
and makes them available to the application threads. This centralized ap-
proach is substantially di�erent from the one taken in the RT-EP implemen-
tation, where the negotiation procedure is fully distributed requiring every
node to keep a consistent replica of all running contracts.

FTT-SE interface for FRESCOR

The communication between theMaster Contract Layer and the Slaves Con-
tract Layer, both for conveying negotiation requests and publishing the con-
tract copies, uses permanent bi-directional channels between the master and

146 CHAPTER 6. FTT-SE CASE STUDIES

Figure 6.6: FRESCOR interface for network contracts.

each slave node in the network, implemented with FTT-SE asynchronous
messages (AM).

The network contracts in the Master Contract Layer are re�ected in
the FTT Master, in the SRDB. This layer also provides interfaces to the
application, to negotiate contracts and to access the communication services,
both synchronous (SM) and asynchronous (AM).

Supporting the application interface

Figure 6.6 shows the FRESCOR common resource interface and the objects
involved in network contracts. The Negotiation service allows the system
to establish the required resource reservations and, in this case, involves
communication with theMaster Contract Layer. Upon a negotiation success,
the respective contract Virtual resource(s) is(are) created/updated in the
Master Contract Layer and the Virtual resource copies are created/updated
in the Slaves Contract Layer. The access to the contracted resource, a Stream
in this case, is made through an endpoint, which is created and bound to
the Vres by the Create & Bind Endpoint services. Finally, the Send/Receive
services allow the communication through the respective endpoint.

The network Virtual resources in the contract layer must be consistent
with the communication parameters within FTT-SE so that the protocol
actually enforces the contracted communication parameters with its control
mechanisms. Therefore, a parameters daemon is used to keep such consis-
tency. Whenever a server is created or updated dynamically, the daemon
communicates such changes to the FTT-SE layer.

6.1.4 Internals of the contracting procedure

The setup of network contracts with FTT-SE, as referred before, requires an
interaction between the Slave Contract Layer of the involved nodes and the
Master Contract Layer. The process is triggered by the thread that manages

6.1. INTEGRATION IN THE FRESCOR FRAMEWORK 147

the contract or the contract group and its sequence diagram is depicted in
Figure 6.7.

Figure 6.7: Negotiation steps.

The request is enqueued in the Master Contract Layer until it can be
processed (Figure 6.8). At that point, it is removed from the requests queue
and submitted for admission process, which involves the admission control in
the FTT-SE master. If the contract is accepted, which may result in changes
to other contracts, the master updates the FTT-SE internal structures and
publishes all Vres that were updated. The respective slaves receive this
information and update/create the respective Vres copies. Then, the master
acknowledges the negotiation result.

Linking with the FRESCOR example described in the Subsection 6.1.2,
after the Laser thread is created and bound to a CPU Vres, it triggers the
negotiation of the network contract through a call to the FRESCOR Core
module. This call will be mapped through the FNA layer to FTT-SE, where
a negotiation request message will be sent to the Master via a preallocated
AM negotiation channel and stored in a queue. While the Laser thread is
blocked waiting for the �nalization of the negotiation process (asynchronous
noti�cations are also supported for renegotiations), the master will read the
request from the queue and perform an admission test using the minimal
requirements of all the contracts in the network (if the stability time of a
Vres has not expired the currently assigned parameters will be used), in this
case a minimum budget B2_min. After that, the Spare capacity will be dis-
tributed among the network contracts according to their importance, weight

148 CHAPTER 6. FTT-SE CASE STUDIES

Figure 6.8: Master contract negotiation procedure.

and maximum requirements. A budget value between B2_min and B2_max,
called Current_B2, will be assigned to the resulting network virtual resource
and other, previously existing, Vres might also get new values.

The results of the negotiation will be published to the corresponding
FTT-SE nodes (in FTT-SE this is e�ciently undertaken internally) and the
associated Vres will be updated by the FTT-SE FNA layer. After the publi-
cation of the results an Acknowledgement message will be sent to the Laser
node and the Laser thread will be waken up. This Acknowledgement is nec-
essary to make sure that all the nodes have received and processed the new
Vres values.

After binding a Send_Endpoint to the Vres, the Laser thread will start
sending the points periodically. For doing that, in each period it will get
Current_B2 and send more or less points per period depending on its value.
As a copy of the current parameters is stored in the node, getting data
associated to the Vres is not resource consuming. Meanwhile the Master
node will have updated its scheduling table and will send the corresponding
trigger messages using it.

6.1.5 (Re-)negotiation procedure time

A network (re-)negotiation procedure is typically triggered by the application
in either of two situations: during system startup, where the negotiation
time is not so critical, and in a dynamic situation where the negotiation is
a consequence of an environmental or structural change. In this latter case,
the negotiation request may be subject to time constraints determined by the
environment dynamics. Therefore, it is important that the system designer
can estimate and bound the time required by the negotiation procedure,

6.1. INTEGRATION IN THE FRESCOR FRAMEWORK 149

Neg_Rt. This subsection identi�es all the variables that play a role in that
time bound and show that the bound is determined in polynomial time.

According to the negotiation steps depicted in Figure 6.7 and Figure 6.8,
Equation 6.1 summarizes the time spent in the generic ith negotiation pro-
cedure (Neg_ti) considered in isolation, i.e., no other request is currently
being handled.

Neg_ti = AM_tSi + P_ti +max(Set_ti, AM_tMi) (6.1)

AM_tSi is the time taken by the transmission of the asynchronous mes-
sage from the slave to the master, P_ti stands for the processing time spent
by the admission control algorithm, Set_ti is the time taken to update the
FTT-SE internal mode changes and �nally the acknowledgement time using
an asynchronous transmission from the master to the slave that is accounted
for in AM_tMi . Set_ti refers to the settling time enforced by the FTT-SE
manager to start the new tra�c pattern without jeopardizing the timeliness
of the currently running tra�c. This is a network speci�c and predictable
delay depending on the responsiveness of the asynchronous transactions un-
dertaken between the network nodes when updating the resource communi-
cation requirements status.

However, in the general case it may happen that when a negotiation
request arrives at the master, another previously issued request(s) is(are)
already pending to be served, thus causing further interference (Figure 6.8).
Thus, the generic request i will not only take the amount of time imposed
by the negotiation process itself as given by Equation 6.1 but it will also
su�er a queuing delay that corresponds to the time taken by the admission
control of all negotiation requests that arrived before, considering a FIFO
queue. Equation-6.2 allows deducing such bound, Neg_Rt.

Neg_Rti = AM_WCRtS

+
maxc∑
j=1

P_Wtj

+ max(Set_Wti, AM_WCRtM) (6.2)

The asynchronous message response time bounds, AM_WCRtS and
AM_WCRtM , are obtained in [101], so as the settling time (Set_Wt).

To bound the delay caused by the enqueued requests the queuing policy
must be considered, which in this case is a FIFO, and thus it must be assumed
that the queue contains all possible other requests for application contracts.
Let maxc be such maximum number of requests admissible by a certain
application. Given the worst-case execution time for the admission control
(P_Wt), the interference delay caused by the queue is upper bounded by
(maxc − 1) ∗ P_Wt.

150 CHAPTER 6. FTT-SE CASE STUDIES

Therefore, an upper bound for the negotiation time Neg_Rt+ can be
obtained from Equation 6.3.

Neg_Rt+i = AM_WCRtS

+ (maxc − 1) ∗ P_Wt

+ max(Set_Wti, AM_WCRtM) (6.3)

6.1.6 Summary

The FRESCOR framework has been proposed recently to cope with the
growing application complexity and interoperability requirements in embed-
ded systems. The approach followed by FRESCOR allows abstracting the
management of the application resources, which are accessed through a com-
mon interface based on contracts.

This section discussed the integration of the FTT-SE real-time commu-
nication protocol within the FRESCOR contracting framework. This frame-
work e�ciently exploits the FTT-SE natural ability for dynamically adapting
the network resource usage while maintaining predictability. Another pos-
itive aspect in this symbiosis is that the interface given by the framework
to the application can be commonly applied together with other shared re-
sources of the system.

Previously, only the RT-EP network protocol had been integrated within
the FSF/FRESCOR framework. Such protocol works over a shared medium
with a priority based event-triggered messaging paradigm. The integration
of FTT-SE brings in the features of a di�erent network paradigm and topol-
ogy, namely time-triggered and event-triggered communication over switched
Ethernet. The dynamism of FTT-SE positively impacts the e�ciency of the
network management in the FRESCOR framework. On the other hand, the
abstraction provided by FRESCOR bene�ts the FTT-SE protocol in terms
of its usability and applications development.

Finally, this section presented a worst-case analysis for the time taken
by the negotiation process, provided a few network parameters, easily deter-
mined, as well as a bound on the number of possible simultaneous negotiation
requests. Such bound guarantees the timeliness for the negotiation proce-
dure, which is of utmost importance for adaptive critical systems operating
within dynamic scenarios.

6.2. INDUSTRIAL MULTIMEDIA APPLICATION 151

6.2 Industrial multimedia application

The use of Media Control Applications [57] (MCA) such as machine vision,
automated inspection, object tracking and vehicle guidance [109, 75, 43, 69]
in today's industry is increasing strongly. Such applications can be classi-
�ed in two broad classes [57], Supervised Multimedia Control Subsystems and
Multimedia Embedded Systems (MES). While the former class emphasizes the
quality of the media processing, relieving the real-time constraints to a soft
real-time level, the latter applications class (MES), in addition to the media
processing concerns, establishes hard real-time requirements on their appli-
cation goals. These applications are typically complex and heterogeneous,
comprising several real-time activities in addition to the media processing
ones. Thus, the interference of the multimedia processing components must
be limited and predictable.

Many MES applications rely on networked embedded systems (NES) that
depend on real-time communication protocols to support the necessary real-
time services. However, multimedia tra�c in general, and video streaming
in particular, have speci�c characteristics that con�ict with the operational
model of conventional real-time protocols. In particular, video compressors
generate highly variable bit rate (VBR) transmission patterns that mismatch
the constant bit rate (CBR) channels typically provided by real-time pro-
tocols, severely reducing the e�ciency of network utilization. Matching a
VBR source to a CBR channel is not trivial and may lead either to a waste
of bandwidth or rejection of frames. This di�culty becomes particularly
challenging with the emergence of the MES applications described above,
which typically impose reliability and timeliness requirements that cannot
be ful�lled with standard network protocols [125], due to lack of temporal
isolation and consequent unbounded mutual interference between streams.

This section is based on a work conducted in cooperation Javier Silvestre
from the Polytechnic University of Valencia in Spain [63, 113], which pro-
poses taking advantage of the dynamic QoS management features of the
FTT-SE protocol to carry out the referred adaptation with MJPEG video
streams. In particular, it proposes managing in an integrated way both the
compression parameters and the frame acquisition properties, which drive
the encoding of frames that must �t strictly inside the bandwidth allocated
to each stream. This approach aims at maximizing the QoS level provided by
each communication channel and by that means minimizing the compression
used at each instant.

The QoS adaptation is presented in two stages, regarding the variation
degrees of the acquisition properties. In a �rst stage only the frame acquisi-
tion period is manageable to best re�ect the bandwidth provided. The frame
size, although actually variable with the compression result, is considered to
�t a �xed size container, property of the FTT-SE allocated channel. In a
second stage both parameters, period and frame container are manageable

152 CHAPTER 6. FTT-SE CASE STUDIES

Figure 6.9: Generic encoding process.

to deliver the best QoS level when adapting the QoS stream to the provided
bandwidth.

The work is presented by �rstly addressing some background issues re-
garding multimedia transmission. Then, it describes the system architecture
and details on the two approaches for QoS management. Finally some sim-
ulation and experimental results are presented.

6.2.1 Related work

Multimedia compression standards

When addressing multimedia transmission or storage, compression plays
an important role to reduce the footprint of the media stream. It provides
data reduction, yielding either faster transmissions or lower storage require-
ments. On this regard, two phases are identi�ed, a compression phase, where
the compression algorithm identi�es redundant data that can be removed,
and the decompression phase, where the reverse algorithm obtains the orig-
inal or similar stream. The compression process is generically described in
Figure 6.9. In this process, the most important factors are the coding bit
rate R and the quality obtained DT (Distortion), which depends on the
quanti�cation factor q, acquisition parameters like period T or resolution r,
among others.

Many multimedia compression standards exist today and the choice for
one typically results of a trade-o� between compression ratio, data loss (dis-
tortion), encoding/decoding time and computational requirements. Depend-
ing on the operation principle, the compression algorithms can be divided
in two main classes: still image compressors and video compressors. Still
image compressors use intra-frame compression, i.e., the data being com-
pressed is exclusively within the frame, while video compressors exploit the
temporal redundancy that exists in sequentially acquired images. The most
common still image compressor standards are the JPEG [8] and, more re-
cently JPEG2000 [89]. With respect to video compressors, the most common
standards are MPEG-2 [9], H.263 [10] and MPEG-4 part 2 [14] and part 10
[1], also known as H.264 or MPEG-4 AVC.

Selecting the most adequate compression technique is not a trivial mat-
ter. The use of video compressors, can potentially reduce the storage and

6.2. INDUSTRIAL MULTIMEDIA APPLICATION 153

bandwidth with respect to, for instance, motion JPEG (MJPEG) by ra-
tios as high as 10:1. However, taking the example of surveillance/recording
systems, images are frequently captured at low rates and sometimes multi-
plexed, which reduces or even eliminates the temporal redundancy and thus
seriously compromises the e�ciency of these compression algorithms. In
addition, video algorithms apply techniques that compensate variations in
the network load or processing throughput, adjusting the video image qual-
ity, which may be adequate for monitoring applications, but not for MES
or surveillance/recording applications [18], often found in industrial envi-
ronments. Moreover, still image frames tend to be better accepted within
systems that interpret frames individually as a sensor data quantum, e.g.
a control system that periodically acquires a frame. The use of motion
JPEG (MJPEG)is generally found only in digital cameras and monitoring
systems (e.g., Lumera, Cast, Axis [18], Mobotix [21]). Concerning the use
of JPEG2000, it was expected by 2001 that this compressor would replace
JPEG in 2 or 3 years. Though, some drawbacks have made this transi-
tion more di�cult, among others, the lack of backward compatibility and
the additional complexity in terms of memory footprint requirements and
computing time that nearly triples for the compression and decompression
algorithms. Also, the gains in terms of perceived quality are not relevant,
being only noticeable with extreme compression levels and the licensing for
the JPEG2000 codec limits the adoption such technology.

Furthermore, still image transmission is more robust than video trans-
mission. This conclusion can be drawn from the fact that in still image com-
pression the frames are independent of each other, and thus losing one image
(or parts of one image) has no consequence for the following images. In turn,
video transmission uses di�erent frame types, namely I-frames (independent
frames), P-frames (inter-frames coded depending on previous frames) and
sometimes B-frames (on pass and future frames). Only I-frames are self-
contained, thus the loss of a frame (or part of a frame) may have impact
on several of the following frames, until the arrival of another I-frame. This
e�ect is further aggravated by a common practice that consists in enlarging
the distance between I-frames to reduce the bandwidth utilization. Another
aspect that penalizes the use of video compression is related to the fact that
in industrial applications the images are frequently captured at low rates and
sometimes are multiplexed. Any of these situations can reduce severely the
temporal redundancy and thus the level of compression that can be attained.

