50 research outputs found

    ACCESSIBLE ACCESS CONTROL: A VISUALIZATION SYSTEM FOR ACCESS CONTROL POLICY MANAGEMENT

    Get PDF
    Attacks on computers today present in many different forms, causing malfunction of operating systems, information leakage and loss of business and public trust. Access control is a technique that stands as the last line of protection restricting the access of users or processes to resources on computers. Throughout the years, many access control models have been implemented to accommodate security requirements under different circumstances. However, the learning of access control models and the management of access control policies are still challenging given its abstract nature, the lack of an environment for practice, and the intricacy of fulfilling complex security goals. These problems seriously reduce the usability of access control models. In this dissertation, we present a set of pedagogical systems that facilitates the teaching and studying of access control models and a visualization system that aids the authoring and analysis of access control policies. These systems are designed to tackle the usability problems in two steps. First, the pedagogical systems were designed for new learners to overcome the obstacles of learning access control and the lack of practicing environment at the very beginning. Contrary to the traditional lecture and in-paper homework method, the tool allows users to write/import a policy file, follow the visual steps to understand the concepts and access mechanisms of a model and conduct self-evaluation through Quiz and Query modules. Each of the four systems is specifically designed for a model of the Domain Type Enforcement, Multi-level Security, Role-based Access Control, or UNIX permissions. Through these systems, users are able to take an active role in exploring the effect of a policy with a safe and intact underlying operating systems. Second, writing and evaluating the effect of a policy could also be challenging and tedious even for security professionals when there are thousands of lines of rules. We believe that writing an access control policy should not include the complexity of learning a new language, and managing the policies should never be manual when automatic examination could take the place. In the aspect of policy writing, the visualization system kept the least number of key elements for specifying a rule: user, object, and action. They describe the active entity who takes the action, the file or directory which the action is applied to, and the type of accesses allowed, respectively. Because of its simple form without requiring the learning of a programming-like language, we hope that specifying policies using our language could be accomplished effortlessly not only by security professionals but also by anyone who is interested in access control. Moreover, policies can often be left unexamined when deployed. This is similar to releasing program which was untested and could lead to dangerous results. Therefore, the visualization system provides ways to explore and analyze access control policies to help confirm the effect of the policies. Through interactive textual and graphical illustrations, users could specify the accesses to check, and be notified when problems exist

