
UNIVERSITÀ DEGLI STUDI DELL’INSUBRIA - VARESE

DiSTA
Dipartimento di Scienze Teoriche e Applicate

P H D T H E S I S
to obtain the title of

Doctor of Science

Specialty : Computer Science

Defended by

Engin Deniz Tümer

ACCESS CONTROL WITHIN
MQTT-BASED IOT
ENVIRONMENTS

Advisor: Prof. Elena Ferrari

Advisor: Assoc. Prof. Pietro Colombo

defended on February XX, 2022



To my precious, wonderful and beloved dad and mom,

who have raised me to be the person I am today and support me every time.



Acknowledgments

Throughout the writing of this thesis, I have received a great deal of support and assistance
from my supervisors, I would like to express my appreciation to Dear Prof. Elena Ferrari
and Assoc. Prof. Pietro Colombo. I’ve learned many things from you that affect both my
academic and personal life. I will always be thankful to you to give me the motivation to
finish this thesis. Also, I would like to express sincere gratitude to Dear Prof. Barbara
Carminati for her guidance during my PhD education.

I would like to express my thanks to my thesis reviewers, XXXXX??, and YYYYY??
to spend their precious time reviewing my thesis and giving me an opportunity to improve
it based on their instructive and valuable comments.

Finally, I would like to thank you, my beloved colleagues Gökhan Sağırlar, Stefania
Boffa, Zulfikar Alom, Christian Rondanini, Anh-Tu Hoang, Federico Daidone, Ha Xuan
Son, Ahmed Lekssays, Thanh Loan Nguyen and Giorgia Sirigu. They’ve helped me to get
used to life in Italy and shared enjoyable and precious moments with me. I hope each of
you has a great academic and personal life. I also would like to give my thanks to Mauro
Santabarbara, and Roberta Viola to help me in the department.

2



Abstract

IoT applications, which allow devices, companies, and users to join the IoT ecosystems,
are growing in popularity since they increase our lifestyle quality day by day [10]. For
instance, many IoT applications assist users during their daily routines by using wearable
technologies(e.g., sport training or health monitoring). However, due to the personal nature
of the managed data, numerous IoT applications represent a potential threat to user privacy
and data confidentiality (e.g., see [1]).

Insufficient security protection mechanisms in IoT applications can cause unauthorized
users to access data. To solve the security issue related to unauthorized accesses, the
access control systems, which guarantee only authorized entities to access the resources,
are proposed in both academic and industrial environments. The main purpose of access
control systems is to determine who can access specific resources under which circumstances
via the access control policies. An access control model encapsulates the defined set of
access control policies.

Access control models have been proposed also for IoT environments to protect re-
sources from unauthorized users. The following families of access control models are
generally the basis of access control solutions for IoT environments: Capability-Based
Access Control(CapBAC) [42], Usage Control(UCON) [66], Role-Based Access Con-
trol(RBAC) [74], and Attribute-Based Access Control(ABAC) [48]. Among the solutions
based on these access control models, the proposals which are based on Attribute-Based
Access Control (ABAC), have been widely adopted in the last years. In the ABAC model,
authorizations are determined by evaluating attributes associated with the subject, object,
and environmental properties. The subject is granted appropriate access permissions by
the system according to his/her attributes when he/she issues an access request. ABAC
model provides outstanding flexibility and supports fine-grained, context-based access con-
trol policies. These characteristics perfectly fit the IoT environments.

In this thesis, we employ ABAC to regulate the reception and the publishing of messages
exchanged within IoT environments. Moreover, we select an ABAC framework proposed
in [22], which regulates data sharing within an MQTT-based IoT environment, as the
base structure for our thesis. MQTT [12] is a standard application layer protocol that
enables the communication of IoT devices by means of the publish/subscribe architecture.
The ABAC framework proposed in [22] provides a centralized enforcement mechanism
that allows enforcing ABAC policies to handle data sharing within an MQTT-based IoT
environment.

3



4

Even though the current access control systems tailored for IoT environments in the
literature handle data sharing among the IoT devices by employing various access control
models and mechanisms to address the challenges that have been faced in IoT environments,
surprisingly two research challenges have still not been sufficiently examined.

The first challenge that we want to address in this thesis is to regulate data sharing
among interconnected IoT environments. In interconnected IoT environments, data ex-
change is carried out by devices connected to different environments. The majority of
proposed access control frameworks in the literature aimed at regulating the access to data
generated and exchanged within a single IoT environment by adopting centralized enforce-
ment mechanisms. However, currently, most of the IoT applications rely on IoT devices
and services distributed in multiple IoT environments to satisfy users’ demands and im-
prove their functionalities. Data should only be sent by authorized users and be accessed
by authorized users, during data sharing among multiple IoT environments.

The second challenge that we want to address in this thesis is to regulate data sharing
within an IoT environment under ordinary and emergency situations. Recent emergencies,
such as the COVID-19 pandemic, have shown that proper emergency management should
provide data sharing during an emergency situation to monitor and possibly mitigate the
effect of the emergency situation. IoT technologies provide valid support to the develop-
ment of efficient data sharing and analysis services and thus appear well suited for building
emergency management applications. In addition to this, IoT has magnified the possibility
of acquiring data from different sensors and employing these data to detect and manage
emergencies. However, IoT has also amplified the possibility of information misuse and
unauthorized access to information by untrusted users. Thus, an emergency management
application in an IoT environment should be complemented with a proper access control
approach to control data sharing against unauthorized access.

In this dissertation, we do a step to address two open research challenges related to
data protection in IoT environments which are briefly introduced above. To address these
challenges, we propose two access control frameworks rely on Attribute Based Access Con-
trol(ABAC) model: the first one regulates data sharing among interconnected MQTT-
based IoT environments, whereas the second one regulates data sharing within MQTT-
based IoT environment during ordinary and emergency situations.

The key contribution of the first framework in the thesis is to manage the access to data
generated and exchanged within interconnected IoT environments, which distinguishes the
proposed framework from the majority of approaches in the literature which control a single
IoT environment. The key contribution of the second framework in the thesis is to manage
controlled and timely data sharing in both emergency and ordinary situations in an MQTT-
based IoT environment. Both proposed access control frameworks target MQTT-based
IoT environments since the MQTT protocol is widely adopted within IoT applications and
used in various IoT scenarios. We also experimentally analyze the proposed frameworks
to present their efficiencies. Early experimental performance evaluations show promising
results and a quite acceptable policy enforcement overhead for each framework.



Contents

1 Introduction 9
1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3 Related Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Background 16
2.1 MQTT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 ABAC framework within a single MQTT-based IoT environment . . . . . . 19

2.2.1 The ABAC Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.2 Access Control Enforcement . . . . . . . . . . . . . . . . . . . . . . . 21

3 Related Work 24
3.1 Classical Access Control Solutions . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 CapBAC-based Solutions . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.2 UCON-based Solutions . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.3 RBAC-based Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.4 ABAC-based Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Access Control Solutions With Emergency Management Support . . . . . . 32
3.2.1 Emergency Management Based on Break-The-Glass Policies . . . . . 33
3.2.2 Emergency Management Based on Emergency Policies . . . . . . . . 35

4 Regulating data sharing across multiple Iot environments 37
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Access control across different MQTT environments . . . . . . . . . . . . . 38
4.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4 Enforcement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4.1 Enforcement rationale . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4.2 The enforcement mechanism in details . . . . . . . . . . . . . . . . . 46

4.5 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.5.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.5.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5



CONTENTS 6

5 Regulating data sharing under emergencies 54
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2 Running Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3 CEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.4 Event Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.5 Access Control Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.6 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.7 Enforcement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.7.1 Event detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.7.2 Emergency management . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.7.3 Action execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.8 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.8.1 The case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.8.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6 Conclusion and Future Work 83

Appendices 96

A Abbreviations 97

B Publications 98



List of Figures

2.1 A high-level view of the system architecture in [22] . . . . . . . . . . . . . . 22

4.1 A high level view of the system architecture in [24] . . . . . . . . . . . . . . 43
4.2 Bridging monitor architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3 First experiment: transmission time analysis . . . . . . . . . . . . . . . . . . 50
4.4 First experiment: throughput analysis . . . . . . . . . . . . . . . . . . . . . 51
4.5 Second experiment: transmission time analysis . . . . . . . . . . . . . . . . 52
4.6 Second experiment: throughput analysis . . . . . . . . . . . . . . . . . . . . 53

5.1 The stm diagram corresponding to the emergency development plan Pul-
monaryIssues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 A high level view of the system architecture . . . . . . . . . . . . . . . . . . 65
5.3 State machine representing the possible evolution of a COVID-19 case . . . 77
5.4 Performance analysis results . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.1 Architectural Components of Zero Trust Architecture . . . . . . . . . . . . 85

7



List of Tables

2.1 MQTT control packets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Summary of the State-of-the-art review . . . . . . . . . . . . . . . . . . . . 36

4.1 Testing scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1 An abstract event algebra for complex event specification [39] . . . . . . . . 58
5.2 Primitive event types specified for the case study . . . . . . . . . . . . . . . 72
5.3 Complex event types specified for the case study . . . . . . . . . . . . . . . 73
5.4 Actions involved in the COVID-19 case study . . . . . . . . . . . . . . . . . 76
5.5 Ordinary policies for the nursing home application . . . . . . . . . . . . . . 76
5.6 Emergency policies for the COVID-19 case study . . . . . . . . . . . . . . . 79
5.7 Observed performance measures . . . . . . . . . . . . . . . . . . . . . . . . 81

8



Chapter 1

Introduction

Internet of Things (IoT) refers to a network where physical smart entities referred to as
things communicate with each other over the internet [8]. The integration of physical and
smart things creates a massive ecosystem, whose scale could not be reached by traditional
systems. More specifically this massive ecosystem contains seamless interconnection among
billions of actuators, embedded systems, resources, and users.

IoT applications, which enable devices, companies, and users to join this ecosystem,
are growing in popularity since they increase our lifestyle quality day by day [10]. For
instance, by exploiting the pervasivity of wearable technologies, several IoT applications
assist users during their daily routines (e.g., sport training or health monitoring).The report
of IoT Analytics1 forecasts the diffusion of IoT devices and applications to be increased
and projects the IoT ecosystem to consist of more than 27 billion interconnected devices
by 2025.

Though the benefits of IoT applications are manifold, due to the nature of the managed
data, IoT applications have been recognized as potential threats to user privacy and data
confidentiality (e.g., see [1]). Insufficient security protection mechanisms in IoT applications
can cause unauthorized entities to access personal data2. Since current IoT environments
allow both private companies and governments to make use of data on an unprecedented
scale in order to carry on their activities, strong data protection frameworks should be
devised. These frameworks should provide appropriate data security and confidentiality,
and prevent data from being accessed by unauthorized entities.

In recent years, several researchers have deeply analyzed the trade-off between service
utility and user privacy and confidentiality (e.g., [54]) by proposing several data protection
solutions. In particular, in order to solve security issues related to unauthorized access,
many access control systems have been proposed in both academic and industrial environ-

1https://iot-analytics.com/number-connected-iot-devices/
2According to General Data Protection Regulation(GDPR) [69], which is comprehensive legislation pro-

posed by European Union, personal data is sensitive data that is represented as any information (such as
ethnic origin, political opinions, religious beliefs, genetic data, biometric data, healthcare data) concerning
identified or identifiable natural person (see Art. 4 GDPR Definitions. Online:https://gdpr-info.eu/art-4-
gdpr/).

9



CHAPTER 1. INTRODUCTION 10

ments that ensure that only authorized subjects can access the protected resources. More
specifically, the main purpose of access control systems is to determine who can access
specific resources under which circumstances via the access control policies.In [73], an ac-
cess control system is divided into three main components: a policy, which refers to the
authorization requirements that should be satisfied to grant access privileges to subjects, a
model, which refers to the formal presentation of the policy enforced by the access control
system, whereas a mechanism refers to the implementation of the model. Therefore, an
access control system involves the following steps: defining an access control policy (set
of access control rules), selecting an access control model to encapsulate the defined pol-
icy, implementing the model via the proposed mechanism, and enforcing the set of access
control rules to determine access control [63].

Access control models have been proposed also for IoT environments to protect re-
sources from unauthorized entities (we survey the most relevant ones in Chapter 3). Unlike
many other environments, the IoT scenario is pretty challenging in providing proper secu-
rity and privacy solutions due to its main characteristics, that is, dynamicity, that refers
to the fact that the network topology and connectivity of IoT devices can be constantly
changing, and the massive amount of resources to be protected. Other characteristics of
IoT ecosystems are also relevant as well for access control purposes, such as being hetero-
geneous, intelligent, resource constraint, scalable, and latency-sensitive [63,68].

Even though traditional access control models (e.g., Discretionary Access Control
Model) have been employed for other environments, these models encounter difficulties
in addressing the dynamicity of IoT environments [48].

Therefore, additional solutions have been proposed for IoT applications, mainly
based on the following families of access control models: Capability-Based Access Con-
trol(CapBAC) [42], Usage Control(UCON) [66], Role-Based Access Control(RBAC) [74],
and Attribute-Based Access Control(ABAC) [48].

Among the solutions based on the above mentioned models, the proposals which are
based on Attribute-Based Access Control (ABAC), have been widely adopted in the last
years [67]. ABAC models provide dynamic, flexible, and context-aware access control.
These characteristics perfectly fit the IoT environments.

Even though the current access control systems tailored for IoT environments in the
literature handle data sharing among IoT devices by employing various access control
models and mechanisms, two important challenges have still not been sufficiently examined:
namely regulating data sharing within interconnected IoT environments and regulating data
sharing in emergency situations within an IoT environment. Therefore, in this thesis, we
mainly focus on addressing these challenges properly.

In this thesis, we leverage on ABAC to regulate the reception and the publishing of
messages exchanged within IoT environments. Our proposal relies on an ABAC framework
proposed in [22], which regulates data sharing within a single IoT environment.

Let us start by the need of regulating data sharing within interconnected IoT environ-
ments.

The majority of proposed access control frameworks in the literature aimed at regulating
the access to data generated and exchanged within a single IoT environment by adopting



CHAPTER 1. INTRODUCTION 11

centralized enforcement mechanisms. However, currently, most of the IoT applications rely
on IoT devices and services distributed over multiple IoT environments to satisfy users’
demands and improve their functionalities. This has resulted in research work proposing
frameworks(e.g., [85, 89]) on support of distributed IoT scenarios, such as for instance the
Internet of Vehicle (IoV) which consists of traffic lights, services, cars, and pedestrians.

Though the approaches based on distributed architectures allow the delivery of more
advanced services to users than the approaches based on the centralized architecture, they
also bring serious security/privacy threats, as they extend the scope of the sensed data
to multiple environments. Hence, data should only be sent by authorized users and be
accessed by authorized users, during data sharing among multiple IoT environments.

An access control framework, which regulates data sharing within multiple IoT envi-
ronments should provide fine-grained access control for shared data among environments
to satisfy the principle of least privilege (PoLP), which refers to minimum levels of access
or permissions that are given to a user to perform his/her job functions. The fine-grained
access control avoids more resources than those strictly requested could be accessed among
multiple environments.

The access control framework should also allow users to have more control over their
data, in the case the users wish to set additional restrictions on their data. More specifi-
cally, though the users’ data can be forwarded to the other IoT environments by means of
satisfaction of the access control policies, the access control framework should give users a
chance to restrict privileges that are already granted by access control policies specified by
security administrators.

Lastly, the access control framework should be context-aware.
These requirements and the challenges explained above motivate us to propose an

ABAC framework [24] which regulates data sharing among interconnected MQTT-based
IoT environments. To the best of our knowledge, regulating data sharing across intercon-
nected IoT environments has not been analyzed sufficiently in the literature, only [37] have
targeted this issue.

The access control framework proposed in this thesis targets MQTT-based IoT envi-
ronments, since the MQTT protocol is widely adopted within IoT applications, used in
various IoT scenarios. MQTT is a standard application layer protocol that enables the
communication of IoT devices by means of the publish/subscribe architecture.3 Due to the
pervasivity of many IoT scenarios, the approach proposed in this thesis provides support
for fine-grained, context-based access control policies. For instance, let us consider the case
of an MQTT-based Internet of Sport (IoS) application. When deployed on exercise bikes,
the application allows gym frequenters to participate in cycling races, and share data, such
as the current speed, and the covered distance by means of MQTT messages. In such a
scenario, it would be useful to specify an access control policy that regulates data sharing
across gyms in order to limit the exchange of rider performances to the race duration,
granting access only to the set of users registered for the race.

In addition, our access control framework gives users more control over their data by

3Online: https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html.



CHAPTER 1. INTRODUCTION 12

specifying their own preferences, in the case the users wish to set additional constraints
on their data usage. User preferences restrict privileges already granted by access control
policies. For instance, rider Mary wishing to enforce a stricter privacy protection, may
specify a user preference that, during a competition, filters out the identifiable data from
the data shared with the riders of other gyms.

Our access control framework extends the one proposed in [22], which introduces an
ABAC framework to control the communication of devices operating in a single MQTT-
based IoT environment. In the ABAC framework proposed in [22], access control policies
are defined by the security administrator, whereas, user preferences are defined by end
users, and restrict privileges granted by access control policies. Access control policies and
user preferences are enforced through a centralized enforcement monitor that operates as
a proxy between a server and multiple clients in a single MQTT-based IoT environment.
The key contribution of the access control framework proposed in this thesis is to provide
a decentralized approach to enforce access control policies and user preferences, which
supersedes the centralized enforcement mechanism proposed in [22] (see Chapter 4 for
more details).

Now let us briefly discuss our motivation behind addressing the other considered chal-
lenge, which is related to regulate data sharing in emergency situations within an IoT
environment.

Recent emergencies, such as the COVID-19 pandemic, have shown that, due to scarcely
information sharing, emergency protocols often fail in fully achieving their goals. For
instance, during the COVID-19 pandemic, contact tracing has been pointed out by the
World Health Organization as a strategic tool for contrasting SARS-CoV-2 diffusion and
reducing COVID-19 mortality. However, manual contact tracing methods proved scarcely
applicable, highly demanding in terms of time and human resources, and overall impractical
with a high number of new daily cases.

Contact tracing apps have addressed the scalability and performance issues of manual
methods. However, due to a scarce perception of the enforced data protection constraints,
in several western countries, citizens proved unavailable to install and use these apps [2]. As
a consequence, the efficacy of contact tracing has been undermined by limited population
coverage. These facts suggest that efficient data sharing is a key requirement for emergency
management.

Efficient emergency management starts with timely identification of an emergency
through the analysis of what has occurred in a target scenario and requires that all re-
sources needed to properly handle the identified emergency could be timely accessed by
authorized subjects. IoT technologies provide valid support to the development of efficient
data sharing and analysis services and thus appear well suited for building emergency man-
agement applications. In addition to this, IoT has magnified the possibility of acquiring
data from different sensors and employing these data to detect and manage emergencies.

The management of an emergency in an IoT environment typically requires granting
exceptional privileges to users, which in an ordinary situation would not be permitted.
For instance, in an ordinary situation, a physician responsible to provide treatment has
to ensure that valid consent has been obtained from the patient or a delegated person



CHAPTER 1. INTRODUCTION 13

before the treatment can begin. However, if an emergency occurs and the treatment is
finalized to save the patient life, it can be provided without consent. Nonetheless, all
granted exceptional privileges have to be immediately revoked as soon as the emergency is
over.

Though a variety of access control approaches for IoT applications have been proposed
in the literature, just a few of them allow regulating data sharing in an emergency situation.
Almost all of these proposals rely on a permission management approach known as break
the glass (BtG) [18]. BtG enables users to request and then gain access to resources
that would not be permitted to him/her in ordinary situations. Though BtG provides
flexible emergency management, it has two main drawbacks. First, accesses executed after
breaking the glass should be traced for later reviews to determine whether they caused
possible information leakage [75]. Second, the abuse of BtG policies can lead the system
to an unsafe state [21].

To avoid the weaknesses faced in the BtG approach, an alternative approach can be
employed where data sharing during emergency situations within an IoT environment is
regulated by the enforcement of proper emergency policies. Emergency policies can grant
users all privileges needed for the management of specific emergencies as soon as they
occur, instead of depending on the users’ requests for exceptional access privileges. This
approach favors a more efficient control of the protected data and does not put the system
in an unsafe state. However, designing a model fitting this approach and designing a
corresponding enforcement monitor is quite challenging due to the fact that the following
requirements regarding emergency management and access control in an IoT environment
must be satisfied:

• Since users are granted privileges as soon as the emergencies occur, the application
which realizes this approach should detect emergencies through the analysis of what
has occurred in an IoT environment.

• Two types of policies should be supported: ordinary and emergency access control
policies. Emergency and ordinary ABAC policies are employed to regulate data
sharing in emergency and ordinary situations respectively and emergency policies
always supersede ordinary policies during emergency situations.

• The access control system should regulate data sharing with fine-grained access con-
trol during both ordinary and emergency situations.

These requirements and the challenges explained above motivate us to propose an
ABAC framework to regulate data sharing within MQTT-based IoT applications in or-
dinary and emergency situations. To the best of our knowledge, none of the previous
approaches in the literature propose an access control framework for IoT environments
that both detect emergencies when they occur and support the enforcement of emergency
policies.

Similar to the proposed framework which regulates data sharing within interconnected
IoT environments, the proposed framework, which regulates data sharing in emergency



CHAPTER 1. INTRODUCTION 14

situations within an IoT environment, employs the ABAC framework proposed in [22] as
its core and extends the framework in [22] with various features. The key novel features
introduced by the framework proposed in this thesis, include:

• modeling support required to: i) define the events that trigger an emergency, ii) bind
events to MQTT messages, iii) specify emergency situations along with their possible
evolution, and iv) specify emergency policies;

• emergency management functionalities, such as the ability to: i) detect occurrences
of modeled events starting from the analysis of MQTT control packets exchanged in a
monitored application, and ii) identify the possible evolution of emergency situations.
For event detection, we leverage on a complex event processing (CEP) engine;

• access control capabilities, such as the ability to enforce both regular and emergency
access control policies which apply to an access request issued in a specific context.

We will discuss the details of the proposed framework in Chapter 5.

1.1 Contributions

In summary, this dissertation provides the following main research contributions:

• An extension [24] of the core framework proposed in [22]. [24] provides a decentralized
approach to regulate data sharing across interconnected MQTT-based IoT environ-
ments. The extended framework introduces: i) new access control policies and user
preferences to regulate data sharing across interconnected MQTT-based IoT envi-
ronments, which can be specified in any environment of the interconnected pair, ii) a
new enforcement monitor which regulates the messages that can enter/leave an envi-
ronment, iii) a decentralized enforcement mechanism, leveraging on the joint work of
monitors deployed in each environment of a bridged pair, and along the bridge, iv)
lastly, an experimental evaluation of the framework performance.

• Another extension of the core framework proposed in [22]. to enforce controlled data
sharing within MQTT-based IoT ecosystems during both emergency and ordinary
situations. The proposed framework analyzes the MQTT messages exchanged in a
monitored ecosystem leveraging on Complex Event Processing for emergency detec-
tion. Emergency and ordinary ABAC policies are employed to regulate data sharing
in emergency and ordinary situations respectively by means of a new enforcement
mechanism. We also assess the feasibility of the proposed approach with a case study
related to a healthcare application that monitors nursing home patients during the
COVID-19 pandemic.

1.2 Thesis Organization

This dissertation consists of six chapters and two appendices organized as follows:



CHAPTER 1. INTRODUCTION 15

• Chapter 2 presents fundamental information about the MQTT protocol along with
the access control framework proposed in [22]. The frameworks proposed in this
thesis extend the access control framework proposed in [22].

• Chapter 3 presents the state-of-art about access control within IoT environments and
discuss pros and cons of the main proposals.

• Chapter 4 presents our ABAC-based access control framework that regulates data
sharing among interconnected MQTT-based IoT environments.

• Chapter 5 presents our ABAC-based access control framework that regulates data
sharing within an MQTT-based IoT environment during ordinary and emergency
situations.

• Chapter 6 concludes the thesis and discuss future research directions.

• Appendix A presents the abbreviations that are employed within this thesis.

• Appendix B briefly presents the publications which contain the results presented in
the thesis.

1.3 Related Publications

The research activities explained in this dissertation have brought to the following publi-
cations:

• Pietro Colombo, Elena Ferrari, and Engin Deniz Tümer. ”Regulating data sharing
across MQTT environments.” Journal of Network and Computer Applications 174
(2021): 102907.

• Efficient ABAC based information sharing within MQTT environments under emer-
gencies

• Pietro Colombo, Elena Ferrari, and Engin Deniz Tümer. ”Access Control Enforce-
ment in IoT: state of the art and open challenges in the Zero Trust era” in Proc. of the
Third IEEE International Conference on Trust, Privacy and Security in Intelligent
Systems, and Applications (IEEE TPS 2021), December 13 - 15, 2021.



Chapter 2

Background

In this chapter, we present some basic concepts related to the MQTT protocol [12] along
with the access control framework proposed in [22]. Such framework in instrumental to
help the reader to understand the proposed frameworks in Chapters 4 and 5. [22] provides
an ABAC framework to control the communication of devices operating in a single MQTT-
based IoT environment.

2.1 MQTT

MQTT is a standard application layer protocol that enables the communication of IoT
devices by means of the publish/subscribe architecture. MQTT protocol is widely adopted
within IoT applications and used in various IoT scenarios [59].

In an MQTT environment, MQTT clients communicate with other clients by means
of a message broker and the communication can only be achieved if clients are connected
with the MQTT broker. Once MQTT clients connect to the MQTT broker, they can either
request to publish application messages through the MQTT broker on given topics or they
can subscribe to the reception of messages on the topics matching a topic filter expression.

A topic is a string structured as a sequence of alphanumeric tokens, referred to as topic
levels, and separated by a topic level separator (“/” is the default topic level separator in
MQTT specification).

Example 2.1. Let us consider the case of an Internet of Sport (IoS) MyPersonalTrainer,
developed for MyGymBrand, a brand of affiliated sport halls, which allows the gym fre-
quenters to share data about training sessions. In particular, when deployed on exercise
bikes, the app allows them to participate to cycling races, sharing data such as the current
speed, and the covered distance. Suppose that the smart treadmills of the sport halls, which
integrate multiple sensors and a tablet, also host an instance of MyPersonalTrainer. Mes-
sages published by the app on the runner performances in a training session ts can refer to
the following topics:

• tr/performance/ts/speed,

16



CHAPTER 2. BACKGROUND 17

• tr/performance/ts/avgspeed,

• tr/performance/ts/length,

• tr/performance/ts/duration,

• tr/performance/ts/hearthbeats.

where tr and ts are placeholders for a treadmill and a training session identifiers, respec-
tively.

A topic filter is a textual expression that can be structured as a sequence of topic levels,
where each of the levels specifies an alphanumeric token or the wildcard characters “+”
or “#”, which allow referring to multiple topics. “+” wildcard character is employed for
single topic level matching, whereas, “#” wildcard character is employed to match any
level in a topic.

Example 2.2. Let us consider the Internet of Sport environment introduced in Exam-
ple 2.1. Suppose that the devices introduced in Example 2.1 have also been configured to
subscribe to the receiving of performance data of all users attending ts, specifying +/perfor-
mance/ts/+ as a topic filter. In addition, the app deployed on gym coaches’ tablets allows
them to monitor the performance data of gym frequenters. The app has been configured
to subscribe to the topic filter +/performance/#, so that coaches can receive performance
data published by any treadmill within any training session.

Once an MQTT broker receives a publishing request on a topic t, the broker forwards
the message1 to any client who has subscribed to a topic filter expression that matches
with t.

The communications among an MQTT broker and clients are achieved by exchanging
control packets [12]. The control packets defined by MQTT are shown in Table 2.1.