Whenever timeliness requirements come into play, the lower latency of
JPEG with regard to other video/still image compression techniques presents
a signi�cant advantage. The relevance of this aspect is growing in con-
sequence of the use of increasingly higher resolution image sensors, which
have evolved from the traditional CIF (Common Intermediate Format) and
QCIF (Quarter CIF, 352x288 and 176x144 pixels), with a maximum size of
4CIF 704x576 pixels, to VGA (Video Graphics Array, 640x480 pixels), XGA

154 CHAPTER 6. FTT-SE CASE STUDIES

(Extended Graphics Array) with a 1024x768 pixels, SXGA with 1280x1024
pixels, WUXGA with 1920x1200 pixels, arriving to the WHUXGA format,
with 7680x4800 pixels. Thus, the amount of data to process in each frame
is growing exponentially, emphasizing the importance of the compressor la-
tency.

Multimedia transmission

Multimedia transmission over the Internet has been the subject of intense
research in the recent years [35, 130]. Typical solutions are based on the
TCP/IP protocol stack complemented by other protocols, e.g., RTP/RTCP
(Real Time Protocol/Real Time Control Protocol [108]), RTSP (Real Time
Streaming Protocol [107]) or SIP (Session Initiation Protocol [58]), which
measure key network parameters, such as bandwidth usage, packet loss rate
and round-trip delays to control the load submitted to the network.

The main drawback of these technologies concerning their use for in-
dustrial communications is the latency introduced. For example, there are
video algorithms [110] that use memory bu�ers between the producer and
the consumer to smooth out the bit rate variations. The estimation of the re-
quired bandwidth and of the amount of bu�ers can be done o�ine, for stored
video, or based on a number of images bu�ered before their transmission,
for live (non interactive) video streams. The quality given by this smoothing
mechanisms is however highly dependent on the application requirements.
This latency problem is addressed by the low-delay Rate Control algorithms
[106, 129], such as those used in TMN8 [11], which achieve a high level of
performance for the applications for which they have been designed, mainly
videophone and video-conference. However, these algorithms are based on
the use of only one I-frame and a following sequence of P-frames, an approach
that can be used in soft real-time applications like videophone and video-
conference, but not in MES applications. For example, within an industrial
control process based on vision, the appearance of a new object in the scene
will either generate a tra�c peak, if the compression is kept unchanged, or a
strong quality reduction if the compression is changed to keep the bandwidth
utilization stable. Any of these situations is susceptible to introduce errors
into the system, thus making the use of this class of protocols unsuited for
MES applications.

From the above discussion it can be concluded that the solutions devel-
oped for generic video transmission, despite e�cient and �exible, do not �ll
in the requirements of MES, towards an e�cient �t of a VBR source within
a CBR channel. Taking a conservative approach, it is possible to reserve a
channel with a capacity equal to the maximum bandwidth of the multimedia
source. While taking this approach guarantees that no frames are lost, the
fact is that the bandwidth generated by multimedia sources typically exhibit

6.2. INDUSTRIAL MULTIMEDIA APPLICATION 155

high variance, leading to a potentially signi�cant bandwidth waste. An al-
ternative approach to overcome this ine�ciency problem would be reserving
a channel with a capacity equal to the average bandwidth necessary. Despite
more e�cient, from the bandwidth point of view, this approach can lead to
additional delays or even frame losses, depending on the existence and size of
bu�ers at the source nodes, whenever the instantaneous bandwidth exceeds
the average value. At this point it should be stressed that many applications
comprise the transmission of several multimedia streams, thus multiplying
the impact of these sources of ine�ciency.

The di�culty in �tting VBR sources in CBR channels motivated the work
presented in this section that also illustrates the capabilities of the FTT-SE
framework on supporting dynamic QoS management. The dynamic QoS
management features present in FTT-SE are used to dynamically adapt the
bandwidth of the real-time communication channels. Such integration allows
adjusting the QoS of each stream given as inputs the relative importance of a
media stream, the currently allocated bandwidth and the compression level
of each multimedia source, as well as the global network utilization. The goal
is to provide, at every instant, the best possible QoS to each stream. The
admission control and scheduling faculties of the FTT-SE protocol allow car-
rying out seamless online transitions without losing the real-time guarantees,
thus being suitable for MES applications.

6.2.2 System Architecture

This case-study addresses a generic monitoring industrial application, where
p multimedia sources, also called producers, send a set M ≡ {Mi, i = 1..p}
of video streams to c multimedia sinks, called consumers, via a local area
network executing the FTT-SE protocol (Figure 6.10). Besides the video
streams, the network may also support other tra�c sources, potentially with
stringent real-time requirements, e.g. related with real-time control, as well
as non-real-time, e.g. con�guration or even general-purpose Internet ac-
cess. This communication scenario is e�ectively supported by the FTT-SE
protocol, which provides dynamic QoS management while guaranteeing the
real-time performance. Moreover, the protocol enforces mutual isolation be-
tween tra�c classes and thus Therefore, these additional tra�c classes are
not considered throughout this work.

Several producers may reside in one single node but, for the sake of
simplicity, in the scope of this work a single producer per transmitting node
is considered. Figure 6.11 illustrates how the application uses the protocol.
The QoS manager within the FTT-SE master node, concentrates the requests
from the system nodes, holding the network requirements for the contracted
streams, including operational and QoS aspects. It receives channel change
requests from di�erent system nodes and assigns the bandwidth to each of
the streams. Then, each node holds a QoS sublayer that addresses the QoS

156 CHAPTER 6. FTT-SE CASE STUDIES

FTT-SE

P1

www

P2 P3 P4

C

Figure 6.10: System architecture.

management requirements in terms of a video-speci�c application.

The QoS sublayer is included to handle the QoS contracts of each stream,
while conserving their run-time properties. As depicted in Figure 6.11, this
layer acts in between the application and the FTT-SE protocol, adapting
the instantaneous requirements of each video stream (VBR source) to the
FTT-SE communication channels (CBR). This mapping is straightforward
with PrFTTi = PrAPPi , TFTTi = TAPPi and C li = Bl

i. The upper bound of
the transmission bu�er size range Cui is determined in each QoS negotiation,
expressing the desired bu�er size from the QoS sublayer perspective at that
moment.

At the application level, the QoS model considers each stream being
characterized by a normalized relative priority PrAPPi such that

∑
∀i Pri =

1), a range of allowed quanti�cation factors that imply di�erent compression
levels QAPP

i ≡
[
qli, q

u
i

]
, a range of possible frame sizes after compression

BAPPi ≡
[
Bl
i, B

u
i

]
and a set of possible inter-frame intervals corresponding

to the ni allowed frame rates TAPPi ≡ {T ji , j = 1..ni}, as follows:

MAPP
i = {Pri,Qi,Bi,Ti}APP (6.4)

As described back in Section 5.3, the FTT streams are characterized by
a priority that re�ects the relative channel importance PrFTTi , a range of

6.2. INDUSTRIAL MULTIMEDIA APPLICATION 157

Physical layer

FTT-master
QoS manager

FTT-slave FTT-slave FTT-slave

QoS sublayer QoS sublayer QoS sublayer

C1 ,T 1 C p , T p {C1 , T 1 , ... ,C p , T p}

Cam

Acquisition

Compression

C1 ,T 1

q1 

Monitor

Decompression

Actuation

Cam

Acquisition

Compression

C p ,T p 

q p

P1 Pp... C

{Pr1 ,... , Pr p }

Figure 6.11: QoS management model.

admissible transmission bu�er sizes CFTT
i ≡

[
C li , C

u
i

]
and a range of possible

transmission periods TFTTi ≡
[
T li , T

u
i

]
, as follows:

MFTT
i = {Pri,Ci,Ti}FTT (6.5)

The output of the QoS manager is the actual bandwidth ui assigned to
each channel at each instant and materialized as a (Ci, Ti) duplet that is com-
municated back to the QoS sublayer and application. Note that ui = Ci

Ti
.

Then each application node is responsible for satisfying this constant re-
source allocation, keeping the bandwidth Ri below ui, i.e., Ri ≤ Ci/Ti. The
QoS sublayer dynamically adjusts the video properties in order to �t the
source stream in the granted channel, eventually adapting the compression
level or even discarding frames. Also, whenever appropriate, the QoS sub-
layer re-negotiates the bandwidth with the FTT-SE QoS manager, updating
long-lasting variations on the streaming requirements. At the FTT-SE level,
the QoS manager provides constant bandwidth channels with a budget Ci
and a period Ti. Although, the channels properties are constant, they are
not permanent and may change when the network adjusts to a new workload
scenario. As mentioned (Equation 6.5), that variation is delimited and pa-
rameterized by the application. The QoS manager is thus a major piece on
this architecture that ultimately adapts the VBR source to the CBR chan-
nels and realizes the necessary adjustments to the contracted requirements,
avoiding over-estimated resource provisioning.

Each multimedia stream i is composed by a succession of streams, asso-
ciated to a producer. The jth frame is compressed with the quanti�cation
level qji , set by the QoS adaptation layer, resulting on a payload with size f

j
i .

Both the acquisition and compression parameters are set by the QoS sub-
layer, re�ecting the QoS management in a controlled and predictable way.
These parameters (qji , Bi and Ti) are provided to the application in the con-
straints set when registering the stream. The QoS adaptation must be such

158 CHAPTER 6. FTT-SE CASE STUDIES

that the compressed streams �t within the allocated resources in terms of
bandwidth and bucket size, as follows:

f ji ≤ Bi ∧ fi
Ti

= Ri ≤ ui ,∀i, ∀j (6.6)

6.2.3 QoS Management

To understand the QoS management and how it actually manages the streams
properties towards a better �t to the CBR channel and better serviced qual-
ity, this subsection describes the video stream variation model, its content
scaling and �nally, the metrics to assess the video quality throughput.

R(q) model

Characterizing the video stream is important to accurately address the �tness
of a VBR source through the CBR channel. On this regard, the R(q) model
provides a parameterized model of the stream evolution in terms of load.
With such model it is possible to obtain the compression qji value that at a
given moment provides the best quality on the currently available bitrate.
Knowing T ji it becomes possible to adapt q to the w assigned in each moment
to satisfy the bandwidth restriction in Equation 6.6. One of the models with
better results [48] de�nes R(q) as:

R(q) = α+
β

qλ
(6.7)

where α and β are parameters of a curve in which λ regulates the cur-
vature. The model was developed for MPEG, where q, the quanti�cation
factor, varies from 1 (lowest compression) to 31 (highest compression). To
apply the model to a JPEG stream, q = 100 − q is the compression level,
varying symmetrically with respect to the quanti�cation factor. For each
video frame, a di�erent curve is obtained relating the compression factor
and the bandwidth necessary to transmit it. Hence, the jth frame holds the
parameters (αji , β

j
i , λ

j
i). In order to obtain the optimal qi value for a speci�c

Ri output, the curve has to be estimated for each frame. However, obtain-
ing this curve may involve iterating the compression algorithm for several
points, increasing the computation latency and eventually turning impracti-
cal its applicability for online calculations.

On a monitoring application with �xed cameras, as hereby addressed, it
can be assumed that frames are acquired sequentially on a scenario without
much abruptly, i.e, consecutive frames have a strong similarity. Therefore, it
can be assumed for a stream i that ∀jαji = αji and ∀jλ

j
i = λji , reducing the

model to (αi, β
j
i , λi). Equation 6.7 now establishes the relationship between

βji and q
j
i for a given bitrate Ri ≤ ui. It is this relationship that yields the

adaptation of the quanti�cation factor q.

6.2. INDUSTRIAL MULTIMEDIA APPLICATION 159

a)

b)

c)

Ri
k1

Ri
k

Ri
k−1Ri

k−3

Ri
k−2

Adapt QoS area

Adapt QoS area

Discard frame area
u i

u i 1−

u i 1−3

Ri
T

Ri
k2

timetk1

Channel
target

window

channel width

Bandwidth

Figure 6.12: qi adaptation.

Based on this model, the QoS manager is able to tune each frame com-
pression level in order to better handle the channel given capacity ui. The
model allows deriving at instance k an estimate of the quanti�cation level for
the next frame qk+1

i that will generate a bandwidth Rk+1
i within a channel

target window. As long as the frame bandwidth falls inside such window, q is
kept and its adaptation is not invoked, thus reducing the frequency of adap-
tations and saving overhead. This window is controlled by a parameter, δ,
resulting in [ui(1− 3δ), ui(1− δ)] ≡ [RTi ± uiδ]. The nominal coding bitrate
is thus de�ned as RTi = ui(1− 2δ), as depicted in Figure 6.12. The value of
qk+1
i is then de�ned as a function of the current frame bandwidth Rki , the
current channel bandwidth ui and δ. The δ factor is a pre-de�ned relative
fraction of the channels bandwidth, equal for all channels, that sets a com-
promise between higher e�ciency in channel bandwidth utilization (lower
δ values) and lower frequency of compression level adaptation invocations
(higher δ values).

However, when estimating the best qk+1
i , it is not guaranteed that the

next frame will fall inside to the channel target window.

When Rki falls out that interval, either the bandwidth used is too high,
with a potential to originate frame-drops, or too low leading to an under uti-
lization of the channel bandwidth. Figure 6.12 illustrates the three possible
scenarios at time tk+1 in which the resulting frame bandwidth falls outside
the channel target window. In scenario a) the generated frame bandwidth
Rk+1
i exceeds the current channel width ui causing a frame-drop, in b) it is

within the channel width but over the target window, while in c) it is below
the target window leading to an under utilization of the channel bandwidth.
In all three scenarios the adaptation is invoked to compute an estimate of
the quanti�cation level qk+2

i that will generate an Rk+2
i that falls within the

160 CHAPTER 6. FTT-SE CASE STUDIES

Figure 6.13: Error in frame size caused by ∆qe = 1 for di�erent values of q.

channel target window.

To bring coding the bitrate back inside the operating window we tune the
quanti�cation level for the following frame. In fact, this is the most e�ective
way to control the output bitrate, hence varying the stream QoS.

When computing the following frame (k + 1), if the current frame (k) is
inside the target window, the same quanti�cation factor is used, qk+1

i = qki .
Otherwise, qk+1

i is adjusted based on the desired variation of R(q), i.e., based
on ∆Rk,k+1

i needed to bring the current frame bitrate to the nominal value.
The calculation of the new qk+1

i factor is carried out using the following
sequence of operations. Firstly, we compute βk+1 as in Equation 6.8.

βk+1 = ∆Rk,k+1qλ + βk (6.8)

With this value we can compute qk+1
i to be use in next frame, using the

R(q) model as in Equation 6.9.

qk+1
i =

(
RTi − α
βk+1

)1/−λ

(6.9)

However, this estimation becomes more inaccurate as the quantization
value becomes higher. Let the di�erence between the estimated qk+1

i and
the actual qi that generates a perfect match with the frame nominal bitrate
RTi be ∆qe. Figure 6.13 plots the deviation between the predicted and the
e�ective frame sizes for a �xed ∆qe = 1, while increasing the compression
factor. The higher the compression, the higher the deviation observed. For
example, for q < 65 and ∆qe = 1 the error in frame size is below 1000 bytes,
which represents about 200 kbps when using a frame period of T = 40ms.
When q > 90 the error may reach 1 Mbps, in the same conditions.

6.2. INDUSTRIAL MULTIMEDIA APPLICATION 161

Therefore, it is advisable to keep the quanti�cation factor bounded, as
denoted in the application model with an upper and lower limits.