    Context-based Access Control and Attack Modelling and Analysis

    Get PDF
    In dieser Arbeit haben wir architekturelle Sicherheitsanalysen entwickelt, um Zugriffsverletzungen und Angriffspfade zu ermitteln. Durch die fortschreitende Digitalisierung und die zunehmende Vernetzung steigt die Bedeutung der IT-Sicherheit. Die Sicherheit eines Systems besteht aus mehreren verschiedenen Eigenschaften wie Vertraulichkeit oder Integrität. In unserer Arbeit konzentrieren wir uns auf die Vertraulichkeit. Ein vertrauliches System teilt nur die benötigten Daten mit autorisierten Entitäten. Unbefugte oder böswillige Personen erhalten keinen Zugang zu vertraulichen Daten. Die Entwicklung eines vertraulichen Systems ist jedoch schwierig, da viele verschiedene Eigenschaften Einfluss auf die Vertraulichkeit haben. Ein wichtiger Einflussfaktor ist die Zugangskontrolle. Zugriffskontrollrichtlinien definieren für jedes Element innerhalb eines Systems, unter welchen Bedingungen der Zugriff gewährt werden kann. Diese Zugriffskontrollrichtlinien berücksichtigen oft den Kontext für den Zugriff. Der Kontext kann z.B. die Zeit oder der Standort von Personen sein. Durch die Berücksichtigung steigt die Komplexität der Spezifikation der Zugriffskontrolle. Dies kann zu einer Fehlspezifikation führen. Daher ist es wichtig, die Auswirkungen einer Zugriffskontrollrichtlinie zu ermitteln. Aufgrund der Komplexität ist es jedoch schwierig, die Auswirkungen zu bestimmen, da die Analyse auch den Kontext berücksichtigen muss. Neben Zugriffskontrollrichtlinien können auch Schwachstellen die Vertraulichkeit des Systems beeinflussen. Schwachstellen können von Angreifer:innen ausgenutzt werden, um Zugang zu geschützten Entitäten im System zu erhalten. Sie ermöglichen es den Angreifer:innen also, die Zugangskontrollrichtlinien zu umgehen. Schwachstellen ermöglichen nicht nur den direkten Zugang zu Entitäten, sondern ermöglichen Angreifer:innen auch die Berechtigung anderer Personen zuerlangen. Diese Berechtigung kann dann von Angreifer:innen verwendet werden, um sich bei anderen Elementen Zugang zu verschaffen. Schwachstellen hängen jedoch auch von Zugangskontrollsystemen ab, da für einige Schwachstellen eine Berechtigung erforderlich ist. So können beispielsweise einige Schwachstellen nur von berechtigten Personen ausgenutzt werden. Um die Auswirkungen einer Schwachstelle abschätzen zu können, muss eine Analyse daher auch die Eigenschaften der Zugangskontrolle berücksichtigen. Darüber hinaus ist der Kontext der Angreifer:innen wichtig, da einige Schwachstellen nur dann ausgenutzt werden können, wenn der Angreifer:innen zuvor andere Entitäten im System kompromittiert haben. Daher wird bei Angriffen eine verkettete Liste kompromittierter Entitäten erstellt. Diese Liste wird auch als Angriffspfad bezeichnet. Sie besteht aus einer Kette von Schwachstellen, die die mehrfache Ausnutzung von Schwachstellen und Zugangskontrollrichtlinien durch Angreifer:innen darstellen. Die automatische Ableitung dieser möglichen Angriffspfade kann verwendet werden, um die Auswirkungen auf die Vertraulichkeit abzuschätzen, da sie den Expert:innen eine Rückmeldung darüber gibt, welche