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Abstract

This thesis presents an approach to systematically consider confidentiality requirements

in software architectures by representing and analyzing data flows.

The strengthening of data protection regulations such as the European General Data

Protection Regulation (GDPR) and the reactions of people to data breaches such as the

Cambridge Analytica scandal have shown that ensuring confidentiality in software systems

is vital for organizations. To ensure confidentiality, it is necessary to consider confidential-

ity during the whole development process. Especially, early development phases require

attention because a considerable amount of issues traces back to issues introduced in

these early phases. Additionally, the effort for fixing issues originating from the software

architecture increases disproportionately high in later development phases. Data-oriented

representations of software systems are popular for detecting violations of confidentiality

requirements in early development phases because investigating a violation often requires

following the data flow.

Data Flow Diagrams (DFDs) are commonly used to reason about security in general and

confidentiality in particular but plain DFDs are not sufficient to formalize and automate

DFD-based analyses. Instead, DFDs and other Architectural Description Languages (ADLs)

need extensions to represent the information required to reason about confidentiality.

These extensions often only focus on confidentiality requirements given in terms of one

particular confidentiality mechanism such as access control. The resulting single purpose

approaches do not support combined mechanisms, which lowers their expressiveness. If

the software architect changes the confidentiality mechanism, it is necessary to switch to

an ADL supporting that mechanism, which implies a high effort for describing existing

architectures in the new ADL. In addition, many analysis approaches do not provide an

integration into existing ADLs and development processes, which impedes systematic

application of the approaches.

Existing data-oriented approaches either considerably rely on manual activities and high

expertise or do not support access control, information flow control and encryption within

the same specification artifact. These three confidentiality mechanisms are the most

commonly used ones, so it is likely that software architects are interested in using all

of them. The manual activities include the identification of violations by inspections

and the tracing of data through the system. Both require a considerable expertise in

confidentiality.

In this thesis, we address the previously mentioned problems by four contributions: First,

we present an extension of the DFD syntax, which represents the required information
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to reason about access control and information flow control combined with encryption

by properties and behaviors within the same specification artifact. Second, the semantics

for the extended DFD syntax formalize the behavior of DFDs by label propagation, which

supports tracing data automatically. Third, a set of analysis definitions based on the

DFD syntax and semantics identifies violations of confidentiality requirements given in

terms of the most important variants of access control, information flow control and

encryption. Fourth, integration guidelines describe how to use the data-oriented analysis

framework given by the previous three contributions together with existing ADLs and

their corresponding development processes.

We validated the expressiveness, result quality and modeling effort of our contributions in

case studies on seventeen case study systems. The case study systems mostly stem from

related work and cover five types of access control requirements, four types of information

flow control requirements, two types of encryption and one combination of access control

and information flow control. We validated the expressiveness of the DFD syntax as well as

of two extended ADLs resulting from applying the integration guidelines and could express

all but one case study system. We could also express the confidentiality requirements

from sixteen case study systems by the provided analysis definitions. The DFD-based as

well as the ADL-based analyses only reported expected results, so the result quality was

high. We validated the modeling effort in the extended ADLs for adding and switching a

confidentiality mechanism for an existing software architecture. In both validations, we

could show that the ADL integrations save modeling effort by supporting the reuse of

considerable parts of existing software architectures.

Software architects profit from the increased flexibility in choosing and the lowered effort

in switching confidentiality mechanisms. The early detection of confidentiality violations

reduces the effort of fixing the underlying issues.
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Zusammenfassung

Diese Arbeit präsentiert einen Ansatz zur systematischen Berücksichtigung von Vertrau-

lichkeitsanforderungen in Softwarearchitekturen mittels Abbildung und Analyse von

Datenflüssen.

Die Stärkung von Datenschutzregularien, wie bspw. durch die europäische Datenschutz-

grundverordnung (DSGVO), und die Reaktionen der Bevölkerung auf Datenskandale, wie

bspw. den Skandal um Cambridge Analytica, haben gezeigt, dass die Wahrung von Ver-

traulichkeit für Organisationen von essentieller Bedeutung ist. Um Vertraulichkeit zu

wahren, muss diese während des gesamten Softwareentwicklungsprozesses berücksichtigt

werden. Frühe Entwicklungsphasen benötigen hier insbesondere große Beachtung, weil

ein beträchtlicher Anteil an späteren Problemen auf Fehler in diesen frühen Entwick-

lungsphasen zurückzuführen ist. Hinzu kommt, dass der Aufwand zum Beseitigen von

Fehlern aus der Softwarearchitektur in späteren Entwicklungsphasen überproportional

steigt. Um Verletzungen von Vertraulichkeitsanforderungen zu erkennen, werden in frühe-

ren Entwicklungsphasen häufig datenorientierte Dokumentationen der Softwaresysteme

verwendet. Dies kommt daher, dass die Untersuchung einer solchen Verletzung häufig

erfordert, Datenflüssen zu folgen.

Datenflussdiagramme (DFDs) werden gerne genutzt, um Sicherheit im Allgemeinen und

Vertraulichkeit im Speziellen zu untersuchen. Allerdings sind reine DFDs noch nicht

ausreichend, um darauf aufbauende Analysen zu formalisieren und zu automatisieren.

Stattdessen müssen DFDs oder auch andere Architekturbeschreibungssprachen (ADLs) er-

weitert werden, um die zur Untersuchung von Vertraulichkeit notwendigen Informationen

repräsentieren zu können. Solche Erweiterungen unterstützen häufig nur Vertraulichkeits-

anforderungen für genau einen Vertraulichkeitsmechanismus wie etwa Zugriffskontrolle.

Eine Kombination von Mechanismen unterstützen solche auf einen einzigen Zweck fo-

kussierten Erweiterungen nicht, was deren Ausdrucksmächtigkeit einschränkt. Möchte

ein Softwarearchitekt oder eine Softwarearchitektin den eingesetzten Vertraulichkeitsme-

chanismus wechseln, muss er oder sie auch die ADL wechseln, was mit hohem Aufwand

für das erneute Modellieren der Softwarearchitektur einhergeht. Darüber hinaus bieten

viele Analyseansätze keine Integration in bestehende ADLs und Entwicklungsprozesse.

Ein systematischer Einsatz eines solchen Ansatzes wird dadurch deutlich erschwert.

Existierende, datenorientierte Ansätze bauen entweder stark auf manuelle Aktivitäten und

hohe Expertise oder unterstützen nicht die gleichzeitige Repräsentation von Zugriffs- und

Informationsflusskontrolle, sowie Verschlüsselung im selben Artefakt zur Architekturspe-

zifikation. Weil die genannten Vertraulichkeitsmechanismen am verbreitetsten sind, ist es

wahrscheinlich, dass Softwarearchitekten und Softwarearchitektinnen an der Nutzung all
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dieser Mechanismen interessiert sind. Die erwähnten, manuellen Tätigkeiten umfassen

u.a. die Identifikation von Verletzungen mittels Inspektionen und das Nachverfolgen von

Daten durch das System. Beide Tätigkeiten benötigen ein beträchtliches Maß an Erfahrung

im Bereich Vertraulichkeit.

Wir adressieren in dieser Arbeit die zuvor genannten Probleme mittels vier Beiträgen:

Zuerst präsentieren wir eine Erweiterung der DFD-Syntax, durch die die zur Untersuchung

von Zugriffs- und Informationsflusskontrolle, sowie Verschlüsselung notwendigen Infor-

mationen mittels Eigenschaften und Verhaltensbeschreibungen innerhalb des selben Arte-

fakts zur Architekturspezifikation ausgedrückt werden können. Zweitens stellen wir eine

Semantik dieser erweiterten DFD-Syntax vor, die das Verhalten von DFDs über die Ausbrei-

tung von Attributen (engl.: label propagation) formalisiert und damit eine automatisierte

Rückverfolgung von Daten ermöglicht. Drittens präsentieren wir Analysedefinitionen, die

basierend auf der DFD-Syntax und -Semantik Verletzungen von Vertraulichkeitsanforde-

rungen identifizieren kann. Die unterstützten Vertraulichkeitsanforderungen decken die

wichtigsten Varianten von Zugriffs- und Informationsflusskontrolle, sowie Verschlüsselung

ab. Viertens stellen wir einen Leitfaden zur Integration des Rahmenwerks für datenorien-

tierte Analysen in bestehende ADLs und deren zugehörige Entwicklungsprozesse vor. Das

Rahmenwerk besteht aus den vorherigen drei Beiträgen.