Content scaling

To attenuate the problem of adjusting the QoS near the compression bound-
aries, we propose the extension of the R(q) model to include the management
of the stream properties such as the acquisition period (T) and the trans-
mission budget C. However, such properties require a more complex and
coordinated management beyond the simple compression adjustment. Those
properties are intimately related to the channel provided by the network. If
for any reason the R(q) model is not able to obtain a q value within the
allowable range, then the application must renegotiate its requirements with
the network, ultimately increasing or decreasing the demands for bandwidth.
On the other hand, renegotiating the channel properties involves a time and
resource usage penalty and thus cannot be issued on a frame-by-frame basis.
Thus, the frequency by which QoS changes are requested should be limited.

Additionally, in many applications QoS changes have a negative impact
on the perceived quality, and thus its occurrence should be as sparse as
possible.

Therefore, to reduce the number of QoS changes there is a hierarchy
of procedures to be followed. Algorithm 6.2.1 summarizes the hierarchy of
procedures involved in the QoS adaptation process.

Algorithm 6.2.1: q′i = qosAdaptation(Ri, qi)

comment: computes qi for next frame

q′i ← qi
if Ri > ui(1− δ)

then

{
q′i ← R−1(RTi)
over_cnt← over_cnt+ 1

else over_cnt← 0
if Ri < ui(3− δ)

then

{
q′i ← R−1(RTi)
under_cnt← under_cnt+ 1

else under_cnt← 0
if q′i not in[qli, q

u
i]

then


q′i ← saturation(qli, q

u
i)

if over_cnt > QCT or under_cnt > QCT
then qosRenegotiation()

return (q′i)

Firstly, the QoS adaptation layer autonomously adjusts the compres-
sion factor, in a frame-by-frame basis, trying to keep the stream bandwidth

162 CHAPTER 6. FTT-SE CASE STUDIES

within the target window. Whenever changing the compression factor is
not enough to keep the stream bandwidth within the target window, i.e., q
reaches the upper or lower limit while the stream bandwidth is above/below
the target window, a renegotiation has to be issued. To prevent excessive
requests two event counters are implemented, namely the over_frames and
under_frames counters, which count the number of consecutive frames that
fall above and below the target window. A channel renegotiation is trig-
gered as soon as any of these counters exceeds the Quality Change Threshold
QCT . This threshold is a system parameter that controls the frequency of
autonomous channel renegotiations. The higher this parameter is, the longer
it will take for the system to trigger a channel renegotiation. Such procedure
relegates short term conditions to be handled locally by the QoS adaptation
layer, while long-lasting situations, resulting for example from infrastructural
changes in the image or explicit QoS changes by the application, eventually
leading to a global QoS renegotiation.

Negotiating

On the FTT-SE interface, the requirements for bandwidth are expressed by
the QoS requirements de�ned for each CBR channel, including the �exibil-
ity pro�le of each. Those requirements are set as described in Equation 6.5,
with the transmission periodicity values that are acceptable to be used by
the application (acquisition frame-rate) and the variation range for the trans-
mission budget. Modifying those parameters ultimately leads to changes on
the bandwidth delivered to each of the contracted channels (ui).

When re-negotiating channels, the QoS sublayer starts by estimating
the new desired transmission bu�er sizes Cui , to be reported to the FTT-
SE QoS manager. These are determined in a way to ful�ll the maximum
bandwidth requirement of each stream at each instant, i.e., using the R(q)
model with the minimum quanti�cation levels, considering the current inter-
frame interval Ti. Such values are then capped to the application speci�ed
upper bound on the frame size Bu

i . The following expression shows how
these values are computed.

Cui = min
(
Bu
i ,

R(qli)
(1− 2δ)

× Ti
)

(6.10)

Once the desired channel bandwidths are determined the QoS sublayer
hands them over to the FTT QoS manager through the FTT QoS interface.
The �rst operation of the QoS manager is to compute, for each channel,
the desired bandwidth (udi = Cui /Ti) as well as the minimum bandwidth

(umini = C li/maxjT
j
i). The minimum bandwidth is always checked upon

addition of a new stream as part of an admission control that is embedded
in the QoS management. In fact, a stream can only be accepted if all the
minimum channel bandwidths, including its own, can be granted.

6.2. INDUSTRIAL MULTIMEDIA APPLICATION 163

Then, the FTT-SE QoS manager executes a bandwidth distribution pro-
cedure, as described in Chapter 5. Di�erent policies can be seamlessly used
within the QoS manager inside the FTT Master, without requiring any
further changes in the rest of the system. Algorithm 6.2.2 shows a �xed
priorities-based policy, implemented on this industrial multimedia applica-
tion.

Algorithm 6.2.2: W = uDistribution(M, US)

comment: distributes the system bandwidth capacity

Uspare ← US −
∑
∀i u

min
i

for each Mi ∈M, sorted by Pri

do


if (udi − umini) < Uspare
then u′i ← (udi − umini)
else u′i ← Uspare

Uspare ← Uspare − u′i
ui ← umini + u′i

return (W = {u1, . . . , un})

It starts from the minimum bandwidth requirements (umini) and dis-
tributes the remaining bandwidth among the channels following a strict pri-
ority order according to the Pri parameter and until there is no more system
bandwidth to assign. Channels registered with the same priority level are
treated equally, receiving an equal amount of bandwidth and being updated
simultaneously in the course of any negotiation. The system bandwidth US

is the admissible load per link, for example, as dictated by a schedulability
criterion that assures that the deadlines of all streams are met.

In most cases there will not be enough system bandwidth to satisfy all
channel requests. In such circumstance, some channels will get the requested
bandwidth, others will just get their minimum requirement bandwidth while
others will get an intermediate value of bandwidth between the previous two
cases.

After completing the bandwidth allocation procedure, the QoS manager
re-maps the allocated bandwidth into actual (Ci, Ti) parameters. As men-
tioned before, the stream period (Ti) is speci�ed as a restricted set of discrete
values that matches the video source frame-rate, while the frame size param-
eter (Ci) can be any natural number comprised within the speci�ed range.
The lower bound of the frame size C li is kept immutable during the service
lifetime, while the upper bound Cui is sporadically renewed (renegotiated)
by the video encoder to �t the estimated image frame size. The bandwidth
mapping is not biunivocal and thus several approaches can be followed. Al-
gorithm 6.2.3 illustrates the technique employed in this work, which attempts

164 CHAPTER 6. FTT-SE CASE STUDIES

to maximize the value of Ci.

Algorithm 6.2.3: {(Ci, Ti)∀i} = uCTmapping(W,M)

for each Mi ∈M

do


Ti = min

{
T ji ,∀j=1..ni : T ji ≥ Cui /ui

}
if Ti = ∅

then

{
Ti = max

{
T ji ,∀j=1..ni

}
Ci = ui × Ti

This is done by taking the highest value for Ci within the de�ned range
[C li , C

u
i] and then using the period Ti that allows the closest under approx-

imation to ui. If this cannot be achieved with any of the available discrete
periods then the longest of such periods is used (Tmaxi) and Ci is recomputed
as Ci = ui × Tmaxi .

Measuring the Quality of Service

The mean-square-error (MSE) and peak-signal-to-noise ratio (PSNR) are the
quality metrics most frequently used to evaluate the performance of codecs
and video transmission systems. However, their capacity to match up the
perceived degradation as well as the human vision factors is poor. There
are numerous attempts to include characteristics of human visual systems
(HVS) in objective quality assessment metrics. These attempts try to get
a numerical method with a good correlation to subjective methods. In the
subjective methods, test sequences are presented to instructed non expert
observers, in a controlled environment, which perform an evaluation accord-
ing to prede�ned quality scales (ITU-R BT.500), obtaining the MOS (Mean
Opinion Score) value.

The method proposed by Z. Wang [135] uses the structural distortion
measurement instead of the error, since the HVS is highly specialized in
extracting structural information, and not in extracting the errors. Being f
the original image, and g the distorted one, the image quality index (QI)
can be calculated as:

QI =
σfg
σfσg

2f̂ ĝ

f̂2 + ĝ2

2σfσg
σ2
fσ

2
g

(6.11)

where f̂ and ĝ are the intensity mean, σf and σg its variance and σfg the
covariance. The QI index assumes values in the range [-1,1], being QI = 1
when the both images are identical.

However, this QI metric does not entirely re�ect the in�uence of the
priority on the QoS obtained nor accounts for the correct use of the available

6.2. INDUSTRIAL MULTIMEDIA APPLICATION 165

Figure 6.14: Frame size evolution in time (q = 55).

bandwidth, which is a factor of paramount importance in industrial networks.
For these reasons, we propose a new metric that also accounts for the e�cient
use of the channel bandwidth by favoring the streams that present lower
wasted bandwidth. The formula is the following, where nf is the number of
frames and Wbi the wasted bandwidth in stream Mi.

QoS′i =
Pri

1 +Wbi

nf∑
k=1

QIki (6.12)

The global QoS′ is also computed as the average of the QoS′i parame-
ters. In the following experiments, we will use QI and PSNR to characterize
the quality of each individual stream and the QoS′ metric for assessing the
aggregated QoS of each experiment.

6.2.4 Experimental results

In order to assess the performance of the proposed multidimensional content
scaling technique, a set of experiments was conducted, also illustrating the
dynamic QoS management properties of the FTT-SE framework.

The streams used in the experiments address industrial scenarios. Fig-
ure 6.14 illustrates, for those streams, the variability of the size required by
each frame, when the streams are compressed with a constant q = 55, illus-
trating their dynamics, complexity and requirements. Stream M3 and M4

are representative of an industrial surveillance application, showing nearly
constant bandwidth requirements. StreamsM5 andM6 present smooth vari-
ations alternated with strong peaks, representing harsh scenarios with sud-
den changes in the environment (e.g. sparks from an industrial welding
machine). Finally stream M1 and stream M2 result of composing alternated

166 CHAPTER 6. FTT-SE CASE STUDIES

M1 M2 M3 M4 M5 M6

d1-d4
qli 20 40 40 20 30 15
qui 70 70 70 70 50 55

T li (ms) 40 40 40 40 40 40
T ui (ms) 160 120 160 120 120 120
Bl
i(B) 30k 30k 30k 30k 20k 25k

Bu
i (B) 50k 50k 50k 50k 60k 55k
Pri 0.166 0.166 0.166 0.166 0.166 0.166

d5
qli 30 30 30 20 30 20
qui 70 50 50 40 70 70

T li (ms) 40 80 80 80 40 40
T ui (ms) 80 160 160 200 80 120
Bl
i(B) 30k 20k 20k 30k 20k 25k

Bu
i (B) 60k 60k 60k 60k 70k 65k
Pri 0.25 0.10 0.10 0.10 0.25 0.20

Table 6.2: Stream properties for dynamic experiments.

frames (multiplexing), from streams M5 and M6 for the �rst and M3 and
M4 for the second.

A total of �ve di�erent dynamic experiments were carried out. The
�rst group of experiments, denoted by d1 to d4, were designed to assess the
in�uence of the δ and QCT parameters. Experiment d5 illustrates the impact
of the QoS priority. Table 6.2 depicts the QoS parameters used for each
stream on these experiments. For experiments d1 to d4 the tuple (δ,QCT)
takes the values (0.1,1), (0.05,1), (0.1,2) and (0.05,2), respectively, while
the stream priority is kept equal for all streams. Conversely, in experiment
d5 the tuple (δ,QCT) is equal to experiment d2, while the streams receive
di�erent priorities.

To establish a baseline for the performance gains of having dynamic ad-
justments of the streams, a set of static experiments with �xed q, C and T
was also carried out (s1-s4). Experiments s1 to s3 use C = 44KB and T =
80ms, resulting in a total bandwidth of 26.4 Mbps, with compression factors
set to 50, 55 and 60, respectively. In experiment s4, C was set at 22KB and
T to 40ms, yielding a similar bandwidth, while the compression factor q was
set to 15.

Tables 6.3 and 6.4 report the experimental results obtained. For each ex-
periment and video sequence the tables show the number of dropped frames
(DrF), the wasted bandwidth (Wb in Mbps) and the quality according with
the PSNR and QI criteria.

6.2. INDUSTRIAL MULTIMEDIA APPLICATION 167

d1 (0.1,1) M1 M2 M3 M4 M5 M6 mean

DrF 9 0 0 0 4 16 4.83
Wb 0.89 0.90 1.0 0.86 0.78 0.98 0.90

PSNR 32.5 34.7 34.3 35.2 32.0 31.9 33.4
QI 0.88 0.91 0.92 0.90 0.87 0.89 0.89

d2 (0.05,1) M1 M2 M3 M4 M5 M6 mean

DrF 15 2 0 8 30 17 9.5
Wb 0.4 0.41 0.47 0.39 0.34 0.42 0.40

PSNR 32.6 34.7 34.6 35.2 32.9 32.9 33.81
QI 0.88 0.91 0.92 0.90 0.87 0.89 0.89

d3 (0.1,2) M1 M2 M3 M4 M5 M6 mean

DrF 6 0 0 0 5 15 4.3
Wb 0.88 0.90 1.0 0.87 0.78 0.98 0.90

PSNR 32.5 34.7 34.3 35.2 32.0 31.8 33.41
QI 0.88 0.91 0.92 0.90 0.87 0.89 0.91

d4 (0.05,2) M1 M2 M3 M4 M5 M6 mean

DrF 24 2 0 4 36 17 13.83
Wb 0.41 0.41 0.48 0.40 0.34 0.43 0.41

PSNR 32.5 34.7 34.6 35.2 32.0 31.7 33.45
QI 0.88 0.91 0.92 0.90 0.87 0.89 0.89

d5 (0.05,1) M1 M2 M3 M4 M5 M6 mean

DrF 24 0 2 11 27 24 14.6
Wb 0.47 0.30 0.35 0.25 0.45 0.55 0.39

PSNR 33.0 33.6 33.4 33.7 32.7 32.6 33.16
QI 0.89 0.90 0.89 0.87 0.87 0.90 0.88

Table 6.3: Results with dynamic scenarios.

Table 6.3 shows that the parameter δ has a noticeable e�ect on the sys-
tem behavior. Reducing δ causes a consistent reduction on the wasted band-
width, as expected. However, this reduction is achieved at the expense of an
increasing number of dropped frames. This e�ect is particularly visible in
streams that exhibit higher dynamics (e.g. M5), while for streams with more
stable requirements the impact is minor or even null (e.g. M3). The impact
on the number of dropped frames is not, however, always re�ected in the
per frame quality metrics (PSNR and QI). The justi�cation for this fact
is that making δ narrower increases the number of dropped frames but, at
the same time, also raises the target bandwidth window, leading to a higher
e�ciency in using the channel width, allowing the QOS adaptation layer to
use lower quanti�cation values. In most of the streams the increase in quality
compensates the higher number of dropped frames, with the �nal di�erence
not being statistically signi�cant. However, for streams with lower dynam-

168 CHAPTER 6. FTT-SE CASE STUDIES

s1 M1 M2 M3 M4 M5 M6 mean

DrF 7 0 0 0 2 10 3.16
Wb 1.0 1.38 1.1 1.66 1.09 0.55 1.16

PSNR 29.8 32.7 31.16 33.48 29.12 29.25 30.91
QI 0.82 0.88 0.89 0.88 0.8 0.85 0.83

s2 M1 M2 M3 M4 M5 M6 mean

DrF 47 0 0 0 16 87 50
Wb 0.78 1.2 0.91 1.48 0.88 0.3 0.93

PSNR 32.66 34.37 33.87 34.78 32.38 32.0 33.34
QI 0.88 0.90 0.91 0.90 0.87 0.89 0.89

s3 M1 M2 M3 M4 M5 M6 mean

DrF 1871 2 2 2 60 60 332.8
Wb 1.54 0.93 0.64 1.23 0.62 0.62 0.93

PSNR 25.24 34.6 34.12 34.98 32.36 32.05 32.22
QI 0.68 0.90 0.91 0.90 0.87 0.89 0.85

s4 M1 M2 M3 M4 M5 M6 mean

DrF 11 0 0 0 1 41 8.83
Wb 1.04 1.37 1.06 1.68 1.18 0.64 1.12

PSNR 30.55 31.23 30.66 31.88 30.82 30.00 30.85
QI 0.82 0.83 0.85 0.84 0.85 0.83 0.85

Table 6.4: Results with static scenarios.

ics, such as M3, reducing δ actually improves the PSNR metrics, since the
sequence is not a�ected by dropped frames.