Elemente kompromittiert werden können. Bestehende Ansätze zur Abschätzung der Sicherheit oder der Auswirkungen von Zugangskontrollrichtlinien oder Schwachstellen konzentrieren sich oft nur auf eine der beiden Eigenschaften. Ansätze, die beide Eigenschaften berücksichtigen, sind in der Anwendungsdomäne oft sehr begrenzt, z.B. lösen sie es nur für eine Anwendungsdomäne wie Microsoft Active Directory oder sie berücksichtigen nur ein begrenztes Zugangskontrollmodell. Darüber hinaus arbeiten die meisten Ansätze mit einer Netzwerktopologie. Dies kann zwar bei der Modellierung hilfreich sein, doch berücksichtigt eine Netzwerktopologie in der Regel keine weiteren Eigenschaften wie Bereitstellung von Diensten auf Servern oder die Nutzung von Komponenten. Software-Architekturmodelle können diese Informationen jedoch liefern. Darüber hinaus ermöglicht die Verwendung von Modellen, ein System bereits während der Entwicklung oder während eines Ausfalls zu analysieren. Daher hilft es bei der Verwirklichung von Security by Design. Im Einzelnen sind unsere Beiträge: Wir haben ein Metamodell für die Zugriffskontrolle entwickelt, um kontextbasierte Zugriffskontrollrichtlinien in der Software-Architektur zu spezifizieren. Zusätzlich haben wir ein Schwachstellen-Metamodell entwickelt, um Schwachstellen in Software-Architekturen zu spezifizieren. Die Zugriffskontrollrichtlinien können in einer szenariobasierten Zugriffskontrollanalyse analysiert werden, um Zugriffsverletzungen zu identifizieren. Wir haben zwei Angriffsanalysen entwickelt. Beide können Angriffspfade auf einem Architekturmodell generieren und Schwachstellen und Zugangskontrollrichtlinien verwenden. Die eine Analyse betrachtet die Angriffsausbreitung von einem bestimmten Startpunkt in der Software-Architektur. Die andere findet Angriffspfade, die zu einem bestimmten Architekturelement führen. Wir haben unsere Sicherheitsanalysen anhand verschiedener Evaluierungsszenarien evaluiert. Diese Szenarien wurden auf der Grundlage von Evaluierungsfällen aus verwandten Arbeiten oder realen Sicherheitsvorfällen erstellt. Für die erste Analyse haben wir die Genauigkeit bei der Identifizierung von Zugriffsverletzungen untersucht. Unsere Ergebnisse deuten auf eine hohe Genauigkeit hin. Für die beiden Angriffsanalysen untersuchten wir die Genauigkeit hinsichtlich der gefundenen kompromittierten Elemente, die Aufwandsreduzierung bei der Verwendung unserer Analysen und die Skalierbarkeit. Unsere Ergebnisse deuten auf eine hohe Genauigkeit und eine Aufwandsreduzierung hin. Allerdings ist die Skalierbarkeit für beide Ansätze nicht ideal. Für kleinere Software-Architekturen ist sie jedoch akzeptabel. Der von uns entwickelte Ansatz kann Software-Architekt:innen dabei helfen, sicherere Systeme zu entwerfen. Der Ansatz kann die Auswirkungen von Zugriffskontrollrichtlinien anhand von Zugriffsverletzungen und für Schwachstellen zusammen mit Zugriffskontrollrichtlinien anhand von Angriffspfaden aufzeigen. Durch die Verwendung von Software-Architekturmodellen kann unser Ansatz dieses Feedback bereits während des Entwurfs der Software liefern. Dies kann helfen, nach "Security by Design" zu entwickeln