Let us briefly explain how the communications among an MQTT broker and clients
are regulated by the MQTT protocol. Suppose an MQTT client c sends a connection
request cp

CN
to the MQTT broker b with the aim of sending or receiving messages. Once

this request is sent to b, b evaluates the request and sends back an acknowledgement cp
CA

to c which specifies whether the request has been accepted. In the case the request has been
accepted, the connection among b and c is opened. After the connection is established, c
can request to publish an application message on a topic t with a payload p by issuing a
publishing request packet cp

PB
, or c can request the reception of messages on topics that

match a topic filter tf, by sending a subscription request packet cp
SB

to the broker. The
broker b should send back to c the related acknowledge (e.g., cp

PA
, cp

SA
etc...) depending

on the request type.
MQTT protocol employs three levels of Quality of Service (QoS) to guarantee the

reliability of message delivery: most once (0), at least once (1), or exactly once (2). Clients

1For the messages, a predominant data-interchange format adopted in numerous MQTT based applica-
tions is JSON [17].



CHAPTER 2. BACKGROUND 18

Table 2.1: MQTT control packets

Control Packet Acronym Description

CONNECT cp
CN

Connection request
CONNACK cp

CA
Connect acknowledgment

PUBLISH cp
PB

Publish message
PUBACK cp

PA
Publish acknowledgement

PUBREC cp
PRC

Publish received
PUBREL cp

PRL
Publish release

PUBCOMP cp
PC

Publish complete
SUBSCRIBE cp

SB
Subscribe to topics

SUBACK cp
SA

Subscribe acknowledgement
UNSUBSCRIBE cp

US
Unsubscribe from topics

UNSUBACK cp
UA

Unsubscribe acknowledgement
PINGREQ cp

PRQ
PING request

PINGRESP cp
PRS

PING response
DISCONNECT cp

DS
Disconnect notification

can specify their messages with QoS-0 level if missing or undelivered messages are tolerated,
otherwise. In contrast, QoS-1 level or QoS-2 level can be employed to guarantee message
retransmission and delivery by means of dedicated control packets. An interested reader
can refer to the MQTT specification [12] for further details on the MQTT protocol.

As we mentioned in Chapter 1, the first challenge that we want to address in this thesis
is to regulate data sharing within interconnected IoT environments. MQTT-based IoT
environments, which are configured with the brokers, can be connected together by means
of one of the advanced features of MQTT protocol, that is, bridging, which allows data
sharing among interconnected environments. Basically, the bridging mechanism enables
to connect two or more brokers together and for bridging, one of the brokers is assigned
as a bridging broker, that is configured to connect to a target remote broker, with which
it shares messages published by clients of the respective environments. The interaction is
regulated by means of bridging rules.

A bridging rule br specified for a bridging broker bb is a tuple <rb, tp, dr, qos, lp,
rp>, where rb denotes the remote broker representing the target of bb, tp is a topic filter
expression, specifying the topics of the messages to be shared by bb; dr specifies the sharing
direction (in, out), which is in, if br allows bb to receive messages from rb, or out, if br
allows bb to send messages to rb; qos specifies the QoS level to be used for the message
exchange; finally, lp and rp are local and remote prefixes, which are employed by bb to
remap the topic of outgoing and incoming messages, respectively. If br specifies in as
sharing direction, bb prepends tp with rp and subscribes to the resulting topic on rb. On
receipt of a message m from rb whose topic matches the subscribed topic, bb substitutes
the remote prefix rp prepending the topic of m with lp, and forwards m to the local clients
who subscribed to a matching pattern. In contrast, if br specifies out as sharing direction,
bb prepends tp with lp and subscribes the resulting topic on the local broker. On receipt
of a message m published by a local client, whose topic matches the subscribed topic, bb
substitutes the local prefix with rp, and forwards m to b.



CHAPTER 2. BACKGROUND 19

Example 2.3. Suppose that MyPersonalTrainer enables users to share performance data
with a remote analysis server, that allows comparing them with previously tracked data
of the same user, of users attending the same course, of frequenters of the same gym, or
runners attending any sport hall. Suppose that MyGym (can be considered as a local en-
vironment) hosts a broker, which handles the communication among its gym apparatus, as
well as with brokers of the associated gym RemoteGym (that can be considered as a re-
mote environment), and of the data analyzer environment, which hosts the remote analysis
server. Examples of bridging rules are the following:

• br1 = <Analyzer, +/performance/+/speed, out, 0, “”, MyGym>.

• br2 = <RemoteGym, +/performance/+/speed, in, 0, “”, “”>.

br1 enables the forwarding to the analyzer environment of messages specifying the cur-
rent speed of a runner that attends a training session. The remote prefix MyGym de-
notes the provenance of the message. The remote analysis server is a client of the an-
alyzer environment which subscribes the receiving of messages on topics that match the
filter +/+/performance/#, which allows the server to access performance data of the fre-
quenters of any gym. In contrast, on the basis of br2, MyGym broker subscribes the receiving
of messages from RemoteGym that refer to the speed of a runner attending any training
session of the associated sport hall. The remote analysis server is a client of the ana-
lyzer environment which subscribes the receiving of messages on topics that match the filter
+/+/performance/#, which allows the server to access performance data of the frequenters
of any gym.

2.2 ABAC framework within a single MQTT-based IoT en-
vironment

In this section, we briefly explain the access control framework proposed in [22] that pro-
vides the base structure for our proposed frameworks. The access control framework in [22]
aims at regulating MQTT clients’ communications in a single IoT environment. The solu-
tion in [22] relies on an ABAC model for MQTT environments. ABAC has been used in [22]
since ABAC provides outstanding flexibility, as well as for the dynamic and context-aware
nature of the supported policies, these characteristics perfectly fit for the IoT environ-
ments. The framework consists of an enforcement mechanism designed for the model, and
implemented by an enforcement monitor, which can be easily integrated into MQTT-based
environments. In [22], ABAC is employed to regulate the reception and the publishing of
MQTT messages, on the basis of access control policies and user preferences.

2.2.1 The ABAC Model

The ABAC model proposed in [22] relies on the following three main concepts:

• a subject who sends access requests,



CHAPTER 2. BACKGROUND 20

• a protection object, and

• the context within which an access request has been issued.

A subject s represents an MQTT client, which, possibly on behalf of a user, connects
to an MQTT broker in order to send or receive messages. s is characterized by attributes,
such as client identifier and optionally user identifier, which represent user on behalf of
whom the client operates. Subjects who have similarities can be classified into subject
groups.

Application messages are the protection objects of the considered model and they are
characterized by attributes that model message properties, which can be employed for
access control purposes. More specifically, an object o is comprised of an attribute t, which
specifies the topic of the message modeled by o, and another attribute pl, which specifies
the message payload.

Lastly, the environment e represents the context within which an access request is
issued, and could be characterized by attributes such as location, time, and access purpose.

The subject, object, and environment are denoted attribute types in the ABAC model
proposed in [22] and an attribute related to one of these attribute types is represented
with the composition of the following three elements:

• the reference of its attribute type (the references of the subject, object, and environ-
ment attribute types are represented with s, o, and e respectively),

• a separator (the dot sign is assigned as the separator),

• and the name of the attribute.

For instance, role attribute can be defined as one of the attributes related to the subject
attribute type and, thus, can be notated as s.role.

Data sharing is regulated on the basis of ABAC policies, specified by security admin-
istrators, which grant subjects the read/write access to messages on the specific topic(s).
Read and write accesses respectively denote the privileges to send/receive messages on
given topics.

Access control policies grant privileges under satisfaction of boolean expressions, de-
noted as parametric predicates, built by composition of subject, object and environment
attributes, and sets of predefined operators and functions2.

Definition 2.1 (Access control policy [22]). An access control policy p is a tuple ⟨s, tf,
exp, pr⟩, where s refers to the subjects constrained by p, tf specifies a topic filter expression,
exp is a parametric predicate, whereas pr specifies the read /write privileges granted to s if
exp is satisfied.

2We consider mathematical operators (>, <, =, +, -, *, /,%), logical operators (∧, ∨, ¬), set operators
(∈,⊂,⊆,∩,∪, \), logical quantifiers (∀, ∃), and predefined functions that allow the processing of attributes
values.



CHAPTER 2. BACKGROUND 21

Example 2.4. Let us consider a policy p
1
which grants frequenters enrolled to a gym course

the privilege to publish performance data and read performance data of other trainees,
and a policy p

2
, which allows gym coaches to access performance data of gym frequenters

during their working hours. p
1

can be specified as: ⟨frequenter, +/performance/ts/+,
isEnrolled(s.sid),rw⟩, where isEnrolled(s.sid) is a function that checks whether the subject
represented by the sid identifier is enrolled in a gym course, whereas p

2
is modeled as

⟨gymcoach, +/performance/+, isWorkingTime(t,s.sid), r⟩, where isWorkingTime(t,s.sid)
is a function that checks whether the time referred to by t matches the work shift of the
subject.

In addition to access control policies, the model proposed in [22] supports user-defined
policies that allow a user to further constrain the read privileges granted by the access con-
trol policies. This type of policies is named asuser preferences. User preferences constrain
the access to messages published by a user, on the basis of parametric predicates.

Definition 2.2 (User preference [22]). A user preference up is a tuple ⟨uid, tf, sub exp⟩,
where uid specifies the identifier of a user who wishes to protect the access to messages pub-
lished by any of the clients he/she handles, tf specifies a topic filter expression which refers
to the topics of the messages published on behalf of uid to which up applies, whereas sub exp
is a parametric predicate specifying a precondition to the receiving of these messages.

Example 2.5. Assume that Mary, who is a frequenter of MyGym, limits to Alice, who is
a coach of MyGymBrand, the privilege to access Mary’s performance data related to the
training session ts by specifying user preference up

1
. The user preference up

1
can be defined

as up
1
=⟨Mary, +/performance/ts/+,s.rid=“coach”∧ s.uid=“Alice”⟩.

2.2.2 Access Control Enforcement

Now let us briefly introduce the access control enforcement mechanism proposed in [22]. A
high-level view of the system architecture proposed in [22] is shown in Fig. 2.1.

Access control policies and user preferences are enforced through an enforcement mon-
itor that operates as a proxy between an MQTT message broker and multiple clients, and
a key–value datastore, which manages access control policies and user preferences to be
enforced by the monitor. The enforcement monitor is the only component that can connect
to the server, on behalf of the client.

A publishing request, issued by a client, is intercepted by the enforcement monitor and,
if at least one applicable policy is satisfied, the enforcement monitor grants the requested
privilege to the client, otherwise, the publishing request is denied and the application
message is blocked. If the publishing operation complies with at least one policy, the
monitor derives the preferences specified by the user on behalf of whom the publishing has
been requested. Then the monitor embeds the derived preferences into the payload of the
publishing request and forwards the packet to the broker.

Publishing requests issued by the broker are handled in a similar way. The monitor ex-
tracts attributes and user preferences from the control packet’s payload, derives the subject,



CHAPTER 2. BACKGROUND 22

Figure 2.1: A high-level view of the system architecture in [22]

object, and environment attributes modeling the context within which the message should
be received by the subscriber, and evaluates the preferences wrt the derived attributes.
If no preference is satisfied, the request is blocked, whereas if at least one preference is
satisfied the monitor derives the applicable access control policies. In case the read access
complies at least with one of the policies, the monitor removes from the payload all previ-
ously embedded metadata and forwards the packet to the subscriber, otherwise, it blocks
the request.

Example 2.6. Let us again consider the case of an Internet of Sport (IoS) introduced
throughout this chapter. Suppose that the MyPersonalTrainer app, which is hosted by a
smart treadmill of a sports hall, issues a publishing request (cp

PB
) related to the gym

frequenter Mary’s average speed in a training session (ts) after the initial connection of the
app is established. Assume that gym frequenter Mary is already enrolled in a gym course
and Alice, who is a coach of Mary, wants to monitor Mary’s performance along with other
frequenters’ performances during her working time. Moreover Mary limits to Alice the
privilege to access Mary’s performance data related to the training session ts by specifying
user preference up

1
which is introduced in Example 2.5. Assume that topic t of cp

PB
is

“tr/performance/ts/avgspeed” and payload pl of cp
PB

is {“s.sid”:Mary,“avgspeed”:7.50}



CHAPTER 2. BACKGROUND 23

which is represented as a JSON object3.
An enforcement monitor (em) intercepts cp

PB
and derives the access control policies

that should be applied to regulate the processing of this request. Assume that a policy p
1
,

which is introduced in Example 2.4 is selected by em to authorize the publishing of cp
PB

.
In addition to this, em derives the up

1
specified by Mary and then embeds the derived

preference into the pl of cp
PB

(let us call new payload plx and new control packet cp
PB

x),
and forwards cp

PB
x to the broker.

Publishing requests issued by the broker are handled in a similar way. Assume that
coach Alice is already connected to the system and subscribes “+/performance/+” to mon-
itor performances of all gym frequenters(including Mary). em extracts attributes and user
preferences from the plx, derives the subject, object and environment attributes modeling
the context within which the message should be received by Alice, and evaluates up

1
wrt the

derived attributes. Since up
1
is satisfied, em derives the applicable access control policies.

Assume that a policy p
2
, which is introduced in Example 2.4 is selected by em to autho-

rize the receiving of cp
PB

. Before Alice receives the message,em removes all previously
embedded metadata from the payload (it becomes pl again) and forwards cp

PB
to Alice.

3As we mentioned in Section 2.1, a predominant data-interchange format adopted in numerous MQTT
based applications is JSON [17].



Chapter 3

Related Work

In this chapter, we review the state-of-the-art papers in the literature that deal with access
control for IoT environments. The review analysis that has been conducted in this thesis
relies on multiple aspects of access control solutions. More precisely, we consider three key
aspects to classify the characteristics of the papers we surveyed:

• Access control model refers to the adopted authorization model employed in the pa-
per. The traditional access control models, which rely on access control lists or access
control matrices [53], are not considered in this chapter due to the fact that these
models have been criticized in terms of the lack of expressiveness and dynamicity,
which are needed in IoT environments [48]. Thus, we only consider the following pop-
ular access control models: Capability Based Access Control(CapBAC) [42], Usage
Control(UCON) [66], Role Based Access Control(RBAC) [74] and Attribute Based
Access Control(ABAC) [48] models, and enforcement solutions (e.g., Attribute Based
Encryption(ABE) [40]) based on these models.

CapBAC models employ capability tokens that give the possessor permissions to
access target resources. More specifically, authorizations to access specific objects
are materialized into capability tokens, which are assigned to rightful subjects. In
order to access a target resource, a subject has to prove his/her authorization by
presenting the related capability token. In the CapBAC model, the entity that wants
to access a target resource is denoted grantee and the resource owner entity that
can issue the capability tokens to the grantees is denoted granter. A capability
token typically consists of the granted rights, the target resource, the identity of the
grantee, and necessary information for the access such as capability validity period.
After a capability token issued by the granter send to a grantee, the grantee can
access the target resource owned by the granted. Before access privilege is granted
to the grantee, the capability validity period of the capability token, and credentials
of the grantee should be checked whether they are valid, and if there is no issue, the
access privilege is granted.

UCON model is typically comprised of six elements: subjects & subject attributes,
objects & object attributes, access rights, authorization rules, obligations, and con-

24



CHAPTER 3. RELATED WORK 25

ditions. In the UCON model, both subject and object attributes can be mutable
attributes: subject attributes can be changed as a consequence of subjects’ actions
(e.g., user credit balance) and object attributes can be changed during access (e.g.,
last access time). An access right represents access privilege that a subject can
hold on an object. Authorization rules, obligations and conditions are functional
predicates that are employed for access control decisions. More specifically, autho-
rization rules have to be evaluated for access control decisions based on subject and
object attributes and the requested specific right. Obligations are employed to verify
mandatory requirements a subject has to perform before or during an access control
decision. Lastly, conditions are environmental attributes that are independent from
the attributes of the subjects and objects. The key features of the UCON model are
the mutability of attributes and continuity of enforcement. The first one represents
that attribute values can be modified as side-effects of subjects’ actions or updates
of the object’s properties, whereas, the second one represents that continuous policy
evaluation that is made in pre-access, during-access, and even post-access phases.

RBAC is an access control model for controlling user access to resources based on
roles. Roles are created according to the job function and users are given roles accord-
ing to their responsibilities. In the RBAC model, roles are often organized in a role
hierarchy, which defines the inheritance of permissions between roles. Users are not
assigned permissions directly, but only acquire the permissions through their role(s),
thus, permissions can be given to users by means of the success of the conditions of
the policies that are used to assess the roles. The pure RBAC model, however, is
criticized in [63] as being insufficient to model security policies that interpret com-
plex IoT scenarios due to the well-known role explosion problem, thus, many RBAC
solutions, which target IoT environments, extend the pure RBAC model.

ABAC, unlike many traditional models of access control, which rely on the man-
ual assignment of roles, ownership, or security labels by a system, allows for the
creation of policies based on the existing attributes of the users, objects and environ-
ments [76]. In the ABAC model, policies and access requests are specified in terms of
attribute names/values pairs and authorizations are constrained to the satisfaction
of conditions which refer to attributes of subjects, objects, and environment. The
subject is granted appropriate access permissions by the system according to his/her
attributes along with attributes of object and environment, when he/she issues an
access request.

• Architecture refers to the access control architecture proposed in the paper. This
can be either centralized or distributed. A centralized architecture relies on a single
policy decision component that makes all decisions about access requests, whereas a
distributed architecture relies on distributed mechanisms to manage and enforce the
policies. More specifically, in a centralized architecture, the physical node sends the
access request to a specialized policy decision point that provides centralized autho-
rization. The policy decision point decides to whether grant or deny the privileges



CHAPTER 3. RELATED WORK 26

based on the policy enforcement. Contrary to a centralized architecture, the policy
decisions are performed by several policy decision points deployed in different environ-
ments in a distributed architecture. In a distributed architecture, the policy decision
components either are embedded into IoT devices or IoT devices are connected to
the policy decision components that are independent of the devices.

Let us briefly discuss on advantages and disadvantages of both architectures. Gen-
erally, a centralized architecture for the IoT environments provides a high computa-
tional capability along with a strong memory for the authorization processes which
eases the resource-constrained IoT devices from the burden of handling a vast amount
of access control-related information. Another advantage of the centralized architec-
ture for the IoT environments is to possibly offer easy administration for the system.
However, since the centralized architecture relies on a single policy decision compo-
nent, a compromised policy decision component may lead to a single point of failure.
Moreover, loads of access requests can cause the system bottleneck and drop the
general performance of the system [32].

A distributed architecture for the IoT environments possibly solves an issue related
to the single point of failure for the policy decision components, more precisely, the
distributed architecture may allow IoT devices to connect another policy decision
component, once the existing one compromises. Another advantage of the distributed
architecture is to possibly provide better contextual awareness in authorization than
a centralized one since the policy decision components and devices are closer to each
other more than in the centralized architecture. The most obvious drawback of the
distributed architecture is to implement a complex authorization mechanism on the
side of the resource-constrained devices, since these devices are not sufficient to handle
access control logic. Another disadvantage of the distributed architecture is to handle
local access control policies remotely.

• Emergency Management refers to the type of emergency management support pro-
vided by the paper. In this respect, we can distinguish among emergency manage-
ment support based on emergency policies, emergency management support based
on Break-the-Glass(BtG) policies or no emergency management support.

Emergency management support based on BtG policies relies on a strategy that al-
lows a user to request the resources during an emergency and then gains access to
the resources which would not be permitted to him/her in normal conditions. More
precisely, once a user sends break-the-glass access requests to the system during an
emergency, the access decision is derived from the applicable BtG policies which by-
pass the policies that are employed during an ordinary situation. Once the emergency
ends, the BtG accesses shouldn’t grant additional privileges to the users.

Though BtG provides flexible emergency management, it has two main drawbacks.
First, the accesses executed after breaking the glass should be traced for later reviews
to determine whether they caused possible information leakage [75]. Second, the
abuse of BtG policies can lead the system to an unsafe state [21]. More precisely, if



CHAPTER 3. RELATED WORK 27

the ordinary access control policies aren’t defined sufficiently to minimize the necessity
of breaking the glass accesses, many users get more privileges than they should by
employing BtG requests.

Emergency management support based on emergency policies: under this mode, for
each of the considered emergencies, an emergency policy is specified which grants ex-
tra privilege when the corresponding emergency happens. Since emergency manage-
ment plans are expected to be a priori defined, emergency policies could be specified
in such a way to fulfill information sharing requirements elicited from the associated
plan. Permission management based on emergency policies allows shorting data ac-
cess time, since no request to override a permission has to be issued, and data can thus
be received by authorized subjects as soon as the emergency begins. The approaches,
which support emergency management based on emergency policies, should detect
emergencies once they occur, and grant exceptional privileges to the authorized sub-
jects during emergencies. Once the emergencies are over, only ordinary policies are
involved in the access control decisions.

In what follows, we first introduce “classical” access control solutions that do not pro-
vide any emergency management support, then we analyze access control solutions tailored
to the management of access control during emergency situations. The summary of the
analysis that has been conducted is given in Table 3.1. In Table 3.1, Reference column
shows to the references of the state-of-the-art access control solutions, whereas Access Con-
trol Model, Architecture and Emergency Management columns refer to the employed access
control model, architecture and emergency management type for each state-of-the-art ac-
cess control solution, respectively.

3.1 Classical Access Control Solutions

3.1.1 CapBAC-based Solutions

As we mentioned in the early part of this chapter, in the CapBAC model, authorizations to
access specific objects are materialized into capability tokens, which are assigned to rightful
subjects.

The CapBAC approach proposed in [42] employs a centralized enforcement mechanism
for a single IoT environment. IoT device owners can grant to other subjects the access to
the administered resources by assigning them properly defined capability tokens. Similarly,
they can delegate all or part of the owned privileges to other subjects. Subjects can also
revoke previously granted authorizations, by means of revocation tokens which specify the
revocation time and reasons.

A distributed CapBAC framework was proposed in [46] (denoted as DCapBAC). In
[46], IoT devices carry out the authorization processes by themselves, without the need for
a central entity. To realize a distributed architecture, their framework allows IoT devices
to make peer-to-peer interactions using CoAP [78]. More precisely, the access requests and
the responses against these requests conveyed among devices are structured in the CoAP



CHAPTER 3. RELATED WORK 28

message format. In their framework, a capability token holds access control conditions
assigned by its granter. Whilst a granter prepares the capability token, the granter signs its
capability token by employing the Elliptic Curve Digital Signature Algorithm (ECDSA) [50]
and the granter sends it to a grantee directly. Once the grantee obtains the capability
token, it sends an access request with the capability token attachment directly to the
granter. During the authorization process, the IoT device to which the capability token
is sent authenticates the grantee and checks the validity of the token, the related ECDSA
signature and the satisfaction of the access control conditions embedded in the capability
token.

Bernabe et al. [14] have proposed a trust-based extension of DCapBAC, where autho-
rizations are granted on the basis of the trust level associated with IoT devices. Device
trustworthiness is computed on the basis of properties such as: i) the overall quality of
services provided by the IoT devices (e.g.,throughput, delay), ii) devices reputation, and
iii) possible relationships among the devices (e.g., group membership).

Hussein et al. [49] propose COCapBAC, a distributed CapBAC approach where au-
thorizations are handled by IoT device communities, that is, IoT devices that share a
common goal. The IoT devices, which are not resource-constrained, referred to as gate-
keepers, generate an IoT device community and manage authorization decisions on behalf
of resource-constrained devices in the same community. A subject sends an access request
to the gatekeeper of the community and the gatekeeper forwards this request to a policy
decision component. The policy decision component evaluates the request, generates a ca-
pability token, which contains access rights, and sends the capability token to the subject
via the gatekeeper. Once the subject receives the capability token, he/she presents it to
a gatekeeper, and the gatekeeper validates the correctness of the capability token against
forgery from third parties.

Some works propose blockchain-based distributed CapBAC implementations (e.g., [56,
60,86]).

For instance, BlendCAC [86] is a decentralized, context-aware CapBAC approach for
IoT ecosystems, where smart contracts are employed to manage authorizations, IoT device
registration, and access right revocation.In their framework, a subject can delegate his/her
permissions to another subject by specifying the delegation relationship, which shows the
permission delegation hierarchy among the subjects.An ordered list of delegation relation-
ships for same object is called delegation path. All delegation paths for the same object
are combined to construct a delegation tree, which will be employed during delegation op-
erations. In the proposed delegation tree, a subject cannot obtain permissions from more
than one subject. Once a subject registers himself/herself by adding his/her profile into the
blockchain system, the subject can send the access request related to the target object to
one of the dedicated policy decision components deployed in the blockchain environment.
The policy decision component assesses the access request, and if the access request is
accepted, the policy decision component sends the capability token by encoding the access
right to the subject. After receiving the capability token from the blockchain system, the
subject shows his/her capability token to access the target object.



CHAPTER 3. RELATED WORK 29

Nakamura et al. [60] propose a CapBAC approach where Ethereum1 [20] smart con-
tracts are employed to manage and check the validity of capability tokens. Delegation
relationships among subjects are traced in a delegation graph for each object, instead of a
delegation tree proposed in [86]. The reason behind this structure change is to have more
flexible capability delegation than a delegation tree usage in [86]. More precisely, in the
delegation tree proposed in [86], the children nodes of the same parent node cannot delegate
each other. Because in this case, the delegatee node needs to have two parents, however,
each node is structured with a single parent [86]. On contrary, the delegation graph is
capable of assigning more than one parent for each node, as a result, the permissions to a
subject from more than one subject are possible.

Another blockchain-based CapBAC solution has been proposed in [56], where decen-
tralized identifiers (DIDs) 2 are employed to manage the identities of IoT devices. The
authors present the architecture of their framework and present a protocol that supports
the authorization process, discussing the basic interactions between granter, grantee, and
the on-chain smart contracts. In their framework, before authorization, both granters and
grantees are required to register DIDs to identify themselves. Their framework supports
two types of tokens: the first type is a typical capability token and the second type is a
device owner token which shows that the ownership of granter to a specific device. DID
registration, capability token and ownership token management are handled by smart con-
tracts in their framework.

3.1.2 UCON-based Solutions

As we mentioned in the early part of this chapter, the mutability of attributes and conti-
nuity of enforcement are the key features of the UCON model.

La Marra et al. [52] proposed UCIoT, a distributed UCON framework for smart home
IoT scenarios. Policy enforcement is carried out by IoT devices, leveraging on local at-
tributes and remote attributes of other devices. In their framework, each node represents
a smart IoT device logically connected to the others through a Distributed Hash Table.
Their access control framework is embedded into each device in the smart home environ-
ment, and the devices can decide to permit or deny the accesses related to their resources.
La Marra et al. [84] have also proposed a UCON based approach for MQTT-based IoT en-
vironments, which aims at addressing the weak authorization mechanism of these systems.
In particular, once a subscription request of an MQTT client is authorized, such client
can receive messages until it explicitly asks for cancelling the subscription. To address
this issue, La Marra et al. [84] propose an MQTT broker which embeds an enforcement
monitor supporting continuous policy evaluation. Supported policies refer to properties
such as subscriber reputation, data reliability, environmental conditions, and allow a fine
grained regulation of access privileges.

Dimitrakos et al. [29] have proposed UCON+, an extended distributed Usage Control

1https://ethereum.org/en/developers/docs/
2Decentralized Identifiers (DIDs) v1.0, W3C Proposed Recommendation, 03 August 2021

https://www.w3.org/TR/2021/PR-did-core-20210803/



CHAPTER 3. RELATED WORK 30

model for IoT environments, which provides a trust-aware continuous authorization process
based on UCON policies that also embed trust-based conditions. Let us assume that a
policy can grant read privilege to a user about a resource if the user has a minimum trust
level of 8 out of 10 before access is granted. Let’s consider the same policy again, in
addition to the above specification, the same policy is defined as follows: If the user can
retain the minimum trust level at 7 out of 10 during resource usage, he/she can keep this
privilege. In UCON+ subjects, object and context attributes are continuously monitored
along with trust levels. Whenever a change of such mutable properties is detected, UCON
policies are re-evaluated. The authors claim a low computational and memory footprint of
their approach which makes it suitable to consumer IoT scenarios.

3.1.3 RBAC-based Solutions

As we mentioned in the early part of this chapter, in the RBAC model, the users are
members of roles and the permissions are associated with roles.

Gwak et al. [43] have proposed a dynamic trust-based extension of RBAC for IoT.
Authorizations are granted on the basis of roles, and the trustworthiness of the group of
users to whom the same role has been assigned. Trust values of user groups are continuously
derived from group members’ behaviors. Granted access rights are revoked, if the trust
value lowers below a minimum level.