Die Validierung der Ausdrucksmächtigkeit, der Ergebnisqualität und des Modellierungs-

aufwands unserer Beiträge erfolgt fallstudienbasiert auf siebzehn Fallstudiensystemen. Die

Fallstudiensysteme stammen größtenteils aus verwandten Arbeiten und decken fünf Arten

von Zugriffskontrollanforderungen, vier Arten von Informationsflussanforderungen, zwei

Arten von Verschlüsselung und Anforderungen einer Kombination beider Vertraulichkeits-

mechanismen ab. Wir haben die Ausdrucksmächtigkeit der DFD-Syntax, sowie der mittels

des Integrationsleitfadens erstellten ADLs validiert und konnten alle außer ein Fallstudien-

system repräsentieren. Wir konnten außerdem die Vertraulichkeitsanforderungen von

sechzehn Fallstudiensystemen mittels unserer Analysedefinitionen repräsentieren. Die

DFD-basierten, sowie die ADL-basierten Analysen lieferten die erwarteten Ergebnisse,

was eine hohe Ergebnisqualität bedeutet. Den Modellierungsaufwand in den erweiterten

ADLs validierten wir sowohl für das Hinzufügen, als auch das Wechseln eines Vertraulich-

keitsmechanismus bei einer bestehenden Softwarearchitektur. In beiden Validierungen

konnten wir zeigen, dass die ADL-Integrationen Modellierungsaufwand einsparen, in-

dem beträchtliche Teile bestehender Softwarearchitekturen wiederverwendet werden

können.

Von unseren Beiträgen profitieren Softwarearchitekten durch gesteigerte Flexibilität bei

der Auswahl von Vertraulichkeitsmechanismen, sowie beim Wechsel zwischen diesen Me-

chanismen. Die frühe Identifikation von Vertraulichkeitsverletzungen verringert darüber

hinaus den Aufwand zum Beheben der zugrundeliegenden Probleme.
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1. Introduction

In this thesis, we present an approach for systematically considering confidentiality re-

quirements in the architectural design phase of software development processes. The

approach supports documenting system aspects, which affect the fulfillment of confiden-

tiality requirements, in an architectural design model as well as the automated detection

of violations of these requirements. In the following, we motivate why considering confi-

dentiality in the architectural design is crucial in Section 1.1. In Section 1.2, we identify

problems in considering confidentiality in software designs, which have been reported by

practitioners and tool developers. We briefly summarize, why the state of the art does not

sufficiently address these problems in Section 1.3. In Section 1.4, we derive challenges, as

well as research questions from the problems of the state of the art. The answers to the

research questions are given in form of contributions, which we describe in Section 1.5.

The outline of this thesis is covered in Section 1.6.

1.1. Motivation

The security of software systems is an important factor for organizations because the

costs of a security incident can be high [GCH03]. For instance, IBM [IBM20] reported

that the global average costs of a data breach of more than 50m records was $392m in

2020. Depending on the particular location and type of organization, the costs can even be

significantly higher. Lost business, which can be caused by lost user trust, and the effort

for attracting new customers contributes the biggest part of these costs. The Cambridge

Analytica scandal [Wei18; IH18] is a good example for this negative impact on business.

Another considerable factor contributing to the costs of security incidents are regulatory

fines such as the ones implied by the General Data Protection Regulation (GDPR) [Eur16]

of the European Union (EU). Organizations are legally obligated to protect the information

about their users. If the taken measures are insufficient, which is often shown by a data

breach, high fines apply. For instance, British Airways received a penalty [Den20a] of

£20m and Marriott International received a £18.4m penalty [Den20b] because of such data

breaches. On the other side, sufficiently addressing security is hard because software

systems are highly connected, extensible and complex [McG06, pp. 26]. There is a trend

of an increasing number of discovered vulnerabilities over the last years [Nat22], which

implies that organizations not only have to spend effort in getting their software systems

secure but also to keep them secure.

Especially, confidentiality is an important so-called security objective. Confidentiality

requires that “information is not made available or disclosed to unauthorized individuals,
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entities, or processes” [Int18]. Maintaining confidentiality also means prohibiting the

previously mentioned, costly data breaches. Ensuring confidentiality of personal data,

which is a core concept of data protection regulations such as the GDPR [Eur16, Article

32 §1(b)], avoids many fines of such data protection regulations. Besides avoiding costs,

maintaining confidentiality can also affect the relation to new and existing customers: A

recent survey of Cisco [Cis19] about the importance of privacy for consumers revealed that

there is a significant amount of customers (32 %) that already switched to another company

for better data protection policies. Therefore, companies cannot only keep customers but

can also gain new customers by appropriate data protection. Ensuring confidentiality of

customer data is a large step in this direction.

Security mechanisms [Cam13, p. 32] enforce security requirements such as the confiden-

tiality of data by restricting the access to that data according to a policy. A policy consists

of rules that build the foundation of a decision on whether to allow or deny access to

something [Ris+17, pp. 19]. The most prominent mechanisms to enforce confidentiality are

information flow control, access control and encryption. Access control limits what users

or processes acting on their behalf can do with data [SS94]. Many systems already contain

access control mechanisms, so it is the de-facto standard for protecting confidential infor-

mation [SM03]. However, access control can only restrict access to data within the system

under control. Outside of the system, encryption of data can limit access [Sho14, pp. 153].

Various approaches [AT83; HJ03] use such combinations of access control and encryption.

In contrast to access control, information flow control does not only limit the access to

data but also the flow of information [SM03]. Simple forms of information flow control

such as taint analyses are regularly used in practice but more sophisticated forms are not

[Sta+19]. None of the mechanisms is clearly superior compared to the others as long as a

trade-off between applicability in practice and powerful analyses is required. Therefore,

all mechanisms should be taken into account to meet the confidentiality requirements and

the capabilities of the system context.

Considering security already while designing the software system, which also includes

creating an appropriate architecture, is beneficial for multiple reasons: First of all, it is

useful to consider early development phases because historic attempts to only address

security by operational means in late development stages were not sufficient [McG06, chap.

3]. Therefore, many organizations now consider security in all development phases, which

explicitly includes the design phase. For instance, Microsoft gives explicit instructions on

secure software design as part of their commonly known Security Development Lifecycle

(SDL) [HL06, chap. 7]. The high interest in software design stems from the experience that

many security violations can be traced back to design issues [KRK17] [McG06, p. 151].

In addition to that, the effort for fixing design issues affecting security is significantly

lower in the design phase compared to fixing these issues in later phases [Shu+02] [Gee10].

Consequently, identifying issues already in the software architecture that preceds the

more detailed software design is even more beneficial. Therefore, organizations should

consider spending effort in proper system architectures and designs as well as in the early

detection of issues.

2



1.2. Problem Statement

Analyses of data flows are commonly used to reason about the security of software designs.

This is beneficial because security issues “tend to follow the data flow, not the control flow”

[Sho14, p. 44] and requirements regarding confidentiality are often formulated in terms of

data and its processing [Gol+19; Kel+09]. Consequently, data-oriented modeling languages

such as Data Flow Diagrams (DFDs) are commonly suggested to represent relevant aspects

of the software design [Voo20; TSB19]. Therefore, design-time approaches using data

flows have a high chance of being useful for designing secure systems.

The goal of this thesis is to provide an approach for detecting violations of confidential-

ity requirements in the early design stage of a software system by means of data flows.

The approach supports describing the data processing in software architectures, deter-

mining the effect of this processing on data and detecting violations of confidentiality

requirements based on exchanged data. The analyses are not limited to one particular

confidentiality mechanisms but support information flow control and access control as

well as encryption.

1.2. Problem Statement

Considering security in the software architecture and design is beneficial but a recent

survey with practitioners [AC18] revealed that there is still a lack of considering security

in software design. This certainly does not hold for all software development teams but

shows that there are still problems in integrating security considerations into the software

design process. We identified four major problems (P1-P4), which we will address as part

of this thesis. In particular, the thesis focuses on establishing confidentiality in software

architectures and designs by data-oriented modeling and analysis methods.

P1 Coupling of modeling languages and confidentiality mechanisms A recent survey on

modeling languages for representing security in software designs [Ber+17] found that the

identified languages often only support one particular security objective and one particular

security mechanism. An example of this problem is one particular language that only

supports access control based on roles but not access control based on attributes. However,

such a strict coupling between security mechanism and modeling language is not feasible

in practice: Security requirements might evolve while designing the software system. To

meet the requirements, a new or different security mechanisms might be necessary. If a

modeling language only supports one specific confidentiality mechanism, switching the

confidentiality mechanism means switching the modeling language. However, switching

modeling languages requires considerable effort because designers either have to remodel

everything from scratch using the new modeling language, which implies high manual

modeling effort, or software engineers have to define an automated mapping between the

two modeling languages, which is challenging if the languages have substantial differences

[TBS20]. If switching a security mechanism is not possible without considerable effort,

designers most likely stick to the suboptimal solution or avoid modeling security mecha-

nisms at all. Thus, designers need an approach that allows switching between security
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mechanisms without implying high manual modeling effort. A flexible modeling language

that supports representing multiple security mechanisms can address this problem. With

respect to confidentiality, such a flexible modeling language, which allows combining

multiple confidentiality mechanisms, is necessary to support emerging approaches that

combine, for instance, access control and information flow control [Wan+09; XBS06].