    Architectural Data Flow Analysis for Detecting Violations of Confidentiality Requirements

    Get PDF
    Diese Arbeit präsentiert einen Ansatz zur systematischen Berücksichtigung von Vertraulichkeitsanforderungen in Softwarearchitekturen mittels Abbildung und Analyse von Datenflüssen. Die Stärkung von Datenschutzregularien, wie bspw. durch die europäische Datenschutzgrundverordnung (DSGVO), und die Reaktionen der Bevölkerung auf Datenskandale, wie bspw. den Skandal um Cambridge Analytica, haben gezeigt, dass die Wahrung von Vertraulichkeit für Organisationen von essentieller Bedeutung ist. Um Vertraulichkeit zu wahren, muss diese während des gesamten Softwareentwicklungsprozesses berücksichtigt werden. Frühe Entwicklungsphasen benötigen hier insbesondere große Beachtung, weil ein beträchtlicher Anteil an späteren Problemen auf Fehler in diesen frühen Entwicklungsphasen zurückzuführen ist. Hinzu kommt, dass der Aufwand zum Beseitigen von Fehlern aus der Softwarearchitektur in späteren Entwicklungsphasen überproportional steigt. Um Verletzungen von Vertraulichkeitsanforderungen zu erkennen, werden in früheren Entwicklungsphasen häufig datenorientierte Dokumentationen der Softwaresysteme verwendet. Dies kommt daher, dass die Untersuchung einer solchen Verletzung häufig erfordert, Datenflüssen zu folgen. Datenflussdiagramme (DFDs) werden gerne genutzt, um Sicherheit im Allgemeinen und Vertraulichkeit im Speziellen zu untersuchen. Allerdings sind reine DFDs noch nicht ausreichend, um darauf aufbauende Analysen zu formalisieren und zu automatisieren. Stattdessen müssen DFDs oder auch andere Architekturbeschreibungssprachen (ADLs) erweitert werden, um die zur Untersuchung von Vertraulichkeit notwendigen Informationen repräsentieren zu können. Solche Erweiterungen unterstützen häufig nur Vertraulichkeitsanforderungen für genau einen Vertraulichkeitsmechanismus wie etwa Zugriffskontrolle. Eine Kombination von Mechanismen unterstützen solche auf einen einzigen Zweck fokussierten Erweiterungen nicht, was deren Ausdrucksmächtigkeit einschränkt. Möchte ein Softwarearchitekt oder eine Softwarearchitektin den eingesetzten Vertraulichkeitsmechanismus wechseln, muss er oder sie auch die ADL wechseln, was mit hohem Aufwand für das erneute Modellieren der Softwarearchitektur einhergeht. Darüber hinaus bieten viele Analyseansätze keine Integration in bestehende ADLs und Entwicklungsprozesse. Ein systematischer Einsatz eines solchen Ansatzes wird dadurch deutlich erschwert. Existierende, datenorientierte Ansätze bauen entweder stark auf manuelle Aktivitäten und hohe Expertise oder unterstützen nicht die gleichzeitige Repräsentation von Zugriffs- und Informationsflusskontrolle, sowie Verschlüsselung im selben Artefakt zur Architekturspezifikation. Weil die genannten Vertraulichkeitsmechanismen am verbreitetsten sind, ist es wahrscheinlich, dass Softwarearchitekten und Softwarearchitektinnen an der Nutzung all dieser Mechanismen interessiert sind. Die erwähnten, manuellen Tätigkeiten umfassen u.a. die Identifikation von Verletzungen mittels Inspektionen und das Nachverfolgen von Daten durch das System. Beide Tätigkeiten benötigen ein beträchtliches Maß an Erfahrung im Bereich Vertraulichkeit. Wir adressieren in dieser Arbeit die zuvor genannten Probleme mittels vier Beiträgen: Zuerst präsentieren wir eine Erweiterung der DFD-Syntax, durch die die zur Untersuchung von Zugriffs- und Informationsflusskontrolle, sowie Verschlüsselung notwendigen Informationen mittels Eigenschaften und Verhaltensbeschreibungen innerhalb des selben Artefakts zur Architekturspezifikation ausgedrückt werden können. Zweitens stellen wir eine Semantik dieser erweiterten DFD-Syntax vor, die das Verhalten von DFDs über die Ausbreitung von Attributen (engl.: label propagation) formalisiert und damit eine automatisierte Rückverfolgung von Daten ermöglicht. Drittens präsentieren wir Analysedefinitionen, die basierend auf der DFD-Syntax und -Semantik Verletzungen von Vertraulichkeitsanforderungen identifizieren kann. Die unterstützten Vertraulichkeitsanforderungen decken die wichtigsten Varianten von Zugriffs- und Informationsflusskontrolle, sowie Verschlüsselung ab. Viertens stellen wir einen Leitfaden zur Integration des Rahmenwerks für datenorientierte Analysen in bestehende ADLs und deren zugehörige Entwicklungsprozesse vor. Das Rahmenwerk besteht aus den vorherigen drei Beiträgen. Die Validierung der Ausdrucksmächtigkeit, der Ergebnisqualität und des Modellierungsaufwands unserer Beiträge erfolgt fallstudienbasiert auf siebzehn Fallstudiensystemen. Die Fallstudiensysteme stammen größtenteils aus verwandten Arbeiten und decken fünf Arten von Zugriffskontrollanforderungen, vier Arten von Informationsflussanforderungen, zwei Arten von Verschlüsselung und Anforderungen einer Kombination beider Vertraulichkeitsmechanismen ab. Wir haben die Ausdrucksmächtigkeit der DFD-Syntax, sowie der mittels des Integrationsleitfadens erstellten ADLs validiert und konnten alle außer ein Fallstudiensystem repräsentieren. Wir konnten außerdem die Vertraulichkeitsanforderungen von sechzehn Fallstudiensystemen mittels unserer Analysedefinitionen repräsentieren. Die DFD-basierten, sowie die ADL-basierten Analysen lieferten die erwarteten Ergebnisse, was eine hohe Ergebnisqualität bedeutet. Den Modellierungsaufwand in den erweiterten ADLs validierten wir sowohl für das Hinzufügen, als auch das Wechseln eines Vertraulichkeitsmechanismus bei einer bestehenden Softwarearchitektur. In beiden Validierungen konnten wir zeigen, dass die ADL-Integrationen Modellierungsaufwand einsparen, indem beträchtliche Teile bestehender Softwarearchitekturen wiederverwendet werden können. Von unseren Beiträgen profitieren Softwarearchitekten durch gesteigerte Flexibilität bei der Auswahl von Vertraulichkeitsmechanismen, sowie beim Wechsel zwischen diesen Mechanismen. Die frühe Identifikation von Vertraulichkeitsverletzungen verringert darüber hinaus den Aufwand zum Beheben der zugrundeliegenden Probleme