Fernandez et al. [33] have complemented the authorization mechanisms of RBAC with
OAuth 2.0 [45] based authentication. OAuth tokens are used to identify a subject who has
sent an access request via an IoT device, along with his/her roles.

Bandara et al. [11] have proposed an RBAC-based approach for IoT smart building
scenarios. A distinguishing feature of [11] is the provided support to multiple authen-
tication techniques. Any authentication method shows a measure of how confident the
system is that a just authenticated subject is who he/she claims to be [3]. Assume that, a
user can authenticate himself/herself by employing one of the two authentication methods
as follows: fingerprints and user-generated passwords. The fingerprints are more reliable
proofs than passwords since the passwords can be stolen, thus, the confidence level of the
fingerprint-based authentication method is higher than the password-based one. Resources
are labeled with the minimum confidence level required for their accesses. Their enforce-
ment mechanism evaluates the access request issued by authenticated subject, and grant
the privilege to the subject if the confidence level of the authenticated subject is greater
or equal to the resource’s one and the role of the subject is the same as the required one.

Ameer et al. [6] have proposed EGRBAC, an extended RBAC model for smart home
IoT environments. EGRBAC enhances the RBAC model with new conceptual elements
referred to as device roles and environment roles. Device roles represent a group of IoT
devices, whereas environment roles model environment states. A device role categorizes
permissions of different IoT devices, while an environment role specifies environmental
contexts. For instance, assume that in an smart home IoT environment, a smart oven
might be dangerous for kids if they are alone at home. The device role of the smart oven
can be defined as dangerous devices. Dangerous devices are always forbidden for kids, on



CHAPTER 3. RELATED WORK 31

contrary, the parents can use dangerous devices. Thus, the environment roles, which are
employed in a policy to grant access privileges just to the parents for the dangerous devices,
can be defined as no-time for kids and all-time for parents.

All RBAC-based access control frameworks, which are examined in this thesis, rely on
centralized architecture.

3.1.4 ABAC-based Solutions

As we mentioned in the early part of this chapter, in the ABAC model, authorizations are
constrained to the satisfaction of conditions which refer to attributes of subjects, objects,
and environment.

Colombo and Ferrari [22] have proposed a centralized ABAC approach to regulate
IoT device communication in MQTT environments on the basis of access control policies
and user preferences. As a remainder, this ABAC framework provides the base structure
for our proposed frameworks. In their framework, access control policies are defined by
the security administrator, whereas, the user preferences are defined by the users, and the
user preferences restrict privileges granted by access control policies. Access control policies
and user preferences are enforced through an enforcement monitor that operates as a proxy
between a server and multiple clients, and a key–value datastore, which manages access
control policies and user preferences to be enforced by the monitor. The enforcement
monitor is the only component that can connect to the server, on behalf of the client.
Another centralized ABAC approach for MQTT environments has been presented in [38],
but except for implementation strategies, the approach is aligned with the one originally
presented in [22].

Dong et al. [30] propose a centralized state-aware ABAC framework for IoT environ-
ments. Their framework enriches the generic ABAC approach with the concept of states
that describe the continuous actions of subjects to the resources. The authors give an
example of why the use of state is needed in the smart IoT classroom environment. In
the example, the authors consider that when the class is over, and no one stays in the
classroom, all the former operations to the pieces of equipment in the room during the
class should be revoked. The authors claim that most of the existing ABAC frameworks
in the literature cannot deal with that revocation, since they do not hold previous states.
In their framework, the states of continuous actions are changed depending on the actions
performed by the users and they are recorded by the framework to control how users employ
the resources after the users are authorized.

Carranza and Fong [37] propose a distributed ABAC framework for IoT environments
that regulates data sharing among interconnected brokers. Their approach is built on top
of an event-based architecture ( [36]), which enables the communication of interconnected
message brokers. Brokers interaction is regulated by scoping rules that constrain the range
of the authorized receivers of any message to be routed. The approach relies on brokering
policies, namely access control rules that constrain the brokers ability to propagate mes-
sages received through a channel to other channels. Their approach has been implemented



CHAPTER 3. RELATED WORK 32

exploiting an ad-hoc modified version of Mosquitto 3.
Some recent works propose ABAC implementations based on blockchain technology

(e.g., [31,44,55]). The ABAC framework for IoT environments proposed by Liu et al. [55]
is based on Hyperledger Fabric [7].4 Each IoT device generates its resource URL and sends
it to the blockchain. A user, who aims to access the resource, makes a request to the
blockchain by proving his/her attributes. Three types of smart contracts are defined to
support: i) the authorization process, ii) the management of ABAC policies, and iii) the
management of device resources. The communication of IoT devices with the blockchain
is mediated by smart gateways.

Hyperledger Fabric has also been employed in the ABAC framework proposed in [44].
Four types of smart contracts are used to: i) manage ABAC policies, ii) validate access
requests and their responses, iii) manage private data in IoT, and iv) manage access records.
IoT data are split into public and private data. Public data are stored in the cloud,
whereas confidential and sensitive data are stored in the blockchain. After the grantee
sends a request to access private data, a smart contract tries to authenticate the grantee
by employing an access control policy defined by the granter. If this process is successful,
the requested private data is obtained by the grantee. After the access, an access record is
created based on the grantee’s attributes and stored in a blockchain network.

Dramé-Maigné et al. [31] proposed a distributed ABAC framework based on blockchain
technology and the trustworthiness of subject attributes. The authors introduce distributed
components, namely Attribute Issuing Entities (AIEs) that are capable to access blockchain
to retrieve requester subject’ attributes and endorse them. Security administrators estab-
lish the trust values for AIEs in the initialization phase. Trust values of AIEs are employed
to calculate the trust values of the subject attributes (e.g., if a trusted AIE endorses a
subject attribute, the trust value of the subject attribute has a high trust value). A policy
contains a minimum trust level value as a threshold assigned by the security administrator.
The threshold of the policy is required to be passed by the computed trust values of the
subject attributes of the requester and if all required attributes pass this threshold, access
is granted. Their framework employs two types of smart contracts, where the first type
enables the security administrator to update trust values of AIEs remotely, whereas the
second type keeps track of users’ attributes on the blockchain.

3.2 Access Control Solutions With Emergency Management
Support

In this section we analyze state-of-the-art access control solutions that support emergency
management based on either Break-The-Glass policies or emergency policies. The great
majority of access control solutions that support emergency management do not explicitly
target IoT environments, only a few exceptional works such as [87], [82] target IoT envi-
ronments. Even though many access control solutions in the literature do not specifically

3https://mosquitto.org/
4https://hyperledger-fabric.readthedocs.io/en/latest/index.html



CHAPTER 3. RELATED WORK 33

aim at functioning within IoT environments, they can be adapted to be used within IoT
environments with minor updates. Thus, we enlarge our scope just for this section by not
only considering access control solutions that target IoT environments but also considering
access control solutions that do not explicitly target IoT environments. Note that, since
Table 3.1 present the summaries of the state-of-the-art papers that only target IoT environ-
ments, we only insert in this table the access control solutions for emergency management
targeting IoT environments.

3.2.1 Emergency Management Based on Break-The-Glass Policies

The great majority of approaches to handle access control during emergencies employ the
break the glass (BtG) paradigm, according to which, during an emergency a user requests
and gains access to resources which in normal situations would not be permitted.

A seminal work is the one by Brucker and Petritsch [18] that proposed an approach
to integrate BtG policies into access control models. The proposed mechanism relies on
BtG policies that extend the privileges granted by regular policies, allowing a fine grained
control over protected resources. In case of break the glass requests during an emergency,
the access decision is derived from the applicable active BtG policies. The same authors
in [19] investigated the integration of BtG mechanisms with Attribute-based Encryption
(ABE), which is a technique that uses public key cryptography to enforce fine-grained access
control based on user attributes. The approach proposed in [19] is based on a hierarchy
of emergency attributes employed to encrypt and decrypt data resources. Emergency
attributes denote emergency severity levels activated / inactivated by a central authority,
and are used to encode BtG policies. A BtG access is only possible when the emergency
attribute required for decryption is active and the same attribute was active at encryption
time.

Oliveira et al. [28] proposed a cloud enabled framework where a BtG mechanism is used
to grant medical personnel the access to encrypted medical data managed by a cloud based
application during emergency situations. Their framework revokes BtG accesses that are
granted to the authorized medical personnel in the case the treatment is no longer needed.

Belguith et al. [13], proposed a BtG access control approach that leverages on: i)
Shamir’s secret sharing scheme [77], to derive secret shares from a secret access key, ii)
ABE, used to encrypt the secret shares, and iii) QR encoding of the encrypted shares. In
order to execute a BtG access users have to scan QR codes and recover individual keys
with their attributes.

Tu et al. [81] propose a framework that provides the ABE-based access control in
ordinary situations and the break-glass access control in emergency situations. The key
point of the proposed framework is to move data decryption and the access control policy
update tasks to the fog and cloud environment to reduce the computation on the user side.

Marinovic et al. [57], proposed a BtG model that employs a logic programming language
to reason about unknown and conflicting information in policy decisions, and a policy
specification language that allows security administrators to rule break-glass accesses. More
precisely, their policy specification language does not assume that each contextual condition



CHAPTER 3. RELATED WORK 34

can be correctly established, thus, the security administrators can define the policies that
contain decision gaps or conflicts by using this language. The authors also provide an
enforcement model comprised of Break-the-Glass Policy Decision Point (BPDP), which
evaluates the Break-the-Glass policies against access requests, and a Break-the-Glass Policy
Enforcement Point (BPEP), which enforces authorization decisions.

Several BtG extensions have also been proposed for RBAC (e.g., [35, 58, 61]). In [35],
the authors integrate the core RBAC model with BtG obligations that need to be per-
formed before BtG access. Once a user requests to access a resource, their authorization
framework makes one of these three decisions: grant the requested privilege normally, deny
the requested privilege, and deny the requested privilege but grant break-the-glass priv-
ileges, if any policy related to the requested resource is configured with BtG obligations
and if they are satisfied by users.

Nazerian et al. [61] introduced the concept of the emergency roles which are assigned
to the users by their framework after the users request to have them in order to obtain
additional privileges during emergencies. More precisely, under emergencies, a user makes a
request to have a proper emergency role, and related obligations (e.g.,notifying the superior)
for the emergency role must be performed by the user before obtaining the emergency
role. The authors in [58] optimize the authorization framework proposed in [35] in terms
of reducing memory and storage space for the BTG policies by employing a lightweight
policy language (Ponder2) to define BTG policies.

The abovementioned papers have not been designed for IoT applications. Now let us in-
troduce access control solutions for IoT environments that provide emergency management
support based on the break-the-glass paradigm.

Yang et al. [87] propose a password-based break-glass access control mechanism for IoT-
based healthcare ecosystems. The authors employ Attribute-based encryption (ABE) to
handle access control in the ordinary situations. More specifically, each subject is assigned
a secret key bound to his/her respective set of attributes and the patients specify access
policies on their medical data under ordinary situations. In their framework, medical data
of patients are encrypted and stored in the cloud. The subject employs his/her secret key
to access encrypted medical data of the patient in ordinary situation, if his/her attributes
satisfy the access policies defined by the patient. For emergency situations, the patient
specifies a password and shares this password with the designated and trusted subjects who
can extract the break-glass key from the shared password during emergency situations. In
emergency situations, the break-glass key is employed to access encrypted medical data
from the cloud and decrypt them. The same authors in [88] optimize their framework by
finding and eliminating redundant and repeated encrypted medical data to save storage
space in the cloud storage system. Another ABE-based approach for IoT-based healthcare
ecosystems has been presented in [9], however, the authors propose a very similar approach
as in [87] with only different implementation details.

Tasali et al. [79] propose an ABAC framework complemented with the Break-the-Glass
features for medical IoT environments. In their framework, the BtG access can be requested
per patient or the group of patients by the medical personnel and the BtG accesses do not
have a predefined duration, once the medical personnel does not need the BtG accesses,



CHAPTER 3. RELATED WORK 35

he/she explicitly signals the end of the accesses.
We are also aware of an effort that offers a generic Break-the-Glass access control frame-

work for IoT environments [82]. A key feature of [82] is the ability to detect emergencies
from contextual information generated by IoT sensors. On prediction of an emergency,
users are notified of the predicted situation, and contextually, the related break-glass poli-
cies are activated. The system then waits for possible break-glass requests.

3.2.2 Emergency Management Based on Emergency Policies

We are only aware of two approaches to emergency detection and data sharing regulation
in emergency situations (i.e., [21,51]), based on emergency policies; however, none of them
targets IoT ecosystems.

Kabbani et al. [51] proposed an approach to enforce ABAC policies in ordinary and
emergency situations. In their framework, ordinary and emergency situations are detected
employing a CEP based approach. However, the authors do not provide a systematic
approach to gather events from event sources and to bind events to ordinary and emer-
gency situations. Moreover, they do not experimentally evaluate the performance of their
framework.

Carminati et al. [21] proposed a framework to enforce controlled information sharing
under emergency situations, which employs a CEP system for emergency detection. In [21],
emergency policies regulate the generation of temporary access control policies that override
ordinary privileges in emergency situations. Once an emergency is detected, the applicable
temporary access control policies are generated, stored in local repositories and kept active
until either another emergency is detected or the current emergency is over.

We are also aware of a CapBAC framework [27] which provides access control and dele-
gation mechanism within interconnected MQTT-based IoT environments. Their framework
focus on data communication among the devices of a smart building and central emergency
center after an incident happens in the smart building. The authors deploy an MQTT bro-
ker into the smart building environment and another MQTT broker outside the smart
building, and establish a bridge connection between these brokers to allow remote users
to access the shared data in the smart building. During an emergency incident, the local
emergency management system, which is comprised of the IoT sensors deployed in the
smart building, notifies the central emergency center, which is located in a remote environ-
ment. Then, the central emergency center delegates the required access permissions to data
required by every rescue team which is located in a remote environment. The delegation
mechanism relies on the delegation capabilities that show which users hold the rights to
delegate their access permissions. While the general idea of this paper is interesting, the
authors do not specify how the combination of IoT sensors is used to detect emergencies
and how the central emergency center responds to different emergency levels.

The summary of the analysis throughout this chapter, which is given in Table 3.1,
presents that most of the state-of-art access control solutions for IoT environments rely on
centralized architectures. Since regulating data sharing across interconnected IoT environ-
ments has not been analyzed sufficiently in the literature (except for [37]), our access control



CHAPTER 3. RELATED WORK 36

framework introduced in Chapter 4 targets regulating data sharing across interconnected
IoT environments by proposing a decentralized approach.

Moreover, to the best of our knowledge, none of the examined state-of-the-art access
control for IoT environments throughout this chapter targets both emergency detection and
regulating data sharing during emergency situation by enforcement of emergency policies.
Our access control framework introduced in Chapter 5 targets regulating data sharing
during the emergency and ordinary situations by enforcing emergency and ordinary policies
respectively.

Table 3.1: Summary of the State-of-the-art review

Reference Access Control Model Architecture Emergency Management

[42] CapBAC centralized no

[27] CapBAC centralized Emergency Policy approach without
emergency detection

[46] CapBAC distributed no

[14] CapBAC distributed no

[86] CapBAC distributed no

[60] CapBAC distributed no

[56] CapBAC distributed no

[49] CapBAC distributed no

[84] UCON centralized no

[52] UCON distributed no

[29] UCON distributed no

[43] RBAC centralized no

[33] RBAC centralized no

[11] RBAC centralized no

[6] RBAC centralized no

[22] ABAC centralized no

[38] ABAC centralized no

[30] ABAC centralized no

[37] ABAC distributed no

[55] ABAC distributed no

[44] ABAC distributed no

[31] ABAC distributed no

[79] ABAC centralized BtG approach

[87] ABE based on ABAC centralized BtG approach

[88] ABE based on ABAC centralized BtG approach

[9] ABE based on ABAC centralized BtG approach

[82] - centralized BtG approach



Chapter 4

Regulating data sharing across
multiple Iot environments

4.1 Introduction

Internet of Things (IoT) applications are starting to be massively integrated into our lives
[68] by providing advanced analysis services which leverage data generated by different
IoT devices. Even though the benefits of these services are manifold, a trade-off between
service utility and user privacy need to be considered [54], as these applications represent
a potential threat to user privacy [68].

In the last years, research has coped with this issue by proposing several data protection
solutions for IoT. In particular, for what access control is concerned, different approaches
have been designed. Many access control solutions have been proposed for cloud-enabled
IoT applications, which leverage on a centralized infrastructure that controls the communi-
cation and the activities of any node of an ecosystem (e.g., [4,5,34,41]). Other access control
frameworks target IoT applications designed to control device behavior at the edge of the
system [65]. However, the majority of the approaches in this category aims at regulating
the access to data generated and exchanged within a single ecosystem (e.g., [22, 52]).

In contrast, an increasing number of IoT applications rely on IoT devices distributed
across multiple ecosystems. For instance, Wang et al. [85] propose a collaborative edge
computing framework for vehicular networks, which, by means of inter-ecosystem and intra-
ecosystem collaborations, allows data sharing among network edges. Similarly, Zhang et
al. [89] propose an edge computing framework, which, by means of virtual views of the data
built by data owners for specific end-users, allow users of different ecosystems to share data.

Distributed architectures advocate parallel forms of data processing, and allow extend-
ing the scope of the sensed data to multiple ecosystems [83]. In addition, the independence
from a centralized cloud-based infrastructure that remotely controls any aspect of an ecosys-
tem favors better performance. However, along with these potential benefits, distributed
approaches bring serious security threats, such as the possible disclosure of reserved data
to unauthorized devices of other ecosystems.

37



CHAPTER 4. REGULATING DATA SHARING ACROSSMULTIPLE IOT ENVIRONMENTS38

In this chapter, we do a first step to address this issue, by proposing an ABAC frame-
work to regulate data sharing among interconnected MQTT-based IoT ecosystems. Due
to the pervasivity of many IoT scenarios, the proposed approach provides support for fine
grained, contextual access control policies. For instance, let us consider the case of an
Internet of Sport (IoS) (MyPersonalTrainer) which is introduced in Chapter 2. Simply,
when deployed on exercise bikes, the MyPersonalTrainer app allows the gym frequenter
to participate in cycling races, sharing data such as the current speed, and the covered
distance. An access control policy that regulates data sharing across gyms may limit the
exchange of rider performances to the race duration, granting the access only to the set of
users registered for the race.

In addition, to enhance user control on the data generated by the administered devices,
our framework allows users to specify their own preferences, which restrict the privileges
granted by access control policies. For instance, a rider wishing to enforce a stricter pri-
vacy protection, may specify a user preference that, during a competition, filters out the
identifiable data from the data shared with the riders of other gyms.

The framework proposed in this chapter extends [22], where an ABAC model has
been proposed to control the communication of IoT devices operating in a single MQTT-
based ecosystem. The proposed extension provides support to access control policies and
user preferences that regulate data sharing among bridged MQTT-based ecosystems. Our
framework also integrates an enforcement monitor, which regulates the data sharing, oper-
ating as an MQTT broker proxy that alters the communication flow between interconnected
ecosystems. The monitor can be easily integrated into existing MQTT deployments, with
basic configuration activities. The efficiency of the monitor prototype has been exper-
imentally assessed, showing a reasonably low enforcement overhead in different testing
scenarios.

To the best of our knowledge, the framework proposed in this chapter is among the
earliest edge-based access control approaches that allow regulating data sharing across
interconnected IoT ecosystems. We are only aware of another pioneering work by Carranza
and Fong [37], which proposes an approach to regulate the interaction of message brokers of
different ecosystems. However, [37] does not take into account context related information,
operates at coarse grained level, and does not allow users to customize data sharing on the
basis of their preferences.

The remainder of the chapter is organized as follows. Section 4.2 presents the adopted
access control model, whereas Section 4.3 provides an overview of the proposed solution.
Section 4.4 introduces the enforcement mechanism, and finally in Section 4.5 we present
the experimental evaluation.

4.2 Access control across different MQTT environments

To manage data sharing across different IoT ecosystems, we enhance the model in [22],
with the ability to regulate message exchange among MQTT publishers and subscribers
possibly belonging to different ecosystems. As a reminder, we have introduced the MQTT



CHAPTER 4. REGULATING DATA SHARING ACROSSMULTIPLE IOT ENVIRONMENTS39

protocol in Chapter 2.1.
In what follows, we refer to a scenario where two MQTT-based ecosystems, respectively

referred to as local and remote, communicate to each other by means of interconnected
brokers. We denote two brokers as interconnected when one of them has been configured
as bridging broker and specifies the other one as connection target.

The main differences with previous model version are related to subject, access control
policies and user preferences.

A subject s can denote : i) a client of the local ecosystem who connects to the local
broker with the aim to publish or receive messages, possibly on behalf of a user,1 ii) a local
broker of one ecosystem which aims at exchanging application messages with a remote
ecosystem, or iii) a bridging connection through which a bridging broker communicates
with a remote broker. A local broker may forward messages published by its local clients
to a remote broker, as well as receive messages published in a remote ecosystem which then
will be forwarded to the rightful subscribers of its ecosystem.

As in [22], access control policies are specified to grant subjects the read or write access
to messages referring to a set of topics. Like in [22], if the subject is a client, the read
privilege represents the right to receive messages on a subscribed topic, whereas the write
authorization specifies the right to publish a new message. In contrast, if the subject
is a broker or a bridging connection, a read authorization represents the right to receive
messages that have been published in a remote ecosystem, whereas a write authorization
specifies the right to forward messages to a remote ecosystem. Policies granting read/write
privileges to a broker are specified by the security administrators of the ecosystem that
hosts the broker.

As we explained in Def.2.1 at Chapter 2.2.1, an access control policy p is a tuple ⟨s, tf,
exp, pr⟩, where s refers to the subjects constrained by p, tf specifies a topic filter expression,
exp is a parametric predicate, whereas pr specifies the read /write privileges granted to
s if exp is satisfied. This definition is still applicable to formalize the concepts of access
control policy.

The only difference is that component s of p in Def. 2.1 can also refer to a broker,
or to a specific connection of a bridging broker. If s refers to a broker, the read/write
privilege granted by p models the broker privilege to receive/forward messages. If s refers
to a bridging connection, the granted privilege applies to the bridging broker that handles
the connection specifying the broker communication ability for this connection.

Example 4.1. Let us now focus on policies regulating brokers interaction specified for
our running case. A policy p

2
=⟨MyGym, +/performance/ts/+, isOpeningHour(t), rw⟩

authorizes MyGym’s broker to forward and receive messages encoding performance data of
runners attending a training session ts during MyGym’s opening hours. Since no bridging
connection is explicitly referred, the privilege applies to any connection. A similar policy,
p
3
, can be specified for the RemoteGym’s broker as ⟨RemoteGym, +/performance/ts/+,

1MQTT allows specifying a user name within CONNECT control packets (see Table 2.1), with the aim
to support authentication mechanisms. However, user names are not mandatorily specified.



CHAPTER 4. REGULATING DATA SHARING ACROSSMULTIPLE IOT ENVIRONMENTS40

isOpeningHour(t), rw⟩. In contrast, a less restricting policy can be specified for the An-
alyzer’s broker as p

5
=⟨Analyzer, +/performance/#, true, r⟩. This policy authorizes the

Analyzer’s broker to receive, from any MyGymBrand’s gym, messages on topics referring
performance data of any training session.

Users can further constrain the access to messages published on their behalf, through
user preferences. In the extended model, user preferences can either restrict the read access
to published data by clients, or brokers forwarding privileges.

For instance, users may specify user preferences requiring that their running data are
only shared within the sport hall where data have been sensed, without being tracked,
analyzed, or forwarded to frequenters of other gyms.

In order to allow users to restrict brokers forwarding privileges, the user preference
definition (see Def. 2.2 in Chapter 2.2.1) has been enhanced with an additional component,
denoted bp, which allows specifying the forwarding preference. bp may refer to: i) the name
of a target ecosystem te, if an user preference up constrains the forwarding to te only, ii) *,
if up constrains the forwarding to any remote ecosystem, or iii) ⊥, if up applies to the read
access to the referred messages by subscriber clients. On the basis of bp, the parametric
predicate exp specifies a precondition: i) to the forwarding of a protected message to a
remote ecosystem, or ii) to the receiving of the message by rightful subscribers.

Example 4.2. Now let us reconsider the user preference up
1
introduced in Example 2.5 that

exemplifies the user preference in the preliminary work [22]. As a reminder, in Example 2.5
Mary, who is a frequenter of MyGym, limits to Alice, who is a coach of MyGymBrand, the
privilege to access Mary’s performance data related to the training session ts by specifying
user preference up

1
.

Now in our current access control model the same user preference can be redefined as:
up

1
=⟨Mary, +/performance/ts/+, ⊥, s.rid=“coach”∧ s.uid=“Alice”⟩. It is worth noting

that during Mary’s training session, depending on the work shift, Alice may be working
within MyGym or RemoteGym, however, the effect of up

1
is independent from the gym

where Alice works when Mary is training. In addition, Mary, who does not agree to be
tracked by the analysis server, specifies the preference up

2
=⟨Mary, +/performance/ts/+,

Analyzer, false⟩, which prohibits the sharing of her training session data with that server.
Let us also consider the user preference up

3
=⟨Bob, +/performance/ts/+, RemoteGym,

false⟩, specified by Bob, a frequenter of MyGym. up
3
prohibits the forwarding of Bob’s

performances during the training session ts to RemoteGym.

User preferences restrict the privileges which are granted by access control policies,
constraining the reading privileges of subscribed clients, and the broker ability to forward
messages to a broker of a different ecosystem. More precisely, a subscriber subject s of a
given ecosystem re can read a message m published on a topic tp by a publisher subject
ps operating within re on behalf of a user u iff within re: i) there exists an access control
policy p that grants s read access to tp and ii) there exists at least one user preference
up, among those specified by u with a topic filter expression that is matched by tp, which
grants s read access to tp. In case s and ps belong to different ecosystems, additional



CHAPTER 4. REGULATING DATA SHARING ACROSSMULTIPLE IOT ENVIRONMENTS41

checks are required to allow the forwarding of m from the ecosystem of ps to the one of s.
Let us denote with se and pe the ecosystems of s and ps, respectively, whereas bpe and bse
denote the brokers of these ecosystems. bpe can forward to bse a message m published on
a topic tp by a subject ps of pe on behalf of a user u iff within pe: i) there exists an access
control policy pw that grants bpe the write access to tp, and ii) there exists at least one user
preference up among those specified by u with a topic filter expression that is matched by
tp, which grants bpe write access to tp. A message m forwarded by bpe can be received by
bse iff within se there exists at least one access control policy pr that grants bse read access
to tp.

Example 4.3. Let us suppose that Mary and Bob are registered to a course of MyGym,
and that they are attending the training session ts, which, within RemoteGym, is coached
by Alice. Let us assume that Bob and Mary are running on the tapis roulants tpr

1
and

tpr
2
, which have been configured to share performance data of all runners attending the

training session.
Let us consider a policy p

1
which grants frequenters enrolled to a gym course the privilege

to publish performance data and read performance data of other trainees. p
1
can be specified

as: ⟨frequenter, +/performance/ts/+, isEnrolled(s.sid),rw⟩, where isEnrolled(s.sid) is a
function that checks whether the subject s.sid is enrolled to a gym course.

The publishing and receiving of data is regulated by policy p
1
, which grants any fre-

quenter that is enrolled to a gym course and is attending a training session ts, the privilege
to publish messages specifying his/her performances, and to receive messages over topics
specifying performance data of other runners attending ts. The publishing by tpr

1
and tpr

2
of messages referring Mary and Bob performances during ts, complies with p

1
, therefore,

both tpr
1
and tpr

2
are authorized to publish. However, the user preference up

1
specified

by Mary, constrains the receiving of messages published by tpr
1
(see Example 4.2), as no

frequenter or coach, but Alice, can access Mary’s data. Therefore, on the basis of the
applicable policies and preferences, during ts, Mary can see Bob’s performance, whereas
Bob cannot see Mary’s data. According to policy p

2
(see Example 4.1) performance data

published by tpr
1
and tpr

2
can be forwarded by MyGym broker to any remote ecosystem.