P2 Missing support for commonly used confidentiality mechanisms in analyses Security

analyses use system models as inputs and often apply formal methods to identify viola-

tions of security requirements. Surveys on formal methods [Dav+13; GBP20] state that

approaches are often not widely usable because they are fragmented, i.e. the approaches are

specific for a given purpose but it is unclear how to combine these approaches to support

multiple purposes. This makes analyzing combinations of confidentiality mechanisms,

such as access control and information flow control [Wan+09; XBS06], hard. Additionally,

using multiple formal methods requires knowledge in every used formal method, which

implies high initial effort for adopting formal methods. Therefore, efficient methods for ex-

changing information between such approaches or consolidated approaches are necessary

to lower the initial effort and increase the probability of being used in practice.

P3 Insufficient formalization of data-oriented modeling languages impedes automated
analyses Reasoning about security is barely possible without explicitly considering data

and its processing because security requirements are often formulated in terms of data.

Automated analyses, which detect violations of security requirements, are a good way to

keep the effort for analysts low in presence of complex systems. Such analyses require

data-oriented models with clear semantics, which are sufficient to reason about security

considerations. However, clear semantics are not naturally available for every modeling

language that architects or designers use: DFDs, which use one of the simplest and most

prominent data-oriented modeling language, lack clear semantics [JUN11; Sio+20]. This

lack of semantics impedes the creation of analyses that yield precise results. A survey

[TCS18] on threat modeling approaches, which usually use DFDs, gives a good example of

the effect of this impediment: the authors could not identify an approach yielding precise

results that can be used by software engineers. To summarize, it is not sufficient to provide

architects and designers with data-oriented languages but these languages also have to

have clear semantics that serve as foundation for data-oriented analyses. Attempts to

define semantics often lead to specific semantics that only support specific analyses for

specific quality properties such as performance, reliability or liveliness. However, to create

flexible analyses that support multiple confidentiality mechanisms (see P2), semantics that

cover the important aspects of such confidentiality mechanisms are required.

P4 Weak guidelines on consideration of confidentiality in software architecture Software

development teams follow development processes to build software. Such processes

provide activities and often suggest tools to use in order to create artifacts such as software

architectures or designs. Thereby, the processes provide guidelines on how to create an

architecture or design. One major reason for low adoption of formal methods in general
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and security approaches in software design in particular is the missing integration into

existing development processes [Dav+13; AC19; GBP20]. Clear guidance on when and why

to use security approaches is necessary to apply the approach correctly, ensure that the

approach is used and that its results are available when they are required. An integration

into tools can provide such guidelines at least partially, i.e. the security approach shall

be used when the corresponding tool is used. Additionally, tool support eases the use of

security approaches in practice: Surveys on formal methods [Dav+13; GBP20] stress that

tools should be used extensively in education and that not providing mature tools is a

considerable impediment for adopting formal methods. However, many researchers do not

spend enough time in creating such tools. A survey on modeling languages for security in

software designs [Ber+17] supports this hypothesis by stating that the majority of studied

approaches do not provide tools at all. The integration into existing tools is not just a

matter of pure engineering effort but also requires concepts on how to bridge potential

gaps in abstractions, used description languages or paradigms. Therefore, research has

to provide the concepts for integrating their approaches into existing development tools.

Such an integration would already be a considerable step in the right direction [Dav+13].

1.3. Overview on State of the Art

There is a wide range of approaches for introducing security in the architecture or design

phase of the software development process. In the following, we enumerate only the most

important categories of approaches, give examples of particular approaches and mention

their shortcomings. A detailed review of the state of the art is available in Chapter 9.

Inspection-based approaches rely on manual screening of descriptions of the system

under design by humans. These approaches are flexible but the outcome heavily relies

on the expertise of the person conducting the inspection, which limits its applicability.

Originally, threat modeling [Sho14] relied on this. However, extensions can lift threat

modeling into the categories discussed in the following.

Pattern matching is a commonly used analysis method to identify violations of security

requirements. The general idea is to extend existing design documentations by security-

relevant information and look for patterns that indicate a violation. Extended threat

modeling approaches [Fry+14; Sio+18b; Sio+18a] have formal models that require appro-

priate documentation of security information. However, creating such information can be

challenging. For instance, to decide if exchanged data contains critical information, it is

usually necessary to consider all influencing information including their origins. In large

systems, this is complex.
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Propagation analyses simplify documenting security-relevant information by only re-

quiring an initial set of information and deriving missing information. There are ap-

proaches operating on control flows [Kat+13; Jür05] as well as operating on data flows

[TSB19; Ber+18]. Approaches using control flows require mapping data-oriented confi-

dentiality policies to restrictions of control flows. With respect to approaches operating

on data flows, we could not identify an approach that supports access control as well as

information flow control within the same model.

Formal semantics of the system descriptions and behavior specifications are the enabler

of propagation analyses. However, formal semantics of data-oriented descriptions and

specifications are not always available: The most prominent notion for data-oriented

system descriptions, a DFD, lacks such formal semantics in its initial definition [DeM79].

Many approaches have been made to specify such semantics [Jil+08] but there is no

standard semantics yet. Semantics tailored to confidentiality are usually part of analysis

approaches [TSB19; Ber+18], so the semantics share the limitations of the approaches with

respect to expressiveness regarding confidentiality mechanisms. This means, we could

not identify formal semantics capable of describing system behaviors relevant for access

control as well as information flow control.

1.4. Challenges and Research Questions

To provide an approach for detecting violations of confidentiality requirements in software

designs and architectures in a data-oriented way, we have to address three major challenges

that we describe in the following. Based on these challenges, we formulate research

questions to be answered in this thesis.

1.4.1. Ch1: Definition of Unified Modeling Language Supporting Various
Confidentiality Mechanisms

Confidentiality requirements are often formulated in terms of established confidentiality

mechanisms. For instance, the access requirements for information can be specified by roles

of subjects and access rights to information, which are associated with the roles of subjects,

i.e. Role-based Access Control (RBAC). However, it can also be reasonable to describe

access limitations in terms of information flow policies specified by labels that classify

information and that give users clearance for accessing data of a certain classification. In

both scenarios, the system description has to cover all properties and behaviors that affect

the decision about access on information. The properties and behaviors are usually specific

to a particular confidentiality mechanism, which requires that the system description can

represent these individual properties and behaviors.

The challenge is to find a modeling language supporting multiple confidentiality mecha-

nisms without introducing dedicated model elements for each confidentiality mechanism.
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The downside of dedicated model elements per confidentiality mechanism is that the

resulting language only supports the considered confidentiality mechanisms and consists

of many model elements that are barely used by architects or designers in most cases.

Instead, a condensed set of model elements is easier to use and requires less learning effort

by designers and architects. Paige, Ostroff, and Brooke refer to this language feature as

uniqueness [POB00]. However, the modeling elements must not become as generic as code

to keep the specification and learning effort within reasonable limits. A unified modeling

language with respect to confidentiality mechanisms means that the language supports

multiple confidentiality mechanisms. In particular, access control and information flow

control are not supported together by any data-oriented modeling language as we already

stated in Section 1.3. Therefore, supporting both in one unified modeling language is an

open challenge.

To decide about reasonable modeling mechanisms and modeling elements, we first have

to identify the information, which has to be captured in the software documentation.

This is challenging because the information has to be available during the architectural

design phase. For instance, behavior descriptions given as implementation code are not

yet available while creating a software architecture. Because we especially focus on the

confidentiality mechanisms access control and information flow control, we formulate the

following two research questions:

Research Question 1: What properties and behaviors are required to reason about access

control in software architectures in a data-oriented way?

Research Question 2: What properties and behaviors are required to reason about

information flow control in software architectures in a data-oriented way?

The modeling language has to represent the required information. We refer to the con-

densed set of model elements that can represent the previously identified information as

modeling primitives. We formulate the following research question:

Research Question 3: What modeling primitives are sufficient to describe architectural

aspects affecting confidentiality in a data-oriented way?

1.4.2. Ch2: Definition of Unified Analysis Semantics Supporting Various
Confidentiality Mechanisms

Automated analyses can detect violations of confidentiality requirements if the require-

ments as well as the system under design are specified by languages with defined semantics.

This means that it is not sufficient to create a modeling language but it is also necessary

to define its semantics. The challenge in defining such semantics is that they have to be

capable of supporting different analyses for violations of different confidentiality mecha-

nisms. Defining individual semantics that drive individual analyses is possible but makes

understanding model elements harder for designers or architects because they always

have to consider the particular analysis context and have to learn different meanings

7
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for different contexts. Because we could not identify a data-oriented approach that sup-

ports analyzing access control and information flow control within the same model using

the same semantics, we see the definition of such semantics as an open challenge. The

corresponding research question is as follows:

Research Question 4: What semantics of the data-oriented modeling primitives allow

detecting violations of confidentiality requirements?

Because there will be novel semantics, we have to define the access control and information

flow control analyses in terms of the semantics. The corresponding research questions are

as follows:

Research Question 5: How to formalize common access control analyses using data-

oriented modeling primitives and semantics?

Research Question 6: How to formalize common information flow control analyses

using data-oriented modeling primitives and semantics?