    Architectural Data Flow Analysis for Detecting Violations of Confidentiality Requirements

    Get PDF
    Software vendors must consider confidentiality especially while creating software architectures because decisions made here are hard to change later. Our approach represents and analyzes data flows in software architectures. Systems specify data flows and confidentiality requirements specify limitations of data flows. Software architects use detected violations of these limitations to improve the system. We demonstrate how to integrate our approach into existing development processes

    Architectural Data Flow Analysis for Detecting Violations of Confidentiality Requirements

    Get PDF
    Software vendors must consider confidentiality especially while creating software architectures because decisions made here are hard to change later. Our approach represents and analyzes data flows in software architectures. Systems specify data flows and confidentiality requirements specify limitations of data flows. Software architects use detected violations of these limitations to improve the system. We demonstrate how to integrate our approach into existing development processes

    Access Control Within MQTT-based IoT environments

    Get PDF
    IoT applications, which allow devices, companies, and users to join the IoT ecosystems, are growing in popularity since they increase our lifestyle quality day by day. However, due to the personal nature of the managed data, numerous IoT applications represent a potential threat to user privacy and data confidentiality. Insufficient security protection mechanisms in IoT applications can cause unauthorized users to access data. To solve this security issue, the access control systems, which guarantee only authorized entities to access the resources, are proposed in academic and industrial environments. The main purpose of access control systems is to determine who can access specific resources under which circumstances via the access control policies. An access control model encapsulates the defined set of access control policies. Access control models have been proposed also for IoT environments to protect resources from unauthorized users. Among the existing solutions, the proposals which are based on Attribute-Based Access Control (ABAC) model, have been widely adopted in the last years. In the ABAC model, authorizations are determined by evaluating attributes associated with the subject, object, and environmental properties. ABAC model provides outstanding flexibility and supports fine-grained, context-based access control policies. These characteristics perfectly fit the IoT environments. In this thesis, we employ ABAC to regulate the reception and the publishing of messages exchanged within MQTT-based IoT environments. MQTT is a standard application layer protocol that enables the communication of IoT devices. Even though the current access control systems tailored for IoT environments in the literature handle data sharing among the IoT devices by employing various access control models and mechanisms to address the challenges that have been faced in IoT environments, surprisingly two research challenges have still not been sufficiently examined. The first challenge that we want to address in this thesis is to regulate data sharing among interconnected IoT environments. In interconnected IoT environments, data exchange is carried out by devices connected to different environments. The majority of proposed access control frameworks in the literature aimed at regulating the access to data generated and exchanged within a single IoT environment by adopting centralized enforcement mechanisms. However, currently, most of the IoT applications rely on IoT devices and services distributed in multiple IoT environments to satisfy users’ demands and improve their functionalities. The second challenge that we want to address in this thesis is to regulate data sharing within an IoT environment under ordinary and emergency situations. Recent emergencies, such as the COVID-19 pandemic, have shown that proper emergency management should provide data sharing during an emergency situation to monitor and possibly mitigate the effect of the emergency situation. IoT technologies provide valid support to the development of efficient data sharing and analysis services and appear well suited for building emergency management applications. Additionally, IoT has magnified the possibility of acquiring data from different sensors and employing these data to detect and manage emergencies. An emergency management application in an IoT environment should be complemented with a proper access control approach to control data sharing against unauthorized access. In this thesis, we do a step to address two open research challenges related to data protection in IoT environments which are briefly introduced above. To address these