However, the forwarding of Mary’s and Bob’s data is constrained by the user preferences
up

2
and up

3
(see Example 4.2). More precisely, due to up

2
, Mary’s data cannot be sent

to the Analyzer’s broker, however, no preference prohibits the forwarding to RemoteGym.
In contrast, on the basis of up

3
, Bob’s data cannot be forwarded to RemoteGym, but no

restriction has been specified for Analyzer. The receiving of Mary’s forwarded messages
by the RemoteGym’s broker is regulated by policy p

3
(see Example 4.1), which authorizes,

during the opening hours of RemoteGym, the receipt of messages over performance related
topics referring to the training session ts, which have been forwarded by MyGym’s broker.
Similarly, according to p

5
, Analyzer can receive messages over performance related topics

of any training session which have been forwarded by MyGym’s broker, thus it can also
receive Bob’s data.

Once the forwarded message m is received by bse, m can be dispatched to the rightful
subscribers of se. More precisely, m can be accessed by a subscriber subject s of se iff: 1)



CHAPTER 4. REGULATING DATA SHARING ACROSSMULTIPLE IOT ENVIRONMENTS42

within se there exists at least one access control policy pr which grants s the read privilege
to messages on topics that match a topic filter expression that is also matched by tp, and
2) the access complies with at least one of the user preferences specified by the original
publisher of m within pe.

Example 4.4. Let us now focus on the routing, within the RemoteGym ecosystem, of mes-
sages on performance related topics, which have been originally published by tapis roulant
tpr

1
on behalf of Mary, and then forwarded to the RemoteGym ecosystem by MyGym’s

broker (see Example 4.3). Alice’s app, has been configured to subscribe the receiving of per-
formance data published by any device. However, the receipt is regulated by the applicable
access control policies and user preferences. More precisely, the receiving requires the joint
satisfaction of the policy p2 (see Example 4.1), which grants Alice the privilege to receive
messages on performance related topics during her working shift, and the user preference
up

2
(see Example 4.2), specified by Mary, which grants the access to Alice only. Due to

up
1
, no client within MyGym and RemoteGym is authorized to access Mary’s data, but

those requesting the access on behalf of Alice.

4.3 Overview

Now we present an overview of architectural aspects of the proposed framework. We target
an application scenario where two MQTT-based ecosystems, each composed of multiple
MQTT clients and a local broker. Inter-ecosystem communication is achieved by configur-
ing the local broker of one of the two ecosystems as a bridging broker specifying the other
broker as connection target.

The proposed framework enhances the approach introduced in [22], which targeted the
regulation of message flow within a single ecosystem, with the ability to regulate the com-
munication of MQTT clients of different IoT ecosystems. More precisely, the enforcement
monitor proposed in [22], denoted in what follows as local monitor, has been enhanced
to enforce user preferences possibly specified within a different ecosystem. Additionally,
a new enforcement monitor, denoted as bridging monitor, has been designed, which, on
the basis of access control policies and user preferences, regulates message passing between
interconnected brokers.

The proposed approach requires to interpose the local monitor between the local clients
and the respective brokers, and the bridging monitor in between the brokers of the inter-
connected ecosystems. More precisely, 1) the clients of each ecosystem are configured to
connect to the respective monitors rather than directly to their brokers, 2) the local mon-
itors are connected to the respective local brokers, 3) the local broker, which has been
configured as a bridge, specifies the bridging monitor as connection target, and 4) the
bridging monitor specifies the local broker of the other ecosystem as connection target. As
such, the local monitors of the connected ecosystems behave as proxies of the respective
brokers, and are the only components that can communicate with the brokers on behalf of
their clients. In contrast, the bridging monitor behaves like a proxy of the broker referred
to as connection target of the local bridging broker, and is the only component enabling



CHAPTER 4. REGULATING DATA SHARING ACROSSMULTIPLE IOT ENVIRONMENTS43

Figure 4.1: A high level view of the system architecture in [24]

the communication between different ecosystems. Figure 4.1 presents an high level view of
the system architecture. The designed approach does not require ad-hoc implementations
of clients and brokers, and it is independent from specific client and broker versions. The
local and bridging monitors can also operate within heterogeneous environments, where
different versions of clients and brokers cooperate.

According to the system architecture shown in Figure 4.1: 1) local MQTT brokers
are deployed in different trusted LANs, whereas 2) MQTT clients in untrusted external
networks, 3) whereas the local monitors and the bridging monitor are hosted by DMZ
proxies at the LAN interfaces. Firewalls placed at the interfaces of these three DMZ
proxies are configured to prohibit unmediated connections with the local brokers.

The activities of the local and bridging monitors are subject to access control policies
and user preferences (cfr. Section 4.2) regulating the communication within each ecosystem,
and between interconnected ecosystems. Access control policies and user preferences are
handled by key-value datastores, deployed in the interconnected ecosystems. The policy set
handled by each datastore allows regulating the internal communication in the respective
ecosystem, as well as the messages exchanged with the other ecosystem. The bridging
monitor accesses the policy sets of both datastores, whereas the local monitors only the set
in the datastore of the respective ecosystem.



CHAPTER 4. REGULATING DATA SHARING ACROSSMULTIPLE IOT ENVIRONMENTS44

4.4 Enforcement

In order to ensure that the internal message flows, the local monitors analyze and possibly
alter the flow of MQTT control packets exchanged by their clients, whereas the bridging
monitor performs similar operations on the flow of packets exchanged by the brokers of
the two ecosystems. In the remainder of this section, we first present the rationale of the
enforcement mechanism, and then we focus on its specification details.

4.4.1 Enforcement rationale

The message passing within a target ecosystem is regulated by instances of the enforcement
monitor proposed in [22] and summarized in Section 2.2.2, which have been enhanced to
enforce user preferences possibly specified within a different ecosystem. The enhanced ver-
sion of the monitor differs from the original one for the management of security metadata,
instrumental to access control. Indeed, different from [22], during the analysis of client
publishing requests, along with the user preferences, the monitor embeds into the analyzed
packet’s payload the subject, object, and environment attributes that model the context
within which the publishing request has been issued. Similarly, during the analysis of pub-
lishing requests the monitor extracts all these attributes along with user preferences from
the packet’s payload, deriving the context in which: i) the message has been originally
published, and ii) should be received by the subscriber. The monitor evaluates the embed-
ded preferences wrt all derived attributes. Finally, before issuing a message to a rightful
and authorized subscriber, the monitor removes from the packet’s payload all previously
embedded metadata.

Let us now focus on the communication between ecosystems, which is regulated by the
bridging monitor. By assumption, the local broker of one of the two ecosystems has been
configured as a bridging broker specifying the bridging monitor as connection target.

Message sharing between the two ecosystems is subject to the bridging rules that con-
figure the communication abilities of the local brokers (cfr. Chapter 2). Hereafter, we
refer to bridging rules whose component dr has been set to out as output bridging rules,
and to in as input bridging rules. Output bridging rules specify the topics of the messages
published within the local ecosystem that can be forwarded to the broker of the other
ecosystem, and the remapping criteria with which the topic of a message is modified before
the message is actually forwarded, whereas input bridging rules specify the topics of the
messages published within the connected ecosystem which the local broker subscribes to
receive, and the criteria with which the topic of the received messages is remapped before
they are forwarded to a rightful local subscriber. As a first step, the local broker of the
ecosystem where the bridging monitor is hosted sends a connection request to the bridging
monitor, which in turn forwards the request to the local broker of the other ecosystem, as it
was the original sender of the request. If the request is accepted, a communication channel
connecting the two local brokers is open, which is controlled by the bridging monitor. In
what follows, we denote as connecting broker the local broker that sends the connection
request, whereas the other is denoted as target broker. Through the established channel,



CHAPTER 4. REGULATING DATA SHARING ACROSSMULTIPLE IOT ENVIRONMENTS45

the connecting broker sends a subscription request for any input bridging rule,2 and then
waits for control packets issued by local clients and by the bridging monitor.

The bridging monitor has been designed to forward any control packet received by the
local brokers to the respective receiver, except packets encoding publishing requests which
require additional operations.

Let us first consider publishing requests originating from the ecosystem managed by the
connecting broker. For any received publishing request issued by a local client that matches
an output bridging rule, the connecting broker remaps the topics of the packet (see Chapter
2) and forwards the request to the bridging monitor. On the packet reception, the bridging
monitor extracts from the payload: 1) the user preferences specified by the subject who
has originally requested the publishing, and 2) the attributes that model the publishing
request context.3 Then, the bridging monitor selects from the extracted preferences those
constraining message forwarding to the other ecosystem, and evaluates them wrt the derived
attributes. If no preference is satisfied, the message is blocked. Otherwise, if at least one
preference is satisfied, the bridging monitor enforces the applicable access control policies.
More precisely, it selects from the policy set of the ecosystem managed by the connecting
broker those policies regulating the forwarding of messages to external ecosystems, and from
the policy set of the ecosystem managed by the target broker those policies regulating the
receiving of messages from external ecosystems. If the forwarding complies with at least
one policy of both sets, the message is sent to the target broker, otherwise the forwarding
is forbidden. In contrast, the target broker, upon receiving a publishing request from the
bridging monitor, forwards, on the basis of the message topic, a copy of the received packet
to communication channels that connect the broker to the rightful subscribers of the other
ecosystem, each controlled by the local monitor. For any message receiver candidate, the
monitor checks whether the considered subscriber, on the basis of the preferences in the
message payload and the applicable access control policies, is authorized to receive the
message, and, in this case, it removes all metadata from the payload and forwards the
packet.

Similarly, the target broker forwards to the bridging monitor any publishing request
received from a local publisher that matches a previously subscribed topic filter.4 The
bridging monitor handles the publishing request with an approach symmetric to the one just
described for the opposite message flow. The only difference is related to the local broker
management of publishing requests from the bridging broker. Indeed, due to the remapping
criteria specified by the input bridging rules, the topic of the message is remapped before
the message is forwarded to the channels, controlled by the local monitor, which connect
the broker with rightful local subscribers.

2Each subscription request specifies as topic filter the concatenation of the remote prefix (see Section 2.1)
and the topic filter of the considered input bridging rule.

3Such data have been added to the payload by the local monitor.
4We remind that any subscription is achieved on behalf of the local broker on the basis of an input

bridging rule.



CHAPTER 4. REGULATING DATA SHARING ACROSSMULTIPLE IOT ENVIRONMENTS46

4.4.2 The enforcement mechanism in details

We start to consider configuration aspects enabling broker to broker communication within
the system architecture introduced in Section 4.3, which are instrumental to the proposed
enforcement mechanism.

Let us hereafter refer to the bridging monitor as bm, and let us denote as lb the local
broker that has been configured to operate as bridging broker specifying the bridging
monitor bm as connection target, whereas we denote with rb the broker of the other
ecosystem.

On behalf of local clients, and on the basis of the configured bridging rules (cfr. Chapter
2), lb can publish messages to rb, and can subscribe the receiving of messages published
within rb’s ecosystem.

The interaction of lb and rb starts with a connection request cp
CN

, sent by lb. Upon
receipt of cp

CN
, the bridging monitor bm extracts the credentials of lb from the CONNECT

control packet, and forwards the packet to rb. rb authenticates the subject and replies with
a CONNACK control packet cp

CA
, which is received by bm and then forwarded without

any modification to lb. cp
CA

specifies whether the connection request has been accepted
or refused by rb, and, in the latter case, the cause. If cp

CA
encodes the acceptance of the

connection request, lb can start communicating with rb.
Once the connection has been established, for any input bridging rule ibr that has been

specified for lb, lb sends a SUBSCRIBE control packet cp
SB

to rb, specifying as topic filter
the expression resulting from the concatenation of the components rp and tp of ibr. bm
receives cp

SB
and forwards it to rb, which keeps track of the topic filter rp+tf, and sends

back a SUBACK packet notifying the receiving of the request. Once received by bm, the
acknowledgement is forwarded to lb, which, on the basis of the specified bridging rules, is
now ready to forward messages published by its local clients to rb, as well as to receive
messages published in the rb’s ecosystem.

We now focus in more details on the enforcement mechanism implemented by the bridg-
ing monitor, whose joint work with the local monitors allows regulating the communication
of clients belonging to different ecosystems.

Let us start to consider the forwarding of messages published within lb’s ecosystem. The
payload of any publishing request cp

PB
received by lb includes: 1) the user preferences,

if any, specified by the user, on behalf of whom the message has been published, and 2)
the subject, object, and environment attributes which model the context within which the
publishing request has been issued. If the topic tp referred to by cp

PB
is matched by an

output bridging rule obr of lb, lb remaps the topic. prepending to tp the remote prefix
rp of obr. The resulting control packet, referred to as cp

PB’
, is then forwarded to bm,

which, by assumption, has been specified as connection target of lb. Upon the receipt of
cp

PB’
, bm extracts from the packet’s payload the user preferences and the subject, object,

and environment attributes. For any included user preference up, bm checks whether up
constrains the forwarding of cp

PB’
to the ecosystem managed by rb, and, in such a case.

evaluates the parametric predicate exp of component bp of up (see Section 4.2) with respect
to the extracted subject, object, and environment attributes. If the predicate of at least



CHAPTER 4. REGULATING DATA SHARING ACROSSMULTIPLE IOT ENVIRONMENTS47

one of the user preferences that constrain the forwarding is satisfied, bm checks whether
there exists at least one access control policy among those specified in the ecosystem of
lb that authorizes the forwarding, and at least one in the policy set of the ecosystem of
rb that authorizes the import, otherwise the forwarding is blocked. The selection of the
applicable policies in both ecosystems is achieved by matching the topic filter of any policy
p specified for bm, with the topic of cp

PB’
. Policies are evaluated with respect to the

attributes extracted from the payload. If the parametric predicate of at least one policy is
satisfied, bm forwards cp

PB’
to rb, which in turn sends cp

PB’
to its local monitor. The local

monitor then handles the publishing request as described in Section 2.2.2. The approach
used by the bridging monitor to regulate the forwarding of messages published within the
ecosystem managed by rb is similar to the previously explained one. The only difference
is related to the topic remapping task operated by lb. Indeed, on receipt of a publishing
request cp

PB
from the bridging monitor bm, lb, on the basis of the specified input bridging

rules, first redefines the topic of cp
PB

removing the remote prefix, and then forwards the
packet to the local monitor which will handle the request (see Section 2.2.2).

4.5 Performance Analysis

In this section, we first shortly present core aspects related to the implementation of the
bridging monitor, and than we evaluate the efficiency of the proposed enforcement mecha-
nism with two experiment sets.

4.5.1 Implementation

We now shortly discuss implementation aspects of the bridging monitor. 5 A high level view
of the bridging monitor architecture and of the related control flow is shown in Figure 4.2.
The bridging monitor bm has been designed to listen for connection requests from lb.6

Upcoming connections requests are handled by a connection handler, which, on receipt of
a new request from lb, opens a communication channel cc

lb
with the local broker, and one

channel cc
rb

with rb, the local broker of the other ecosystem. The handler also instantiates
a monitoring task mt, which regulates the flow of control packets flowing through cc

lb
and

cc
rb
. A pair of message queues are used to keep track of the messages flowing as input and

output to the bridging monitor through these channels, respectively denoted in
lb
, out

lb
,

in
rb

and out
rb
.7 The monitoring task enqueues packets intended for lb and rb to out

lb
and out

rb
, whereas draws packets issued by lb and rb from in

lb
and in

rb
, respectively. A

pipeline of packet handlers is used by mt for the marshalling of output packets, as well as
for the unmarshalling of packets to be added to the input queues. Any control packet cp

5The local monitors are extended version of the enforcement monitor presented in [22]. The interested
reader can refer to [22] for a detailed description of implementation aspects related to these monitors.

6We remind that lb denotes the local broker that has been configured as a bridging broker specifying bm
as connection target.

7in and out denote the verse of the flow from the monitor perspective, whereas lb and rb denote the
broker associated with the queue.



CHAPTER 4. REGULATING DATA SHARING ACROSSMULTIPLE IOT ENVIRONMENTS48

received as input is handled by mt, on the basis of the enforcement mechanism introduced
in Section 4.4.2. Therefore, on receipt of a publishing request from lb and rb, the applicable
policies are derived and checked. Such policies are stored within kvd

lb
and kvd

rb
, the key

value datastores of the connected ecosystems.

Figure 4.2: Bridging monitor architecture

The proposed framework reuses the same criteria adopted in [22] for the modeling of
access control policies and user preferences within the datastores, as it has been shown that
these favor a very efficient execution of the queries that derive all per request applicable
policies and preferences. The interested reader can refer to [22] for more details.

4.5.2 Experiments

In this section, we experimentally evaluate the efficiency of the proposed enforcement mech-
anism with two experiment sets. Our experiments refer to an application scenario char-
acterized by two MQTT based interconnected ecosystems. One of the local brokers has
been configured to operate as a bridge that considers the other broker as a connection
target. Brokers are instances of Mosquitto v.1.4.108, a popular MQTT broker. We assume
that MQTT clients operating within the local ecosystems are handled by 100 users, each
managing 1 to 4 clients. Clients are distributed between the two ecosystems in such a way
that any user who handles a client in one ecosystem cannot handle a client in the other
one. Clients distribution is carried out on the basis of three configurations. In the first
configuration, the target ecosystem only includes publisher clients, whereas the connecting
one only subscribers. In the second configuration, the distribution criterion is inverted,
whereas, in the third one, publishers and subscribers are equally distributed between the
two ecosystems.9 For each configuration, we consider three deployment options, each in-
volving a different number of clients. The first option refers to a client set of 20 publishers
and 20 subscribers, the second to 100 publishers and 100 subscribers, whereas the third
one involves 200 publishers and 200 subscribers. To more easily make reference to the

8https://mosquitto.org/
9We remind that the connecting ecosystem is the one hosting the bridging broker, whereas the other one

is the target ecosystem.



CHAPTER 4. REGULATING DATA SHARING ACROSSMULTIPLE IOT ENVIRONMENTS49

tested deployment settings, we refer to them as scenarios and we use the notation Si,j ,
where i, j ∈ [1, 2, 3], to denote the scenario corresponding to the i-th deployment option of
the j-th configuration. For instance, S2,3 refers to a scenario where 100 publishers and 100
subscribers are equally distributed between the two ecosystems. The considered scenarios
are summarized in Table 4.1.

Table 4.1: Testing scenarios

Connecting ecosystem Target ecosystem
Scenario #publishers #subscribers #publishers #subscribers

S1,1 0 20 20 0
S2,1 0 100 100 0
S3,1 0 200 200 0
S1,2 20 0 0 20
S2,2 100 0 0 100
S3,2 200 0 0 200
S1,3 10 10 10 10
S2,3 50 50 50 50
S3,3 100 100 100 100

In the considered deployments, publisher clients have been configured to send 1 publish-
ing request per second, whereas a single subscription request is issued by each subscriber
client. Moreover, clients have been configured to issue publishing and subscription requests
specifying all the same Quality of Service level (QoS).

The routing activities of the bridging broker are regulated by the bridging monitor (cfr.
Figure 4.1). This monitor intercepts and possibly alters the flow of the messages exchanged
by the brokers on the basis of the access control policies and user preferences which have
been specified within the local ecosystems. The specified access control policies, 80 per
ecosystem, have been defined in such a way that, 40 policies constrain the local brokers
ability to forward messages to the other ecosystem, whereas the remaining 40 constrain the
local brokers ability to receive messages published in the other ecosystem. User preferences
have been defined in such a way that each user specifies at most one preference which
constrains the corresponding ecosystem’s broker ability to forward messages to the other
ecosystem.

Our experiments aim at assessing the enforcement overhead, by measuring the trans-
mission time, namely the time spent by a message published in one of the ecosystems to
reach a rightful subscriber, and the packets throughput, considered as the number of control
packets which are handled per second.

Experiment 1 Our first set of experiments consider a scenario where neither of the two
ecosystems is equipped with an enforcement monitor, therefore local clients are directly
connected to the respective brokers. The bridging monitor and the clients are hosted by
desktop PCs equipped with i7 64-bit Quad Core CPU and 16 GB of RAM, whereas the
local brokers by Raspberry Pi 3 Model B devices (equipped with a 64-bit Quad Core CPU
and 1 GB of RAM).



CHAPTER 4. REGULATING DATA SHARING ACROSSMULTIPLE IOT ENVIRONMENTS50

In order to analyze the enforcement overhead, for each scenario, we compare the trans-
mission time measured in a deployment devoid of the bridging monitor, with a deployment
where the monitor is active. Two cases per scenario are considered, where all clients issue
their publishing and subscription requests specifying QoS 0 and 2, respectively.

Figure 4.3: First experiment: transmission time analysis

Figure 4.3 shows the transmission time and the overhead measured for each considered
case, as well as the average analysis time of control packets issued by local brokers. The
lower part of each bar shows the transmission time related to deployments lacking the
bridging monitor, whereas the upper part shows the transmission time in deployments
where the monitor is active, and the corresponding time overhead. The average time (per
control packet) is represented by horizontal lines overlying the transmission time bars.

Overall the time overhead related to cases with QoS 2 is always below 45ms, whereas the
one related to QoS 0 is below 37ms, showing reasonably good performances of the bridging
monitor. This behavior is due to the number of control packets that are exchanged per
single publishing request, which, with QoS 2, is higher than with QoS 0. As a matter of fact,
when QoS 2 is specified, for each publishing request, the local brokers also exchange the
control packets cp

PRC
, cp

PRL
, and cp

PC
. However, the analysis of these control packets

requires less time than the analysis of publishing requests (i.e., cp
PB

, namely the only
ones involved in measuring cases specifying QoS 0), as these packets, once intercepted
and recognized by the monitor, are directly forwarded to the respective broker. The low
processing time of these packets lowers the average analysis time of each measuring case.
For this reason, for each scenario, the transmission time related to QoS 2 measuring case
is higher than QoS 0 case, whereas the trend is inverted for the measured average analysis
time. This scheme can be observed with any analyzed scenario. The lowest transmission
times have been measured in scenarios referring to the first deployment option (e.g., S1,3).



CHAPTER 4. REGULATING DATA SHARING ACROSSMULTIPLE IOT ENVIRONMENTS51

The times grow in scenarios that refer to the second deployment option (e.g., S2,3) and
even more in scenarios referring to the third option (e.g., S3,3). This behavior is due to
the number of clients involved, and the volume of messages that need to be handled by
the bridging broker and the bridging monitor. In contrast, the comparison of scenarios
referring to the same deployment option but different configurations show negligible time
variations.

For each considered case, the red bar in Figure 4.4 shows the throughput of the bridging
monitor, whereas the blue bar the throughput of the broker in deployments devoid of the
monitor. The trends in Figure 4.4 are similar to those observed for the transmission time
analysis.

Due to the analysis of policies and preferences that regulate the transit of any control
packet, the rate of packets that is handled is lower than in scenarios with no enforce-
ment mechanism. However, the observed rates combined with the previously considered
transmission times (see Figure 4.3) appear as a reasonably good result.

Figure 4.4: First experiment: throughput analysis

Experiment 2 In the second set of experiments each of the interconnected ecosystems
also includes an enforcement monitor that regulates the ecosystem internal communication.
Therefore, the considered system architecture corresponds to the one shown in Figure 4.2
and discussed in Section 4.3. The bridging monitor and the clients are hosted by desktop
PCs, equipped with i7 64 bit Quad Core CPU and 16 GB of RAM, whereas the MQTT
brokers of the two ecosystems are hosted by two Raspberry Pi 3 Model B devices (64 bit
Quad Core and 1 GB RAM), which also host the local monitors.

In this second set of experiments, we aim at assessing the enforcement overhead intro-
duced by the combined work of the local and bridging monitors.



CHAPTER 4. REGULATING DATA SHARING ACROSSMULTIPLE IOT ENVIRONMENTS52

Figure 4.5: Second experiment: transmission time analysis

The diagram in Figure 4.5 shows, for each considered case, the transmission time related
to a deployment devoid of enforcement monitors, which is matched against the transmission
time measured in a deployment where all monitors are active.

Overall the transmission time is always below 94ms, whereas the time overhead always
below 89ms. Therefore, the addition of the local monitors causes a reasonably contained
growth of the transmission time and the time overhead wrt the first set of experiments.
The same trends that have been observed in Figure 4.3 are also visible in Figure 4.5.

Finally, the diagram in Figure 4.6 shows the measured throughput. For each case, the
red bars show the throughput of the bridging monitor, whereas the blue bars show the
throughput of the broker in deployments devoid of the monitor.

The trends visible in Figure 4.6 are aligned with the ones observed with the first set of
experiments (see Figure 4.4). However, in this case, due to the filtering operated by the
joint work of the local monitors, a lower ratio of control packets per second reaches the
bridging monitor (cfr. Figure 4.4).

Overall, the experiments show an enforcement overhead that is always reasonably con-
tained, even in scenarios where data sharing across ecosystems is regulated by three mon-
itors.



CHAPTER 4. REGULATING DATA SHARING ACROSSMULTIPLE IOT ENVIRONMENTS53

Figure 4.6: Second experiment: throughput analysis



Chapter 5

Regulating data sharing under
emergencies

5.1 Introduction

An emergency is a critical situation that happens suddenly and requires prompt manage-
ment to avoid harmful results. Recent emergencies, such as the COVID-19 pandemic, have
shown that, due to scarcely information sharing, emergency protocols often fail in fully
achieving their goals. For instance, during the COVID-19 pandemic, contact tracing has
been pointed out by the World Health Organization as a strategic tool for contrasting
SARS-CoV-2 diffusion and reducing COVID-19 mortality [62]. However, manual contact
tracing methods proved scarcely applicable, highly demanding in terms of time and human
resources, and overall impractical with a high number of new daily cases. Moreover, peo-
ple’s ability and willingness to derive and disclose sensitive information, as visited places
and persons met, have further hindered their application and efficacy. Contact tracing apps
have addressed the scalability and performance issues of manual methods. However, due
to a scarce perception of the enforced data protection, in several western countries, citizens
proved unavailable to install and use these apps [2]. As a consequence, the efficacy of
contact tracing has been undermined by limited population coverage. These facts suggest
that efficient data sharing is a key requirement for emergency management, and should be
complemented with proper data protection tools.

Efficient emergency management starts with timely identification of an emergency
through the analysis of what has occurred in a target scenario and requires that all re-
sources needed to properly handle the identified emergency could be timely accessed by
authorized subjects. Internet of Things (IoT) technologies provide valid support to the
development of efficient data sharing and analysis services and thus appear well suited for
building emergency management applications. Data can be gathered by manifold types of
smart devices which are nowadays available for different domains. For what healthcare is
concerned, medical wearables and IoT technologies are enabling new forms of diagnose and
care and allow the detection of emergency situations. For instance, during the COVID-19

54



CHAPTER 5. REGULATING DATA SHARING UNDER EMERGENCIES 55

pandemic, the OLVG Hospital in Netherlands started to experiment with wearable biosen-
sors able to detect possible deterioration of suspected or confirmed COVID-19 patients. 1

The work conducted in Netherlands aims to improve the quality of clinical surveillance by
detecting timely health risks of patients.

The management of an emergency requires granting exceptional privileges to subjects,
which in an ordinary situation would not be permitted. For instance, in an ordinary
situation, a physician responsible to provide treatment has to ensure that valid consent
has been obtained from the patient or a delegated person before the treatment can begin.
However, if an emergency occurs and the treatment is finalized to save the patient life, it
can be provided without consent. Nonetheless, all granted exceptional privileges have to
be immediately revoked as soon as the emergency is over.

Though a variety of access control approaches for IoT applications have been proposed
in the literature, just a few of them allow regulating data sharing in an emergency situ-
ation. Almost all of these proposals rely on a permission management approach known
as break the glass(BtG). BtG enables users to request and then gain access to resources
that would not be permitted to him/her in ordinary situations. Though BtG provides
flexible emergency management, it has also drawbacks. Firstly, the accesses executed after
breaking the glass should be traced for later reviews to determine whether they caused
possible information leakage [75]. Secondly, the abuse of BtG policies can lead the system
to an unsafe state [21]. Thus, information sharing in emergency situations can be regulated
by enforcement of emergency policies that grant users all privileges needed for the man-
agement of specific emergencies as soon as they occur, instead of depending on the users’
requests for exceptional access privileges.