1.4.3. Ch3: Extending Existing Modeling and Analysis Approaches

The integration of a new modeling and analysis approach into existing tools and processes

is beneficial because it provides good guidance to designers and architects in how to

use the approach and lowers the initial learning effort for applying the approach. The

integration into existing tools is challenging if they do not provide the required modeling

concepts: For instance, a data-oriented modeling approach usually requires the concept

of a data flow. However, existing tools often focus on control flows instead of data flows

and do not provide the concept of a data flow. Bridging this gap is necessary: otherwise,

architects and designers would have to remodel large parts of the system under design to

incorporate the new communication paradigm. The challenge here is to require as less

modifications of existing tools as possible to reduce the learning effort for architects and

designers. On the other side, all required modeling concepts have to be available and the

analyses have to work within the extended tooling. To achieve this, an approach to extend

existing models with considerable effort is necessary. We see the following two research

questions:

Research Question 7: How can formal data-oriented confidentiality analyses be inte-

grated into existing modeling and analysis approaches for software architectures, which

focus on control flows?

Research Question 8: How can formal data-oriented confidentiality analyses be inte-

grated into existing modeling and analysis approaches for software architectures, which

focus on data flows?

8
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1.5. Contributions

We answer the previously defined research questions by the following scientific contribu-

tions:

Contribution 1: Extension of DFDs to cover confidentiality properties and behav-
ior. The DFD syntax is one of the most prominent data-oriented modeling language to

describe the architecture or design of a system and it is also widely used to reason about

the security of systems. We build on the initial DFD syntax by DeMarco [DeM79] and

extend it to represent properties by labels and behaviors by reusable label propagation

functions. Particular labels and label propagation functions to be used within particular

system architectures or designs are available via extensible catalogs. Using labels and label

propagation is reasonable because the identified, relevant properties and behaviors for

reasoning about access control and information flow control within software architectures,

which we identified by answering RQ1 and RQ2, can be represented by discrete values

and by mapping functions from discrete values to discrete values. The extended DFD

syntax is capable of expressing all relevant information for the most commonly used access

control and information flow control mechanisms. Therefore, the syntax presents the

answer to RQ3. We evaluate the expressiveness of the syntax by a case study, in which

we represent realistic systems using various types of access control and information flow

control mechanisms.

Contribution 2: Data propagation semantics for DFDs. We formalize the semantics

of the extended DFD from C1 by a mapping from the DFD to clauses in a first-order logic

program. The resulting clauses allow to derive the labels of every data item exchanged via

data flows based on the behaviors given as label propagation functions. Formalizing the

propagation of data through the system is essential to derive properties of data and enable

confidentiality analyses that are more powerful than analyses based on pattern-matching.

The semantics are the answer to RQ4. We address four common shortcomings of existing

DFD semantics such as the systematic consideration of multiple data flow paths. The

evaluation of the semantics shows that analyses using these semantics can yield precise

results with respect to various information flow control and access control analyses.

Contribution 3: Access control and information flow control analyses based on
data propagation. The definition of particular access control and information flow

control analyses provides relevant properties of data and nodes, as well as fundamental

behaviors relevant for analyzing confidentiality. Especially, behaviors are often missing

from descriptions of the particular confidentialitymechanism. This is sufficient for analyses

based on pattern matching but not for analyses based on data propagation. We provide

four access control analyses for the most common access control models Discretionary

Access Control (DAC), Mandatory Access Control (MAC), RBAC and Attribute-based

Access Control (ABAC), which is also the answer to RQ5. We provide three information

flow analyses for common types of classification lattices in non-interference analyses.

This also answers RQ6. We evaluate the precision of the analyses in a case study.
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Contribution 4: Integration process for DFD-based analyses into existing ADLs.
The integration process defined the required steps to integrate the previously described

contributions C1 and C2 into existing Architectural Description Languages (ADLs). The

process provides guidelines for ADLs focusing on control flows (RQ7) as well as for

ADLs focusing on data flows (RQ8). The integration considers as much existing modeling

elements as possible before suggesting extensions of the ADLs. A model transformation to

be defined maps the potentially extended ADLs to a DFD, in which the analysis takes place.

Another transformation maps the analysis results back into the software architecture. We

evaluate the integration process by applying it to the Palladio [Reu+16] approach, which

supports control flows as well as data flows. We ensure high expressiveness with respect

to the systems and analyses that the extended ADL supports as well as high precision with

respect to the analysis results.

1.6. Outline

The thesis is structured as follows. In Chapter 2, we introduce terminology and basic

concepts, which we use throughout this thesis. Our running example for exemplifying

the contributions is part of Chapter 3. In Chapter 4, we collect the requirements on

a solution for addressing the problems and challenges mentioned in the introduction.

Chapter 5 covers our first two contributions, which are an extended DFD syntax and

corresponding semantics capable of identifying violations of confidentiality requirements

in DFDs. Chapter 6 covers our third contribution, which are analysis definitions for

information flow and access control analyses based on the DFD syntax and semantics. In

addition, we present a Domain-specific Language (DSL) for defining custom analyses. The

integration of the previously mentioned contributions into existing ADLs is the fourth

contribution and subject of Chapter 7. We provide integration guidelines and describe

the application of these guidelines to a particular ADL. The previously mentioned four

contributions are validated in Chapter 8. We discuss related work in Chapter 9 and

conclude the thesis in Chapter 10.
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In this thesis, we present an approach to systematically consider confidentiality in software

architectures. We introduce the terminology regarding confidentiality and frequently used

confidentiality mechanisms in Section 2.1. A short introduction in software architectures

and the two description languages for software architectures, which we use in this thesis,

is given in Section 2.3. Because the description languages are model-based, we explain the

fundamentals on model-based software development in Section 2.2 before explaining the

description languages. In the course of this thesis, we introduce semantics for a syntax and

describe these semantics by predicates given in first-order logic. We use the notion of a

logic programming language to represent these predicates and use the logic programming

environment to derive and query information. Therefore, we introduce this notion as well

as the method for querying the resulting logic program in Section 2.4.

We focus on short and pragmatic descriptions in this chapter. This means, we only

explain as much as necessary to understand the following chapters. Giving more detailed

explanations is not useful because there are many textbooks on the topics presented in this

chapter that explain the topics much better than we can within reasonable page limits.

2.1. Confidentiality

This thesis is about supporting software architects in meeting confidentiality requirements

while creating a software architecture. In the following, we first introduce the terminology

related to confidentiality, which we use in the remainder of this thesis, and then briefly

introduce the most popular mechanisms to support confidentiality. The descriptions of

the mechanisms are not meant to be comprehensive. Instead, we want to introduce the

terms and give an idea of the principles behind the mechanisms.

Terminology. According to ISO 27000 [Int18], confidentiality means that “information

is not made available or disclosed to unauthorized individuals, entities, or processes”.

Confidentiality is a security objective besides others such as integrity or availability [Int18].

Security mechanisms [Cam13, p. 32] support achieving security objectives because they

enforce a security policy. In the context of confidentiality, a policy consists of rules that

build the foundation of a decision on whether to allow or deny access to something [Ris+17,

pp. 19]. We see such a policy as a specification of confidentiality requirements. Within

this thesis, we call the security mechanisms, which support achieving confidentiality,

confidentiality mechanisms.
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Access Control limits what users or system parts acting on the behalf of users can do

[SS94]. Access control is the de-facto standard for protecting confidential information in

software systems [SM03]. A policy specifies the rules for legitimate or illegitimate actions.

Commonly used actions in such policies are reading data or writing data. There are various

ways of describing such policies. However, it is common to describe the person or system

that performs an action like accessing data as the subject and to describe the accessed

data as the object. Sandhu and Samarati [SS94] identified three commonly used policy

types: DAC defines rules based on the identity of a subject and the identity of the object.

RBAC introduces roles to decouple the rules from identities. Instead, a subject has a role

and there are rules describing the allowed or denied access for a particular role. MAC

defines rules based on classifications, which are assigned to subjects and objects. The rules

limit the exchange of information between the classification levels. Besides these three

policy types, ABAC [Hu+14] also became popular in the last years because it defines rules

based on arbitrary attributes of subjects and objects. The support for arbitrary attributes

increases the flexibility and even enables representing the other three types of policies

within ABAC [JKS12]. Besides the term policy type there is also the term access control
model [Fur08, p. 61], which essentially means the same in the context of this thesis.

Encryption transforms plaintext into ciphertext [Bau05b]. Because the information in

the plaintext is no longer readable in the ciphertext, the information cannot be accessed

anymore, which protects confidentiality. Cryptosystems [Bau05a] consist of an algorithm

to encrypt plaintext, an algorithm to decrypt ciphertext and a defined set of inputs, which

usually includes a key. Usually, cryptosystems are used instead of only the encryption

operation because encrypting information without means to decrypt the ciphertext back to

plaintext would provide no benefit over not sharing information at all. The most important

types of cryptosystems are symmetric and asymmetric cryptosystems. In a symmetric

cryptosystem [Kal05b], there is one shared key that is used for encryption and decryption.