The QCT parameter controls the frequency of QoS renegotiation re-
quests. Its impact on the QoS metrics depends strongly on the characteris-
tics of each stream. When the streams have narrow and strong bandwidth
peaks, higher QCT values increase the QoS renegotiation latency, potentially
leading to a quality deterioration. This e�ect can be observed in Table 6.3,
where for experiments d2 and d4 an increase in the QCT from 1 to 2, leads
streams M1 and M5 to experience a signi�cant increase in the number of
dropped frames and, together with M6, a deterioration in the PSNR �gure.
In the other streams, that either have bandwidth requirements that stay
constant or nearly constant during relatively long periods of time, higher
QCT values do not lead to a signi�cant number of dropped frames and,
furthermore, help �ltering spurious changes that could, otherwise, lead to
unnecessary QoS renegotiations, as in the case of M4 in experiments d2 and
d4.

One aspect that should be highlighted is the low sensitivity of the system
to particular values of δ and QCT . In fact, the PSNR and QI metrics do not
change signi�cantly with any of these parameters, thus facilitating system

6.2. INDUSTRIAL MULTIMEDIA APPLICATION 169

s1 s2 s3 s4
QoS′ 0.41 0.48 0.46 0.40

d1 d2 d3 d4 d5
QoS′ 0.47 0.64 0.47 0.63 0.67

Table 6.5: QoS' results.

Figure 6.15: Contribution of each stream to QoS'.

set-up.
Comparing Tables 6.3 and 6.4 clearly shows that the dynamic approach

leads to signi�cant improvements in all key aspects. The number of dropped
frames is strongly reduced, mainly in the streams with higher dynamics (e.g.
M1 and M5). The quality metrics (PSNR and QI) are also consistently
similar or better. It should be remarked that these results are achieved with
better bandwidth utilization. The exception is for s2, which, with a constant
q = 55, attains similar quality levels, with a low number of dropped frames.
In fact it is possible in some cases to �nd the best static q for each stream.
However, this procedure has to be done o�ine, and thus it is not suitable
for MES applications.

Table 6.5 presents the QoS′ values for each experiment. The �rst conclu-
sion that can be withdrawn is that, for properly selected δ parameters, the
QoS attained with the dynamic approach can be signi�cantly higher than
with the static approach, e.g., d2 and d4 versus s2 and s4. Considering the
meaning of this metric, one can conclude that higher quality levels can be
attained both by allocating more bandwidth to the streams that can make
better use of it as well as by reducing the wasted bandwidth. The impact of
the wasted bandwidth in this metric can be also observed in the signi�cant
di�erence, around 35%, between experiments d1 and d2, and d3 and d4.

Experiment d5 aims at illustrating the system behavior when the assigned

170 CHAPTER 6. FTT-SE CASE STUDIES

Figure 6.16: Bandwidth evolution of stream M1.

priorities are not uniform. The Pr values used in d5 imply a bandwidth dis-
tribution where streamsM1, M5 andM6 obtain more resources in detriment
of streams M2, M3 and M4, as can be see in Figure 6.15. This matches
the requirements of many applications in which some streams have a higher
impact on the global system performance and thus should be favored. Fig-
ure 6.16 shows the bandwidth used by stream M1 in experiments d1, d2 and
d5. It can be observed that in experiment d5 the scheduler assigns more
bandwidth to stream M1 than in experiments d1 and d2. This observation
is particularly clear when comparing experiments d2 and d5, which have an
equivalent parameterization except for the priority. Observing Table 6.3, it
is possible to conclude that the higher priority streams have a gain between
0.5 and 1 dB, at expenses of decrease between 1 and 1.2 dB in the lower
priority ones. Thus, the priority mechanism proves its e�ectiveness in di�er-
entiating the streams, providing more resources to the ones that have higher
impact in the global system performance.

6.2.5 Summary

Using multimedia streams in real-time applications requires appropriate sup-
port from the underlying network. A common used technique to address this
issue is allocating CBR channels to di�erent streams, which favors tempo-
ral isolation. However, most multimedia streams are naturally coded with
variable bit rate (VBR). In order to �t the VBR source within the CBR
channel, either it is allowed degradation on the streaming quality, if the
channel is designed for the average requirements, or a signi�cant bandwidth
waste, if the channel is designed to �t the worst-case requirements. This
section presented a multidimensional dynamic QoS adaptation mechanism

6.2. INDUSTRIAL MULTIMEDIA APPLICATION 171

that allows dynamically changing the channel bandwidth according to the
e�ective stream needs and overall available bandwidth. The capacity of the
CBR channels is dynamically adjusted, from time-to-time, re�ecting the in-
stantaneous requirements of each stream.

This adaptation mechanism is extensively assessed, with its performance
being compared against a corresponding situation with static CBR channels,
using a set of stored video sequences from industrial environments. The
performance level is assessed with a QoS metric that includes both the image
quality, the stream QoS priorities and the capacity of the system to reduce
the wasted bandwidth. The results obtained show a consistent superiority of
the dynamic approach over the static one, specially when streams of di�erent
priorities are in place. Moreover, the adaptation is carried out with reserved
channels, thus maintaining the temporal isolation feature among the streams
and other real-time tra�c, thus being suitable for integration in complex
MES systems, integrating real-time sources of diverse natures, e.g. closed-
loop control.

This industrial application scenario illustrates the bene�ts from using a
dynamically adaptable system, based on sing the framework proposed in this
thesis (FTT-SE) along with its dynamic QoS management capabilities. It
provides an example of the integration of these features with the application
and its dynamics.

172 CHAPTER 6. FTT-SE CASE STUDIES

6.3 Server-SE

In Chapter 2 we have seen the major bene�ts of an Ethernet switch-based ar-
chitecture to support real-time communications. Several limitations remain,
though, and thus, several protocols have been proposed to provide real-time
services over such architectures, including FTT-SE, proposed in this thesis.
However, in spite of the particular mechanisms employed, they share a com-
mon di�culty in the e�cient handling of real-time messages with di�erent
arrival patterns, such as periodic and aperiodic, by treating them in di�erent
ways. The approach proposed in this section is di�erent in the sense that it
aims at providing a uniform model, through which messages are scheduled
in an integrated way, with no distinction between periodic and aperiodic.

The core of this approach is the integration of the FTT-SE (Section 3)
and the Server-CAN [95] protocols. The FTT-SE architecture facilitates
enforcing full control over streams of messages, due to the master/slave op-
eration, no matter of their corresponding arrival patterns. Furthermore, the
centralization of the scheduling decisions on the master node also facilitates
the implementation of arbitrary server policies as well as their hierarchical
composition. This property allows complex applications to be decomposed
into sub-applications, each one requiring a share of the bandwidth. Al-
though common in CPU scheduling, this level of �exibility, permitting the
implementation of arbitrary server mechanisms as well as their hierarchical
composition, is new in the context of RTE networks. Summarizing, this ap-
proach for SE systems (1) is free of queues over�ows, (2) supports advanced
tra�c scheduling policies and (3) can enforce real-time guarantees even in
the presence of aperiodic communication and/or time-domain faults, e.g.,
babbling idiots.

This section is based on work conducted in cooperation with Thomas
Nolte from Mälardalen University in Sweden [87] and Nuno Figueiredo [88],
while he was pursuing his Master thesis. The following section provides
an overview of server-based CPU scheduling as well as server-based traf-
�c scheduling techniques. Then, Section 6.3.2 proposes using the FTT-SE
protocol to allow a local management of all servers, facilitating their on-
line creation, deletion, adaptation and composition. It advocates that such
a centralized management of the servers provides the required support for
open distributed real-time systems as well as for dynamic QoS management.
Moreover, the proposed approach also allows any CPU-oriented server-based
scheduling policy to be implemented for network scheduling, possibly with
hierarchical composition, increasing the �exibility of the system.

Afterwards, we present a prototype implementation that validates the
framework by means of a case study based on a control-based testbed.

6.3. SERVER-SE 173

6.3.1 Server-based scheduling

In the real-time scheduling literature many types of server-based schedulers
have been presented for Fixed Priority Systems (FPS) and Dynamic Priority
Systems (DPS). These schedulers are characterized partly by the mechanism
for assigning deadlines, and partly by a set of parameters used to con�gure
the servers, e.g., bandwidth, period and capacity. The Polling Server (PS)
[116] is one of the simplest FPS servers. A PS allocates a share of a resource
to the users of the server. This share is de�ned by the server period and
capacity. The Deferrable Server (DS) [123] improves the responsiveness of the
PS by permitting deferring its execution whenever there are no user requests.
In general the DS gives better response times than the PS at expenses of a
lower schedulability bound. By changing the way capacity is replenished for
a server, the Sporadic Server (SS) [116] is a server-based scheduler for FPS
systems that allows high schedulability without compromising too much the
responsiveness.

Examples of Earliest Deadline First (EDF) based DPS servers include,
e.g., the Dynamic Sporadic Server (DSS) [118]. A very simple (implemen-
tation wise) server-based scheduler that provides faster response time com-
pared with SS is the Total Bandwidth Server (TBS) [118]. TBS makes sure
that the server never uses more bandwidth than allocated to it, yet provid-
ing a fast response time to its users (under the assumption that the users do
not consume more capacity than what they have speci�ed). When the users
desired usage is unknown, the Constant Bandwidth Server (CBS) [24] can be
used, guaranteeing that the server users will never use more than the server
capacity. This is particularly e�cient to enforce temporal isolation between
the server users and the remainder of the system.

In the network domain, probably for historical reasons, the names given
to servers are di�erent. For example, a common server used in networking
is the leaky bucket. This is a speci�c kind of a general server category called
tra�c shapers, which purpose is to limit the amount of tra�c that a node
can submit to the network within a given time window, bounding the node
burstiness. These servers use a technique similar to those described in the
previous section, based on capacity that is eventually replenished. Many dif-
ferent replenishment policies are also possible, being the periodic replenish-
ment as with PS or DS, the most common. However, it is hard to categorize
these network servers similarly to the CPU servers referred in the previous
section because networks seldom use clear �xed or dynamic priority tra�c
management schemes. For example, there is a large variability of Medium
Access Control (MAC) protocols, some of them mixing di�erent schemes
such as round-robin scheduling with �xed priorities, �rst-come-�rst-served,
�rst-come-�rst-served with multiple priority queues, etc.

This work advocates that, using an adequate protocol, such as one based
on the FTT paradigm [28, 84, 101], it is possible to control the tra�c in a way

174 CHAPTER 6. FTT-SE CASE STUDIES

that allows implementing any of the CPU-oriented server-based scheduling
techniques.

6.3.2 The Server-SE protocol

The integration of the FTT-SE architecture along with the server-based
scheduling capabilities creates a new protocol framework, the Server-SE,
aiming to handle general message streams in switched Ethernet with arbi-
trary arrival patterns while still providing timing guarantees. Hierarchical
server composition should also be provided in order to support e�ciently the
decomposition of complex applications into sub-applications, each with its
own share of the bandwidth.

The FTT-SE architecture enables a nearly seamless deployment of the
server-based management since the master has complete control of the server
executions (message transmissions) and knowledge of the status of all queues
in all the nodes (via a signaling mechanism). Alike the message scheduling
in the FTT-SE protocol, the servers management is centralized in the mas-
ter node, while the serving queues are kept in the transiting nodes. The
communication between the Slaves and the Master node, required to update
the queuing status, is supported by the asynchronous signaling mechanism,
presented in Section 3.2.2. Then, upon a transmission signaling request,
the Master schedules the messages and controls its dispatching via the EC-
schedule conveyed in the TM. The message transmission within the Server
scope is basically handled as the asynchronous messages in the FTT-SE
protocol. However, it is still possible to keep a synchronous window to dif-
ferentiate such kind of tra�c if desired.

Server allocation and management

At run-time, all nodes must negotiate with the Master the creation of ade-
quate servers to handle speci�c types of tra�c. This negotiation is carried
out using asynchronous control channels dynamically created and removed
when nodes join and leave the system. The Master answers using the follow-
ing TM in which it piggybacks the appropriate information, e.g., whether the
server was actually created or not. Typically, the communication require-
ments would be expressed in terms of admissible ranges according to di�erent
levels of admissible QoS. These ranges can be used by the master to manage
dynamically the QoS of the servers already running, e.g. to accommodate
new requests. A suitable negotiation guarantees that all requirements of the
real-time messages will be satis�ed and the physical resources will be enough.

This mechanism is not transparent for the nodes. For legacy applica-
tions it is possible to add a wrapper to carry out the QoS negotiation before
initiating the application itself so that the servers are created when the ap-
plication is started. Alternatively, it is possible to tweak the network driver

6.3. SERVER-SE 175

Figure 6.17: Internals of the Server-SE Master.

and to automatically create a background server per node. This server be-
haves as a �black box� , serving all the application components executed on
the node without the need to know any details about their respective tra�c
characteristics. By default this channel is associated with the NRT window.
The bandwidth is divided among all nodes and the polling is carried out in
a per-node basis. This background server does not provide minimum QoS
guarantees, since it uses the bandwidth left available by other higher prior-
ity servers, but grants any node some immediate communication capabilities
without the need for speci�c server negotiations. If needed, speci�c servers
can be created later on for speci�c tra�c.

Server integration in FTT-SE: architectural overview

The integration of the server mechanism in the FTT-SE master is carried
out associating one server instance to each asynchronous stream. Each server
instance holds the server properties (e.g. budget, period) and manages the
server status during run-time. The node's requests, received via the afore-
mentioned signaling mechanism , are decoded and added to a RequestList.
This list is ordered and keeps track of all the pending requests from all
the asynchronous messages. The server status dictates whether the requests
present in the RequestList are eligible for scheduling or not, thus forming
a ReadyQueue from the RequestList. This step makes the server insertion
transparent to the Master scheduler, that only has to scan the ReadyQueue
and schedule the messages according to the implemented scheduling policy,
as if it was the case for normal asynchronous messages.

The integration of the servers in the FTT framework results in the server
hierarchy depicted in Figure 6.18. At the top level the FTT EC structure di-
vides the tra�c into synchronous and asynchronous classes, associated with

176 CHAPTER 6. FTT-SE CASE STUDIES

Figure 6.18: Server-SE Server Hierarchy.

disjoint windows that �ll in the whole EC length. The synchronous win-
dow is associated with a polling server period Tsw = E and a (maximum)
capacity Csw = LSW , resulting in a (maximum) bandwidth utilization of
Umaxsw = Csw

T = LSW
E . On its hand the asynchronous window receives the

remaining bandwidth, derived implicitly from the EC size, synchronous win-
dow length and protocol overheads (bandwidth reclamation). Thus, it has a
(minimum guaranteed) capacity of Caw = LAW , resulting in a (minimum)
bandwidth of Umaxaw = Caw

T = LAW
E . Note that E and LSW are FTT con-

�guration parameters that can be tuned to suit the global application needs.
The EC period E establishes the granularity of the remaining servers; their
periods are constrained to be an integer multiple of E. On the other hand
LSW de�nes, indirectly, the length of the asynchronous window and so how
much bandwidth is managed by the servers, or equivalently, the global server
budget. Note that LSW can take any value from 0 to near E (in fact it has
to be lower than E due to protocol overheads), thus the system is highly
�exible in this regard.