Although not targeting the IoT domain, complementary approaches to regulate infor-
mation sharing in emergency situations have been proposed in [21], [51], where emergency
policies were introduced to grant subjects all privileges needed for the management of spe-
cific emergencies, as soon as they occur. Since emergency management plans are expected
to be a priori defined, emergency policies could be specified in such a way to fulfill infor-
mation sharing requirements elicited from the associated plan. As an example, an a priori
defined protocol is expected for the above-mentioned patient monitoring scenario, which,
under specific emergencies, allows medical personnel with certain functions to access pa-
tients’ physiological data (e.g., in case of a severe cardiovascular issue, the privileges should
be granted to cardiologists). Permission management based on emergency policies allows
shorting data access time, as no request to override permission has to be issued, and data
can thus be received by authorized subjects as soon as the emergency begins.

Nevertheless, none of the previous approaches target the IoT domain relying on per-
mission management to employ emergency policies.

This void in the literature motivates us to propose an Attribute-based Access Con-
trol (ABAC) framework to regulate data sharing within MQTT-based IoT applications
in ordinary and emergency situations. The proposed access control framework targets

1https://www.bioworld.com/articles/435384-philips-debuts-wearable-vitals-sign-patch-to-monitor-
covid-19-patients-for-early-intervention



CHAPTER 5. REGULATING DATA SHARING UNDER EMERGENCIES 56

MQTT-based IoT environments since the MQTT protocol is widely adopted within IoT
applications and used in various IoT scenarios. We choose ABAC for two reasons: firstly,
ABAC provides outstanding flexibility, as well as for the dynamic and context-aware na-
ture of the supported policies, these characteristics perfectly fit for the IoT environments,
secondly, ABAC regulates data sharing on the basis of context properties which makes it
a good fit for emergency policy support. As a matter of fact, policy selection requires to
evaluate access request contexts, checking whether the subject that aims at sending and
receiving an MQTT message is involved in emergency situations.

The proposed system is an extension of the framework proposed in [22] that supports
fine grained access control in MQTT environments. Key novel features of the proposed
framework include:

• modeling support required to: i) define the events that trigger an emergency, ii) bind
events to MQTT messages, iii) specify emergency situations along with their possible
evolution, and iv) specify emergency policies;

• emergency management functionalities, such as the ability to: i) detect occurrences
of modeled events starting from the analysis of MQTT control packets exchanged in a
monitored application, and ii) identify the possible evolution of emergency situations.
For event detection, we leverage on a complex event processing(CEP) engine;

• access control capabilities, such as the ability to enforce both regular and emergency
access control policies which apply to an access request issued in a specific context.

To show the feasibility of the proposed approach we apply our framework to a case study
of pseudo realistic complexity related to a MQTT based health monitoring application
employed in a nursing home during COVID-19 pandemic. Our framework is here employed
to regulate information sharing within the considered application, with the aim to ensure
that in ordinary and emergency situations data can only be accessed by authorized subjects.
The proposed case study allows us to exemplify the definition of all modeling artefacts
required to configure the framework for the considered application. The case study has
also been employed for an early performance evaluation of the proposed approach, overall
showing a reasonably low enforcement overhead.

The remainder of the chapter is organized as follows. Section 5.2 introduces a running
scenario that will be used throughout the chapter to exemplify basic framework concepts,
and which will be also developed into a case study. Section 5.3 presents key aspects of
Complex Event Processing(CEP). Section 5.4 presents key concepts related to the pro-
posed event modeling approach, whereas Section 5.5 introduces the foundations of our
access control model. Section 5.6 provides an overview of the framework architecture, and
shortly present the rationale of the enforcement mechanism, which is then more thoroughly
analyzed in Section 5.7. In Section 5.8 we present a case study, and an early experimental
evaluation of the framework performance.



CHAPTER 5. REGULATING DATA SHARING UNDER EMERGENCIES 57

5.2 Running Example

Let us consider an IoT application that aims at monitoring health conditions and behaviors
of patients hosted in a nursing home during Covid-19 pandemic. IoT devices worn by pa-
tients and sensors deployed in the rooms where patients live allow the real-time monitoring
of patients’ conditions. For instance, body temperature and respiratory rate are vital signs
of patients that can be acquired by wearable biosensors, whereas the locations of patients
can be collected by indoor tracking bracelets. The acquired data are stored, and can there-
fore be visualized and analyzed by dedicated monitoring apps used by medical personnel
of the nursing home, by selected relatives of the patients who can check the conditions
of their kin, and even by self sufficient patients who wish to check their own conditions.
Medical personnel has access to physiological and environmental data, whereas patients
and relatives have limited authorizations.

Patients can occasionally face emergency conditions, which require a prompt reaction
of the medical personnel. To effectively manage some emergencies, it is required to share
patients data in critical conditions with external physicians with the aim to promptly iden-
tifying a proper treatment. The monitored data is also used to contrast Covid-19 diffusion.
Temperature and oxygen saturation level reveal potential Covid-19 symptoms and could be
used to notify physicians to make a test. The access to proximity data of infected patients,
and the immediate isolation of potentially infected guests, allow contrasting Covid-19 dif-
fusion [64].

Patients data has to be accessed by authorized users in any possible situation. The
considered scenario emphasizes the need of special policies to enforce access control during
emergencies.

5.3 CEP

A complex event processing (CEP) system is a framework whose primary aim is to under-
stand what is happening in a system under analysis [39]. A CEP system is composed of
a set of event sources, a CEP engine, and a group of event sinks [25]. Event sources are
components devoted to 1) identify changes of monitored system properties, and 2) notify
to the CEP engine a primitive event which denotes the change. A CEP engine is a tool
that identifies the occurrence of specific situations in the monitored system. Situations are
modeled as patterns of events, referred to as complex events, which occur in a time interval
in the monitored system. Event sinks are notified of the occurrence of complex events
by the CEP engine, and are configured to promptly react to the identified conditions. A
notification is an object with fields specifying a time annotation, which refers to the event
generation time, a payload, which specifies the event content and is structured as a data
record, and a type, which constrains the structure of the payload [26].

Example 5.1. Let us consider a thermometer th which is used to monitor a patient’s body
temperature. The events generated by this event source may have payloads composed of
attributes temperature and deviceId, which respectively denote the measured temperature,



CHAPTER 5. REGULATING DATA SHARING UNDER EMERGENCIES 58

and the device identifier. A measured temperature of 37◦C at time ts can thus be represented
as a JSON object: Temperature@ts: {“temperature”:37,“deviceId”:th}, where @ts denotes
the time annotation, and {“temperature”: float, “deviceId”: string} is the associated type.

Complex events are usually specified using platform specific languages. Although no
universally recognized standard modeling language exists for specifying complex events, the
majority of CEP engines allow specifying them within SQL-like queries [39]. In order to
specify complex events abstracting from platform specific details, in this thesis, we employ
the abstract event algebra presented in [39], whose operators are listed in Table 5.1.

Table 5.1: An abstract event algebra for complex event specification [39]

ce::= pe Primitive Event
ce1 ; ce2 Sequence
ce1 ∨ ce2 Disjunction
ce1 ∧ ce2 Conjunction
ce∗ Iteration
¬ ce Negation
σθ (ce) Selection
πm(ce) Projection

[ce]T2
T1

Windowing from T1 to T2

A complex event ce is defined by composition of primitive and complex events, using a
variety of operators (e.g, sequence (;), disjunction (∨), conjunction (∧)).

Additionally, the iteration operator (∗) allows the specification of a complex event as
a set of events of the same type that occur repeatedly. In this case, ce occurs when the
number of referred occurrences is reached.

A complex event ce can also be defined by negation (¬) of another event ce’, meaning
that ce only occurs if ce’ does not occur.

Finally, ce can be modeled as a selection or projection of other events. The selection
operator (σθ) filters events whose attribute values satisfy a condition θ, whereas the pro-
jection operator (πm) extracts only part of the attributes, according to a set of mapping
expressions m.

Any specification of a complex event ce can refer to events that occur in a specific time
interval, specified through the window operator [...]T2

T1
.

Example 5.2. Let us assume that sensors worn by patients periodically issue a primitive
event RespiratoryRatepe, which simply notifies the observed number of breaths per minute
(bpm). A complex event Breathlessnessce which shows a shortness of breath episode observed
in the last 2 days, can thus be defined as: (σ

bpm>25
(RespiratoryRatepe))

now
now - 2 days

5.4 Event Modeling

As presented in previous section, a CEP engine receives the primitive events as the event
notifications and uses them to detect complex events. More specifically, the CEP engine



CHAPTER 5. REGULATING DATA SHARING UNDER EMERGENCIES 59

accepts primitive events from the payloads and types of the event notifications and finds
complex events by analyzing event notifications’ contents and ordering relationships on
them. In this section, we focus on an event modeling for primitive and complex events.

Let us start to focus on the modeling of primitive events, which is achieved starting
from the analysis of MQTT control packets, through the specification of primitive event
types. A primitive event type specifies: 1) the structure of a class of primitive events, 2) the
binding criteria of the considered events to the control packets exchanged in the ecosystem,
and 3) the criteria to derive the event starting from the structural characteristics of the
bound control packets.

A primitive event type is therefore modelled as a tuple ⟨pet, adc, bcr, adf ⟩, where pet
refers to the name of the event type, adc is a set of pairs ⟨id, type⟩ that specifies the
attributes that compose any event of type pet, bcr specifies the binding criteria, namely
the conditions for a cp

PB
control packet to trigger the generation of events of type pet,

whereas adf is a set of pairs ⟨id, exp⟩, where the identifier id refers to an attribute declared
within adc, whereas exp is an initialization expression.

Boolean expressions that specify binding criteria are defined by referring to any struc-
tural property of a candidate control packet cp

PB
(see Table 2.1), such as, for instance,

the topic, the whole payload, or a payload attribute, and employing arithmetical, set and
logical operators and quantifiers, as well as predefined functions. Binding criteria specify
the required characteristics of a bound control packet, referred to as t, referring to t like
it was a JSON object (e.g., t.payload refers the payload of the control packet). The same
specification criteria are also employed for the initialization expressions within component
adf, allowing one to refer to t ’s properties, as well as to the subject, object and environment
attributes related to the publishing request context of t. These attributes are referred to
as fields of the objects s, o, and e, which represent the subject, object and environment
associated with the publishing request t.

Example 5.3. Let us now consider the specification of a primitive event type Temp
for messages published by MQTT thermometers. Let us assume that any publishing re-
quest that includes “temperature” in the topic name is bound to a primitive event of
type Temp, in turn defined as a tuple ⟨Temp, {“temp”: float, “time”: long, “pID”:
string}, t.TopicName.includes(“temperature”), {“temp”:t.Payload.temperature, “pID”:
o.patientID, “time”: e.time}⟩. It is worth noting that the attributes initialization is
achieved referring to internal properties of the message payload,2 and to object and en-
vironment attributes.

Let us now consider the modeling of complex events. Similar to primitive events, their
modeling is achieved through the specification of an event type.

A complex event type is a tuple ⟨cet, adc, ets, exp⟩, where cet specifies the name of
the event type, adc is a set of pairs ⟨id, type⟩ which specify the attributes composing the
payload of any event of type pet, ets is a set that includes the list of identifiers of primitive
and complex event types referred to in the specification of cet, whereas exp is an expression

2As already mentioned in Section 2.1, we assume that message payloads are structured as JSON objects.



CHAPTER 5. REGULATING DATA SHARING UNDER EMERGENCIES 60

defined with the abstract event algebra introduced in Section 5.3, which allows initializing
the value of attributes declared within adc. exp is specified by referring to the event types
in ets, and employing the event algebra operators presented in Section 5.3).

Example 5.4. Let us now consider the specification of complex event type Fever,
used to characterize events denoting that a specified patient has had fever in the last
2 days. Fever can be defined as: ⟨Fever, {“pID”: string, “temp”: float}, {Temp},
(σ

temp > 38
(Temppe))

now
now - 2 days⟩, where Temp is the primitive event type introduced in Ex-

ample 5.3, and Temppe is a primitive event of type Temp.
Similarly, let us assume that primitive event type RespiratoryRate is defined as:

⟨RespiratoryRate, {“bpm”: float, “time”:long, “pID”: string}, t.TopicName.includes(“res-
piratoryrate”), {“bpm”: t.Payload.bpm, “pID”: o.patientID, “time”: e.time}⟩. Referring
to Example 5.2, the complex event type Breathlessness used to represent events notifying
that a patient has had shortness of breath episodes in the last 2 days could thus be specified
as:
⟨Breathlessness, {“pID”: string, “bpm”: float}, {RespiratoryRate},
(σ

bpm > 25
(RespiratoryRatepe))

now
now - 2 days⟩.

The sets of primitive and complex event types specified for an application scenario are
hereafter referred to as PET and CET, respectively.

5.5 Access Control Model

In this section, we present an extension of the ABAC model introduced in Section 2.2,
which allows regulating data sharing within MQTT-based IoT environments in ordinary
and emergency situations.

The proposed model is built on top of some key conceptual elements, respectively
denoted as emergency situation, emergency evolution, and action, which are then used to
define emergency development plans, emergency scenarios and corresponding emergency
policies.

An emergency situation is a critical situation that happens suddenly and requires
prompt management to avoid harmful results. An emergency can evolve into another
emergency, possibly more serious or mild, or it can be solved. Any emergency is character-
ized by a severity level which specifies its severity. In our model, an emergency situation
is a single stage of an emergency scenario subject to possible evolution. Therefore, we
model an emergency situation ems as a pair ⟨sid, lev⟩, where sid specifies the emergency
identifier, whereas lev denotes the related severity level. A severity level is an integer value
in the range [L

min
.. Lmax ], configurable by the system administrator at specification time

(where L
min

,Lmax∈ N, and 1≤L
min

≤Lmax).
In contrast, an action is a task that converts an event of complex type into a MQTT

publish request packet cp
PB

CEP, and forwards it to the MQTT environment. 3 An action

3Actions turn MQTT clients into event sinks, which possibly could be programmed to react to the
detected events.



CHAPTER 5. REGULATING DATA SHARING UNDER EMERGENCIES 61

is modeled as a tuple ⟨aid, cet, tp, pl⟩, where aid and cet respectively specify the identifier
of the modeled action and of the referred complex event type, whereas tp and pl are
expressions that allow specifying the topic and payload of cp

PB
CEP. More precisely, tp is

an initialization expression built referring to any attribute in the payload of events of type
cet (see Section 5.4), whereas pl is a set of pairs ⟨id, exp⟩, each specifying an attribute of
the payload of cp

PB
CEP. Component id specifies the name of an attribute, whereas exp is

the related attribute initialization expression.

Example 5.5. Let us now consider the specification of action SevereBreathlessness-
Notifier, which, upon detecting an event of type SevereBreathlessness denoting a seri-
ous form of shortness of breath, publishes an MQTT message which notifies the de-
tected criticality. SevereBreathlessness can be straightforwardly specified by restricting
the definition of Breathlessness in Example 5.4. SevereBreathlessnessNotifier is specified
as ⟨SevereBreathlessnessNotifier, SevereBreathlessness, “criticality/severebreathlessness”,
{“patientId”: SevereBreathlessnessce.pID, “time”: SevereBreathlessnessce.time, “bpm”:
SevereBreathlessnessce.bpm}⟩. The execution of this action causes the publishing of a mes-
sage on topic criticality/severebreathlessness, with a payload characterized by fields that
map those of the detected event.

An emergency evolution is a transition between a pair of emergency situations, which
occurs when, due to the continuous analysis of the messages exchanged in the MQTT
environment operated by the CEP system, an event of complex type is detected. More
formally:

Definition 5.1 (Emergency evolution). An emergency evolution ev is a tuple ⟨cet, src, trg,
act⟩, where cet specifies the identifier of a complex event type in CET (see Section 5.4),
src and trg respectively refer to the identifiers of the emergency situations that are left and
entered when an event of type cet is detected, 4 whereas act refers to the identifier of an
action executed when pr occurs (or ⊥ if no action has to be executed).

The occurrence of events in the monitored MQTT environment can cause: i) the starting
of an emergency situation, ii) the possible evolution of an emergency situation into a more
severe or modest one, or even iii) the possible resolution of an emergency situation. In order
to model the possible evolution of an emergency case we hereby introduce the concept of
emergency development plan.

Definition 5.2 (Emergency development plan). An emergency development plan edp is a
tuple ⟨edpi, Ev⟩, where edpi is the identifier of the emergency development plan, whereas
Ev is a set of emergency evolutions depicting the possible development of an emergency
case.

The definition of an emergency development plan edp has to satisfy some well-
formedness rules. An evolution ev in the set Ev of edp, referred to as edp.Ev, can only refer

4src / trg could also refer to value ⊥ to denote that the occurrence of an event of type cet activates /
terminates an emergency scenario. Further details are provided in the remainder of this section, where we
present the concept of emergency scenario.



CHAPTER 5. REGULATING DATA SHARING UNDER EMERGENCIES 62

as end points ⊥ or an emergency situation. Moreover, any pair of evolutions which refer
to the same emergency situation within component src, have to specify events of different
type within component cet. The same constraint applies to pair of evolutions which refers
to ⊥ as source.

In order to intuitively represent any possible evolution of the emergency situations
referred to by an emergency development plan, we represent them as state machine (stm)
diagrams, where emergency situations are depicted as states, and evolutions as transitions.
Each state is labeled with the identifier of the modeled emergency situation, and each
transition with a complex event of a type referred to by the related evolution.

Example 5.6. Let us consider the emergency development plan PulmonaryIssues, which is
characterized by the emergency situations Dyspnea, LowOxygenSaturation, and Dyspnea-
Oxygen, where Dyspnea denotes a breathing discomfort, LowOxygenSaturation a low level
of oxygen-saturated hemoglobin in the blood, whereas DyspneaOxygen a combination of the
previous cases. Two evolutions map the activation of the modeled emergency case, respec-
tively entering the emergency situations Dyspnea and LowOxygenSaturation, and other two
its deactivation, which exit the same emergency situations. Additional evolutions allow the
transition from the emergency situation Dyspnea to DyspneaOxygen, and back, as well as
from LowOxygenSaturation to DyspneaOxygen, and back. Let us assume that the above
mentioned evolutions refer to events of type Breathlessness, BelowThresholdO2, Normal-
BreathRate, and NormalO2Level, and, also, for the sake of simplicity, that no evolution
refers to actions. The scenario is depicted by the state machine shown in Fig. 5.1.

Figure 5.1: The stm diagram corresponding to the emergency development plan
PulmonaryIssues

In contrast, the concept of emergency scenario is used to denote an emergency case
that involves a specific set of subjects, and whose evolution is depicted by an emergency
development plan.



CHAPTER 5. REGULATING DATA SHARING UNDER EMERGENCIES 63

Definition 5.3 (Emergency scenario). An emergency scenario es is a tuple ⟨esi, edp, sf⟩,
where esi is the emergency scenario identifier, edp refers the identifier of the associated
emergency development plan, whereas sf is a logic predicate, referred to as subject filter,
which specifies under which conditions a subject is involved in es. Like parametric predi-
cates (see Section 2.2), subject filters are defined by composition of subject attributes using
mathematical and logical operators.

At any point of the execution, an emergency scenario es is either inactive, or in one
of the emergency situations referred to by the evolutions of the emergency development
plan edp. More precisely, at specification time an emergency scenario es is inactive, and
maintains this state until an event of type cet referred to by an evolution ev in edp.Ev
occurs, which refers to ⊥ as src component, and to an emergency situation ems as trg
component. The event triggers the activation of the emergency scenario, and the entrance
in the emergency situation ems, which is then referred to as the new current stage of es.
Afterwards, any time an event occurs, which is referred to by an evolution ev’ among the
possible evolutions of ems (i.e., any evolution that refers to ems within component src), the
current stage of the emergency scenario is updated. More precisely, if component trg of ev’
refers to ⊥, the emergency scenario is disabled, whereas if it refers to another emergency
situation, such as, for instance, ems’, this new emergency is entered, and the current stage
of es is updated to ems’.

It is worth noting that our model allows the specification of multiple emergency scenar-
ios per single application, therefore a subject could be referred to by different emergency
scenarios, as well as by no scenario. In addition, multiple emergency scenarios defined for
an application could specify the same development plan, but different subjects.

Example 5.7. Let us consider the definition of the emergency scenarios es
1
/ es

2
, re-

spectively specifying the possible involvement of patient Bob / Mary and of the medical
staff operating in the nursing home, in emergency cases modeled by the emergency develop-
ment plan PulmonaryIssues (see Example 5.6). According to Def. 5.3, es

1
can be specified

as ⟨es
1
, PulmonaryIssues, (s.gid=patient ∧ s.uid=Bob) ∨ s.gid=medical personnel⟩, and

similarly, es
2
as ⟨es

2
, PulmonaryIssues, (s.gid=patient ∧ s.uid=Mary) ∨ s.gid=medical -

personnel⟩. Although these emergency scenarios refer to the same development plan, they
represent emergency cases related to two distinct patients, therefore, at any point in time
the current stage of es

1
could be different from the one of es

2
.

Let us now consider the case of a subject s who issues an access request ar. If at ar
request time no emergency scenario refers to s, or all emergency scenarios which refer to
s are inactive, s is said to be in an ordinary situation, and therefore ar is regulated by
the access control policies introduced in Section 2.2, which from now on are referred to as
ordinary policies.

In contrast, if at ar request time at least one of the emergency scenarios that refer to
s is active the request ar is controlled by emergency policies. Emergency policies regulate
the ability of a subject involved in one or more emergency scenarios to send or receive
MQTT messages.



CHAPTER 5. REGULATING DATA SHARING UNDER EMERGENCIES 64

Emergency policies are formally defined as follows.

Definition 5.4 (Emergency policy). An emergency policy ep is a tuple⟨s, tf, exp, pr,
esf, stf⟩, where s, tf, exp, pr correspond to the homonym components in Def. 2.1, esf is
an emergency scenario filter, namely an expression built referring to emergency scenario
properties, resulting in a set of emergency scenarios that specify the same emergency devel-
opment plan, whereas stf is a situation filter expression, which, by referring to emergency
situation properties, specifies the emergency situations to which ep is applied.

An emergency policy ep upon satisfaction of the parametric predicate exp grants to the
subjects referred to by s the privilege to send or receive messages on topics included in tf,
in any emergency situation denoted by stf of the emergency scenarios specified by esf.

Example 5.8. Let us now consider the specification of an emergency policy ep which grants
external specialists the access to physiological data of patients in severe conditions, with the
aim to consent timely treatments. Let us assume that ep grants the access to data of patients
involved in emergency scenarios that specify PulmonaryIssues as emergency development
plan, and who are currently under the emergency situation DyspneaOxygen. Policy ep
can be specified as: ⟨specialist, +/physiological/#, true, read, edp=“PulmonaryIssues”,
{DyspneaOxygen}⟩. Based on Example 5.7, Mary and Bob are involved in the emergency
scenarios es

1
and es

2
, which specify PulmonaryIssues as emergency development plan.

Therefore, according to ep a specialist can only access Bob’s/Mary’s data when es
1
/es

2
specify DyspneaOxygen as current stage.

Finally, let us shortly consider the process that allows a security administrator to specify
emergency policies for a target MQTT environment.

Based on Def. 5.4, emergency policy specification can only be achieved after having
defined at least one emergency scenario. In turn, at least one emergency development
plan should be specified to define an emergency scenario. An emergency development plan
can be defined following a step-wise process that starts with the identification of a set
of emergency situations depicting possible stages of an emergency case, along with their
associated severity levels. Afterwards, the security administrator needs to establish, for any
considered emergency situation, if it can be entered as first stage of the emergency case, or
if it can only be reached as a possible evolution of another emergency situation. Similarly,
he/she needs to decide if any of the considered situations can evolve into the resolution
of the emergency case. Any evolution is enabled by the occurrence of events. In order to
properly label all considered evolutions, it is first required to identify the involved events,
and model the related event types. Finally, the modeling of the evolutions is completed with
the possible specification of actions. Action specification relies on previously mentioned
modeling of complex events types, as well as on simple transformation rules that allow
converting complex events into MQTT publishing requests.

Once completed the definition of emergency development plans, emergency scenarios
are straightforwardly specified indicating the set of subjects potentially involved in any
considered emergency case. Afterwards, the security administrator can finally focus on



CHAPTER 5. REGULATING DATA SHARING UNDER EMERGENCIES 65

emergency policy specification. Emergency policies are specified as they were normal access
control policies, but they make explicit reference to the emergency situations where they
apply.

5.6 System Overview

Let us now focus on key architectural and behavioral properties of the proposed framework.
Our proposed framework includes multiple enforcement monitors, that are used to keep a
reasonably low enforcement overhead in scenarios where numerous clients are involved,
and regulate the exchange of messages by MQTT clients of a monitored environment,
on the basis of the specified ordinary and emergency access control policies. A NoSQL
datastore is employed to keep track of metadata related to emergency management, and
access control. More precisely, it stores: a) emergency scenarios along with related current
stages; b) primitive and complex event types; c) ordinary and emergency policies; and d)
subject, object and environment attributes employed for policy specification. A module,
denoted CEP interface, is used to manage the evolution of emergency scenarios, on the
basis of interactions with the monitors and a CEP engine. The possible detection of events
by the CEP engine is managed by handlers embedded in the CEP interface. Any time an
emergency scenario es is specified, two handlers are instantiated. The former is employed to
manage the possible update of the referred current stage of es, whereas, the latter to catch
CEP engine notifications denoting that no update is required. Finally, the CEP interface
also embeds a MQTT publisher client responsible for issuing selected event notifications
(formatted as MQTT messages) to rightful subscriber clients.

A high level view of the system architecture is shown in Figure 5.2.

Figure 5.2: A high level view of the system architecture

In order to present the role of each component of the proposed framework, as well as



CHAPTER 5. REGULATING DATA SHARING UNDER EMERGENCIES 66

the overall control flow, let us consider a simple scenario where users u
1
and u

2
respectively

administer MQTT clients c
1
and c

2
, which operate in a MQTT environment that hosts

a broker b. Let us assume that c
1
has been configured to publish messages on topic t,

whereas c
2
to subscribe the reception of messages referring to t. c

1
and c

2
have been set up

to connect with broker b by means of the enforcement monitors m
1
and m

2
, respectively.

In order to exchange messages, c
1
and c

2
need to connect with the MQTT broker b.

Let us shortly consider the connection process of c
1
mediated by m

1
(the same process

allows the connection of c
2
mediated by m

2
). The process starts with a connection request

issued by c
1
on behalf of u

1
, denoted as cp

CN
c1 . On receipt of cp

CN
c1 , m

1
: 1) opens

a communication channel with b, and another one with the CEP interface, to be used
to convey any communication related to c

1
requests, 2) analyzes subject attributes in the

intercepted packet header deriving the identity of the requester subject, 3) forwards cp
CN

c1

to b. The broker authenticates c
1
and sends back an acknowledgment packet cp

CA
c1 to

m
1
, which in turn forwards it to c

1
.

Let us now assume that, once connected, c
1
sends a publishing request cp

PB
c1 on behalf

of u
1
. On receipt of cp

PB
c1 , m

1
recognizes that cp

PB
c1 has been issued by a client, and

redirects the request to the CEP interface. More precisely, it prepares a composite packet
(i.e., cp

PB
c∗1), which includes the intercepted request cp

PB
c1 , and the objects s, o, and

e, with fields corresponding to the subject, object, and environment attributes associated
with the request. It then issues the packet to the CEP interface, and waits for a response.

The CEP interface instantiates a control task responsible for the analysis of cp
PB

c∗1 .