In an asymmetric cryptosystem [Kal05a], there are different keys for encryption and

decryption. Usually, a so-called public key is used for encryption and a so-called private

key is used for decryption. Using encryption is, especially, useful when information leaves

the system under control [Sho14, pp. 153]. Outside of a system, access control cannot

enforce rules of that system. In contrast, encryption can enforce rules because subjects

outside of the system need the key to access the information and the system can limit the

access to this key. There are also approaches [AT83; HJ03] that combine access control

and encryption to combine the benefits of both mechanisms.

Information Flow Control limits the propagation of information to protect its confiden-

tiality [SM03]. Goguen and Meseguer [GM82] define the most commonly used information

flow property non-interference by saying that a process 𝑃1 does not interfere with process

𝑃2 of the same system if the input of 𝑃1 does not affect the output of the system received

by 𝑃2. To restrict the information flow between more than two processes, lattices [Den76]

are commonly used. A lattice is a directed graph of labels. An edge from label 𝑙1 to label 𝑙2
means that information is allowed to flow from 𝑙1 to 𝑙2. Within software systems, processes
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have such a label. Between processes with unconnected labels, non-interference has to

hold. As Zdancewic [Zda04] stresses, non-interference is often not the property, which

shall be achieved in real applications because such applications require information flows

not covered by such strict lattices. Declassifications enable flows conflicting with such

strict lattices under specific conditions. Sabelfeld and Sands describe these conditions in

their work [SS09] on the dimensions of declassification.

2.2. Model-Based Software Development

In model-based software development, software engineers use models to plan and docu-

ment design decisions [SV06, Sec. 1.1]. Popular examples of such models are class diagrams

specified in the Unified Modeling Language (UML) [Obj17] to document the structure of a

software system or UML sequence diagrams to document the interaction between parts of

the software system. The contributions presented in this thesis also provide model-based

means to plan, document but also analyze design decisions for software architectures.

In the following, we introduce the terminology about models, which is relevant for this

thesis.

Model A model is a simplified representation of the reality. Stachowiak [Sta73, pp.

131] describes a model by three characteristics: The model has to be a representation of

something. For the definition, it does not matter, what the model actually represents. The

model can even represent another model. However, the model has to be a reduction of the

represented thing. This means, a model cannot simply be identical to the represented thing

but has to omit details. The omitted details are chosen based on the served pragmatism.

A model always has a purpose, which dictates the important aspects and the irrelevant

aspects of the represented thing. Irrelevant aspects do not become part of the model. In

the context of this thesis, we restrict the definition of a model further to what Stahl and

Völter [SV06, Sec. 4.1.1] call a formal model. A formal model always adheres to a given

syntax. The abstract syntax describes the structure of the formal model and defines criteria

for well-formedness. The abstract syntax is given by a metamodel, which we describe in

the following paragraph. The concrete syntax describes the representation of the formal

model, e.g. by geometric shapes. The means for describing the concrete syntax differ

depending on the particular form of representation.

Metamodel Ametamodel describes the structure and rules for well-formedness of amodel

in an abstract way [SV06, Sec. 6.1]. The restriction of the structure and the well-formedness

rules enable automated interpretations of a model because every type of content in a model

is known already before a model has been created. The UML is a popular example of

such a metamodel. A model is said to be an instance of a metamodel. A metamodel is

specified by a meta-metamodel, which specifies the structure and well-formedness rules

of the metamodel. A metamodel is said to be an instance of a meta-metamodel. In theory,

this meta-relation can continue forever. To break this chain, the Object Management
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M0: Instances

M1: Model

M2: Metamodel

M3: Meta-Metamodel

instanceof

instanceof

instanceofdescribes

describes

describes

instanceofdescribes

Objects during runtime

MOF, EMOF, Ecore, ...

Particular sequence
diagram, particular DFD,

...

UML, DFD, ...
most relevant

terminology for
this thesis

Figure 2.1.: Four metalevels according to Stahl and Völter [SV06, Sec. 6.1] including examples on the right-

hand side.

Group (OMG) provides the Meta Object Facility (MOF) [Obj19], which provides a self-

describing meta-metamodel to specify metamodels. The OMG does not restrict the depth

of meta-relations but four levels are sufficient for many use cases [Obj19, pp. 6]. Stahl

and Völter describe these four levels [SV06, chap. 6.1] as shown in Figure 2.1. The meta-

metamodel is the uppermost level, describes itself and is also an instance of itself. In the

context of this thesis, we use Ecore as a meta-metamodel. Ecore [Ste09, pp. 103] is an

implementation of the essential concepts of MOF. Simply said, Ecore consists of classes,

attributes of these classes, and references between classes. The metamodel on the second

level uses the meta-metamodel to define a custom structure. Metamodels are usually

visualized as class diagrams because the meta-metamodel uses the concepts known from

class diagrams. Examples of metamodels are the UML metamodel or a metamodel for

describing a DFD. Instances of these metamodels, i.e. the models, are on the first level. For

instance, particular sequence diagrams or particular DFDs are models. On the lowest level,

there are the instances of elements from the model. The objects used in an application

during runtime can be such instances.

Viewpoints and Viewtypes Models can become complex if they try to capture too much

information at once. This is problematic for software architectures [RW05, pp. 27] but can

also happen in other complex domains. The suggested solution is to use views to tailor

the representation of information to the needs of stakeholders. Goldschmidt, Becker, and

Burger [GBB12] provide a taxonomy covering the most important aspects around views.

A view is a selection of particular objects and relations from a model. A viewtype specifies

the instructions on how to create a view. The specification is not tied to a particular model

but to a metamodel. For instance, a viewtype can specify that only actors of UML use

case diagrams shall be considered. The view is constructed by applying the instructions

of the viewtype on a particular model. The purpose of defining viewtypes is to support

stakeholders in addressing a certain concern. A viewpoint uses viewtypes to address the

concerns of stakeholders. A viewpoint can use multiple view types if this is necessary.
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File Systemencrypt fileAlice decrypt file Bobfile encrypted 
file
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Figure 2.2.: Example of graphical representation of DFDs.

2.3. Software Architecture Description

According to Rozanski andWoods [RW05, pp. 12], “the architecture of a software-intensive

system is the structure or structures of the system, which comprise software elements, the

externally visible properties of those elements, and the relationships among them”. They

further clarify that the static part of the structure covers internal design-time elements and

the dynamic structure covers runtime elements and interactions. The externally visible

properties includes the interaction between the system and its environment as well as

quality properties such as performance or security. This means, an architecture covers

considerably more than just the static structure of the system. The purpose for creating

the software architecture defines the aspects to be covered in the software architecture.

To document a software architecture, ADLs are used. According to ISO 42010 [Int11], an

ADL can have any form as long as it can express architectural descriptions. However, we

always assume an ADL to be specified in a metamodel in the context of this thesis.

In the following, we give short introductions into DFDs and Palladio. Both are ADLs,

which we heavily use in the context of this thesis. We explain these ADLs on a high-level

to give a basic idea of the purpose and expressiveness of the ADLs. We explain further

details within the sections, in which we need these details.

Data Flow Diagrams (DFDs) DFDs as introduced by DeMarco are network representations

of a system, in which all elements have a clearly specified interface [DeM79, p. 47]. The

representation focuses on the flow of data rather than the flow of control because this

better supports high-level discussions of functionality. Consequently, the interfaces specify

the exchanged data. DFDs only consist of three types of nodes and one edge [DeM79,

pp. 51]. DeMarco suggests the graphical notation shown in Figure 2.2 for representing

DFDs. A process receives data, transforms it, and yields data. A process is visualized as

an ellipse. A file is a temporary storage for data. Therefore, we also call a file a store. A
store is visualized by two horizontal lines. The source or sink is a person or organization

that is outside of the system. A source sends data to the system. A sink receives data from

the system. A node can be a source and a sink at the same time. Because the distinction

between these two roles is not important in this thesis, we refer to a person or organization

outside of the system as actor or external actor. An actor is visualized by a rectangle. A

data flow is the only edge. The edge is directed and connects the nodes and indicates that

data is exchanged. A data flow is visualizes by a line with an arrow. DeMarco suggests

to use a data dictionary [DeM79, pp. 125] to cover detailed information about data and

the nodes. The data dictionary is a mix of grammar-like specifications of data types and

explanations given in natural language.
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Palladio Palladio is a modeling and analysis approach for predicting quality properties

of component-based software architectures [Reu+16, p. 9]. According to Szyperski, a

component is a reusable and composable unit of a software systemwith specified interfaces

and defined context dependencies [Bro+98]. The idea behind Component-based Software

Engineering (CBSE) [Val+16], which includes creating software architectures, is to build

a system from reusable components in order to get benefits such as lower development

effort or increased efficiency. Palladio supports CBSE by three viewpoints, which address

the concerns of four stakeholders [Reu+16, pp. 44]:

The structural viewpoint supports the software architect in his/her concern to define the

structure of reusable components in a component repository and to assemble instances

of these components to new components or systems. The structure of a component is

given by its interface, i.e. the provided services encapsulated in interfaces, as well as by

the required services, i.e. the context dependencies. The behavioral viewpoint supports
two stakeholders. The component developer uses the viewpoint for defining the behavior

of a component in service effect specifications. The domain expert uses the viewpoint

for defining the behavior of users of the software system in usage scenarios. The most

commonly used description of the behaviors is given by a sequence of actions, which

impose an effect on inputs, outputs or resources. The deployment viewpoint supports the
concerns of the system deployer to describe the resource environment and to define the

deployment of component instances to resources.