The second level of the hierarchy manages the sporadic and the NRT traf-
�c, the former having real-time requirements and thus being always sched-
uled before the latter, which is handled by a background server. Thus, at this
level, the sporadic window inherits the bandwidth and (maximum) capacity
of its ancestor server (Cspw = Caw;Uspw = Uaw).

The third level of the hierarchy is where the additional servers can be
plugged-in. Arbitrary scheduling policies can be implemented at this level
and the sole constraints are that the base time granularity is E and the
budget of the ancestor server.

For illustrative purposes the implementation of a Deferrable Server is de-
scribed. This server uses a internal variable, designated activationcounter,

6.3. SERVER-SE 177

that controls the replenishment period. This variable is set to zero upon
creation, meaning that the server is eligible for transmitting. Whenever a
message is sent, the variable is set to the replenishment period (mit) and
is decremented every EC until its value reaches zero. This event means
that the server is replenished and thus any pending messages present in the
RequestList are moved to the ReadyQueue, becoming eligible for trans-
mission. The process repeats itself. As can be seen, the integration of the
server-based mechanism produces minor implications in the FTT-SE archi-
tecture. The changes were restricted to the message activation procedure,
maintenance of the activationcounter and ReadyQueue management. More
complex servers can require additional structures, specially when compris-
ing several messages in a single server scope, similarly to the case of server
mechanisms for processor scheduling.

Limitations and alternative approaches

The Server-SE approach hereby proposed relies on the FTT-SE protocol and,
consequently, also inherits most of the limitations and drawbacks of this pro-
tocol. From a conceptual point-of-view the main issues that can be identi�ed
in the current approach are the requirement for a cooperative architecture
and the explicit signaling mechanism. FTT-SE is a master/multi-slave proto-
col and thus, as any other master/slave protocol, depends on the cooperation
of all the nodes in the system. Malfunctioning or non-compliant nodes that
use the transmission medium without respecting the mediation of the Mas-
ter can jeopardize all the temporal guarantees. This aspect constrains one of
the goals of Server-SE that is to e�ciently support open systems, in which
nodes can leave and join at will, while still providing timeliness guarantees.
On the other hand, the explicit signaling mechanism induces an undesirable
latency. Nodes can only report their status in discrete time instants, namely
the beginning of the ECs. Thus the signaling latency is, at minimum, 1 to 2
ECs, and can be bigger for systems with a relatively high number of nodes
(> 30, see Section 3.3.4).

Both of these problems can be solved by an alternative FTT-SE im-
plementation currently under development and addressed in Chapter 7 as
future work. A preliminary implementation for proof of concept is described
in Section 6.4.The main idea is to integrate the FTT master within a custom
Ethernet switch, con�ning, by itself, the non-FTT tra�c to con�gurable pre-
de�ned windows, thus preventing negative e�ects from non-compliant nodes.
Furthermore, the modi�ed switch carries out tra�c policing, i.e., messages
that violate the agreed time domain parameters are trashed and, preserv-
ing the correct behavior of real-time tra�c. Finally, the explicit signaling
mechanism is no longer needed and the nodes are allowed to transmit asyn-
chronous messages autonomously. Incoming messages are queued, classi�ed
and veri�ed by the switch. Thus, servers can be noti�ed internally on the

178 CHAPTER 6. FTT-SE CASE STUDIES

arrival of new messages, update their status and turn messages eligible for
transmission when appropriate. This is on-going work that is currently being
explored.

6.3.3 Experimental results

This section presents experimental results obtained from a prototype imple-
mentation of Server-SE. The �rst experiment is a basic test meant essentially
to verify the correctness of the implementation of the server mechanisms.
The second experiment involves a mixed environment composed by a dis-
tributed control system, with timeliness requirements, and other sources of
tra�c, eventually causing overloads. This experiment aims at assessing the
suitability of server-based mechanisms to handle time sensitive distributed
systems comprising di�erent tra�c sources with distinct activation and time-
liness requirements.

Tra�c con�nement

For this experiment we created FTT-SE system comprising one Master node
and two slave nodes. The EC duration is set to 1ms and the network operates
at 100 Mbps. The application submits three aperiodic streams to the network
stack with the following properties: AM1 and AM2 sent by Slave 1 with 2kB
and Mean Time Between Activations (MTBA) of 6 and 10 ECs, respectively,
and AM3 sent by Slave 2 with 1kB and MTBA 5 ECs. Three sporadic
servers [37] were set, one for each message. Each server has a budget equal
to one instance and a replenishment period equal to MTBA. The servers
were scheduled according to Rate Monotonic, considering the replenishment
periods. LAW was constrained to be 240µseconds, which was su�cient to
schedule the three servers. In this con�guration the servers can schedule no
more than 2 packets of the referred messages per EC.

The generation of the message transmission requests was carried out
randomly by an application program, which uniformly distributes the acti-
vations along the EC time frame, respecting the messageMTBA. Figure 6.19
shows the results for message AM3, with the time expressed in ECs. The
top histogram shows the inter-arrival times of the requests (signaling mes-
sages arrived at the Master). The lower histogram shows the inter-arrival
times of message AM3 as scheduled by the Master (and transmitted by the
respective Slave). The measures were actually carried out within the Master
(di�erence between consecutive requests arrivals and di�erence between con-
secutive scheduled transmissions). It is clear that, despite the frequent bursts
of consecutive requests, the transmissions respect the MTBA corresponding
to the respective sporadic server replenishment period. The histograms of
the other two messages show similar behavior and thus are not presented.

6.3. SERVER-SE 179

Figure 6.19: Top histogram: inter-arrival times of the AM3 requests; Lower
histogram: inter-arrival times of AM3 messages.

Case study: distributed control system

This case study setup is based on a "ball-on-plane" mechatronic setup. This
setup aims at keeping one ball as near as possible to a predetermined point
in an horizontal plane. The plane is controlled by two servo-mechanisms
that actuate on two orthogonal axes, X and Y. The ball position and corre-
sponding error is obtained using a video camera connected to a computer.

The platform components form a distributed system based on the Server-
SE protocol (Figure 6.20). The network bit rate is set to 100 Mbps. The
platform comprises i) a Sensor Device that captures images and sends
them to the controller; ii) a Controller Device that processes the received
images, computes the ball coordinates in the plane, executes the control
algorithm and sends the setpoints to the actuators (servos) iii) Actuator
Device that receives the commands sent by the controller and position the
servos accordingly.

Beyond, the sensor, controller and actuator nodes, the system comprises
the Server-SE Master node as well as two other computers that simulate
a scenario where two surveillance cameras, producing variable load tra�c,
share the same network. The surveillance cameras also direct the image
streams to the controller node in order to overload its network link and
cause interference in the control tra�c.

180 CHAPTER 6. FTT-SE CASE STUDIES

ControllerSensor Actuator

FTT-SE master

Servo-mechanismsCamera

Platform

Surveillance
Cam 1

Surveillance
Cam 2

Ethernet
switch

Control traffic

Interference traffic

Figure 6.20: Platform connections diagram.

Typically, these surveillance cameras have no external triggering mech-
anism and thus it is not possible to synchronize their operation with the
network. Hence, it was decided to use servers to support them. A total
of 3 servers, one for each camera, have been created. The controller node
was synchronized with the Server-SE network, and thus the control message
is con�gured as a periodic one and sent within the Server-SE synchronous
window. In this scope the utilization of servers is important because it guar-
antees bandwidth isolation (no device can use more bandwidth than the
allowed one) and prevents the occurrence of unbounded tra�c bursts, guar-
anteeing a regular and predictable access to the network (upper bounded by
the server period). The critical link is, in this case, the one between the
switch and the controller. For this reason the measurements presented in
this case study were performed on this link.

In this experiment the control-related tra�c was kept constant and the
surveillance cameras have been used to simulate a varying load. Eight dif-
ferent experiments, corresponding to increasing link utilization rates, have
been carried out. Table 6.6 summarizes the cameras con�guration and global
link utilization for each one of the experiments. SC stands for Sensor's Cam-

6.3. SERVER-SE 181

Test SC (fps) VC1 (fps) VC2 (fps) Utilization Rate

1 30 fps 0 fps 0 fps 19.776%

2 30 fps 15 fps 15 fps 38.816%

3 30 fps 29 fps 24 fps 53.414%

4 30 fps 38 fps 28 fps 61.665%

5 30 fps 37 fps 38 fps 67.377%

6 30 fps 42 fps 42 fps 73.089%

7 30 fps 49 fps 53 fps 84.513%

8 30 fps 57 fps 57 fps 90.859%

Table 6.6: Load characterization - Controller downlink.

era while VC stands for Video surveillance cameras. The utilization value,
indicated in the rightmost column of Table 6.6, includes all the protocol
overheads.

To assess the impact on the control performance, the mean square error
of the ball in both the X and Y axes was computed, for each one of the
di�erent load conditions. As shown in Figure 6.21, the control performance
remains essentially constant throughout the di�erent load conditions. This
is a direct result of the presence of the servers, which guarantee the QoS
independently of the particular load conditions, preserving the property of
composability of the real-time property among streams of messages scheduled
through separated servers. Also, the control message, transmitted in the
synchronous window, does not su�er from any kind of negative impact due
to the surveillance cameras induced overload.

The same scenario was implemented with RAW Ethernet, i.e., without
network control enforcement. Figure 6.22 shows the results of the control
performance for the same network utilization loads as with the setup using
the FTT-SE framework. Comparing both implementations, it is noticeable
the control degradation in the RAW implementation for high utilization loads
in the network (above 70%), leading to the control system instability.

6.3.4 Summary

Real-Time Ethernet (RTE) protocols have di�culties in the e�cient han-
dling of aperiodic message streams with arbitrary arrival patterns, while
at the same time supporting the derivation of timeliness guarantees. This
section presents a server-based mechanism for switched Ethernet real-time
networks, integrating concepts from the Server-CAN protocol on the FTT-
SE protocol. This approach enables an e�cient implementation of arbitrary
server schedulers as well as their hierarchical composition. Moreover, this
approach is very suitable for open systems as servers can easily be added,

182 CHAPTER 6. FTT-SE CASE STUDIES

(a) Position X (b) Position Y

Figure 6.21: Mean Square Error of the ball with FTT-SE.

(a) Position X (b) Position Y

Figure 6.22: Mean Square Error of the ball with Raw Ethernet.

changed and removed during run-time. We include a case study based on
a distributed control application. The obtained results illustrate the correct
operation of the server-based protocol, showing the capability of the frame-
work in providing strict timeliness guarantees to the real-time tra�c in spite
of the interference with arbitrary arrival patterns and load variations.

6.4. FTT-SE ENABLED SWITCH 183

6.4 FTT-SE enabled switch

The FTT-SE protocol exhibits a tra�c regulation that is based in a com-
mon time-line that globally coordinates the tra�c submitted to the switch,
allowing for fast and atomic online updates to the set of streams. This tra�c
enforcement is centralized in a single entity, called master, connected to a
standard switch.

While using non-standard hardware con�icts with some of the key ar-
guments supporting the use of Ethernet in real-time applications (e.g. cost,
availability, compatibility with general purpose LANs), custom switch imple-
mentations with enhanced tra�c control and scheduling capabilities allows
important performance and service breakthroughs, and so a number of ap-
proaches of this class have also been proposed in the recent years (e.g. [62],
[132], [2]).

This section provides a proof-of-concept study for integrating the traf-
�c management and transmission control mechanisms of the FTT-SE in an
Ethernet switch. The resulting framework allows obtaining important per-
formance gains in the following key aspects:

• A noticeable reduction in the switching latency jitter found in common
Ethernet switches;

• An important performance boost of the asynchronous tra�c, which
in this case is autonomously triggered by the nodes instead of being
pooled by the master node;

• An increase in the system integrity since unauthorized transmissions
can be readily blocked at the switch input ports, thus not interfering
with the rest of the system;

• Seamless integration of standard non FTT compliant nodes without
jeopardizing the real-time services.

6.4.1 Switch Architecture

Figure 6.23 depicts the functional architecture of the FTT-enabled Ether-
net switch integrating the FTT master tra�c management services (shaded
area). The System Requirements Database (SRDB) is the central repos-
itory for all the information related to the tra�c management, namely
the message attributes for both synchronous and asynchronous tra�c (e.g.
period/minimum inter-arrival time, length, priority, deadline), information
about the resources allocated to each tra�c class (e.g. phase durations, max-
imum amount of bu�er memory) and global con�guration information (e.g.
elementary cycle duration, data rate). Change requests to the message set
are submitted to an admission control (plus optional QoS manager), ensur-
ing continued real-time tra�c timeliness. The SRDB is periodically scanned

184 CHAPTER 6. FTT-SE CASE STUDIES

Figure 6.23: FTT-enabled switch functional architecture.

by a scheduler, which builds a list of synchronous messages (EC-Schedule)
that should be produced in the following EC. A dispatcher task periodically
broadcasts the EC-schedule within the Trigger Message.

The main advantage of integrating the FTT-SE master inside the switch
is the tight control of the packet �ow and resource utilization that becomes
possible. At the beginning of each EC the global dispatcher directly accesses
the port dispatcher, which sends the trigger message and keeps temporal
information about each of the phases within the EC. Each output port has
3 queues, one for each tra�c class (Sync RT, Async RT and NRT). During
the EC the port dispatcher transmits messages submitted to each of these
queues, according to the EC phase. This mechanism con�nes the di�erent
tra�c classes to the respective phases. If, for example, a malfunctioning
node sends a synchronous message outside of the synchronous phase, the
message is discarded and does not interfere with the asynchronous or non
real-time phases. On the other hand aperiodic messages (either Async RT
or NRT) do not need to be polled, contrarily to what happened for FTT-SE.
The port dispatcher only transmits messages from the asynchronous or NRT
queues if the time left within the respective window is enough.

Both FTT and non-FTT-compliant nodes can be seamlessly attached
to the FTT enabled switch. Thus, on the ingress side the �rst operation
carried out is the packet classi�cation, which consists only in inspecting the
Ethernet type �eld. When the message is identi�ed as an FTT message it is
subject to a veri�cation process and, if valid, is appended to the synchronous
or asynchronous message queues, according to its nature. Conversely, if
the message is non-FTT it is simply appended to the NRT queue. The
segmentation of the global memory pool, keeping the messages of each class
in independent subdivisions, allows avoiding memory exhaustion for the real-

6.4. FTT-SE ENABLED SWITCH 185

time messages, a situation that standard switches do not guarantee [102].
Note, however, that the amount of memory needed for the real-time messages
is typically small given their temporal properties that are enforced at the
switch ingress. It is also known in advance since the RT tra�c is subject to
an explicit registration. During the registration process the producers must
state the �ow properties, in particular the length and period for periodic
messages or minimum inter-arrival time for sporadic ones. With this data it
is possible to compute and pre-allocate the amount of memory that RT tra�c
requires and thus guarantee that the resources are enough for all admitted
messages.

The validation process of the RT classes gathers data both from the EC-
schedule and from the SRDB. Regarding synchronous messages, the analysis
of the EC-schedule allows detecting failures in the time domain, namely the
transmission of unscheduled messages or the late transmission of scheduled
messages resulting from malfunctioning nodes. An equivalent set of tests
(e.g. minimum inter-arrival time, burstiness) is also performed for asyn-
chronous messages with those that fail the validation process being trashed.
The policing and enforcement of the tra�c attributes in the time domain
guarantees the timeliness of the real-time tra�c even in the presence of mal-
functioning nodes.