This task first extracts from cp
PB

c∗1 the embedded objects, and the original request cp
PB

c1 ,
and identifies the requesting subject u

1
from the subject attributes. Afterwards, it checks

if cp
PB

c1 matches the binding criteria of any specified primitive event type in PET (cfr.
Section 5.4). If no criterion is matched, the packet cannot trigger any emergency evolution,
thus the control task notifies the monitor of the completion of the analysis. In contrast, if
cp

PB
c1 is referred to by at least one primitive event type, the task handles the generation

of primitive event notifications bound to cp
PB

c1 . For any primitive event type pet in
PET (see Section 5.4) which specifies binding criteria satisfied by cp

PB
c1 , the control task

derives an event notification enpet. The generation employs internal properties of cp
PB

c1

and attributes extracted from cp
PB

c∗1 referred to in the initialization expression pet.adf
(see Section 5.4 for more details). Let us denote with ENpet the set of event notifications

generated from cp
PB

c∗1 . The control task delivers ENpet to the CEP engine, and waits
for the completion of the analysis of this set of primitive event notifications. As soon as
the control task is notified of the analysis completion by the pair of handlers associated
with any emergency scenario, whose behavior is detailed in Section 5.7.2, the control task
notifies the monitor that the analysis has been completed. The monitor can thus continue
the processing of cp

PB
c1 .

Upon receiving the acknowledgment, the monitor selects from the NoSQL datastore the
emergency scenarios that refer to u

1
as an involved subject. On the basis of the referred

emergency situation of u
1
in any of the active scenarios, monitor m

1
selects from the

datastore all emergency policies that apply to u
1
’s request cp

PB
c1 . In contrast, if there



CHAPTER 5. REGULATING DATA SHARING UNDER EMERGENCIES 67

does not exist an active scenario among the selected ones, m
1
selects from the datastore

all ordinary policies applicable to cp
PB

c1 . In both cases, m
1
then employs the enforcement

mechanism proposed in [22] (see Section 2.2), authorizing the publishing if at least one of
the selected policies grants the access.

Let us now assume that the publishing of cp
PB

c1 has been authorized by m
1
. The

message is therefore issued by m
1
to the broker b, which, on the basis of the received

subscriptions, forwards a copy of this packet, referred to as cp
PB

b, to c
2
. The packet is

then intercepted by m
2
, which monitors the communication channel between c

2
and b.

Since the sender of cp
PB

b is b, m
2
derives and enforces the applicable policies without

the intervention of the CEP interface. Once the identity of the receiver subject u
2
has

been derived, m
2
selects from the datastore the emergency scenarios that refer to u

2
as an

involved subject. In any of the selected scenarios which are not referred to as inactive, the
monitor derives the current emergency situation of u

2
, and then selects from the datastore

all emergency policies that regulate the receiving of messages on topic t (i.e., the topic of
cp

PB
b) by u

2
in any of the selected emergency situations. In contrast, if no active scenario

is detected, the selection targets all ordinary policies applicable to cp
PB

b. In both cases,
m

2
then proceeds applying the enforcement approach proposed in [22].

5.7 Enforcement

Let us now focus in more details on selected aspects of the proposed enforcement mecha-
nism, instrumental to the selection of the emergency policies applicable to an access request.
Selected policies are then enforced employing the mechanisms proposed in [22].

5.7.1 Event detection

A key functionality of our framework is its ability to handle the evolution of emergency
scenarios, on the basis of detected complex events which trigger the entry into specific
emergency situations. Reminded that an event of complex type can only occur when
specific primitive events are observed, each corresponding to an MQTT client’s publishing
request, we hereby analyze core activities of the CEP interface instrumental for event
detection, which are executed any time an MQTT client’s publishing request intercepted
by an enforcement monitor is forwarded to the CEP interface. More precisely, let us start
to consider the control task instantiated by the CEP interface on receipt of a packet cp

PB
*

issued by an enforcement monitor. We remind that cp
PB

* includes a control packet cp
PB

and three objects, denoted s, o and e, with fields representing the subject, object and
environment attributes associated with the publishing request context (see Section 5.6).

The control task starts managing the generation of primitive event type notifications.
This is achieved for all primitive event types belonging to PET which are bound to cp

PB
.

A primitive event type pet is selected iff the evaluation of the binding expression bcr of pet
is satisfied by cp

PB
.

Any selected primitive event type spet is then used to generate event notifications,



CHAPTER 5. REGULATING DATA SHARING UNDER EMERGENCIES 68

specifying objects characterized by: 1) a time annotation, used for event ordering purposes,
2) a payload, which represents the event content, and 3) a type, which refers to the related
event type name, implying that the structure of the event payload has to match the one
specified within component adc of spet. The time annotation is straightforwardly derived
as the timestamp related to the reception of cp

PB
*. The type corresponds to the value

referred to by component pet of spet. Finally, the payload is specified by referring to the
content of component adf of spet. More precisely, the control task initializes any attribute id
referred to within component adf of spet (cfr. Section 5.4) to the value of the corresponding
expression exp.

Example 5.9. Let us consider the control task ct created at time rt, upon receipt of cp
PB

*.

Suppose that cp
PB

* embeds: i) a publishing request cp
PB

on topic “physiological/respira-
tory”, with a payload that includes field respiratory initialized to 27, and ii) subject, object
and environment attributes indicating that cp

PB
has been issued at time st by a device that

monitors patient Bob conditions. Finally, let us also assume that PET includes the prim-
itive event type RespiratoryRate introduced in Example 5.4. Since the binding expression
of RespiratoryRate is satisfied by cp

PB
, this primitive event type is selected for generating

event notifications. The expressions in component adf of RespiratoryRate are thus evaluated
for deriving the notification. As a consequence, the event notification RespiratoryRate@rt:
{“bpm”:27, “time”:st, “patientID”:“Bob”} is generated.

Once the generation process has been completed, the control task issues the primitive
event notifications to the CEP engine, and waits to be notified for the completion of the
analysis of the delivered set of notifications. As soon as the pairs of handlers responsible
for handling the evolution of any emergency scenario notify the completion, the control
task responds to cp

PB
* with an acknowledge message, terminating the execution.

5.7.2 Emergency management

The CEP interface manages the evolution of any specified emergency scenario es by means
of two event handlers, denoted as update-notifier and nochange-notifier (see Section 5.6).
update-notifier manages the detection of complex events and the possible update of es’s
current stage, whereas, nochange-notifier keeps track of CEP engine analysis cycles during
which no complex event is detected. These handlers are instantiated by the CEP interface
at es specification time and then kept active as long as es belongs to the set of managed
emergency scenarios.

Any time the CEP engine completes the analysis of a delivered set of primitive event
notifications one of these handlers is invoked.

update-notifier is invoked when, on receipt of a set of primitive event notifications, a
complex event ce of type ecet is detected by the CEP engine, which is referred to by an
evolution ev of es. The handler is notified of the detected event, as well as of the set of
primitive event notifications that have caused the event occurrence. The handler starts to
select the current stage ems of the emergency scenario es from the datastore, as well as
the evolution set of es. If es is not active, ems is initialized to ⊥, whereas if es is active,



CHAPTER 5. REGULATING DATA SHARING UNDER EMERGENCIES 69

it is set to the current emergency situation of es. If there exists an evolution ev whose
components src and cet respectively refer to ems and ecet, update-notifier specifies the
emergency situation referred to within component trg of ev as the new current emergency
situation of es, propagating the update to the datastore. Let us now denote with ct the
control task that has delivered the set of primitive event notifications which triggered
the detection of ce. Once the update has been performed, if ev specifies an action ac,
update-notifier gets from ct a copy of the composite packet cp

PB
* used for generating the

notifications that caused the occurrence of ce. It then instantiates an execution manager
task, which asynchronously manages the execution of ac, following the process detailed
in Section 5.7.3, to which the derived copy is passed. Finally, update-notifier issues the
analysis completion notification to ct.

In contrast, the handler nochange-notifier is invoked if, upon receiving a set of primitive
event notifications, the CEP engine does not detect events of complex types referred to by
an evolution of es. The handler is notified of the analyzed set of primitive event notifica-
tions, and, in turn, it notifies the analysis completion to the control task which delivered
these notifications.

Example 5.10. Let us assume that on receipt of the event notification Respiratory@rt
presented in Example 5.9, the CEP engine detects an event of type Breathlessness, which is
referred to by the evolutions of the emergency scenario es

1
(see Example 5.7), as this speci-

fies PulmonaryIssues as emergency development plan (see Example 5.6). As a consequence,
the handler update-notifier configured for es

1
is notified of the detected event, as well as of

the primitive event notification Respiratory@rt that caused the detection. In contrast, the
handler nochange-notifier is not invoked. Let us now suppose that es

1
is not active. The

handler initializes ems to ⊥, and then checks if an evolution exists, which refers to Breath-
lessness within component cet, and to ⊥ within component src. As shown in Fig. 5.1, such
an evolution exists, and specifies Dyspnea as target emergency situation. As a consequence,
update-notifier activates es

1
specifying the emergency situation Dyspnea as the new current

stage of the emergency scenario. Afterwards, since the considered evolution does not refer
to an action, update-notifier notifies ct to have completed the analysis.

5.7.3 Action execution

Let us now focus on the execution of actions associated with emergency evolutions. We
hereby present the process implemented by the execution manager task, which is respon-
sible to handle action executions. Execution manager is invoked any time the current
stage of an emergency scenario es is updated, and component act (see Section 5.5) of the
emergency evolution ev that caused the update refers to an action.

Let us assume that execution manager has been invoked to handle the execution of
a generic action ac. At start time execution manager derives three event notifications
from the copy of cp

PB
* received as input (see Section 5.7.2). The derived notifications

refer to a predefined event type, respectively characterized by fields corresponding to the
subjects, objects and environment attributes embedded in cp

PB
*. The generated events



CHAPTER 5. REGULATING DATA SHARING UNDER EMERGENCIES 70

notifications are delivered to the CEP engine, whereupon execution manager stays on hold
waiting for a CEP engine notification. If the CEP engine notifies that no event has been
detected, execution manager immediately terminates. In contrast, on receipt of an event
ecet, execution manager generates a MQTT publishing request cp

PB
CEP on the basis of

ecet content. The topic of cp
PB

CEP is initialized to the result of the evaluation of the
expression referred to by component tp of ac (see Section 5.5). 5 Similarly, the payload of
cp

PB
CEP is derived iterating over the initialization expressions referred to by component

pl of ac, each targeting a different payload’s attribute.
Finally, cp

PB
CEP is delivered to the broker of the monitored MQTT environment by a

MQTT publisher embedded in the CEP interface (see Section 5.6) and connected to the
MQTT broker at system initialization time.

Example 5.11. Let us consider again the case introduced in Example 5.10, now assuming
that the evolution which in Example 5.10 has caused the activation of es

1
refers to action

SevereBreathlessnessNotifier (see Example 5.5). After the current stage of es
1
is updated,

update-notifier instantiates an execution manager task emt providing as input a copy of
cp

PB
* derived from ct, and the action SevereBreathlessnessNotifier referred to by the evo-

lution. emt first derives a primitive event notification from a built-in primitive event type
that does not specify binding expressions, but simply maps as payload fields the subject,
object and environment attributes in cp

PB
*. Finally, emt delivers the derived notifications

to the CEP engine. On receipt of these event notifications, the CEP engine notifies the
detection of an event SevereBreathlessnessce. As a consequence, emt generates a MQTT
publishing request cp

PB
CEP on topic critical/severebreathlessness, and with a payload that

maps the one of the just detected event. Finally, the generated packet is issued to the broker
by the MQTT client administered by the CEP interface.

5.8 Experimental Evaluation

In this section, we first present the application of our framework to the nursing home
scenario introduced in Section 5.2, then we evaluate the framework performance with a set
of experiments based on the same application scenario.

Our experiments rely on a prototype of the framework introduced in Section 5.6. Our
prototype includes an enforcement monitor, defined as an extended version of the ABAC
monitor for MQTT environments proposed in [22], which here has been redesigned to en-
force emergency policies. Metadata related to access control and emergencies are managed
by an instance of Redis,6 a popular in memory key-value datastore. Event detection is
carried out by the CEP engine Esper 7, using Event Processing Language (EPL) for imple-
menting queries able to detect events of complex types. The CEP interface, developed in

5We remind that tp is an initialization expression built referring to any attribute in the payload of events
of type cet

6https://redis.io
7https://www.espertech.com/esper



CHAPTER 5. REGULATING DATA SHARING UNDER EMERGENCIES 71

Java, allows managing the evolution of emergency scenarios on the basis of MQTT control
packets forwarded by the enforcement monitor and events detected by the CEP engine.

5.8.1 The case study

The considered MQTT-based IoT application scenario allows detecting early symptoms of
COVID-19 in nursing home patients, and tracking their close contacts. Due to the high
COVID-19 mortality in extended care units [80], in such environments COVID-19 diffusion
is contrasted through the preventive isolation of any identified possibly infected patient.
The quarantine protocol, which is normally applied to confirmed COVID-19 cases, is here
extended to any patient with early symptoms of COVID-19 who has not yet undergone a
test or is still waiting for a result, and to any patient among his/her recent close contacts.

We assume that sensors worn by patients monitor physiological data, such as patients
temperature, respiratory rate, and peripheral oxygen saturation, whereas patients’ move-
ments are tracked through the interaction of patients’ bracelets with proximity sensors
deployed in any room of the nursing home. Additional exchanged data include the pre-
scriptions of COVID-19 tests for nursing home patients, the related results, treatment
options communicated to patients, and patients consent to proceed. We assume that all
devices and software modules that generate data are provided with an MQTT interface,
and data are exchanged by means of the MQTT protocol. Table 5.2 exemplifies a selection
of primitive event types specified for the above mentioned data, each denoting a class of
primitive events derived from MQTT messages on given topics exchanged in the nursing
home environment. Column pet specifies the identifier of the considered event type, adc
declares all fields that compose the payload of the represented event class, bcr defines the
conditions to be met by an MQTT message for deriving an event of the represented class,
and finally, adf specifies the expressions that allow the initialization of payload fields.

Different groups of subjects are involved in the considered application scenario. Physi-
cians and nurses in the medical staff of the nursing home access patients data and issue
communications by means of a mobile app. Similarly, external specialists use an app to
remotely check patients’ conditions, and to communicate possible treatments. Patients
can use an app to check their own health status. The app can also be used by registered
relatives of patients subject to COVID-19 quarantine, to be updated of their kin conditions.

We model the possible evolution of a COVID-19 case as an emergency development
plan characterized by the following emergency situations:

• Suspected COVID-19, is an emergency situation with moderate severity (level 2),
related to a patient who has had COVID-19 symptoms in the last days;

• Possible COVID-19, is an emergency situation with mild severity (level 1) related
to a patient who has been referred to as close contact of a suspected or confirmed
COVID-19 patient;

• COVID-19 asymptomatic is an emergency situation with considerable severity (level
3), related to a confirmed COVID-19 patient with no symptom;



CHAPTER 5. REGULATING DATA SHARING UNDER EMERGENCIES 72

T
ab

le
5
.2
:
P
ri
m
it
iv
e
ev
en
t
ty
p
es

sp
ec
ifi
ed

fo
r
th
e
ca
se

st
u
d
y

p
et

a
d
c

b
cr

ad
f

d
es
cr
ip
ti
o
n

R
es
u
lt

{“
p
id
”
:
st
ri
n
g,

“
re
su
lt
”
:

b
o
ol
ea
n
,

“
tD

at
e”
:
d
at
e,

“
re
q
Id
”:

lo
n
g
,

“
ti
m
e”
:
lo
n
g
}

t.
T
op

ic
N
am

e.
in
cl
u
d
es

(“
re
su
lt
”)

{“
p
id
”:
o.
p
at
ie
n
tI
D
,

“r
es
u
lt
”:
t.
P
ay
lo
a
d
.r
es
u
lt
,

“t
D
at
e”
:t
.P
ay
lo
a
d
.t
es
tD

a
te
,

“r
eq
Id
”:
t.
P
ay
lo
a
d
.r
eq
Id
,

“t
im

e”
:e
.t
im

e}

S
h
ow

s
th
e

re
su
lt
s

of
a

C
O
V
ID

-1
9
te
st

to
w
h
ic
h
a

p
a
ti
en
t
h
a
s
u
n
d
er
g
on

e.

P
re
sc
ri
p
ti
o
n

{“
p
id
”
:
st
ri
n
g,

“
tD

at
e”
:
d
at
e,

“
re
q
Id
”:

lo
n
g
,

“
ti
m
e”
:
lo
n
g
}

t.
T
op

ic
N
am

e.
in
cl
u
d
es

(“
p
re
sc
ri
p
ti
on

”)

{“
p
id
”:
o.
p
at
ie
n
tI
D
,

“t
D
at
e”
:t
.P
ay
lo
a
d
.t
es
tD

a
te
,

“r
eq
Id
”:
t.
P
ay
lo
a
d
.r
eq
Id
,

“t
im

e”
:e
.t
im

e}

S
h
ow

s
th
e
p
re
sc
ri
p
ti
o
n

of
a
C
O
V
ID

-1
9
te
st

fo
r
a
p
a-

ti
en
t.

L
o
ca
ti
on

{“
p
id
”
:
st
ri
n
g,

“
p
os
”:

st
ri
n
g
,

“
ti
m
e”
:
lo
n
g
}

t.
T
op

ic
N
am

e.
in
cl
u
d
es
(“
lo
ca
ti
on

”)
{“
p
id
”:
o.
p
at
ie
n
tI
D
,

“p
os
”:
t.
P
ay
lo
ad

.l
o
ca
ti
on

,
“t
im

e”
:e
.t
im

e}

S
h
ow

s
th
e

ro
om

w
h
er
e

a
p
a
ti
en
t
is

lo
ca
te
d
at

sp
ec
-

ifi
ed

ti
m
e

T
em

p
er
a
tu
re

{“
p
id
”
:
st
ri
n
g,

“
te
m
p
”:

fl
o
a
t,

“
ti
m
e”
:
lo
n
g
}

t.
T
op

ic
N
am

e.
in
cl
u
d
es

(“
te
m
p
er
at
u
re
”)

{“
p
id
”:
o.
p
at
ie
n
tI
D
,

“t
em

p
”:
t.
P
ay
lo
ad

.t
em

p
er
at
u
re
,

“t
im

e”
:e
.t
im

e
}

S
h
ow

s
th
e
b
o
d
y

te
m
p
er
a
-

tu
re

of
a
p
at
ie
n
t
a
t
a
sp
ec
-

ifi
ed

ti
m
e.

R
es
p
ir
at
or
y
R
at
e

{“
p
id
”
:
st
ri
n
g,

“
b
p
m
”:

fl
o
at
,

“
ti
m
e”
:
lo
n
g
}

t.
T
op

ic
N
am

e.
in
cl
u
d
es

(“
re
sp
ir
at
or
y
”)

{“
p
id
”:
o.
p
at
ie
n
tI
D
,

“b
p
m
”:
t.
P
ay
lo
a
d
.r
es
p
ir
a
to
ry
,

“t
im

e”
:e
.t
im

e}

S
h
ow

s
th
e
re
sp
ir
at
o
ry

ra
te

of
a
p
at
ie
n
t
a
t
a
sp
ec
ifi
ed

ti
m
e.

E
st
im

a
te
d
S
p
O
2

{“
p
id
”
:
st
ri
n
g,

“
S
p
O
2”

:
fl
o
at
,

“
ti
m
e”
:
lo
n
g
}

t.
T
op

ic
N
am

e.
in
cl
u
d
es

(“
sa
tu
ra
ti
on

”)

{“
p
id
”:
o.
p
at
ie
n
tI
D
,

“S
p
O
2”

:t
.P
ay
lo
ad

.s
a
tu
ra
ti
on

,
“t
im

e”
:e
.t
im

e}

S
h
ow

s
th
e
p
er
ip
h
er
a
l
ox
y
-

ge
n
sa
tu
ra
ti
o
n
of

a
p
a
ti
en
t

at
a
sp
ec
ifi
ed

ti
m
e.

R
eq
A
tt
S
et

{“
ci
d
”:

st
ri
n
g
,

“
u
id
”
:
st
ri
n
g,

“
gi
d
”
:
st
ri
n
g,

“
p
S
et
”:

S
et
(s
tr
in
g)
,

“
re
la
ti
ve
O
f”
:

S
et
(s
tr
in
g)
,

“
p
id
”
:
st
ri
n
g,

“
ts
”
:
lo
n
g
}

⊥
{“
ci
d
”:

s.
ci
d
,
“u

id
”
:
s.
u
id
,

“g
id
”:

s.
gi
d
,
“p

S
et
”
:
s.
p
S
et
,

“r
el
at
iv
eO

f”
:
s.
re
la
ti
ve
O
f,

“p
id
”:

o.
p
at
ie
n
tI
d
,

“t
s”
:
e.
ti
m
e}

M
ap

s
th
e

se
t

o
f
su
b
je
ct
,

ob
je
ct

a
n
d

en
v
ir
on

m
en
ts

at
tr
ib
u
te
s
w
h
ic
h
ch
ar
a
ct
er
-

iz
e
ac
ce
ss

re
q
u
es
ts

in
th
e

co
n
si
d
er
ed

ap
p
li
ca
ti
on

sc
e-

n
a
ri
o.



CHAPTER 5. REGULATING DATA SHARING UNDER EMERGENCIES 73
T
a
b
le

5.
3:

C
om

p
le
x
ev
en
t
ty
p
es

sp
ec
ifi
ed

fo
r
th
e
ca
se

st
u
d
y

ce
t

a
d
c

et
s

ex
p

S
y
m
p
to
m

{“
p
id
”:

st
ri
n
g}

{T
em

p
er
at
u
re
,

R
es
p
ir
at
or
y
R
at
e,

E
st
im

at
ed

S
p
O
2}

π
T
.p
id
(
σ
(m

a
x
T
>
=
3
8
∨

m
a
x
B
p
m
>
=
2
5
∨

m
a
x
S
p
O
2
<
0
.9
5
))
(

T
.p
id
G

m
a
x
(b

p
m
)
a
s
m
a
x
B
p
m
,
m
a
x
(t
em

p
)
a
s
m
a
x
T
,
m
a
x
(S

p
O
2
)
a
s
m
a
x
S
p
O
2
(

σ
T
.p
id
=
R
.p
id

∧
R
.p
id
=
S
.p
id
(R

es
p
ir
a
to
ry
R
at
e p

e
a
s
R

∧
T
em

p
er
at
u
re

p
e
as

T
∧

E
st
im

at
ed

S
p
O
2 p

e
as

S
)

)
))

n
o
w

n
o
w

-
2
d
a
y
s

S
h
o
w
s
a
n
y
pa
ti
en

t
w
h
o
h
a
s
h
a
d
C
O
V
ID

-1
9
sy
m
p
to
m
s
in

th
e
la
st

2
d
a
ys
.

N
oS

y
m
p
to
m

{“
p
id
”:

st
ri
n
g}

{T
em

p
er
at
u
re
,

R
es
p
ir
at
or
y
R
at
e,

E
st
im

at
ed

S
p
O
2}

π
T
.p
id
(
σ
(m

a
x
T
<
3
8
∧

m
a
x
B
P
M
<
2
5
∧

m
a
x
S
p
O
2
≥
9
5
)
(

( R
.p
id
G

m
a
x
(b

p
m
)
a
s
m
a
x
B
p
m
,
m
a
x
(t
em

p
)
a
s
m
a
x
T
,
m
a
x
(S

p
O
2
)
a
s
m
a
x
S
p
O
2
(

σ
T
.p
id
=
R
.p
id

∧
R
.p
id
=
S
.p
id
(R

es
p
ir
a
to
ry
R
at
e p

e
a
s
R

∧
T
em

p
er
at
u
re

p
e
as

T
∧

E
st
im

at
ed

S
p
O
2 p

e
as

S
)

)
))

n
o
w

n
o
w

-
2
d
a
y
s

S
h
o
w
s
a
n
y
pa
ti
en

t
w
h
o
d
id

n
o
t
sh
o
w

C
o
vi
d
-1
9
sy
m
p
to
m
s
in

th
e
la
st

2
d
a
ys
.

S
ev
er
eS

y
m
p
to
m

{“
p
id
”:

st
ri
n
g,

“
b
p
m
”:

fl
oa

t}

{R
es
p
ir
at
or
y
R
at
e}

π
p
id
,
b
p
m
(σ

b
p
m
>
3
0
(R

es
p
ir
a
to
ry
R
at
e p

e
))

n
o
w

n
o
w

-
2
d
a
y
s

S
h
o
w
s
a
n
y
pa
ti
en

t
w
h
o
h
a
s
h
a
d
se
ve
re

br
ea
th
le
ss
n
es
s
ep
is
od
es

in
th
e
la
st

tw
o
d
a
ys
,

a
lo
n
g
w
it
h
th
e
o
bs
er
ve
d
re
sp
ir
a
to
ry

ra
te
.

N
oS

ev
er
eS

y
m
p
to
m

{“
p
id
”:

st
ri
n
g}

{R
es
p
ir
at
or
y
R
at
e}

π
p
id
(σ

m
a
x
B
<
3
0
( p

id
G m

a
x
(b

p
m
)
a
s
m
a
x
B
(R

es
p
ir
a
to
ry
R
at
e p

e
))
)n

o
w

n
o
w
-2

d
a
y
s

S
h
o
w
s
a
n
y
pa
ti
en

t
w
h
o
d
id

n
o
t
sh
o
w

se
ve
re

br
ea
th
le
ss
n
es
s
ep
is
od
es

in
th
e
la
st

tw
o
d
a
ys
.

A
ct
iv
a
ti
o
n

{“
p
id
”:

st
ri
n
g,

“
re
q
Id
”
:

lo
n
g}

{R
eq
A
tt
S
et
}

π
p
id
,
ts

a
s
re
q
Id
(R

eq
u
es
tA

tt
ri
b
u
te

ce
)

D
en

o
te
s
th
e
n
ee
d
to

is
o
la
te

a
pa
ti
en

t
a
n
d
le
t
h
im

/
h
er

to
u
n
d
er
go

a
C
O
V
ID

-1
9
te
st



CHAPTER 5. REGULATING DATA SHARING UNDER EMERGENCIES 74

U
n
d
er
T
es
t

{“
p
id
”:

st
ri
n
g}

{L
as
tT

es
t,

A
ct
iv
at
io
n
,

P
re
sc
ri
p
ti
on

}

π
L
.p
id
(

σ
L
.p
id
=
P
.p
id

∧
L
.r
eq

Id
=
P
.r
eq

Id
∧

L
P
.t
im

e>
P
.t
im

e
(

P
re
sc
ri
p
ti
on

ce
as

P
∧¬

L
as
tT

es
t c

e
as

L
∧¬

P
re
sc
ri
p
ti
on

ce
as

L
P
)

∨
σ
L
.p
id
=
A
.p
id

∧
A
.r
eq

Id
=
L
.r
eq

Id
∧

L
A
.r
eq

Id
>
A
.r
eq

Id
(

A
ct
iv
at
io
n
ce

as
A

∧¬
L
as
tT

es
t c

e
as

L
∧¬

A
ct
iv
at
io
n
ce

a
s
L
A
)

)
S
h
o
w
s
a
n
y
pa
ti
en

t
w
h
o
is

w
a
it
in
g
fo
r
th
e
re
su
lt
s
o
f
a
te
st

o
r
w
h
o
is

go
in
g
to

u
n
d
er
go

a
C
o
vi
d
-1
9
te
st
.

L
as
tT

es
t

{“
p
id
”:

st
ri
n
g,

te
st
D
a
te
:

d
at
e,

re
q
Id
:

lo
n
g,

re
su
lt
:

b
o
o
le
an

}

{R
es
u
lt
}

π
L
R
.p
id
,
L
R
.t
es
tD

a
te
,
R
.r
eq

Id
,
R
.r
es
u
lt
(

σ
(L

R
.p
id
=
R
.p
id
)∧

(L
R
.t
D
a
te
=
R
.t
D
a
te
)
(

( p
id

G
m
a
x
(t
D
a
te
)
a
s
te
st
D
a
te

(R
es
u
lt
p
e
))

as
L
R

∧
R
es
u
lt
p
e
as

R
)

)

S
pe
ci
fi
es

th
e
re
su
lt
s
o
f
th
e
la
st

C
o
vi
d
-1
9
te
st

o
f
a
pa
ti
en

t.