challenges, we propose two access control frameworks rely on ABAC model: the first one regulates data sharing among interconnected MQTT-based IoT environments, whereas the second one regulates data sharing within MQTT-based IoT environment during ordinary and emergency situations.IoT applications, which allow devices, companies, and users to join the IoT ecosystems, are growing in popularity since they increase our lifestyle quality day by day. However, due to the personal nature of the managed data, numerous IoT applications represent a potential threat to user privacy and data confidentiality. Insufficient security protection mechanisms in IoT applications can cause unauthorized users to access data. To solve this security issue, the access control systems, which guarantee only authorized entities to access the resources, are proposed in academic and industrial environments. The main purpose of access control systems is to determine who can access specific resources under which circumstances via the access control policies. An access control model encapsulates the defined set of access control policies. Access control models have been proposed also for IoT environments to protect resources from unauthorized users. Among the existing solutions, the proposals which are based on Attribute-Based Access Control (ABAC) model, have been widely adopted in the last years. In the ABAC model, authorizations are determined by evaluating attributes associated with the subject, object, and environmental properties. ABAC model provides outstanding flexibility and supports fine-grained, context-based access control policies. These characteristics perfectly fit the IoT environments. In this thesis, we employ ABAC to regulate the reception and the publishing of messages exchanged within MQTT-based IoT environments. MQTT is a standard application layer protocol that enables the communication of IoT devices. Even though the current access control systems tailored for IoT environments in the literature handle data sharing among the IoT devices by employing various access control models and mechanisms to address the challenges that have been faced in IoT environments, surprisingly two research challenges have still not been sufficiently examined. The first challenge that we want to address in this thesis is to regulate data sharing among interconnected IoT environments. In interconnected IoT environments, data exchange is carried out by devices connected to different environments. The majority of proposed access control frameworks in the literature aimed at regulating the access to data generated and exchanged within a single IoT environment by adopting centralized enforcement mechanisms. However, currently, most of the IoT applications rely on IoT devices and services distributed in multiple IoT environments to satisfy users’ demands and improve their functionalities. The second challenge that we want to address in this thesis is to regulate data sharing within an IoT environment under ordinary and emergency situations. Recent emergencies, such as the COVID-19 pandemic, have shown that proper emergency management should provide data sharing during an emergency situation to monitor and possibly mitigate the effect of the emergency situation. IoT technologies provide valid support to the development of efficient data sharing and analysis services and appear well suited for building emergency management applications. Additionally, IoT has magnified the possibility of acquiring data from different sensors and employing these data to detect and manage emergencies. An emergency management application in an IoT environment should be complemented with a proper access control approach to control data sharing against unauthorized access. In this thesis, we do a step to address two open research challenges related to data protection in IoT environments which are briefly introduced above. To address these challenges, we propose two access control frameworks rely on ABAC model: the first one regulates data sharing among interconnected MQTT-based IoT environments, whereas the second one regulates data sharing within MQTT-based IoT environment during ordinary and emergency situations

    Architectural Data Flow Analysis for Detecting Violations of Confidentiality Requirements

    Get PDF
    Software vendors must consider confidentiality especially while creating software architectures because decisions made here are hard to change later. Our approach represents and analyzes data flows in software architectures. Systems specify data flows and confidentiality requirements specify limitations of data flows. Software architects use detected violations of these limitations to improve the system. We demonstrate how to integrate our approach into existing development processes

    An Access Control Model to Facilitate Healthcare Information Access in Context of Team Collaboration