Whenever a message is placed in the global memory pool, a packet for-
warding process is executed. Control messages, targeted to the master are
submitted to the Admission control/QoS manager module and possibly result
in changes on the SRDB. Data messages should be forwarded to the target
nodes. The forwarding mechanism of FTT messages is based on a producer-
consumer model, and does not depend on MAC addresses. Whenever an
FTT message arrives the Packet Forwarding module inquires the SRDB to
determine the set of ports having consumers attached, and updates the out-
put queue (synchronous or asynchronous, depending on the message nature)
of each one of these ports. Non-FTT messages are forwarded according to
the normal procedures of standard Ethernet switches, based on the MAC
address. From the point of view of NRT tra�c, the FTT-enabled switch
behaves as a common switch but with restricted bandwidth arising from the
con�nement of this tra�c to the NRT phase in the EC.

The integration of the FTT-SE master in the switch is transparent to the
nodes in what concerns the synchronous tra�c. There are, however, several
simpli�cations for the aperiodic tra�c. Nodes that do not produce real-time
messages can use any standard Ethernet driver. The transmission control of
this class in FTT-SE is no longer required here, being replaced by adequate
con�nement by the switch. Nodes that produce real-time messages require
the FTT-SE network driver to be updated to include di�erent queues for
the three tra�c classes and avoid blocking of the synchronous tra�c in the
uplinks.

186 CHAPTER 6. FTT-SE CASE STUDIES

Figure 6.24: Histogram of the di�erences between consecutive NRT messages
(uplink).

6.4.2 Experimental results

A prototype implementation, based on the RT-Linux real-time operating
system with the Ethernet layer provided by the LNet network stack, was
carried out to validate the extended services provided by the FTT-enabled
switch. This prototype switch is based on a Pentium III PC at 550MHz with
four 3Com 3C905B PCI network interface cards.

The �rst experiment consists in the implementation of a policing service
for the synchronous tra�c. The ID of incoming synchronous messages is
matched against the ECschedule and discarded if a positive match is not
found. This way only scheduled messages are disseminated, guaranteeing
that the synchronous window is not overrun. To verify the correct behavior
of the policing service we con�gured a setup with one synchronous message
with period Ti=3ECs while the respective producer slave was tampered to
send that message every EC. We observed that the consumer node only
received the scheduled messages, one every 3ECs, and the extra messages
were discarded. The second experiment consists in the veri�cation of the
enforcement of the tra�c temporal isolation. The experimental setup is
con�gured with an EC of 40ms, with the last 3ms of the EC dedicated to
the NRT tra�c. The NRT test load consists in UDP packets carrying 1400
data bytes, periodically sent every 5ms. The load is generated with Pack-
Eth (http://packeth.sourceforge.net/) running on a plain Linux distribution
(RedHat 9.0). Figure 6.24 depicts the histogram of the time di�erences be-
tween consecutive NRT messages in the uplink.

6.4. FTT-SE ENABLED SWITCH 187

Figure 6.25: Histogram of the di�erences between the beginning of the EC
and NRT messages (downlink).

While NRT messages can be submitted at any time instant, the FTT-
enabled switch only forwards them to the output port(s) in the NRT window,
which in this setup is con�gured to use the last 3ms of the EC. This con-
�nement mechanism signi�cantly changes the message transmission pattern
between the uplink and the downlink. Figure 6.25 shows the time di�erence
between the beginning of the EC and the reception of the NRT messages be-
ing clear the con�nement of these to the NRT window (37 to 40ms after the
EC start). Therefore the NRT tra�c does not interfere with the synchronous
or asynchronous real-time tra�c, despite being generated at arbitrary time
instants by a standard node not implementing the FTT protocol.

6.4.3 Summary

The advent of switched Ethernet has opened new perspectives for real-time
communication over Ethernet. However, a few problems subsist related with
queue management policies, queue over�ows and limited priority support.
While several techniques were proposed to overcome such di�culties, the
use of standard Ethernet switches constraints the level of performance that
may be achieved. Therefore, we proposed an enhanced Ethernet switch,
implementing FTT-class services. The resulting architecture inherits the
FTT features, namely �exible communication with high level of control to
guarantee timeliness, while providing a noticeable reduction in the switching
latency jitter found in common Ethernet switches, an important performance
increase of the asynchronous tra�c, seamless integration of standard Ether-

188 CHAPTER 6. FTT-SE CASE STUDIES

net nodes and a substantial increase in the system integrity as unauthorized
transmissions from the nodes can be readily blocked at the switch input
ports. On-going work (Chapter 7) addresses the FPGA implementation of
this switch.

6.5. CONCLUSION 189

6.5 Conclusion

The core contribution of this thesis is a new real-time communication pro-
tocol for switched Ethernet, namely FTT-SE,that is capable of handling
the dynamic communication requirements as needed for dynamic QoS man-
agement or simply for open and dynamically recon�gurable systems. This
chapter compiled four case-studies that highlight such capability and provide
some insight over the performance and usability of such protocol.

The �rst case-study addresses the integration of the FTT-SE protocol in
an open-scoped resource handling framework (FRESCOR). FRESCOR pro-
vides a uni�ed and common application interface for handling together the
management of several resources, needed by a service. It handles a number of
resource types in classes. The integration with the FTT-SE protocol brings
in a new network communication class type with di�erent communication
paradigms, namely time and event-triggered, and switched Ethernet topol-
ogy. Moreover, FTT-SE supports in a direct and e�cient way the integrated
contracts management of FRESCOR. This results on a smooth integration
of FTT-SE in the global application design scope.

The second case-study shows the use of FTT-SE QoS management in
improving the performance of a multimedia industrial system. The scenario
includes the transmission of video streams over an FTT-SE network with
speci�c QoS requirements that may vary within a given quality range, de-
pending on the network load. We propose a feedback mechanism based on
tuning the parameters of MJPEG streams that directly a�ect the service
quality and the network load, such as, the compression factor, the periodic
transmission rate and the frame transmission bu�er. Given that FTT-SE
already assures a QoS-aware resource management based on bandwidth dis-
tribution, this case-study illustrates how a multimedia application can take
advantage of the QoS-aware resource management to carry out dynamic
QoS adaptation. The QoS management includes the adaption of variable
bitrate (VBR) services, such as multimedia streams, in deterministic con-
stant bitrate (CBR) channels, such as the ones provided within the FTT-SE
framework. The results of this case-study endorse the use of dynamic QoS
management policies in resources that support �exible recon�guration.

The third case-study shows how FTT-SE can be used to support both
synchronous and asynchronous tra�c in an integrated way using servers.
The centralized scheduling architecture of FTT-SE enables a seamless de-
ployment of a variety of servers, allowing the designer to choose the best one
for an application domain and even to compose several servers hierarchically,
promoting a good component-oriented integration. In order to illustrate and
validate the server-based tra�c scheduling approach, we used a distributed
control application. The results demonstrate the capability of the servers
in providing strict timeliness guarantees to the real-time tra�c in spite of
interfering tra�c with arbitrary arrival patterns and load variations.

190 CHAPTER 6. FTT-SE CASE STUDIES

Finally, the fourth case-study presented a proof-of-concept for pushing
further the FTT-SE framework to a di�erent level, including some of the
Master functionalities inside the switch. As presented in this thesis, the FTT-
SE protocol relies on an external Master node to enforce tra�c timeliness as
well as the cooperative behavior of every single node.

Hence, only FTT-SE-enabled nodes are allowed to connect to the switch.
Otherwise, the communication timeliness would be compromised. Thus, we
propose enhancing the switch with special capabilities to directly enforce, at
the packets ingress, the results from the scheduler and enforce policing rules
that prevent non-conforming nodes from communicating outside the de�ned
windows. This preliminary implementation used a PC with several network
interfaces, acting as a modi�ed switch. Further exploration of this line of
work is stated as future work, as described in the following chapter.

Chapter 7

Conclusions

7.1 Thesis, contributions and validations

The central proposition of this thesis, supported by this dissertation, claims
that it is possible to develop a communication protocol over a switched Eth-
ernet network able to support hard real-time communications combined with
operational �exibility, including the ability to recon�gure the network prop-
erties online and adapt to variable requirements supporting an e�cient QoS
management in dynamic environments. On the quest for this achievement
the following network characteristics have been identi�ed as required:

• Support for time- and event-triggered tra�c with temporal isolation;

• Real-time support in dynamic systems, with online message scheduling;

• Support di�erent scheduling policies based on dynamic or static re-
quirements, including aperiodic servers;

• Support for on-line recon�gurability and admission control;

• Support open systems with a contract-based resource management;

• Yield a seamless deployment for dynamic QoS management policies;

• Support for multiple parallel forwarding paths available at the Ethernet
switches.

Current state of the art protocols for switched Ethernet cannot ful�ll
all these characteristics, a situation that motivated the proposal for a new
protocol, the Flexible Time-Triggered over Switched Ethernet (FTT-SE),
which is one of the core contributions of this work. This protocol is based
on the master/slave FTT paradigm that de�nes a conceptual framework to
combine �exibility and timeliness in communication networks. The following
contributions have been made on this regard:

191

192 CHAPTER 7. CONCLUSIONS

• Support for parallel multi-path tra�c forwarding in the switch (unicast
and broadcast models), while maintaining the protocol requirements
for predictability and support any tra�c scheduling policy (Chapter 3);

• Handling the asynchronous tra�c with a novel message signaling mech-
anism that improves its scheduling �exibility, particularly supporting
open server-based scheduling approaches, and allows a seamless inte-
gration between asynchronous and synchronous tra�c (Chapter 3);

• System analysis including the schedulability analysis of the periodic
tra�c, based on a utilization bound that accounts for the impact of
release jitter (Chapter 4).

In addition, it has been proposed a systematic methodology for the de-
ployment of dynamic QoS management mechanisms over communication re-
sources such as the FTT-SE. Contributions on this research line include the
proposal of several bandwidth distribution approaches to handle speci�c QoS
level requirements. The methodology is general and includes other existing
QoS management techniques as particular cases (Chapter 5).

The thesis and its related contributions were validated with:

• Simulation and practical experiments using synthetic workloads. The
FTT-SE framework has been implemented in COTS hardware and
some of its properties validated, including hard real-time enforcement
and support for multiple parallel forwarding paths (Chapter 3). Simu-
lations with di�erent workload scenarios have also been conducted to
validate the hard real-time message scheduling as well as the proposed
schedulability analysis, which is the basis for the online admission con-
trol (Chapter 4);

• The integration in a global contract-based resource manager/middle-
ware. In Section 6.1 the FTT-SE is proposed to integrate FRESCOR, a
resource management framework, validating the architecture in terms
of supporting contract-based negotiation.

• An industrial video surveillance application with dynamic QoS man-
agement (Section 6.2), validates the protocol support for on-line recon-
�gurability, adaptability and the seamless deployment of dynamic QoS
management policies;

• A distributed control platform with high interference workloads (Sec-
tion 6.3), validates the protocol e�ciency on supporting temporal isola-
tion and its correct behavior when implementing server-based schedul-
ing. Asynchronous tra�c is used in the servers as well as during all
the contract negotiation procedure, which validates the proposed asyn-
chronous message signaling mechanism.

7.2. ON-GOING AND FUTURE RESEARCH 193

7.2 On-going and Future research

The work conducted for this thesis unveiled some interesting research ideas
that worth future consideration.

Servers and hierarchical composition
The FTT-SE framework relies on a centralized architecture to schedule

the network and enforce temporal determinism, providing a scheduling en-
vironment similar to the one found for processor scheduling. This yields
the possibility of deploying, on a distributed network, any scheduling pol-
icy as for processor scheduling and enables a �exible handling of any kind
of messages, a property specially suited for systems with dynamic behavior
concerning the communication requirements as well as open systems that
accept new components online, possibly legacy components developed with
speci�c communication models.

Moreover, while addressing open systems, such �exibility supports the
deployment of servers and services that might join, leave, or be modi�ed at
run-time, leveraging a composable design perspective.

From the design perspective, the use of servers to handle the commu-
nication requirements allows the integration of di�erent and independent
applications. The servers de�ne operational boundaries from the resource
underneath and provides to the application an abstracted interface. This
component-oriented integration ultimately leads to a full abstracted and
composable design, where servers are composed hierarchically, allowing a
�exible resource utilization.

The use of servers in the FTT-SE framework has been veri�ed in Chap-
ter 6 with an implementation of a server handling the sporadic tra�c of
a control system. This case-study is a preliminary proof-of-concept for a
server-based scheduling approach. It unveils promising research results on
the integration of a communication framework in general, and the FTT-SE
in particular, within a compositional design.

FTT-SE enabled switch
The design of the FTT-SE framework had in consideration its deploy-

ment over regular Ethernet compliant hardware, in order to guarantee a more
general hardware integration and maintain the hardware costs reduced. The
protocol then relies on a protocol stack to intermediate every node transmis-
sion and so enforce temporal determinism. Thus, it is not possible to include
non-FTT-SE compliant nodes. Such functional and deployment limitations
endorse the pursuit for a more robust and generally applicable solution for
the FTT-SE protocol. A possible approach is developing a customized switch
that enforces some of these properties. The main bene�ts that outcome from
an FTT-SE enabled switch are the possibility to enforce tra�c policing rules
at the incoming ports and directly actuate at the output queues, classifying

194 CHAPTER 7. CONCLUSIONS

the packets according to their temporal requirements and allow connecting
any legacy node, with no FTT awareness, mixing in the same network FTT
tra�c with strict temporal guarantees and regular Ethernet tra�c in a best-
e�ort fashion. Another feature emerging is the possibility for a complete
rethought on the mechanism that handles the asynchronous tra�c. The
possibility of scheduling and directly managing the switch queues allows the
nodes to autonomously issue the asynchronous tra�c.

This evolutionary trend that includes the Master node within the Eth-
ernet switch promises to be of great interest for a wider integration scale,
greater communication responsiveness and reduced complexity at the end-
nodes. Moreover, the system becomes more robust and more dependable
concerning bad behaved nodes.

Schedulability analysis
Chapter 4 proposes a utilization-based schedulability analysis for FTT-

SE. However, although correct, the results are more pessimistic comparing to
other, more exact, methodologies such as response time analysis or network
calculus. On the other hand, the proposed analysis provides schedulability
results in linear time bounds and facilitates the QoS distribution among the
running services, which makes it ideal for certain application domains. In
this context the evaluation of the pessimism incurred with this utilization-
based test seems an interesting line of research as well as the comparison
with other existing schedulability results.

Another interesting line of research is the extension of the utilization-
based analysis to include the multicast/broadcast model. Chapter 4 only cov-
ers the unicast transmission model, leaving unstudied the multicast/broad-
cast model. As mentioned in Section 4.6 a schedulability test for such a
scenario is more complicated. While in a unicast model scenario the inter-
ference at the downlinks is located in the uplinks, only, in a multicast scenario
such interference may also result from other downlinks that may be a�ected
by other uplinks. This interference model cannot be directly handled with
the proposed technique for unicast.

It is of great relevance extending the proposed utilization-based analysis
to cope with the extra interference sources in order to make the the multi-
cast/broadcast transmission model available in the FTT-SE framework.

Bibliography

[1] Coding of audio-visual objects - Part 10: Advanced Video Coding
(AVC) ISO/IEC 14496-10, ITU-T recommendation H.264 AVC for
generic audio visual services.