Palladio supports communication via call-and-return and by events [Reu+16, p. 102]. The

communication is specified by call actions or actions to emit events. With the Palladio

extension Indirections [WSK20], Palladio also supports communication via data flows.

The communication via data flows is either given by emitting and consuming data via

actions within components or by using data channels. A data channel is a special type

of component that is not callable but is triggered by incoming data and that emits data

to other data channels or actions consuming the data. There are dedicated interfaces for

every type of communication. Call-and-return requires operational interfaces that contain

callable signatures at components. Event-based communication requires sources and sinks

for given event types at components. Data-oriented communication requires sources and

sinks for given data types at components. Within a single system, the communication

types can be mixed.

2.4. Logic Programming in Prolog

We use logic programming to describe the semantics of a DFD syntax, which we propose

in this thesis. We do not intend to provide a full introduction into logic programming

but only aim for explaining as much as needed to comprehend the explanations in the

following chapters. For a complete introduction, we refer to comprehensive text books

[Bra13; EB11], on which this section is based.
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Listing 2.1: Examples of facts given in Prolog syntax.

1 % facts describing amount of picked apples per employee

2 pickedApples(jane, 22).

3 pickedApples(john, 20).

4

5 % query to find all people X that picked Y apples

6 ?- pickedApples(X,Y).

7 X = john, Y = 20 ;

8 X = jane, Y = 22.

Kowalski [Kow79] formulates the fundamental idea behind logic programming, which is

that an algorithm consists of logic and control and that it is beneficial to separate these

two parts. The logic part contains the problem to solve and the necessary information to

solve it. The control part contains the problem solving strategies to solve the problem. In

logic programming, users only specify the logic part and the control part is predefined.

The most popular language for logic programming is Prolog [FA03], which is based on

first-order logic. The logic part, which is called the knowledge base, consists of a sequence

of clauses. Clauses can either be facts or rules. A fact is always true and consists of a

name as well as a list of arguments. Lines 2 to 3 in Listing 2.1 give examples of such facts.

The name of the fact is pickedApples. The arguments of a fact are either numbers, lists

or atoms, i.e. constants. By convention, atoms either start with a lower case letter or are

escaped by quotes. The intended meaning of the facts in the example is that jane picked

22 apples and john picked 20 apples.

Prolog environments allow to query the knowledge base. A query consists of a list of goals.

A goal consists of so-called compound terms. A compound term looks like a fact, i.e. it has

a name and a list of arguments. In contrast to facts, the arguments are not restricted to

numbers, lists and atoms but can also be variables or even compound terms. By convention,

variable names start with an upper case letter. Prolog tries to find a solution for every goal

by deriving a variable binding from the knowledge base. If such a variable binding is found,

the goal succeeds. If every goal succeeds, the query succeeds and a solution for the query

has been found. In line 6 of Listing 2.1, the query asks for a person X, who picked Y apples.

Deriving a variable binding in this example simply means finding values for X and Y so

that the term in the query is equal to one of the facts. The step of replacing the variables

by values in order to make terms equal is called unification. By using backtracking, Prolog

can identify all possible solutions. For the query presented in the example, Prolog identifies

two possible solutions in lines 7 to 8.

Rules consist of a head and a body. The head is a compound term. Line 2 in Listing 2.2

gives an example of the head of a rule with name employee and the variable X as argument.

The keyword :- separates the head and the body. The body is a conjunction of compound

terms. The body in the example only consists of the compound term in line 3. The

compound term has the name pickedApples and uses the variable X as first argument and

the anonymous variable _ as second argument. By convention, anonymous variables start

with an underscore. The meaning of anonymous variables is that the particular value is

17



2. Foundations

Listing 2.2: Examples of simple rule given in Prolog syntax.

1 % rule saying that someone is an employee if he/she picked apples

2 employee(X) :-

3 pickedApples(X, _).

4

5 % query for all employees X

6 ?- employee(X).

7 X = john ;

8 X = jane.

not important for finding a solution. The query in line 6 asks for all employees. To find

variable bindings for variable X in the query, Prolog uses Selective Linear Definite (SLD)

clause resolution. Simply said, the resolution replaces a term in a query by the terms in

the body of a rule and tries to unify resulting terms with facts. This leads to a recursive

evaluation. In the example, Prolog evaluates the employee rule by finding a variable

binding for variable X such that the pickedApples term succeeds. Consequently, the query

finds the two solutions shown in lines 7 to 8 when including the facts from Listing 2.1.

Recursive specifications are commonly used in Prolog. Listing 2.3 gives an example of

a recursive definition of the sumOfApples/2 predicate. Predicates are the signatures of

clauses. The signature is given by a name and an arity, i.e. the number of parameters. In

the given example, the fact in line 2 and the rule in line 3 both have the same signature.

The fact has two arguments. The first argument is an empty list. In Prolog, lists are

encapsulated by square brackets. An empty list is represented by a left and a right square

bracket. The second argument is the number 0. The intended meaning of the fact is that

no employees, which is implied by the empty list of employees, picked zero apples in

sum. The rule in line 3 also has two arguments. The first argument is a list containing

the variables H and T. The pipe symbol is a separator between the head H and the tail T

of the list. Simply said, everything before the pipe symbol is in the beginning of the list

and everything after the pipe symbol is the remainder of the list. The second argument

is a variable SUM. The intended meaning of the rule is that the variable SUM is the sum of

the apples picked by the employees given by the list. The body of the rule consists of

three clauses. The first clause queries the number of picked apples N for the employee H.

The second clause queries the sum of picked apples M for the remaining employees T of

the list. The third clauses sums up the numbers of picked apples and unifies the result

with the variable SUM. The second clause makes the rule recursive. In every recursion the

list of employees is shortened by one employee. Prolog tries to find a solution for the

clause by either using the fact or the rule of the example. The fact can only be used if

the list of employees is empty. The rule cannot be used with an empty list of employees

because there would be no solution for the first clause. Therefore, the fact can be seen as

terminator of the recursion. The query in line 9 uses the sumOfApples/2 predicate to find

the sum of picked apples by jane and john. Using the facts from Listing 2.1, the sum is

42.

The body of rules can contain even more complex expressions. Instead of building the

conjunction of clauses by using the , keyword, it is also possible to build disjunctions of
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Listing 2.3: Examples of recursive rule given in Prolog syntax.

1 % sumOfApples/2 finds amount of picked apples by employees

2 sumOfApples([], 0). % no employees means no picked apples

3 sumOfApples([H|T], SUM) :- % recursively sum up picked apples by employees

4 pickedApples(H, N),

5 sumOfApples(T, M),

6 SUM is N+M.

7

8 % query for sum SUM of picked apples by jane and john

9 ?- sumOfApples([jane, john], SUM).

10 SUM = 42.

clauses by connecting them with the ; keyword. There is no logical negation. The closest

match is the not-provable predicate \+, which succeeds if the expression following the

predicate does not succeed, i.e. no solution can be found. This behavior is called negation
as failure. The behavior is not the same as logical negation, so it has to be used with

caution. Because this thesis is not about theoretical foundations of Prolog, we refer to

dedicated work on issues arising from this difference [Sub99] [OKe90, p. 199].
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3. Running Example

We use the TravelPlanner system [Kat+13] as a running example in this thesis. The system

has already been used in the validation of the iFlow approach [Kat+13; Kat17], which aims

to create software systems with secure information flows. In the following, we introduce

the example.

The TravelPlanner system is meant to support a user in looking for flights and booking

them. The system covers one actor and four subsystems, which are illustrated in Figure 3.1.