P
o
si
ti
ve

{“
p
id
”:

st
ri
n
g}

{L
as
tT

es
t,

U
n
d
er
T
es
t}

π
L
.p
id
(σ

L
.p
id
=
U
.p
id

∧
L
.r
es
u
lt
(¬

U
n
d
er
T
es
t c

e
a
s
U

∧
L
a
st
T
es
t c

e
a
s
L
))

S
h
o
w
s
a
n
y
pa
ti
en

t
w
h
o
se

la
st

C
o
vi
d
-1
9
te
st

is
po
si
ti
ve
,
fo
r
w
h
o
m

n
o
n
ew

te
st

h
a
s
be
en

re
se
rv
ed
.

N
eg
a
ti
ve

{“
p
id
”:

st
ri
n
g}

{L
as
tT

es
t,

U
n
d
er
T
es
t}

π
L
.p
id
(σ

L
.p
id
=
U
.p
id

∧
¬

L
.r
es
u
lt
(¬

U
n
d
er
T
es
t c

e
as

U
∧

L
a
st
T
es
t c

e
as

L
))

S
h
o
w
s
a
n
y
pa
ti
en

t
w
h
o
se

la
st

C
o
vi
d
-1
9
te
st

is
n
eg
a
ti
ve
,
fo
r
w
h
o
m

n
o
n
ew

te
st

h
a
s
be
en

re
se
rv
ed
.

V
is
it
ed

R
o
o
m

{“
p
id
”:

st
ri
n
g,

“
p
os
”
:

st
ri
n
g,

“
ti
m
e”
:

d
at
et
im

e,
“
d
at
e”
:

d
at
e,

“
ts
”:

lo
n
g
}

{L
o
ca
ti
on

,
R
eq
A
tt
S
et
}

π
L
.p
id
,
p
o
s,

ti
m
e,

g
et
D
a
te
(t
im

e)
a
s
d
a
te
,
ts
(

σ
R
.p
id
=
L
.p
id
(L

o
ca
ti
on

a
s
L
∧

R
eq
A
tt
S
et

p
e
a
s
R
)

)n
o
w

n
o
w

-
1
0
d
a
y
s

S
h
o
w
s
a
n
y
ro
o
m

vi
si
te
d
by

a
pa
ti
en

t
in

th
e
la
st

1
0
d
a
ys
,

a
lo
n
g
w
it
h
th
e
ti
m
e
a
t
w
h
ic
h
h
e/
sh
e
w
a
s
in

th
e
ro
o
m
.



CHAPTER 5. REGULATING DATA SHARING UNDER EMERGENCIES 75

C
o
n
ta
ct

{“
p
id
”:

st
ri
n
g,

“
rp
id
”:

st
ri
n
g,

“
p
os
”
:

st
ri
n
g,

“
ti
m
e”
:

d
at
et
im

e,
“
d
at
e”
:

d
at
e,

“
ts
”:

lo
n
g
}

{L
o
ca
ti
on

,
V
is
it
ed

R
o
om

,
R
eq
A
tt
S
et
}

π
L
.p
id
,
V
.p
id

A
S
rp

id
,
V
.p
o
s,

V
.t
im

e,
V
.d
a
te
,
V
.t
s
(

σ
(V

.p
o
s=

L
.p
o
s)
∧
(V

.t
im

e=
L
.t
im

e)
∧
(V

.p
id
̸=
L
.p
id
)∧

(V
.p
id
=
R
.p
id
)∧

(V
.t
s=

R
.t
s)
(

L
o
ca
ti
on

p
e
as

L
∧

V
is
it
ed

R
o
om

ce
a
s
V

∧
R
eq
A
tt
S
et

p
e
as

R
)

)

S
h
o
w
s
a
n
y
pa
ti
en

t
w
h
o
h
a
s
m
et

pa
ti
en

t
rp
id

in
th
e
la
st

1
0
d
a
ys
,

a
s
w
el
l
a
s
th
e
ro
o
m

a
n
d
ti
m
e
a
t
w
h
ic
h
th
e
m
ee
ti
n
g
oc
cu
rr
ed
.

C
lo
se
C
o
n
ta
ct

{“
p
id
”:

st
ri
n
g,

“
rp
id
”:

st
ri
n
g,

“
d
at
e”
:

d
at
et
im

e,
“
d
u
ra
ti
o
n
”:

fl
oa

t,
“
ts
”:

lo
n
g
}

{C
o
n
ta
ct
,

R
eq
A
tt
S
et
}

π
C
.p
id
,
C
.r
p
id
,
C
.d
a
te
,
n
u
m

o
f
1
se
c
in
te
rv
a
ls

a
s
d
u
ra
ti
o
n
,
P
.t
s
(

σ
n
u
m

o
f
1
se
c
in
te
rv
a
ls
>
9
0
0
(

C
.p
id
,
C
.r
p
id
,
C
.d
a
te
,
C
.t
s
G c

o
u
n
t(
*
)
a
s
n
u
m

o
f
1
se
c
in
te
rv
a
ls
(

σ
(C

.r
p
id
=
R
.p
id
)∧

(C
.t
s=

R
.t
s)
(C

on
ta
ct

ce
as

P
∧
R
eq
A
tt
S
et

p
e
as

R
)

)
)

)

S
h
o
w
s
a
n
y
pa
ti
en

t
w
h
o
,
cu
m
u
la
ti
ve
ly
,
in

a
d
a
y,

h
a
s
st
a
ye
d
cl
o
se

to
pa
ti
en

t
rp
id

fo
r
a
t
le
a
st

1
5
m
in
u
te
s,

a
lo
n
g
w
it
h
th
e
cu
m
u
la
ti
ve

d
u
ra
ti
o
n
o
f
th
es
e
m
ee
ti
n
gs
,
a
n
d
th
e
d
a
te

w
h
en

th
ey

oc
cu
rr
ed
.



CHAPTER 5. REGULATING DATA SHARING UNDER EMERGENCIES 76

Table 5.4: Actions involved in the COVID-19 case study

aid cet tp pl

NotifyClose-
Contact

CloseContact closecontact {“pid”: CloseContactce .pid}

WarnActivation Activation warning
{“pid”: Activationce .pid, “time”:
Activationce .reqId}

Table 5.5: Ordinary policies for the nursing home application

s tf exp pr description

patient prescription o.patientId==s.uid r Allows patients to be informed of COVID-
19 tests they must undergo.

patient result o.patientId==s.uid r Allows patients to get the results of
COVID-19 test they underwent.

patient warning o.patientId==s.uid r Allows patients to be warned of having ac-
tivated a COVID-19 case.

patient closecontact o.patientId==s.uid r Allows patients to be warned of being close
contacts of suspected / confirmed COVID-
19 cases.

patient treatment o.patientId==s.uid r Allows patients to be informed of treatment
options.

patient consent o.patientId==s.uid w Allows a patient to consent to undergo a
treatment.

medical personnel physiological/# o.patientId ∈
s.pSet

r Allows physicians to access physiological
data of their patients.

medical personnel prescription o.patientId ∈
s.pSet

w Allows physicians to prescribe COVID-19
tests for their patients.

medical personnel result o.patientId ∈
s.pSet

r Allows physicians to receive COVID-19 test
results of their patients.

medical personnel warning o.patientId ∈
s.pSet

r Allows physicians to be notified of patients’
COVID case activations.

medical personnel treatment o.patientId ∈
s.pSet

w Allows physicians to communicate treat-
ment options to their patients.

medical personnel consent o.patientId ∈
s.pSet

r Allows physicians to collect the consent
from their patients.

medical personnel bulletin o.patientId ∈
s.pSet

w Allows physicians to publish medical bul-
letins for their patients.

medical personnel closecontact o.patientId ∈
s.pSet

r Allows physicians to be warned of patients
identified as close contact of a suspected /
confirmed COVID-19 case.

• COVID-19 symptomatic is an emergency situation with high severity (level 4), related
to a confirmed symptomatic COVID-19 patient.

• Severe COVID-19 is an emergency situation with critical severity (level 5), related
to a symptomatic COVID-19 patient with severe symptoms.

The possible evolution of a COVID-19 case is represented by the state machine in Fig-



CHAPTER 5. REGULATING DATA SHARING UNDER EMERGENCIES 77

Figure 5.3: State machine representing the possible evolution of a COVID-19 case

ure 5.3, where emergency situations are represented as states, and evolutions as transitions.
Multiple emergency scenarios have then been defined (one scenario per patient), which

refer COVID-19 case as emergency development plan, and a set of involved subjects that
includes: a patient p, the medical staff of the nursing home that takes care of p, the
external specialists who could be consulted, and the close relatives authorized by p to
receive information about his/her health conditions.

A COVID-19 case scenario related to patient p can be activated if p shows a COVID-19
symptom or p is referred to as close contact of a suspected or confirmed COVID-19 pa-
tient. The former condition causes the entry into emergency situation Suspected COVID-
19, whereas the latter into Possible COVID-19. Both emergency situations imply the
need to isolate p and to let p take a COVID-19 test. If the test is negative, either emer-
gency situations are resolved deactivating the emergency scenario, whereas, in case of a
positive result with /without recent symptoms the emergency situation COVID-19 symp-
tomatic /COVID-19 asymptomatic is entered. The passage from COVID-19 symptomatic
to COVID-19 asymptomatic is only possible if, for some consecutive days, p does not show
COVID-19 symptoms, whereas the opposite transition occurs as soon as a symptom is
detected. If within COVID-19 symptomatic emergency situation p shows clear signs of ag-
gravation, the emergency evolves into a Severe COVID-19 case. The backward transition
is only possible if, for some consecutive days, no severe symptom is observed. A COVID-19
case related to p is resolved in case of negative result to a COVID-19 test.

The evolution of a COVID-19 case is triggered by the occurrence of complex events.
Table 5.3 exemplifies a selection of complex event types for the considered scenario, lever-
aging on primitive events reported in Table 5.2. Column cet specifies the name of the



CHAPTER 5. REGULATING DATA SHARING UNDER EMERGENCIES 78

considered complex event type, adc specifies the set of fields composing the payload of
the represented events, ets indicates the set of event types referred to in the specification,
whereas exp models event specifications using the abstract event algebra introduced in Sec-
tion 5.3. Event types reported in Table 5.3 consider classes of events denoting: the presence
/ absence of COVID-19 symptoms with various severities, the activation of a COVID-19
case, the result of the last COVID-19 test to which a patient has undergone, the rooms
recently visited by a patient, and all contacts/close contacts of a patient in the last days.

The analysis of physiological and proximity data, allows deriving all patients who re-
cently have had symptoms of COVID-19, as well as those who have had a close contact
with a suspected or confirmed COVID-19 patient.

In order to promptly contrast COVID-19 diffusion, all suspected cases and their close
contacts have to be immediately reported to the medical staff so that physicians could
promptly isolate these patients and prescribe a test, and they can be promptly informed of
their condition. This is obtained through the modeling of the actions WarnActivation and
NotifyCloseContact, shown in Table 5.4. More precisely, at the early detected symptoms of
COVID-19, WarnActivation publishes an MQTT message to inform the suspected COVID-
19 patient and his/her attending physicians to be involved in an active emergency scenario.
The action converts events of type Activation into MQTT messages, which, within the pay-
load fields pid and reqId, simply denote the identifier of the suspected COVID-19 patient,
and the timestamp at which the case has been detected. In contrast, NotifyCloseContact
publishes an MQTT message for any detected close contact of the patient who has just
entered the emergency situations Suspected COVID-19 and COVID-19 asymptomatic. The
action converts events of type CloseContact into MQTT messages. The specification of
CloseContact (cfr. Table 5.3) shows a possible way to derive the close contacts of a patient
p. For the proposed calculation we assume that proximity sensors check the presence of
patients in any room of the nursing home at a rate of one sampling per second, and these
data are then published as MQTT messages. The presence of a patient in a room is no-
tified by primitive events of type Location, which also report the room (specified by field
pos), date and time of the observation. Through the specification of complex event type
VisitedRoom, we pick any primitive event of type Location observed in the last 10 days,
which refers the presence of p. In contrast, any complex event of type Contact notifies that
a pair of patients, which includes p, have been in close contact for 1 second,8 and reports
all data related to the observation. A Contact event is derived from a primitive event of
type Location which notifies that, at the time specified by an event of type VisitedRoom,
another patient was in the same room. Finally, complex events of type CloseContact are
derived by counting all events of type PossibleContact which refer the same pair of patients
and date. If the referred pair of patients have spent together more than 15 minutes (900
seconds) in a day, they are notified as close contacts.

Manifold privileges are granted to medical personnel operating in the nursing home,
as well as to patients. A selection of the corresponding ordinary policies is reported in
Table 5.5. For any policy p, column s refers the subjects who can benefit from the privileges

8This corresponds to the length of the interval between two consecutive samplings by proximity sensors.



CHAPTER 5. REGULATING DATA SHARING UNDER EMERGENCIES 79

granted by p, tf shows the topic filter expression denoting the topics of the protected
messages, exp shows the parametric predicate that specifies under which conditions p grants
the access, whereas pr shows the read /write privilege granted by p.

Table 5.6: Emergency policies for the COVID-19 case study

s tf exp pr esf stf

medical personnel location o.patientId ∈
s.pSet

r edp=
“COVID-
19 case”

All

Allows medical personnel to check the position of their patients.

external
specialist

physiological/# true r edp=
“COVID-
19 case”

{COVID-19
symptomatic,
Severe COVID-19}

Allows external specialists to access physiological data of overt COVID-19 patients.

relative bulletin o.patientId ∈
s.relativeOf

r edp=
“COVID-
19 case”

All

Allows relatives to receive the medical bulletin of their kin.

guardian treatment o.patientId ∈
s.guardianOf

r edp=
“COVID-
19 case”

{Severe COVID-19}

Allows the guardian of a patient in severe conditions to access treatment options.

guardian consent o.patientId ∈
s.relativeOf

w edp=
“COVID-
19 case”

{Severe COVID-19}

Allows the guardian of a patient in severe conditions
to give the consent to made his/her kin undergo specific treatments.

guardian result o.patientId ∈
s.guardianOf

r edp=
“COVID-
19 case”

{Severe COVID-19}

Allows the guardian of a patient in severe conditions to access his/her test results.

According to these policies, patients can receive, through their mobile app, communi-
cations related to: i) test prescriptions and results, ii) warning messages informing them
to be suspected of COVID-19 or to have been referred to as close contact of a COVID-19
case, iii) medical bulletins, and iv) treatment options. Patients can also use the app to give
the consent to undergo specific treatments.

Additionally, any physician, through his/her mobile app, is allowed to: i) monitor the
physiological conditions of his/her patients, ii) prescribe a COVID-19 test for his/her pa-
tients and receive the results, iii) receive notifications issued by the monitoring application,
reporting the activation of new COVID-19 cases, iv) illustrate treatment options to any
of his/her patient, and collect the consent to proceed with the treatment, v) issue med-
ical bulletins to his/her patients, informing each of them about his/her conditions, and
vi) access notifications issued by the monitoring application, denoting that one of his/her
patients has had a close contact with a suspected or confirmed COVID-19 case.

Subjects involved in an emergency situation can benefit from additional privileges. A



CHAPTER 5. REGULATING DATA SHARING UNDER EMERGENCIES 80

selection of emergency policies for the considered application scenario is reported in Table
5.6. For any emergency policy ep, column esf and stf specify expressions respectively
denoting the set of emergency scenarios and emergency situations to which ep is applied,
whereas columns s, tf, exp, and pr maintain the same meaning as in Table 5.5.

Under any of the considered emergency situations, physicians can access the position of
their patients, as the efficient localization of suspected or possible COVID-19 patients allows
their prompt isolation, and prevent the infection diffusion. To identify effective treatments
for overt COVID-19 patients, or to identify patients who could require hospitalization,
external specialists are also authorized to monitor physiological data of patients under the
emergency situations COVID-19 symptomatic and Severe COVID-19.

In order to better bridge the gap between patients under quarantine protocol and their
families, relatives are made aware of the conditions of their kin who cannot be visited during
the quarantine. The access to the medical bulletin of a patient under any of the considered
emergency situations is thus extended to a set of preregistered patient’s relatives. Relatives
can also play a fundamental role for patients in severe conditions, who, due to their health
status, are unable to understand or take actions, acting as their guardians. Privileges
granted to patients in ordinary situations are then applied to guardians of patients in
critical conditions. For instance, in a Severe COVID-19 emergency situation, a guardian
receives communication of patient’s treatment options, and consents to specific treatments
on his/her behalf.

5.8.2 Experiments

Let us now focus on the experiments we have carried out to evaluate the efficiency of
the proposed access control approach, considering as reference scenario the case study
introduced in Section 5.8.1.

For our performance evaluations we focus on the following aspects: transmission time,
which denotes the time a published message takes for being received by a rightful subscriber,
time overhead, which quantifies the time requested by the enforcement monitor to take a
decision related to an access request, and throughput, namely, the average number of MQTT
control packets per seconds which are analyzed by our framework.

Transmission time provides a first indication of the framework usability, as it allows
quantifying the overall communication latency. However, it is a quite coarse grained prop-
erty, as it shows the total duration of multiple communication phases. A client to client
(c2c) communication in an MQTT environment is articulated into an initial client to bro-
ker (c2b) communication phase, during which a publishing request is issued by a client
to broker, followed by a broker to client (b2c) phase, within which the broker forwards a
copy of the received message to any rightful subscriber. Each packet issued by a client or
forwarded by a broker is intercepted by the enforcement monitor, which allows the transit
only if applicable policies grant it. Therefore, to assess the impact of policy enforcement
on the overall transmission time, for any c2c communication, we keep track of the time
overhead introduced by the enforcement monitor during the phases c2b and b2c, and, com-
prehensively, during the whole c2c communication. Similarly, throughput is calculated with



CHAPTER 5. REGULATING DATA SHARING UNDER EMERGENCIES 81

reference to the communication phases c2b, b2c, and c2c.

Table 5.7: Observed performance measures

Phase Monitor 1 Monitor 2 Monitor 3 Avg Tot

T
a
rg
et

se
tu
p

Time overhead

c2b 25.25 ms 25.74 ms 25.35 ms 25.45 ms -

b2c 5.1 ms 5.17 ms 5.15 ms 5.14 ms -

c2c 30.36 ms 30.91 ms 30.50 ms 30.59 ms -

Transmission time c2c 40.48 ms 44.49 ms 44.09 ms 43.02 ms -

Throughput

c2b 14.75 cp/s 14.69 cp/s 14.72 cp/s 14.72 cp/s 44.16 cp/s

b2c 17.28 cp/s 17.26 cp/s 17.29 cp/s 17.28 cp/s 51.83 cp/s

c2c 32.03 cp/s 31.94 cp/s 32.01 cp/s 32.00 cp/s 95.99 cp/s

E
x
tr
em

e
ca
se

se
tu
p

Time overhead

c2b 62.15 ms 62.24 ms 64.03 ms 62.80 ms -

b2c 5.83 ms 5.73 ms 6.16 ms 5.91 ms -

c2c 67.98 ms 67.97 ms 70.19 ms 68.71 ms -

Transmission time c2c 70.86 ms 70.77 ms 72.27 ms 71.3 ms -

Throughput

c2b 13.93 cp/s 13.85 cp/s 13.85 cp/s 13.87 cp/s 41.63 cp/s

b2c 15.50 cp/s 15.46 cp/s 15.48 cp/s 15.48 cp/s 46.44 cp/s

c2c 29.43 cp/s 29.31 cp/s 29.33 cp/s 29.36 cp/s 88.07 cp/s

Figure 5.4: Performance analysis results

The assessment of our framework performance refers to a target setup of the monitoring
application, which aims at supporting a realistic deployment tailored for a nursing home of
big size. Our empirical evaluation is then complemented with a further setup, introduced to
show the framework behavior in a extreme case configuration of the monitoring application.

Target setup considers a subject set of 300 patients, 60 healthcare workers among nurses
and physicians, 60 relatives, and 6 specialists. In contrast, in the extreme case setup, any
subject group numerousness is multiplied by 5. Subjects communication in both setups is



CHAPTER 5. REGULATING DATA SHARING UNDER EMERGENCIES 82

regulated by a policy set that includes the ordinary and emergency policies presented in
Section 5.8.1, and a few additional ones introduced to grant to all nursing home devices
the privilege to publish sensed data.

Our experiments refer to an application deployment that includes 3 enforcement mon-
itors, each managing the connections of one third of the subjects of each subject group.
Time overhead, transmission time, and throughput are calculated at each enforcement mon-
itor interface with the nursing home’s MQTT environment. For our experiments, MQTT
clients have been configured in such a way that, in the whole MQTT environment, on
average, 60 publishing requests per second are generated, and the analyzed scenario refers
to a period of 30 days of simulated execution of the monitoring application.

A detailed view of the computed performance measures is presented in Table 5.7,
whereas Figure 5.4 shows, at aggregate level, their trend in the considered setups. In
the target setup, on average, a transmission time of ~43 ms has been observed, of which,
almost ~31 ms is due to the enforcement overhead. Overall, in this setup, our framework
analyzes ~96 control packets per second. In contrast, the transmission time grows up to
~71 ms in the extreme case setup, with an average time overhead of ~69 ms, and a total
throughput which decreases to ~88 cp/s. As visible in Figure 5.4, in each setup, the 3
enforcement monitors almost introduce the same time overhead, show similar transmission
times, and comparable packet processing rates. For each monitor, time overhead related to
phase c2b (shown in red) is significantly higher than in phase b2c (in blue), whereas, even
though with a less marked difference, the opposite trend is observed with the throughput
related to the c2b and b2c phases (respectively shown in yellow and green). This behavior
is justified by the enforcement monitor activities in each communication phase. Indeed, in
the c2b phase, on receipt of a control packet, in order to select and enforce the applicable
policies, the enforcement monitor has to interact with the CEP system to check whether
the intercepted packet causes the evolution of any emergency scenario, whereas, in the
b2c phase no interaction with the CEP system is required. It is worth noting that the
above mentioned differences are more accentuated in the extreme case setup, since, due to
a higher number of patients to be monitored, the number of instances of COVID-19 case
scenario to be managed by the CEP interface is significantly higher.

Overall, our experiments have shown satisfactory results in both setups. The observed
enforcement overhead is reasonably low even in the extreme case, where the size of the
monitored environment is not negligible.



Chapter 6

Conclusion and Future Work

IoT applications, which enable devices, companies, and users to join IoT ecosystems, are
growing in popularity since they increase our lifestyle quality day by day. For instance,
by exploiting the pervasivity of wearable technologies, manifold IoT applications assist
users during their daily routines (e.g., sport training or health monitoring). However, the
seamless growth of IoT enlarges the attack surface and introduces new security threats and
vulnerabilities against data. Insufficient security protection mechanisms in IoT applications
can cause unauthorized users to access data. To solve the security issue related to unau-
thorized accesses, many access control systems, which guarantee only authorized entities
to access the resources, have been proposed in both academic and industrial environments.
However, there are many challenges related to access control within IoT environments that
still should be dealt with [68]. In this dissertation, we do a step to address two main
open research challenges related to data protection in IoT environments: (i) regulating
data sharing among interconnected MQTT-based IoT environments, (ii) regulating data
sharing within an MQTT-based IoT environment under ordinary and emergency situations.

The access control frameworks for IoT environments proposed in the literature employ
different application layer protocols(e.g., CoAP, MQTT, and XMPP [71]). Among these
protocols, the access control frameworks proposed in this dissertation employ MQTT, since
the MQTT protocol is widely adopted within IoT applications and used in various IoT
scenarios.

The access control framework introduced in Chapter 4 regulates data sharing within
interconnected IoT environments, whereas, the access control framework introduced in
Chapter 5 regulates data sharing in emergency situations within an IoT environment. Both
the access control frameworks proposed in this dissertation have been based on the ABAC
model, since it provides outstanding flexibility and supports fine-grained, context-based
access control policies [47]. These characteristics perfectly fit the IoT environments. Both
proposed frameworks have been built on top of an ABAC model designed to control the
communication of devices operating in an MQTT environment [22].

More specifically, in Chapter 4 we have presented an ABAC framework to control data
sharing among interconnected MQTT-based IoT environments. One of the key contribu-

83



CHAPTER 6. CONCLUSION AND FUTURE WORK 84

tions of this framework is to manage the access to data generated and exchanged within
interconnected IoT environments, which distinguishes the proposed framework from the
majority of approaches in the literature which control a single IoT environment. In contrast,
in the proposed framework access control policies and user preferences are also employed to
regulate data sharing across bridged MQTT environments. An enforcement monitor that
operates as an MQTT broker proxy alters the flow of messages exchanged by the brokers of
the bridged environments. Lastly, a decentralized mechanism enforces access control lever-
aging the joint work of monitors deployed in each environment of a bridged pair, and along
the bridge. The enforcement monitor, which controls data sharing among interconnected
MQTT-based IoT environments, has been designed to be easily integrated into MQTT
deployments and to operate with any MQTT client and broker. We experimentally as-
sessed the efficiency of the proposed enforcement mechanism. The performed experimental
analysis has shown a reasonably low enforcement overhead in different scenarios.

We plan to improve the ABAC access control framework introduced in Chapter 4 in
terms of scalability and policy management. More precisely, handling a higher number of
concurrently connected clients leads to a performance drop of the enforcement mechanism.
To favor the adoption of our framework in large-scale scenarios, we are investigating paral-
leling and load balancing techniques to automatically split up the enforcement mechanism
among multiple local monitors. We are also working at complementing the framework with
tools for policy management, which will allows security administrators to easily add new
policies, or change existing policies.

In Chapter 5, we have presented an ABAC framework to control data sharing within an
MQTT-based IoT environment under ordinary and emergency situations. The framework
analyzes the MQTT messages exchanged in a monitored environment leveraging on Com-
plex Event Processing for emergency detection. Emergency and ordinary ABAC policies
are employed to regulate data sharing in emergency and ordinary situations respectively.
Once the framework detects an emergency situation, the applicable emergency policies
are selected to grant to the involved subjects the exceptional privileges permitted in the
considered situation. We assessed the feasibility of the proposed approach with a case
study related to a healthcare application that monitors nursing home patients during the
COVID-19 pandemic. The case study has also been used for a preliminary evaluation of
the system performance, which has been achieved by measuring message transmission time
and throughput. Early experimental performance evaluations show promising results and
a quite acceptable policy enforcement overhead for each configuration.

We plan to extend the abovementioned ABAC access control framework in different
directions. The security administrator, who has sufficient capability and authority to orga-
nize the policies, situations, evolutions, can perform administrative operations (e.g. adding
new emergency policies or updating existing ordinary policies) at runtime depending on
the new requirements of the existing ecosystem. We plan to develop a tool that helps
security administrators to perform those administrative operations. To promptly react to
situation changes before serious incidents could happen, we also plan to add a component
to predict situation changes. More precisely, we plan to leverage on machine learning to
analyze ongoing messages to predict situation changes before they happen. For example,



CHAPTER 6. CONCLUSION AND FUTURE WORK 85

in the nursing home scenario described in Section 5.2, by predicting that the patient’s con-
dition will be worsened as a result of the pre-analysis of the patient’s symptoms, medical
personnel can be informed before the situation change via notifications. Thanks to the
notifications, medical personnel can see that vital signs are getting worse and these signs
can be used to prevent a possible emergency.

The research aspects, which have been examined above, present the direct extensions
for our proposed frameworks. Now let us briefly discuss one of the most promising future
extensions for access control in the IoT domain, namely the adoption of the new access
control paradigm based on the Zero Trust security model.

Zero trust (ZT) [70] is an emerging paradigm in the cybersecurity field, that moves
defenses from static network perimeters to focus on users, assets, and resources and their
related properties. Zero Trust Architectures (ZTA) do not make any assumption on the
trustworthiness of the entities [15]. The trustworthiness of entities that request access to
resources is evaluated with continuous monitoring process. The monitoring process must
track an entity trust level not only before the access is granted, but such level must be
continuously verified and, if a relevant variation happens, the access must be stopped.

One of the main reference scenarios for ZTA is represented by IoT. Since the nature
of many IoT environments is heterogeneous, it is infeasible to assume that all IoT devices
authorized to communicate within the IoT environments are trusted.