[2] Real-time PROFINET IRT. http://www.profibus.com.

[3] DIX Ethernet V2.0 speci�cation. IEEE, 1982.

[4] IEEE 802.3ae-2002 - 10Gbps. IEEE, 1982.

[5] IEEE 802.3c 100BASE-T standard. IEEE, 1982.

[6] IEEE 802.3i 10BASE-T standard. IEEE, 1982.

[7] IEEE 802.3z 1000BASE-T standard. IEEE, 1982.

[8] ISO/IEC 10918-1:1994 - Information technology � Digital compression
and coding of continuous-tone still images: Requirements and guide-
lines, February 1994.

[9] ISO/IEC 13818-2 Information technology � Generic coding of moving
pictures and associated audio information, May 1994.

[10] Video Coding for Low Bit Rate Communications ITU-T recommenda-
tion H.263, April 1995.

[11] Video codec test model: TMN8, June 1997.

[12] IEEE 802.1p. IEEE, 1998.

[13] IEEE 802.3ac-1998. IEEE, 1998.

[14] Coding of audio-visual objects - Part 2: Visual, ISO/IEC 14496-2
(MPEG-4 Visual Version 1), April 1999.

[15] ARINC 664, Aircraft Data Network, Part 1: System Concepts and
Overview, 2002.

[16] ARINC 664, Aircraft Data Network, Part 2: Ethernet Physical and
Data Link Link Layer Speci�cation, 2002.

195

http://www.profibus.com

196 BIBLIOGRAPHY

[17] ARINC 664, Aircraft Data Network, Part 7: Deterministic Networks,
2003.

[18] Axis Communications WHITE PAPER: Digital video compression, Re-
viewing the methodologies and standards to use for video transmission
and storage. http://www.vns.net/axis/documents/compression_

standards.pdf, June 2004.

[19] IEEE 802.1D-2004. IEEE, 2004.

[20] IEEE 802.1Q-2005. IEEE, 2005.

[21] Mobotix. What IP did next. Security Installer. www.mobotix.com/

ger_DE/file/33573/Security+Installer+bench+test+M22M.pdf,
July 2006.

[22] Ethernet Powerlink protocol. http://www.ethernet-powerlink.org,
2008.

[23] Foundation Fieldbus HSE. www.�eldbus.org, 2008.

[24] L. Abeni and G. Buttazzo. Integrating Multimedia Applications in
Hard Real-Time Systems. In Proc. of the 19th IEEE Int. Real-Time
Systems Symposium (RTSS'98), pages 4�13, Madrid, Spain, December
1998. IEEE Computer Society.

[25] M. Aldea, G. Bernat, I. Broster, A. Burns, R. Dobrin, J.M. Drake,
G. Fohler, P. Gai, M.G. Harbour, G. Guidi, J.J. Gutierrez, T. Lennvall,
G. Lipari, J.M. Martinez, J.L. Medina, J.C. Palencia, and M. Tri-
marchi. FSF: A Real-Time Scheduling Architecture Framework. In
Proceedings of the 12th IEEE Real Time on Embedded Technology and
Applications Symposium (RTAS'06), pages 113�124, April 2006.

[26] Luís Almeida and J. A. Fonseca. The planning schedule: compromising
between operational �exibility and run-time overhead. In Proceedings
of the IFAC Int. Symposium on Infromation Control and Manufactur-
ing (INCOM'98), June 1998.

[27] Luís Almeida and José Alberto Fonseca. Analysis of a Simple Model
for Non-Preemptive Blocking-Free Scheduling. In Proc. of the 13th
EUROMICRO Conference on Real-Time Systems (ECRTS'01), June
2001.

[28] Luís Almeida, Paulo Pedreiras, and José A. Fonseca. The FTT-CAN
Protocol: Why and How. IEEE Transactions on Industrial Electronics,
49(6):1189�1201, December 2002.

http://www.vns.net/axis/documents/compression_standards.pdf
http://www.vns.net/axis/documents/compression_standards.pdf
www.mobotix.com/ger_DE/file/33573/Security+Installer+bench+test+M22M.pdf
www.mobotix.com/ger_DE/file/33573/Security+Installer+bench+test+M22M.pdf
http://www.ethernet-powerlink.org

BIBLIOGRAPHY 197

[29] A. Antunes, P. Pedreiras, L. Almeida, and A. Mota. Dynamic Rate
and Control Adaptation in Networked Control Systems. In IEEE Int.
Conf. on Industrial Informatics, 2007, volume 2, pages 841�846, June
2007.

[30] Aeronautical Radio Inc. ARINC 429. ARINC Speci�cation 429, 2001.

[31] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings.
Applying New Scheduling Theory to Static Priority Pre-Emptive
Scheduling. Software Engineering Journal, 8(5):284�292, September
1993.

[32] N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings. Hard
real-time scheduling: the deadline-monotonic approach. In Proceed-
ings of the 8th IEEE Workshop on Real-Time Operating Systems and
Software, pages 133�137, May 1991.

[33] F. Bogenbergerand, B. Muller, and T. Fuher. Protocol overview. In
Proceedings of the 1st FlexRay Int. Workshop, April 2002.

[34] Jean-Yves Le Boudec and Patrick Thiran. Network calculus: a theory
of deterministic queuing systems for the internet. Springer-Verlag New
York, Inc., New York, NY, USA, July 2001.

[35] Ch. Bouras and A. Gkamas. Multimedia transmission with adaptive
QoS based on real-time protocols. International Journal ofCommuni-
cations Systems, Wiley InterScience, 16:225�248, 2003.

[36] R. Braden, D. Clark, and S. Shenker. Integrated Services in the Internet
Architecture: an Overview. RFC 1633, July 1994.

[37] Giorgio C. Buttazzo. Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications. Kluwer Academic Publishers,
Norwell, MA, USA, 1997.

[38] Giorgio C. Buttazzo, Giuseppe Lipari, and Luca Abeni. Elastic task
model for adaptive rate control. In IEEE Real-Time Systems Sympo-
sium, pages 286�295, 1998.

[39] Giorgio C. Buttazzo, Giuseppe Lipari, Marco Caccamo, and Luca
Abeni. Elastic Scheduling for Flexible Workload Management. IEEE
Trans. Comput., 51(3):289�302, 2002.

[40] B. Cain, S. Deering, I. Kouvelas, B. Fenner, and A. Thyagarajan.
Internet Group Management Protocol, Version 3. http://www.ietf.

org/rfc/rfc3376, October 2002.

http://www.ietf.org/rfc/rfc3376
http://www.ietf.org/rfc/rfc3376

198 BIBLIOGRAPHY

[41] A. Carpenzano, R. Caponetto, L. Lo Bello, and O. Mirabella. Fuzzy
tra�c smoothing: an approach for real-time communication over Eth-
ernet networks. In Proceedings of the 4th IEEE Int. Workshop on
Factory Communication Systems (WFCS'02), pages 241�248, August
2002.

[42] Thidapat Chantem, Xiaobo Sharon Hu, and M. D. Lemmon. General-
ized Elastic Scheduling. In Proc. of the 27th IEEE Int. Real-Time Sys-
tems Symposium (RTSS'06), pages 236�245, Washington, DC, USA,
2006. IEEE Computer Society.

[43] C.-S. Cho, B.-M. Chung, and M.-J. Park. Development of Real-Time
Vision-Based Fabric Inspection System. Industrial Electronics, IEEE
Transactions on, 52(4):1073�1079, Aug. 2005.

[44] M. Christensen, K. Kimball, and F. Solensky. Considerations for In-
ternet Group Management Protocol (IGMP) and Multicast Listener
Discovery (MLD) Snooping Switches. http://www.ietf.org/rfc/

rfc4541, May 2006.

[45] Rene L. Cruz. A calculus for network delay, Part I: Network elements in
isolation. IEEE Transactions on Information Theory, 37(1):114�131,
January 1991.

[46] Rene L. Cruz. A calculus for network delay, Part II: Network analysis.
IEEE Transactions on Information Theory, 37(1):132�141, January
1991.

[47] M. Di Natale. Scheduling the CAN bus with earliest deadline tech-
niques. In Proceedings of the 21st IEEE Real-Time Systems Symposium
(RTSS'00), pages 259�268, 2000.

[48] Wei Ding and Bede Liu. Rate control of MPEG video coding and
recording by rate-quantization modeling. Circuits and Systems for
Video Technology, IEEE Transactions on, 6(1):12�20, Feb 1996.

[49] Xing Fan, Magnus Jonsson, and Jan Jonsson. Guaranteed Real-Time
Communication in Packet-Switched Networks with FCFS queuing.
Technical report, School of Information Science, Computer and Elec-
trical Engineering, Halmstad University, Sweden, April 2007.

[50] Paul Ferguson and Geo� Huston. Quality of service: delivering QoS
on the Internet and in corporate networks. John Wiley & Sons, Inc.,
New York, NY, USA, 1998.

[51] Sebastian Fischmeister and Klemens Winkler. Non-blocking Determin-
istic Replacement of Functionality, Timing, and Data-Flow for Hard

http://www.ietf.org/rfc/rfc4541
http://www.ietf.org/rfc/rfc4541

BIBLIOGRAPHY 199

Real-Time Systems at Runtime. In Proceedings of the 17th Euromi-
cro Conference on Real-Time Systems (ECRTS'05), pages 106�114,
Washington, DC, USA, 2005. IEEE Computer Society.

[52] G. Fohler. FRSCOR - Initial application requirements collection.
FRESCOR deliverable D-RA1, November 2006.

[53] Inc. FSMLabs. LNet Programming with RTCore, June 2006.

[54] FSMLabs Inc. Real-time Programming in RTCore (v2.2.3), 2006.

[55] E. Gallo, M. Siller, and J. Woods. An Ontology for the Quality of
Experience framework. In Int. Conf. on Systems, Man and Cybernetics
(SMC'07), pages 1540�1544, October 2007.

[56] L. George, N. Riviere, and M. Spuri. Preemptive and non-preemptive
real-time uniprocessor scheduling. Technical Report RR-2966, INRIA,
Le Chesnay Cedex, France, 1996.

[57] F. Gomez-Molinero. Real-Time Requirement of Media Control Appli-
cations. In Proceedings of the 19th Euromicro Conference on Real-Time
Systems (ECRTS '07), pages 4�4, July 2007.

[58] M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg. SIP: Ses-
sion Initiation Protocol, RFC 2543, March 1999.

[59] M. González Harbour and J. C. Palencia. Response Time Analysis
for Tasks Scheduled under EDF within Fixed Priorities. In Proceed-
ings of the 24th IEEE International Real-Time Systems Symposium
(RTSS'03), page 200, Washington, DC, USA, 2003. IEEE Computer
Society.

[60] H. Hassan, J. Simo, and A. Crespo. Enhancing the �exibility and
the quality of service of autonomous mobile robotic applications. In
Proceedings of the 14th Euromicro Conference on Real-Time Systems
(ECRTS'02), pages 213�220, 2002.

[61] H. Hoang and Magnus Jonsson. Switched real-time Ethernet in in-
dustrial applications � asymmetric deadline partitioning scheme. In
Proceedings of the 2st Int. Workshop on Real-time LANs in the Inter-
net age (RTLIA'03), July 2003.

[62] Hoai Hoang, Magnus Jonsson, Ulrik Hagström, and Anders Kallerdahl.
Switched real-time Ethernet and earliest deadline �rst scheduling -
protocols and tra�c handling. In Proceedings of the 16th Int. Conf.
on Parallel and Distributed Processing Symposium (IPDPS '02). IEEE
Computer Society, 2002.

200 BIBLIOGRAPHY

[63] Javier Silvestre, Luís Almeida, Ricardo Marau, and Paulo Pedreiras.
MJPEG Real-Time transmission in industrial environment using a
CBR channel. In Proc. of 16th Int. Conf. on Computer and Informa-
tion Society Engineering (CISE'06), Venice, Italy, 24 November 2006.
(also published on Enformatika Trans. on Engineering, Computing and
Technology, Vol 16, Nov. 2006 ISSN 1305-5313).

[64] R. Johnston and G. Clark. Service operations management. Pearson
Education, 2001.

[65] Michael B. Jones. Adaptive Real-Time Resource Management Sup-
porting Composition of Independently Authored Time-Critical Ser-
vices. In In Proceedings of the Fourth Workshop on Workstation Op-
erating Systems, pages 135�139, 1993.

[66] Frescor project home page. http://www.frescor.org.

[67] H. Kopetz. Speci�cation of the ttp/c protocol , version 0.5. Technical
report, TTTech Computertechnik, July 1999.

[68] Hermann Kopetz. Real-Time Systems: Design Principles for Dis-
tributed Embedded Applications. Kluwer Academic Publishers, Norwell,
MA, USA, 1997.

[69] A. Kumar. Computer-Vision-Based Fabric Defect Detection: A Sur-
vey. Industrial Electronics, IEEE Transactions on, 55(1):348�363, Jan.
2008.

[70] Seok-Kyu Kweon and K.G. Shin. Achieving real-time communication
over Ethernet with adaptive tra�c smoothing. In Proceedings of the 6th
IEEE Real-Time Technology and Applications Symposium (RTAS'00),
pages 90�100, June 2000.

[71] Chang-Gun Lee, Chi-Sheng Shih, and Lui Sha. Online QoS optimiza-
tion using service classes in surveillance radar systems. Real-Time
Systems, 28(1):5�37, 2004.

[72] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling
algorithm: exact characterization and average case behavior. In Pro-
ceedings of the 10th IEE Real-Time Systems Symposium (RTSS'89),
pages 166�171, Dec 1989.

[73] J.P. Lehoczky. Fixed priority scheduling of periodic task sets with ar-
bitrary deadlines. In Proceedings of the 11th IEEE Real-Time Systems
Symposium (RTSS'90), pages 201�209, Dec 1990.

http://www.frescor.org

BIBLIOGRAPHY 201

[74] J.P. Lehoczky and S. Ramos-Thuel. An optimal algorithm for schedul-
ing soft-aperiodic tasks in �xed-priority preemptive systems. In Pro-
ceedings of the 13th IEEE Real-Time Systems Symposium (RTSS'92),
pages 110�123, Dec 1992.

[75] Xiaoli Li, S.K. Tso, Xin-Ping Guan, and Qian Huang. Improving Au-
tomatic Detection of Defects in Castings by Applying Wavelet Tech-
nique. Industrial Electronics, IEEE Transactions on, 53(6):1927�1934,
Dec. 2006.

[76] C. L. Liu and James W. Layland. Scheduling Algorithms for Multi-
programming in a Hard-Real-Time Environment. Journal of the As-
sociation for Computing Machinery, 20(1):46�61, 1973.

[77] H. Lonn and J. Axelsson. A comparison of �xed-priority and static
cyclic scheduling for distributed automotive control applications. In
Proceedings of the 11th Euromicro Conference on Real-Time Systems
(ECRTS'99), pages 142�149, 1999.

[78] Jork Löser and Hermann Härtig. Low-Latency Hard Real-Time Com-
munication over Switched Ethernet. In Proc. of the 16th EUROMICRO
Conference on Real-Time Systems (ECRTS'04), pages 13�22. IEEE
Computer Society, July 2004.

[79] Jork Löser and Hermann Härtig. Using Switched Ethernet for Hard
Real-Time Communication. In Proc of Int. Conference on Parallel
Computing in Electrical Engineering (PARELEC'04), pages 349�353,
September 2004.