The user uses the subsystem TravelPlanner on his/her smartphone to look for flights. The

user enters criteria for the flight into the TravelPlanner, which forwards this criteria to a

TravelAgency. The TravelAgency builds a query based on the given criteria and queries

the Airline for flights. The resulting flights are sent back to the user. The user decides

for a flight and loads the credit card details (ccd) from the CreditCardCenter on his/her

smartphone for the payment of the flight. Before sending the payment information to the

Airline, the user releases this payment information. This is a declassification operation,

which is necessary to allow the Airline to access the payment information. Afterwards,

the user sends the payment information together with the selected flight to the Airline
for booking the flight. The Airline processes the booking and sends a commission to the

TravelAgency for connecting the user and the Airline. Eventually, the user receives a

confirmation.

payComission(commission)

findFlights(criteria)
flights

findFlights(query)
flights

getCCD()
ccd

releaseCCDForAirline()
ccd

confirmation

bookFlight(flight, ccd)

confirmation
confirmation

:TravelPlanner :CreditCardCenter :TravelAgency :Airline

findFlights(criteria)
flights

bookFlight(flight, ccd)

Figure 3.1.: Interactions between actor and subsystems in the TravelPlanner system given as UML sequence

diagram (visualization based on previous publication [Sei+22]).
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The confidentiality requirement for the system is that the user and the subsystems must

only access information, for which they have been cleared. The user and the subsystems

are cleared for information if their clearance level is greater or equal to the classification

level of information. For simplicity, we just use numbers to represent these levels. The

TravelAgency is cleared for level 1. The information about flights and commissions is

classified for level 1. The Airline is cleared for level 2. The confirmation is classified for

level 2. The user including his/her apps is cleared for level 3. The payment information is

classified for level 3. This means that the Airline must not access the payment information.

To avoid violating the confidentiality requirement, the declassification operation takes the

payment information and explicitly reclassifies it to level 2, which means it is accessible

by the Airline.

Amongst others, we use DFDs to represent systems and analyze them for violated confi-

dentiality requirements. Originally, the TravelPlanner system has been specified in UML

using call-and-return communication. To support the explanations in this thesis, we also

need a version of the TravelPlanner system using data flows. Therefore, we created a

DFD, which represents the TravelPlanner system. We already presented this version in a

previous publication [Sei+22].

The DFD representing the TravelPlanner system is illustrated in Figure 3.2. For the sake of

better comparison with the original version, we indicate the subsystems, to which the DFD

elements belong, in the top of the diagram within gray boxes. In the following description,

we use temporal relations to explain the DFD in an intuitive way. However, the DFD does

not imply such a temporal relation but only defines data dependencies.

The user is represented as actor. An outgoing data flow transports the criteria to look

for flights to a process of the TravelPlanner. The TravelPlanner delegates the data to the
TravelAgency, which builds a query and sends it to the Airline. The Airline loads flights
from a storage, uses the query to filter the flights and passes these flights back to the

TravelAgency. Eventually, the filtered flights are propagated back to the User. Afterwards,
the user passes a consent to the process declassify CCD and receives declassified credit

card details from it. The user is ready to book the flight and sends the selected flight as

well as the declassified credit card data to the process TravelPlanner, which delegates the

data to the Airline. The Airline creates and stores a booking and sends a commission to

the TravelAgency. Afterwards the Airline sends a confirmation to the user.

The DFD contains some differences compared to the version using calls. First of all, there

are data flows to put data into data stores. The User initially sends credit card details to

the store and a FlightPlanner sends flights into a flight store. Initializing stores is also

necessary in the version using calls but this step has been omitted for the sake of simplicity.

The second notable change is the addition of a ccd data flow from the CCD Storage to the

User. The data flow is colored in gray. This data flow introduces an issue, which leads

to a violation of the confidentiality requirements, because the User can use the payment

information, which has not been classified, in the booking. We detail this issue in later

descriptions.
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4. Problem Analysis

The introduction in Chapter 1 stated the high-level goal of the thesis, which is providing

an approach for detecting violations of confidentiality requirements in the early design

stage of a software system by means of data flows. To achieve this high-level goal, we have

to address the challenges (Ch𝑛) described in the introduction. We address the challenges

by providing the contributions, which are an extended syntax for DFDs, corresponding

semantics, access control and information flow analyses as well as an integration pro-

cedure of DFD analyses in existing ADLs. To make sure that we address the challenges

appropriately, we formulate requirements regarding the contributions in Section 4.1. In

Section 4.2, we discuss possible approaches to meet these requirements.

4.1. Requirements

The contributions mentioned in the introduction imply the need for three artifacts to be

developed: 1) a syntax for describing the system including aspects relevant for confiden-

tiality, 2) semantics for that syntax and 3) an integration procedure for analyses based on

the previous artifacts into existing ADLs. The particular access control and information

flow analyses make use of these three developed artifacts. Formulating requirements for

particular analyses is not necessary because the only requirement is to detect violations of

confidentiality requirements. The definition of a violation is already given by literature.

The main user of the artifacts is the software architect. Because we cannot expect that

software architects have detailed security expertise, it is reasonable to also consider a

security expert, who can support the software architect.

In the following, we will collect functional and non-functional requirements for the previ-

ously mentioned artifacts. Throughout this section, we use the requirements templates of

Pohl and Rupp [PR15, pp. 53] to formulate requirements in natural language. We refer to

requirements by the identifier R𝑛.𝑚, where 𝑛 is the number of the artifact, to which the

requirement belongs to, and𝑚 is a continuously incremented identifier. By meeting the

requirements, the resulting artifacts will also address the corresponding challenge. We

structure the presentation of the requirements by the corresponding artifacts.

4.1.1. Syntax

The syntax provides means to structure the information about systems and confidentiality

aspects. Stahl and Völter [SV06, sec. 4.1.1] distinguish between concrete and abstract

25



4. Problem Analysis

syntaxes. A concrete syntax specifies the representation of information, e.g. by a sequence

of tokens in a text. In contrast, an abstract syntax only specifies the structure of the input

but not its particular representation. For instance, an abstract syntax would specify that

a named class exists and a concrete syntax would specify that a class is represented by

a rectangle with the name of the class in it. In this thesis, we only specify requirements

for the abstract syntax to focus on the required concepts. We also introduce examples of

concrete syntaxes for the abstract syntax but we do not prescribe a particular concrete

syntax. We do not restrict the concrete syntax except from the concepts to be represented

in order to allow considering the preferences of architects and the organization, in which

they work. Finding an appropriate and usable concrete syntax is a research topic on its

own, which requires different approaches to construct and evaluate the concrete syntax

than the ones we apply in this thesis. Therefore, presented concrete syntaxes are only

examples and no contributions of this thesis. The following requirements cover the needs

of software architects and security experts in using such a syntax.

First of all, the syntax has to be capable of describing commonly used aspects of systems.

Rozanski and Woods [RW05, p. 36] present six viewpoints to describe systems by software

architectures. The functional viewpoint essentially describes the system structure, i.e.

system parts, their interfaces and their connections. The information viewpoint describes

the flow and manipulation of data. To get a complete view, the description has to cover

data manipulation by the system as well as by the user. For the system, this means that the

view describes its behavior. For users, this means that the view describes their behavior,

which essentially describes their usage of the system. The deployment viewpoint describes

the hardware as well as the assignment of system parts to hardware. The remaining

three viewpoints either target different phases, i.e. the development or operation phase, or

focus on concurrency. Because we focus on the system information required to identify

confidentiality violations in the early design phase, the viewpoints about late phases

are out of scope. The concurrency of data-oriented systems is often derived from data

dependencies and the system structure, so we do not have to explicitly consider this.

Eventually, this brings us to the following requirement:

R1.1) The syntax shall provide the software architect with the ability to describe the

structure, behavior, deployment and usage of the system.

Besides the previously mentioned generic system descriptions, the syntax also has to cover

specific aspects only relevant for confidentiality. In data-oriented system descriptions, it

is necessary to know the properties of data, which are required to reason about meeting

confidentiality requirements. A first step in this direction is to define the available types of

properties. For instance, it is reasonable to define a property type Role with a value range

consisting of all particular roles in a system. A particular property, i.e. an instance of a

property type, can then hold a subset of the particular roles in a system. The property types

usually depend on the confidentiality mechanism, so security expertise can be required to

identify all relevant property types. Therefore, the security expert will most likely define

the property types. This brings us to the following requirement:

R1.2) The syntax shall provide the security expert with the ability to describe property

types.
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The behavior of the system and the usage of the system can change the properties of data.

If the way of describing behavior or usage is not sufficient to determine such changes, it is

necessary to provide means for making such changes explicit. Security experts have the

expertise to identify types of behaviors that are relevant for reasoning about confidentiality

requirements. Additionally, they can specify the changes of data properties, which these

behavior types imply. However, security experts cannot decide on where these behavior

types are actually used in the system. In contrast, software architects have the expertise

to decide on which system part behaves in a way that matches the defined behavior types.

This brings us to the following requirements.

R1.3) The syntax shall provide the security expert with the ability to specify types of

behaviors, which describe the effect of system behavior or system usage on data

properties.

R1.4) The syntax shall provide the software architect with the ability to assign behavior

types to system parts or usage descriptions.

Besides data, system parts can also have properties that are required to reason about

meeting confidentiality requirements. Again, security expertise is required to identify

required properties of system or usage parts as well as reasonable combinations of multiple

properties. A security expert can specify these combinations depending on the confiden-

tiality requirements. Software architects have the expertise to identify system or usage

parts that should have the predefined combinations of properties. This brings us to the

following requirements.

R1.5) The syntax shall provide the security expert with the ability to specify combinations

of properties for system parts or usage descriptions.

R1.6) The syntax shall provide the software architect with the ability to assign combina-

tions of properties to system parts or usage descriptions.