    Get PDF
    The delivery of healthcare relies on the sharing of patients information among a group of healthcare professionals (so-called multidisciplinary teams (MDTs)). At present, electronic health records (EHRs) are widely utilized system to create, manage and share patient healthcare information among MDTs. While it is necessary to provide healthcare professionals with privileges to access patient health information, providing too many privileges may backfire when healthcare professionals accidentally or intentionally abuse their privileges. Hence, finding a middle ground, where the necessary privileges are provided and malicious usage are avoided, is necessary. This thesis highlights the access control matters in collaborative healthcare domain. Focus is mainly on the collaborative activities that are best accomplished by organized MDTs within or among healthcare organizations with an objective of accomplishing a specific task (patient treatment). Initially, we investigate the importance and challenges of effective MDTs treatment, the sharing of patient healthcare records in healthcare delivery, patient data confidentiality and the need for flexible access of the MDTs corresponding to the requirements to fulfill their duties. Also, we discuss access control requirements in the collaborative environment with respect to EHRs and usage scenario of MDTs collaboration. Additionally, we provide summary of existing access control models along with their pros and cons pertaining to collaborative health systems. Second, we present a detailed description of the proposed access control model. In this model, the MDTs is classified based on Belbin’s team role theory to ensure that privileges are provided to the actual needs of healthcare professionals and to guarantee confidentiality as well as protect the privacy of sensitive patient information. Finally, evaluation indicates that our access control model has a number of advantages including flexibility in terms of permission management, since roles and team roles can be updated without updating privilege for every user. Moreover, the level of fine-grained control of access to patient EHRs that can be authorized to healthcare providers is managed and controlled based on the job required to meet the minimum necessary standard and need-to-know principle. Additionally, the model does not add significant administrative and performance overhead.publishedVersio

    Self-adaptive Authorisation Infrastructures

    Get PDF
    Traditional approaches in access control rely on immutable criteria in which to decide and award access. These approaches are limited, notably when handling changes in an organisation’s protected resources, resulting in the inability to accommodate the dynamic aspects of risk at runtime. An example of such risk is a user abusing their privileged access to perform insider attacks. This thesis proposes self-adaptive authorisation, an approach that enables dynamic access control. A framework for developing self-adaptive authorisation is defined, where autonomic controllers are deployed within legacy based authorisation infrastructures to enable the runtime management of access control. Essential to the approach is the use of models and model driven engineering (MDE). Models enable a controller to abstract from the authorisation infrastructure it seeks to control, reason about state, and provide assurances over change to access. For example, a modelled state of access may represent an active access control policy. Given the diverse nature in implementations of authorisation infrastructures, MDE enables the creation and transformation of such models, whereby assets (e.g., policies) can be automatically generated and deployed at runtime. A prototype of the framework was developed, whereby management of access control is focused on the mitigation of abuse of access rights. The prototype implements a feedback loop to monitor an authorisation infrastructure in terms of modelling the state of access control and user behaviour, analyse potential solutions for handling malicious behaviour, and act upon the infrastructure to control future access control decisions. The framework was evaluated against mitigation of simulated insider attacks, involving the abuse of access rights governed by access control methodologies. In addition, to investigate the framework’s approach in a diverse and unpredictable environment, a live experiment was conducted. This evaluated the mitigation of abuse performed by real users as well as demonstrating the consequence of self-adaptation through observation of user response

    Secure Dynamic Cloud-based Collaboration with Hierarchical Access

    Get PDF
    In recent years, the Cloud has emerged as an attractive way of hosting and delivering services over the Internet. This has resulted in a renewed focus on information security in the case where data is stored in the virtual space of the cloud and is not physically accessible to the customer. Through this thesis the boundaries of securing data in a cloud context, while retaining the benefits of the cloud, are explored. The thesis addresses the increasing security concerns of migrating to the cloud andutilising it for data storage.The research of this thesis is divided into three separate areas: securing data in an untrusted cloud environment, ensuring data access control in the cloud, and securing data outside the cloud in the user's environment. Each area is addressed by separate conceptual designs. Together these comprise a secure dynamic cloud-based collaboration environment with hierarchical access. To further validate the conceptual designs, proof of concept prototypes have been constructed.The conceptual designs have been devised by exploring and extending the boundaries of existing secure data-storage schemes, and then combining these with well-known security principles and cutting-edge research within the field of cryptography. The results of this thesis are feasible conceptual designs for a cloud-based dynamic collaboration environment. The conceptual designs address the challenges of secure cloud-based storage and allow the benefits of cloud-based storage to be utilised. Furthermore, this thesis provides a solid foundation for further work within this field
    corecore