Figure 6.1: Architectural Components of Zero Trust Architecture



CHAPTER 6. CONCLUSION AND FUTURE WORK 86

Zero Trust security models for IoT require the adoption of strong access control mech-
anisms. Figure 6.1 shows the architectural components of Zero Trust Architecture that
have been presented in the Gartner Report 1. Subjects indicate users, IoT devices, or IoT
applications that send access requests. Trusted Proxy intercepts access requests, commu-
nicates with the access control engine, and enforces authorization decisions. Access control
engine component dynamically authorizes access requests based on subject, resource and
environment attributes, in addition to the trust values sent by the trust evaluation engine.
Trust evaluation engine continuously assesses trust values of subjects and analyses their
access behaviours. Moreover, the trust evaluation engine keeps the access control engine in-
formed about trust values. Third party security analysis platform is an external component
that works as supplementary tools for the trust evaluation engine. Identity security infras-
tructure identities various entities such as subjects, trusted proxy and resources. Lastly,
resources represent target objects.

The access control requirements, which are expected to be addressed to enable the
adoption of ZT in the IoT domain, are as follows: security-related metadata, principle of
least privilege(PoLP), dynamic access control decisions, and architectural aspects [23].

Now let us briefly introduce these requirements.
According to ZT security models, subjects identity should be checked at any time they

issue an access request, and access decisions should be based on all available security-related
metadata such as: i) the requesting subject, ii) the target resource to be accessed, iii)
the environment within which the request is issued, and iv) the security risks associated
with the request. The ability of an access control framework for IoT to represent and
manage properties related to subjects, objects, and context of access requests is, thus, a
key instrumental feature for taking access decisions based on security risks.

Another key concept of ZT security models is the principle of least privilege (PoLP) [72],
which essentially states that granted privileges should be the necessary minimum ones
to perform a required operation. PoLP affects both access control granularity and time
dimension, introducing specific requirements for the enforcement mechanisms to be used
within ZT enabled IoT applications. Access control granularity should be enough fine-
grained to avoid that more resources than those strictly requested could be accessed. PoLP
can also be enforced by introducing temporary access privileges. Authorizations can be
bound to time intervals which constrain the validity of the granted privileges. The privilege
is immediately revoked once the validity period expires.

In IoT applications, the privileges should be revoked in case, before or during the access,
the conditions which brought to grant the authorizations are no more satisfied. More
precisely, the security risks associated with the request could be affected by any sudden
change of security-related metadata related to an access request, which either is observed
after the access is authorized and before it is executed, or during the access execution. In
case the detected risk level is higher than the one derived at access request time, the access

1Gartner, “Zero trust architecture and solutions,” Qi An Xin Group, Beijing, 2020. [Online].
Available: https://www.gartner.com/teamsiteanalytics/servePDF?g=/imagesrv/media-products/pdf/Qi-
An-Xin/Qi-An-in-1-1OKONUN2.pdf



CHAPTER 6. CONCLUSION AND FUTURE WORK 87

should be immediately blocked, revoking the original authorization, and possibly granting
a new one with reduced privileges. Thus, the dynamic access control decisions should be
made before and during the access.

ZT security models introduce the necessity to enforce risk aware access control policies.
For any access request, applicable policies must be selected considering the behavioral pat-
terns of the requesting subject, the sensitivity of the resources to be accessed, and current
state of the system at access request time. As a direct consequence of these additional di-
mensions, the enforcement of fine grained security in ZT enabled IoT environments implies
the need to manage and enforce a potentially huge number of access control policies [15,16].
Traditional centralized access control solutions where all decisions are taken by a single
policy decision point can hardly be used in the above mentioned scenario. A key asset to
cope with this complexity is therefore the adoption of decentralized and distributed AC
approaches as their architectures, which allow improved scalability and resiliency of the
enforcement mechanism.

To make the access control frameworks proposed in this thesis compliant to ZT, we plan
to extend both access control frameworks with a monitoring tool that keeps track of subject
behaviors. The monitoring tool checks any action performed by subjects during and after
authorizations. Moreover, subject behaviors are stored in a subject behavior profile for
each subject. A subject behavioral profile is employed to detect potential security risks
that may affect the evaluation result of the next access request issued by its subject.



Bibliography

[1] Mohamed Abomhara and Geir M Køien. Security and privacy in the internet of
things: Current status and open issues. In 2014 international conference on privacy
and security in mobile systems (PRISMS), pages 1–8. IEEE, 2014.

[2] Alex Akinbi, Mark Forshaw, and Victoria Blinkhorn. Contact tracing apps for the
covid-19 pandemic: a systematic literature review of challenges and future directions
for neo-liberal societies. Health Information Science and Systems, 9(1):1–15, 2021.

[3] J. Al-Muhtadi, A. Ranganathan, R. Campbell, and M.D. Mickunas. A flexible, privacy-
preserving authentication framework for ubiquitous computing environments. In Pro-
ceedings 22nd International Conference on Distributed Computing Systems Workshops,
pages 771–776, 2002.

[4] Asma Alshehri, James Benson, Farhan Patwa, and Ravi Sandhu. Access control model
for virtual objects (shadows) communication for aws internet of things. In Proceedings
of the Eighth ACM Conference on Data and Application Security and Privacy, pages
175–185. ACM, 2018.

[5] Asma Alshehri and Ravi Sandhu. Access control models for cloud-enabled internet of
things: A proposed architecture and research agenda. In 2016 IEEE 2nd International
Conference on Collaboration and Internet Computing (CIC), pages 530–538. IEEE,
2016.

[6] Safwa Ameer, James Benson, and Ravi Sandhu. The egrbac model for smart home iot.
In 2020 IEEE 21st International Conference on Information Reuse and Integration for
Data Science (IRI), pages 457–462. IEEE, 2020.

[7] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Chris-
tidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Laventman, Yacov
Manevich, Srinivasan Muralidharan, Chet Murthy, Binh Nguyen, Manish Sethi, Gari
Singh, Keith Smith, Alessandro Sorniotti, Chrysoula Stathakopoulou, Marko Vukolić,
Sharon Weed Cocco, and Jason Yellick. Hyperledger fabric: A distributed operating
system for permissioned blockchains. In Proceedings of the Thirteenth EuroSys Confer-
ence, EuroSys ’18, New York, NY, USA, 2018. Association for Computing Machinery.

[8] Kevin Ashton et al. That ‘internet of things’ thing. RFID journal, 22(7):97–114, 2009.

88



BIBLIOGRAPHY 89

[9] Vidyadhar Aski, Vijaypal Singh Dhaka, and Anubha Parashar. An attribute-based
break-glass access control framework for medical emergencies. In Innovations in Com-
putational Intelligence and Computer Vision, pages 587–595. Springer, 2021.

[10] Leonardo Babun, Kyle Denney, Z. Berkay Celik, Patrick McDaniel, and A. Selcuk Ulu-
agac. A survey on iot platforms: Communication, security, and privacy perspectives.
Computer Networks, 192:108040, 2021.

[11] Syafril Bandara, Takeshi Yashiro, Noboru Koshizuka, and Ken Sakamura. Access
control framework for api-enabled devices in smart buildings. In 2016 22nd Asia-
Pacific Conference on Communications (APCC), pages 210–217. IEEE, 2016.

[12] Andrew Banks, Ed Briggs, Ken Borgendale, and Rahul Gupta. Mqtt version 5.0.
OASIS Standard, 2019.

[13] Sana Belguith, Sarada Prasad Gochhayat, Mauro Conti, and Giovanni Russello. Emer-
gency access control management via attribute based encrypted qr codes. In 2018
IEEE Conference on Communications and Network Security (CNS), pages 1–8. IEEE,
2018.

[14] Jorge Bernal Bernabe, Jose Luis Hernandez Ramos, and Antonio F Skarmeta Gomez.
Taciot: multidimensional trust-aware access control system for the internet of things.
Soft Computing, 20(5):1763–1779, 2016.

[15] Elisa Bertino. Zero trust architecture: Does it help? IEEE Security Privacy, 19(5):95–
96, 2021.

[16] Elisa Bertino and Kenneth Brancik. Services for zero trust architectures-a research
roadmap. In 2021 IEEE International Conference on Web Services (ICWS), pages
14–20. IEEE Computer Society, 2021.

[17] Tim Bray et al. The javascript object notation (json) data interchange format. 2014.

[18] Achim D Brucker and Helmut Petritsch. Extending access control models with break-
glass. In Proceedings of the 14th ACM symposium on Access control models and tech-
nologies, pages 197–206, 2009.

[19] Achim D Brucker, Helmut Petritsch, and Stefan G Weber. Attribute-based encryption
with break-glass. In IFIP International Workshop on Information Security Theory and
Practices, pages 237–244. Springer, 2010.

[20] Vitalik Buterin et al. A next-generation smart contract and decentralized application
platform. white paper, 3(37), 2014.

[21] Barbara Carminati, Elena Ferrari, and Michele Guglielmi. A system for timely and
controlled information sharing in emergency situations. IEEE Transactions on De-
pendable and Secure Computing, 10(3):129–142, 2013.



BIBLIOGRAPHY 90

[22] Pietro Colombo and Elena Ferrari. Access control enforcement within mqtt-based
internet of things ecosystems. In Proceedings of the 23nd ACM on Symposium on
Access Control Models and Technologies, pages 223–234, 2018.

[23] Pietro Colombo, Elena Ferrari, and Engin Deniz Tümer. Access control enforcement
in iot: state of the art and open challenges in the zero trust era. In 2021 3rd IEEE
International Conference on Trust, Privacy and Security in Intelligent Systems, and
Applications (IEEE TPS 2021). IEEE, 2021.

[24] Pietro Colombo, Elena Ferrari, and Engin Deniz Tümer. Regulating data shar-
ing across mqtt environments. Journal of Network and Computer Applications,
174:102907, 2021.

[25] Gianpaolo Cugola and Alessandro Margara. Processing flows of information: From
data stream to complex event processing. ACM Computing Surveys (CSUR), 44(3):1–
62, 2012.

[26] Gianpaolo Cugola and Alessandro Margara. The complex event processing paradigm.
In Data Management in Pervasive Systems, pages 113–133. Springer, 2015.

[27] Olfa Dallel, Souheil Ben Ayed, and Jamel Bel Hadj Taher. Secure iot-based emergency
management system for smart buildings. In 2021 IEEE Wireless Communications and
Networking Conference (WCNC), pages 1–7. IEEE, 2021.

[28] Marcela T de Oliveira, Alexandros Bakas, Eugene Frimpong, Adrien ED Groot,
Henk A Marquering, Antonis Michalas, and Silvia D Olabarriaga. A break-glass pro-
tocol based on ciphertext-policy attribute-based encryption to access medical records
in the cloud. Annals of Telecommunications, pages 1–17, 2020.

[29] Theo Dimitrakos, Tezcan Dilshener, Alexander Kravtsov, Antonio La Marra, Fabio
Martinelli, Athanasios Rizos, Alessandro Rosett, and Andrea Saracino. Trust aware
continuous authorization for zero trust in consumer internet of things. In 2020 IEEE
19th International Conference on Trust, Security and Privacy in Computing and Com-
munications (TrustCom), pages 1801–1812. IEEE, 2020.

[30] Yuji Dong, Kaiyu Wan, Xin Huang, and Yong Yue. Contexts-states-aware access con-
trol for internet of things. In 2018 IEEE 22nd International Conference on Computer
Supported Cooperative Work in Design ((CSCWD)), pages 666–671. IEEE, 2018.

[31] Sophie Dramé-Maigné, Maryline Laurent, and Laurent Castillo. Distributed access
control solution for the iot based on multi-endorsed attributes and smart contracts. In
2019 15th International Wireless Communications & Mobile Computing Conference
(IWCMC), pages 1582–1587. IEEE, 2019.

[32] Sophie Dramé-Maigné, Maryline Laurent, Laurent Castillo, and Hervé Ganem. Cen-
tralized, distributed, and everything in between: Reviewing access control solutions
for the iot. ACM Comput. Surv., 54(7), September 2021.



BIBLIOGRAPHY 91

[33] Federico Fernández, Alvaro Alonso, Lourdes Marco, and Joaqúın Salvachúa. A model
to enable application-scoped access control as a service for iot using oauth 2.0. In
2017 20th Conference on Innovations in Clouds, Internet and Networks (ICIN), pages
322–324. IEEE, 2017.

[34] M. Fernandez, J. Jaimunk, and B. Thuraisingham. Privacy-preserving architecture for
cloud-iot platforms. In 2019 IEEE International Conference on Web Services (ICWS),
pages 11–19, July 2019.

[35] Ana Ferreira, David Chadwick, Pedro Farinha, Ricardo Correia, Gansen Zao, Rui
Chilro, and Luis Antunes. How to securely break into rbac: the btg-rbac model. In
2009 Annual Computer Security Applications Conference, pages 23–31. IEEE, 2009.

[36] Ludger Fiege, Gero Mühl, and Felix C Gärtner. Modular event-based systems. The
Knowledge Engineering Review, 17(4):359–388, 2002.

[37] Juan Carlos Fuentes Carranza and Philip WL Fong. Brokering policies and execution
monitors for iot middleware. In Proceedings of the 24th ACM Symposium on Access
Control Models and Technologies, pages 49–60. ACM, 2019.

[38] Alban Gabillon, Romane Gallier, and Emmanuel Bruno. Access controls for iot net-
works. SN Computer Science, 1(1):1–13, 2020.

[39] Nikos Giatrakos, Elias Alevizos, Alexander Artikis, Antonios Deligiannakis, and Minos
Garofalakis. Complex event recognition in the big data era: a survey. The VLDB
Journal, 29(1):313–352, 2020.

[40] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based en-
cryption for fine-grained access control of encrypted data. In Proceedings of the 13th
ACM conference on Computer and communications security, pages 89–98, 2006.

[41] Maanak Gupta, James Benson, Farhan Patwa, and Ravi Sandhu. Secure cloud assisted
smart cars using dynamic groups and attribute based access control. arXiv preprint
arXiv:1908.08112, 2019.

[42] Sergio Gusmeroli, Salvatore Piccione, and Domenico Rotondi. A capability-based
security approach to manage access control in the internet of things. Mathematical
and Computer Modelling, 58(5-6):1189–1205, 2013.

[43] Bumjin Gwak, Jin-Hee Cho, Dongman Lee, and Heesuk Son. Taras: Trust-aware
role-based access control system in public internet-of-things. In 2018 17th IEEE In-
ternational Conference On Trust, Security And Privacy In Computing And Commu-
nications/12th IEEE International Conference On Big Data Science And Engineering
(TrustCom/BigDataSE), pages 74–85. IEEE, 2018.

[44] Dezhi Han, Yujie Zhu, Dun Li, Wei Liang, Alireza Souri, and Kuan-Ching Li. A
blockchain-based auditable access control system for private data in service-centric iot
environments. IEEE Transactions on Industrial Informatics, 2021.



BIBLIOGRAPHY 92

[45] Dick Hardt. The OAuth 2.0 Authorization Framework. RFC 6749, October 2012.

[46] José L Hernández-Ramos, Antonio J Jara, Leandro Marin, and Antonio F Skarmeta.
Distributed capability-based access control for the internet of things. Journal of In-
ternet Services and Information Security (JISIS), 3(3/4):1–16, 2013.

[47] Vincent Hu, David Ferraiolo, D. Kuhn, A. Schnitzer, Knox Sandlin, R. Miller, and
Karen Scarfone. Guide to attribute based access control (abac) definition and con-
siderations. National Institute of Standards and Technology Special Publication, pages
162–800, 01 2014.

[48] Vincent C Hu, D Richard Kuhn, David F Ferraiolo, and Jeffrey Voas. Attribute-based
access control. Computer, 48(2):85–88, 2015.

[49] Dina Hussein, Emmanuel Bertin, and Vincent Frey. A community-driven access con-
trol approach in distributed iot environments. IEEE Communications Magazine,
55(3):146–153, 2017.

[50] Don Johnson, Alfred Menezes, and Scott Vanstone. The elliptic curve digital signature
algorithm (ecdsa). International journal of information security, 1(1):36–63, 2001.

[51] Bashar Kabbani, Romain Laborde, François Barrere, and Abdelmalek Benzekri. Spec-
ification and enforcement of dynamic authorization policies oriented by situations.
In 2014 6th International Conference on New Technologies, Mobility and Security
(NTMS), pages 1–6. IEEE, 2014.

[52] Antonio La Marra, Fabio Martinelli, Paolo Mori, and Andrea Saracino. Implementing
usage control in internet of things: a smart home use case. In 2017 IEEE Trust-
com/BigDataSE/ICESS, pages 1056–1063. IEEE, 2017.

[53] Butler W. Lampson. Protection. SIGOPS Oper. Syst. Rev., 8(1):18–24, jan 1974.

[54] Adam J Lee, Jacob T Biehl, and Conor Curry. Sensing or watching? balancing utility
and privacy in sensing systems via collection and enforcement mechanisms. In Pro-
ceedings of the 23nd ACM on Symposium on Access Control Models and Technologies,
pages 105–116, 2018.

[55] Han Liu, Dezhi Han, and Dun Li. Fabric-iot: A blockchain-based access control system
in iot. IEEE Access, 8:18207–18218, 2020.

[56] Yue Liu, Qinghua Lu, Shiping Chen, Qiang Qu, Hugo O’Connor, Kim-Kwang Ray-
mond Choo, and He Zhang. Capability-based iot access control using blockchain.
Digital Communications and Networks, 2020.

[57] Srdjan Marinovic, Robert Craven, Jiefei Ma, and Naranker Dulay. Rumpole: a flexible
break-glass access control model. In Proceedings of the 16th ACM symposium on Access
control models and technologies, pages 73–82, 2011.



BIBLIOGRAPHY 93

[58] H. A. Maw, H. Xiao, B. Christianson, and J. A. Malcolm. Btg-ac: Break-the-glass
access control model for medical data in wireless sensor networks. IEEE Journal of
Biomedical and Health Informatics, 20(3):763–774, 2016.

[59] Biswajeeban Mishra and Attila Kertesz. The use of mqtt in m2m and iot systems: A
survey. IEEE Access, 8:201071–201086, 2020.

[60] Yuta Nakamura, Yuanyu Zhang, Masahiro Sasabe, and Shoji Kasahara. Exploiting
smart contracts for capability-based access control in the internet of things. Sensors,
20(6):1793, 2020.

[61] Fatemeh Nazerian, Homayun Motameni, and Hossein Nematzadeh. Emergency role-
based access control (e-rbac) and analysis of model specifications with alloy. Journal
of information security and applications, 45:131–142, 2019.

[62] World Health Organization et al. Online global consultation on contact tracing for
covid-19, 9-11 june 2020. 2021.

[63] Aafaf Ouaddah, Hajar Mousannif, Anas Abou Elkalam, and Abdellah Ait Ouahman.
Access control in the internet of things: Big challenges and new opportunities. Com-
puter Networks, 112:237–262, 2017.

[64] Joseph G Ouslander and David C Grabowski. Covid-19 in nursing homes: calming the
perfect storm. Journal of the American Geriatrics Society, 68(10):2153–2162, 2020.

[65] Jianli Pan and James McElhannon. Future edge cloud and edge computing for internet
of things applications. IEEE Internet of Things Journal, 5(1):439–449, 2017.

[66] Jaehong Park and Ravi Sandhu. The uconabc usage control model. ACM transactions
on information and system security (TISSEC), 7(1):128–174, 2004.

[67] Jing Qiu, Zhihong Tian, Chunlai Du, Qi Zuo, Shen Su, and Binxing Fang. A survey
on access control in the age of internet of things. IEEE Internet of Things Journal,
7(6):4682–4696, 2020.

[68] Sowmya Ravidas, Alexios Lekidis, Federica Paci, and Nicola Zannone. Access con-
trol in internet-of-things: A survey. Journal of Network and Computer Applications,
144:79–101, 2019.

[69] General Data Protection Regulation. Regulation eu 2016/679 of the european par-
liament and of the council of 27 april 2016. Official Journal of the European Union,
2016.

[70] Scott W Rose, Oliver Borchert, Stuart Mitchell, and Sean Connelly. Zero trust archi-
tecture. 2020.

[71] Peter Saint-Andre et al. Extensible messaging and presence protocol (xmpp): Core.
2004.



BIBLIOGRAPHY 94

[72] Jerome H Saltzer. Protection and the control of information sharing in multics. Com-
munications of the ACM, 17(7):388–402, 1974.

[73] Pierangela Samarati and Sabrina Capitani de Vimercati. Access control: Policies,
models, and mechanisms. In International School on Foundations of Security Analysis
and Design, pages 137–196. Springer, 2000.

[74] Ravi S Sandhu. Role-based access control. In Advances in computers, volume 46,
pages 237–286. Elsevier, 1998.

[75] Sigrid Schefer-Wenzl, Helena Bukvova, and Mark Strembeck. A review of delega-
tion and break-glass models for flexible access control management. In International
conference on business information systems, pages 93–104. Springer, 2014.

[76] Daniel Servos and Sylvia L Osborn. Current research and open problems in attribute-
based access control. ACM Computing Surveys (CSUR), 49(4):1–45, 2017.

[77] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,
1979.

[78] Zach Shelby, Klaus Hartke, and Carsten Bormann. The constrained application pro-
tocol (coap). 2014.

[79] Qais Tasali, Christine Sublett, and Eugene Vasserman. Controlled btg: Toward flexible
emergency override in interoperable medical systems. EAI Endorsed Transactions on
Security and Safety, 6(22):e2, 2020.

[80] European Centre for Disease Prevention and Con-
trol. Increase in fatal cases of COVID-19 among long-term care
facility residents in the EU/EEA and the UK. 2020.

[81] Yuanfei Tu, Jing Wang, Geng Yang, and Ben Liu. An efficient attribute-based access
control system with break-glass capability for cloud-assisted industrial control system.
Mathematical Biosciences and Engineering, 18(4):3559–3577, 2021.

[82] Dries Van Bael, Shirin Kalantari, Andreas Put, and Bart De Decker. A context-aware
break glass access control system for iot environments. In 2020 7th International
Conference on Internet of Things: Systems, Management and Security (IOTSMS),
pages 1–8. IEEE, 2020.

[83] Ovidiu Vermesan and Peter Friess. Internet of things: converging technologies for
smart environments and integrated ecosystems. River publishers, 2013.

[84] Antonio La Marra, Fabio Martinelli, Paolo Mori, Athanasios Rizos, and Andrea Sara-
cino. Introducing usage control in mqtt. In Computer Security, pages 35–43. Springer,
2017.



BIBLIOGRAPHY 95

[85] Kai Wang, Hao Yin, Wei Quan, and Geyong Min. Enabling collaborative edge com-
puting for software defined vehicular networks. IEEE Network, 32(5):112–117, 2018.

[86] Ronghua Xu, Yu Chen, Erik Blasch, and Genshe Chen. Blendcac: A smart contract
enabled decentralized capability-based access control mechanism for the iot. Comput-
ers, 7(3):39, 2018.

[87] Yang Yang, Ximeng Liu, and Robert H Deng. Lightweight break-glass access control
system for healthcare internet-of-things. IEEE Transactions on Industrial Informatics,
14(8):3610–3617, 2017.

[88] Yang Yang, Xianghan Zheng, Wenzhong Guo, Ximeng Liu, and Victor Chang.
Privacy-preserving smart iot-based healthcare big data storage and self-adaptive ac-
cess control system. Information Sciences, 479:567–592, 2019.

[89] Quan Zhang, Xiaohong Zhang, Qingyang Zhang, Weisong Shi, and Hong Zhong. Fire-
work: Big data sharing and processing in collaborative edge environment. In 2016
Fourth IEEE Workshop on Hot Topics in Web Systems and Technologies (HotWeb),
pages 20–25. IEEE, 2016.



Appendices

96



Appendix A

Abbreviations

Abbreviation Meaning

ABAC Attribute Based Access Control
ABE Attribute Based Encryption
AC Access Control
BtG Break-the-Glass
CapBAC Capability Based Access Control
CEP Complex Event Processing
CoAP Constrained Application Protocol
ECDSA Elliptic Curve Digital Signature Algorithm
GDPR General Data Protection Regulation
IoS Internet of Sport
IoT Internet of Things
MQTT Message Queue Telemetry Transport
QoS Quality of Service
PAP Policy Administrator Point
PDP Policy Decision Point
PEP Policy Enforcement Point
PIP Policy Information Point
PoLP Principle of Least Privilege
RBAC Role Based Access Control
UCON Usage Control
WSN Wireless Sensor Network
ZT Zero Trust
ZTA Zero Trust Architecture

97



Appendix B

Publications

1. Pietro Colombo, Elena Ferrari, and Engin Deniz Tümer. ”Regulating data sharing
across MQTT environments.” Journal of Network and Computer Applications 174
(2021): 102907.

Abstract: Nowadays, due to the personal nature of the managed data, numerous
Internet of Things (IoT) applications represent a potential threat to user privacy. In
order to address this issue, several access control models have been specifically de-
signed for IoT. The great majority of these proposals adopt centralized enforcement
mechanisms designed to control the communication of IoT devices operating in the
same environment. However, these approaches cannot regulate data exchange oper-
ated by devices connected to different environments. To the best of our knowledge,
effective approaches capable of controlling these forms of communications are still
missing. Therefore, in this paper, we do a step to fill this void, by focusing on appli-
cations built on top of MQTT, a widely used protocol for IoT. We propose an access
control framework to regulate data sharing across bridged MQTT environments, on
the basis of both access control policies and user preferences. The proposed approach
regulates data exchange among IoT devices belonging to interconnected environments
by means of a decentralized enforcement mechanism. Experimental analyses show the
efficiency of the proposed approach.

2. Pietro Colombo, Elena Ferrari, and Engin Deniz Tümer. ”Access Control Enforce-
ment in IoT: state of the art and open challenges in the Zero Trust era” in Proc. of the
Third IEEE International Conference on Trust, Privacy and Security in Intelligent
Systems, and Applications (IEEE TPS 2021), December 13 - 15, 2021.

Abstract: Zero Trust (ZT) is a security paradigm which is nowadays finding ap-
plication in different domains. One of the domain that can most benefit from ZT is
represented by Internet of Things (IoT), where huge quantity of personal and sensi-
tive data are continuously generated by IoT devices, which, in the recent years, have
been the target of several security attacks. In this paper, we identify a set of access
control requirements which are expected to enable the adoption of ZT in the IoT

98



APPENDIX B. PUBLICATIONS 99

domain. Through the analysis of state of the art access control approaches currently
employed in IoT ecosystems, we observe the lack of solutions capable of addressing
all the identified requirements. We therefore discuss significant open challenges that
still need to be addressed in this area.

3. Efficient ABAC based information sharing within MQTT environments under emer-
gencies, uder submission.

Abstract: Recent emergencies, such as the COVID-19 pandemic, have shown how a
timely information sharing is essential to promptly and effectively react to emergen-
cies. Internet of Things has magnified the possibility of acquiring information from
different sensors and use it for emergency management and response. However, it
has also amplified the possibility of information misuse and unauthorized access to
information by untrusted users. Therefore, in this paper we propose an access control
framework tailored to MQTT-based IoT ecosystems, which, by leveraging on Com-
plex Event Processing is able to enforce a controlled and timely data sharing in both
emergency and ordinary situations. The system has been tested with a case study
that targets patient monitoring during the COVID-19 pandemic, showing promising
results.


	Introduction
	Contributions
	Thesis Organization
	Related Publications

	Background
	MQTT
	ABAC framework within a single MQTT-based IoT environment
	The ABAC Model
	Access Control Enforcement


	Related Work
	Classical Access Control Solutions
	CapBAC-based Solutions
	UCON-based Solutions
	RBAC-based Solutions
	ABAC-based Solutions

	Access Control Solutions With Emergency Management Support
	Emergency Management Based on Break-The-Glass Policies
	Emergency Management Based on Emergency Policies


	Regulating data sharing across multiple Iot environments
	Introduction
	Access control across different MQTT environments
	Overview
	Enforcement
	Enforcement rationale
	The enforcement mechanism in details

	Performance Analysis
	Implementation
	Experiments


	Regulating data sharing under emergencies
	Introduction
	Running Example
	CEP
	Event Modeling
	Access Control Model
	System Overview
	Enforcement
	Event detection
	Emergency management
	Action execution 

	Experimental Evaluation
	The case study
	Experiments


	Conclusion and Future Work
	Appendices
	Abbreviations
	Publications