[80] Chenyang Lu, John A. Stankovic, Sang H. Son, and Gang Tao. Feed-
back control real-time scheduling: framework, modeling, and algo-
rithms. Journal of Real-Time Systems, Special Issue on Control-
Theoretical Approaches to Real-Time Computing, 23:85�126, 2002.

[81] Nicholas Malcolm, Wei Zhao, and A. Stankovic. Hard Real-Time Com-
munication in Multiple-Access Networks. Real-Time Systems, 8:35�77,
1995.

[82] R. Marau, P. Pedreiras, and L. Almeida. Enhanced Ethernet Switching
for Flexible Hard Real-Time Communication. In Proc. on the 5th Int.
Workshop on Real Time Networks (RTN'06), Dresden, Germany, July
2006.

[83] R. Marau, P. Pedreiras, and L. Almeida. Signaling asynchronous tra�c
over a Master-Slave Switched Ethernet protocol. In Proc. on the 6th
Int. Workshop on Real Time Networks (RTN'07), Pisa, Italy, 2 July
2007.

202 BIBLIOGRAPHY

[84] Ricardo Marau, Luís Almeida, and Paulo Pedreiras. Enhancing real-
time communication over COTS Ethernet switches. In Proc. of 6th
Int. Workshop on Factory Communication Systems (WFCS'06), pages
295�302, Torino, Italy, 27 June 2006. IEEE.

[85] Ricardo Marau, Luís Almeida, Paulo Pedreiras, M. González Harbour,
Daniel Sangorrín, and Julio M. Medina. Integration of a �exible net-
work in a resource contracting framework. In Proc. of the WiP ses-
sion of the 13th Real-Time and Embedded Technology and Applications
Symposium (RTAS'07). IEEE, 3 April 2007.

[86] Ricardo Marau, Luís Almeida, Paulo Pedreiras, M. González Harbour,
Daniel Sangorrín, and Julio M. Medina. Integration of a �exible time
triggered network in the FRESCOR resource contracting framework.
In Proc of the 12th IEEE Conference on Emerging Technologies and
Factory Automation (ETFA'07), Patras, Greece, 25 September 2007.
IEEE.

[87] Ricardo Marau, Luís Almeida, Paulo Pedreiras, and Thomas Nolte.
Towards Server-based Switched Ethernet for Real-Time Communica-
tions. In Proc. of the WiP session of the 20th Euromicro Conference
on Real-Time Systems(ECRTS'08), 2 July 2008.

[88] Ricardo Marau, N. Figueiredo, R. Santos, P. Pedreiras, L. Almeida,
and Thomas Nolte. Server-based Real-Time Communications on
Switched Ethernet. In Workshop on Compositional Theory and Tech-
nology for Real-Time Embedded Systems (CRTS-RTSS'08), 2008.

[89] Michael W. Marcellin, Ali Bilgin, Michael J. Gormish, and Martin P.
Boliek. An Overview of JPEG-2000. In DCC '00: Proceedings of the
Conference on Data Compression, page 523, Washington, DC, USA,
2000. IEEE Computer Society.

[90] J. Martínez, M. González Harbour, and J. Gutiérrez. RT-EP: real-time
Ethernet protocol for analyzable distributed applications on a mini-
mum real-time POSIX kernel. In Proceedings of the 2st Int. Workshop
on Real-time LANs in the Internet age (RTLIA'03), July 2003.

[91] R. Moghal and M. S. Mian. Adaptive QoS-based resource allocation
in distributed multimedia systems. In Proceedings of Workshop on
Parallel and Distributed Real-Time Systems (WPDRTS), 2003.

[92] Jami Montgomery. A Model for Updating Real-Time Applications.
Real-Time Systems, 27(2):169�189, 2004.

[93] Klara Nahrstedt and Jonathan M. Smith. The QoS Broker. IEEE
Multimedia, 2:53�67, 1995.

BIBLIOGRAPHY 203

[94] K. Nichols, S. Blake, F. Baker, and D. Black. De�nition of the Di�er-
entiated Services Field (DS Field) in the IPv4 and IPv6 Headers. RFC
2474, December 1998.

[95] T. Nolte. Share-Driven Scheduling of Embedded Networks. PhD the-
sis, Department of Computer and Science and Electronics, Mälardalen
University, Sweden, May 2006.

[96] J. C. Palencia and M. González Harbour. Schedulability analysis for
tasks with static and dynamic o�sets. In Proceedings of the 19th IEEE
Real-Time Systems Symposium (RTSS'98), pages 26�37, 1998.

[97] J. C. Palencia and M. González Harbour. Response time analysis of
EDF distributed real-time systems. Journal of Embedded Computing
(JEC), 1(2):225�237, November 2005.

[98] J.C. Palencia and M.G. Harbour. O�set-based response time analysis
of distributed systems scheduled under EDF. In Proceedings of the 15th
Euromicro Conference on Real-Time Systems (ECRTS'03), pages 3�
12, July 2003.

[99] Paulo Pedreiras. Supporting Flexible Real-Time Communication on
Distributed Systems. PhD thesis, University of Aveiro, Aveiro, Portu-
gal, 2003.

[100] Paulo Pedreiras and Luís Almeida. Approaches to Enforce Real-Time
Behavior in Ethernet. CRC Press, 2005.

[101] Paulo Pedreiras, Paolo Gai, Luís Almeida, and Giorgio C. Buttazzo.
FTT-Ethernet: a �exible real-time communication protocol that sup-
ports dynamic QoS management on Ethernet-based systems. IEEE
Transactions on Industrial Informatics, 1(3):162�172, August 2005.
ISSN: 1551-3203.

[102] Paulo Pedreiras, Ricardo Leite, and Luis Almeida. Characterizing the
Real-Time Behavior of Prioritized Switched-Ethernet. In Proc. of the
2nd Workshop on Real-Time LANs in the Internet Age (RTLIA'03
satellite of ECRTS'03), July 2003.

[103] D. Prasad, A. Burns, and M. Atkins. The valid use of utility in adaptive
real-time systems. Real-Time Systems, 25(2-3):277�296, 2003.

[104] Ala' Qadi, S. Goddard, Jiangyang Huang, and S. Farritor. A perfor-
mance and schedulability analysis of an autonomous mobile robot. In
Proceedings of the 17th Euromicro Conference on Real-Time Systems
(ECRTS'05), pages 239�248, July 2005.

204 BIBLIOGRAPHY

[105] Prasad Raja and Guevara Noubir. Static and dynamic polling mecha-
nisms for �eldbus networks. ACM Operating Systems Review, 27(3):34�
45, 1993.

[106] J. Ribas-Corbera and Shawmin Lei. Rate control in DCT video coding
for low-delay communications. Circuits and Systems for Video Tech-
nology, IEEE Transactions on, 9(1):172�185, Feb 1999.

[107] H. Schulzrinne, A. Rao, and R. Lanphier. Real Time Streaming Pro-
tocol (RTSP), RFC 2326, April 1998.

[108] Henning Schulzrinne, Stephen L. Casner, Ron Frederick, and Van Ja-
cobson. RTP: A Transport Protocol for Real-Time Applications, RFC
1889, 1996.

[109] V.M. Sempere and J. Silvestre. Multimedia applications in industrial
networks: integration of image processing in Pro�bus. IEEE Transac-
tions on Industrial Electronics, 50(3):440�448, June 2003.

[110] S. Sen, J. L. Rexford, J. K. Dey, J. F. Kurose, and D. F. Towsley. On-
line smoothing of variable-bit-rate streaming video. IEEE Transactions
on Multimedia, 2(1):37�48, 2000.

[111] Lui Sha and Shirish S. Sathaye. A systematic approach to designing
distributed real-time systems. IEEE Computer, 26:68�78, 1993.

[112] C.P. Shelton and P. Koopman. Improving system dependability with
functional alternatives. In Procedings of Int. Conf. on Dependable Sys-
tems and Networks (DSN'04), pages 295�304, June 2004.

[113] Javier Silvestre, Luís Almeida, Ricardo Marau, and Paulo Pedreiras.
Dynamic QoS management for multimedia real-time transmission in
industrial environments. In Proc. of the 12th IEEE Int. Conference on
Emerging Technologies and Factory Automation (ETFA'07), Septem-
ber 2007.

[114] T. Skeie, S. Johannessen, and O. Holmeide. The road to an end-to-end
deterministic Ethernet. In Proceedings of the 4th IEEE Int. Workshop
on Factory Communication Systems (WFCS'02), pages 3�9, 2002.

[115] Yeqiong Song, Anis Koubaa, and Loria Inria Lorraine. Switched Eth-
ernet for real-time industrial communication: Modelling and message
Bu�ering delay evaluation. In Proc. of the 4th Int. Workshop on
Factory Communication Systems (WFCS'02), pages 27�30. Springer-
Verlag, August 2002.

[116] B. Sprunt, L. Sha, and J. P. Lehoczky. Aperiodic Task Scheduling for
Hard Real-Time Systems. Real-Time Systems, 1(1):27�60, June 1989.

BIBLIOGRAPHY 205

[117] B. Sprunt, L. Sha, and J.P. Lehoczky. Aperiodic Task Scheduling for
Hard-Real-Time Systems. Real-Time Systems, 1:27�60, 1989.

[118] M. Spuri and G. C. Buttazzo. E�cient Aperiodic Service under Earliest
Deadline Scheduling. In Proc. of the 15th IEEE Int. Real-Time Systems
Symposium (RTSS'94), pages 2�11, San Juan, Puerto Rico, December
1994. IEEE Computer Society.

[119] J.A. Stankovic, Chenyang Lu, S.H. Son, and Gang Tao. The case
for feedback control real-time scheduling. In Proceedings of the 11th
Euromicro Conference on Real-Time Systems (ECRTS'99), pages 11�
20, 1999.

[120] John A. Stankovic and K. Ramamritham. Tutorial: hard real-time
systems. IEEE Computer Society Press, Los Alamitos, CA, USA, 1989.

[121] John A. Stankovic, Krithi Ramamritham, and Marco Spuri. Dead-
line Scheduling for Real-Time Systems: Edf and Related Algorithms.
Kluwer Academic Publishers, Norwell, MA, USA, 1998.

[122] D. Stiliadis and A. Varma. Latency-rate servers: a general model for
analysis of tra�c scheduling algorithms. IEEE/ACM Transactions on
Networking (TON), 6(5):611�624, Oct 1998.

[123] J. K. Strosnider, J. P. Lehoczky, and L. Sha. The Deferrable Server
Algorithm for Enhanced Aperiodic Responsiveness in Hard Real-Time
Environments. IEEE Transactions on Computers, 44(1):73�91, Jan-
uary 1995.

[124] Jay K. Strosnider, John P. Lehoczky, and Lui Sha. The Deferrable
Server Algorithm for Enhanced Aperiodic Responsiveness in Hard
Real-Time Environments. IEEE Trans. Comput., 44(1):73�91, 1995.

[125] J.-P. Thomesse. Fieldbus Technology in Industrial Automation. Pro-
ceedings of the IEEE, 93(6):1073�1101, June 2005.

[126] J.P. Thomesse. Time and industrial local area networks. In Proceed-
ings of Computers in Design, Manufacturing, and Production (COM-
PEURO'93), pages 365�374, May 1993.

[127] K. Tindell, A. Burns, and A. Wellings. Analysis of hard real-time
communications. Real-Time Systems, 9:147�171, 1995.

[128] Ken Tindell and John Clark. Holistic schedulability analysis for dis-
tributed hard real-time systems. Microprocessing & Microprogram-
ming, 40:117�134, 1994.

206 BIBLIOGRAPHY

[129] Jyi-Chang Tsai. Rate control for low-delay video using a dynamic rate
table. Circuits and Systems for Video Technology, IEEE Transactions
on, 15(1):133�137, Jan. 2005.

[130] Bobby Vandalore, Wu chi Feng, Raj Jain, and Sonia Fahmy. A survey
of application layer techniques for adaptive streaming of multimedia.
Real-Time Imaging, 7(3):221�235, 2001.

[131] S. Varadarajan. Experiences with EtheReal: a fault-tolerant real-
time Ethernet switch. In Proceedings of the 8th IEEE Int. Conference
on Emerging Technologies and Factory Automation (ETFA'01), pages
183�194 vol.1, October 2001.

[132] S. Varadarajan and T Chiueh. EtheReal: A host-transparent real-time
fast Ethernet switch. In Proc of the 6th Int. conference on network
protocols, pages 12�21, October 1998.

[133] P. Veríssimo and Luís Rodrigues. Distributed systems for system ar-
chitects. Kluwer Academic Publishers, 2001.

[134] N. Wang, D. Schmidt, K. Parameswaran, and M. Kircher. Towards a
re�ective middleware framework for QoS-enabled CORBA component
model applications. IEEE Distributed Systems Online special issue on
Re�ective Middleware (Vol. 2, No. 5), May 2001.

[135] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. Image
quality assessment: from error visibility to structural similarity. IEEE
Transactions on Image Processing, 13(4):600�612, April 2004.

[136] L. Zhang, S. Berson, S. Herzog, and S. Jamin. Resource ReSerVation
Protocol (RSVP). RFC 2205, September 1997.

[137] H. Zimmermann. OSI reference model: The ISO model of architecture
for open systems interconnection. IEEE Transactions on Communica-
tions, 28(4):425�432, 1980.

	Abstract
	Contents
	Introduction
	Network Flexibility
	Efficient resource management
	Proposition and contributions
	Dissertation outline

	Background
	Real-time systems
	Real-time scheduling
	Examples of scheduling policies
	Schedulability analysis
	Handling asynchronous events
	Hierarchical schedulers

	Real-time communications
	Event- and Time-triggered communication
	Message scheduling
	Co-operation models

	Real-Time and Switched Ethernet
	Switched Ethernet
	Real-Time protocols over SE
	Schedulability analysis

	Conclusion

	The FTT-SE protocol
	Introduction
	FTT-SE: An enhancement of FTT-Ethernet
	FTT-SE for micro-segmented networks
	Handling aperiodic transmissions in FTT-SE

	The scheduling model
	The periodic traffic scheduling model
	Building EC-schedules
	The aperiodic traffic scheduling model
	Bounding the aperiodic service latency

	Implementation details
	Middleware abstraction
	Data addressing modes

	Simulation and experimental assessment
	Periodic traffic simulation results
	Experimental results

	Conclusion

	Traffic schedulability analysis
	Introduction
	Interference in the switch architecture
	Interference within the FTT-SE periodic model
	Window confinement
	Deferred release in the downlinks
	Scheduling multiple links

	Schedulability test - unicast
	One node sending to one destination, only
	One node sending to multiple destinations
	Schedulability utilization bounds with release jitter
	Upper bounding the indirect load

	Simulation results
	Multicast/Broadcast analysis
	Conclusion

	Dynamic QoS management
	Introduction
	The QoS management problem
	The resource capacity
	The application model

	Bandwidth distribution
	Fixed importance distribution
	Weighted distribution
	Need for iteration
	Application mapping models

	Operational parameters mapping
	Complete application model
	Bandwidth reclaiming

	QoS management on FTT-SE
	Conclusion

	FTT-SE case studies
	Integration in the FRESCOR framework
	FRESCOR background
	FRESCOR application example
	FTT-SE under FRESCOR
	Internals of the contracting procedure
	(Re-)negotiation procedure time
	Summary

	Industrial multimedia application
	Related work
	System Architecture
	QoS Management
	Experimental results
	Summary

	Server-SE
	Server-based scheduling
	The Server-SE protocol
	Experimental results
	Summary

	FTT-SE enabled switch
	Switch Architecture
	Experimental results
	Summary

	Conclusion

	Conclusions
	Thesis, contributions and validations
	On-going and Future research