The overall goal is to provide a unified approach, which supports analyzing multiple

confidentiality mechanisms as well as analyzing combinations of multiple confidentiality

mechanisms. Using the same language constructs for representing various confidentiality

mechanisms helps to reduce the learning effort for software architects as well as security

experts. In addition, such general applicable language constructs have the potential to

support more confidentiality mechanisms than specific language constructs. All language

constructs necessary for the previously described specification tasks of software architects

and security experts shall be general applicable to avoid limiting the resulting syntax

to a few confidentiality mechanisms. Additionally, mixing behaviors and properties of

different confidentiality mechanisms should be possible to combine the benefits of various

mechanisms. This means that software architects and security experts shall be able to

describe system aspects relevant for multiple confidentiality mechanisms within the same

input artifact. Besides combining confidentiality mechanisms, replacing a confidentiality

mechanism with another one can be reasonable. For instance, a simple mechanism can be

feasible for a limited set of requirements but as soon as more requirements arise, a more

powerful mechanism might be necessary. To increase the probability that a mechanism

is replaced if necessary, the effort for doing so should be as low as possible. At least, the
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effort for switching confidentiality mechanisms should be low compared to the overall

effort for representing the system and another confidentiality mechanism. This brings us

to the following requirements.

R1.7) The syntax shall provide the security expert with the ability to specify property

types, behaviors and properties for various confidentiality mechanisms by the same

language constructs.

R1.8) The syntax shall provide the software architect with the ability to assign behav-

iors or properties for various confidentiality mechanisms by the same language

constructs.

R1.9) The syntax shall provide the security expert with the ability to specify property

types, behaviors and properties for various confidentiality mechanisms within the

same input artifact.

R1.10) The syntax shall provide the software architect with the ability to assign behaviors

or properties for various confidentiality mechanisms within the same input artifact.

R1.11) The syntax shall provide the software architect with the ability to switch confiden-

tiality mechanisms with low effort.

4.1.2. Semantics of Syntax

The semantics of the syntax assign a meaning to the syntactical elements, which drives

analyses for violations of confidentiality requirements. If an element is not needed during

the analysis, the semantics should clearly state that the particular element has no meaning

to avoid ambiguities. This brings us to the first requirement for the semantics:

R2.1) The semantics shall specify the meaning of every construct in the syntax.

As motivated before, analyses have to determine properties of data and system parts

to identify violated confidentiality requirements in data-oriented system descriptions.

Properties can be static but they can also emerge from processing various data items. To

improve the comprehensibility of analysis results, it is not only necessary to determine

properties but the semantics also have to be capable of explaining the origin of a property.

For instance, a data property might emerge from data processing, so the origin should

contain the processing steps. This brings us to the following requirements:

R2.2) The semantics shall provide analyses with the ability to determine properties of

data and system parts.

R2.3) The semantics shall provide analyses with the ability to determine the origin of

properties.
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Security experts and software architects mainly interact with the analyses built on the

semantics. The software architect uses these automated analyses to identify design deci-

sions in the analyzed architecture, which violate confidentiality requirements. To keep

the definition of an analysis simple, it should be enough for security experts and software

architects to specify an analysis goal but not the procedure to meet the analysis goal.

An analysis framework, which only requires an analysis goal to define an analysis, is

necessary to achieve such simple analysis definitions. The analysis not only has to yield

an analysis result but also means to identify the faulty design decision, which lead to the

confidentiality violation. A software architect needs information about the origin of the

data item, which violates a confidentiality requirement. It might be necessary to have

a look at multiple previous data processing steps and data items to identify the design

decision leading to the violation. Therefore, a software architect needs a trace, i.e. the

processing steps including the transmitted data. To keep the effort low for conducting an

analysis, e.g. after adjusting the software architecture, the analyses should be automated.

This way, the software architect can run an analysis frequently and gets fast feedback about

design decisions. This brings us to the following requirements for an analysis framework,

which can also affect the semantics that build the foundation of the analysis framework:

R2.4) The analysis framework shall provide the security expert with the ability to define

an analysis based on an analysis goal.

R2.5) The analysis framework should provide the software architect with the ability to

define an analysis based on an analysis goal.

R2.6) The analysis framework shall provide the software architect with trace information

about properties.

R2.7) The analysis framework shall provide the software architect with automated anal-

yses for violations of confidentiality requirements.

The most prominent confidentiality mechanisms are information flow control and access

control. The analysis framework as well as the semantics have to support analyses of the

most common types of confidentiality requirements given in terms of information flow

control and access control. The analyses should not be part of the analysis framework but

shall imply requirements regarding the expressive power. This brings us to the following

requirements:

R2.8) The analysis framework shall provide the security experts with the ability to define

information flow control analyses.

R2.9) The analysis framework shall provide the security experts with the ability to define

access control analyses.
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4.1.3. Integration Procedure for ADLs

The integration of the analysis approach into existing ADLs and their tooling is necessary

to simplify adoption of the approach by lowering the initial effort for grasping the approach

and by providing guidance on when to use the approach.

To make the integration procedure widely applicable, the procedure should work for

existing ADLs that use the control flow paradigm, the data flow paradigm or both. The

resulting extended ADL might not be data-oriented but the underlying analysis can still

operate on data flows that stem from control flows. Apart from that, the resulting extended

ADLs shall meet all requirements already listed for the syntax. Focusing only on ADLs

operating on data flows is not feasible because many modeled architectures only provide

control flows and switching the paradigm would require considerable effort. This brings

us to the following requirements:

R3.1) The integration procedure shall cover ADLs using control flows.

R3.2) The integration procedure shall cover ADLs using data flows.

One essential goal of the integration into existing ADLs is to lower the learning and

migration effort for software architects. To achieve that, the integration procedure has

to aim for as less modifications of existing ADLs as possible. To give a counter example,

assume we just merge the syntax with an existing ADL. Certainly, analyses could be

conducted in this extended ADL but software architects would still have to get to know

the new elements and would have to remodel existing architectures using the new model

elements. This brings us to the following requirement:

R3.3) If an ADL provides a required concept, the integration procedure shall reuse the

corresponding model elements.

The integration procedure will also have to yield an analysis framework that security

experts and software architects will use. All requirements for the previously mentioned

analysis framework that operates on the data-oriented input apply to the ADL analysis

framework too. The integration procedure should not yield an integration that requires

knowledge about the syntax, semantics or analysis framework mentioned in the sections

before. For instance, an integration shall not require knowledge about the concept of a data

processing chain if the ADL only uses control flows. However, essential concepts such as

characteristics, which describe properties of architectural elements or data, or behaviors,

which describe how system activities affect the characteristics mentioned before, have to

be available. Therefore, extending the ADL can be necessary, if there are no counterparts

of the new concepts but the extensions must use the terminology used in the ADL and

not the terminology used in the DFD. This brings us to the following requirements:

R3.4) The integration procedure shall yield an analysis framework that meets all require-

ments of the analysis framework for DFDs.

R3.5) The integration procedure shall yield an integration that only uses concepts from

the architectural domain.
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4.2. Discussion of Possible Solutions

There are multiple possible approaches to meet the previously described requirements. In

this section, we would like to discuss alternative solutions on a coarse-grained level and

then decide for one solution that we will use to realize our contributions.

4.2.1. Syntax: Means for Specification

As explained in 4.1.1, we focus on the required concepts, which are represented in the

syntax, rather than the concrete representation of these concepts. Therefore, we specify

an abstract syntax. This means that typical approaches to specify concrete syntaxes such

as syntactic metalanguages, which includes Extended Backus–Naur form (EBNF) [Int96],

are no appropriate means for specifying the abstract syntax. Metamodeling is a commonly

accepted approach to specify abstract syntaxes. The MOF [Obj19] provides standardized

means to specify the abstract syntax by a metamodel. To visualize the metamodel, we

will use class and object diagrams of the UML, which is a commonly accepted way of

visualizing metamodels.

4.2.2. Syntax: System Specification

The syntax has to describe the software system as well as its behavior and usage in a

data-oriented way. It is possible to create a syntax from scratch but this increases the

required initial knowledge for grasping the introduced concepts and makes migrating

existing system descriptions into the new syntax hard. Instead, it is beneficial to reuse

existing system descriptions and extend it by the missing features.

There are many different ways to describe systems in a data-oriented way. Prominent

examples that are often used to reason about security are Petri nets and DFDs. Activity

diagrams given in UML are also popular.

Petri nets [Pet62] use places, transitions and edges to describe distributed systems. Places

hold tokens, which can be transformed in transitions. The distribution of tokens describes

a system state. Petri nets can represent control flows and data flows [Liu+20]. They often

serve as formal foundation for analyzing information systems and workflows. There are

various extensions [JR91] available that improve the capabilities of Petri nets. Such exten-

sions enable the detection of access control violations [Kno00] as well as of information

flow violations [AH97].

DFDs [DeM79] focus on data flows and data processing. The diagrams consist of only few

types of model elements and are considered intuitively comprehensible. They are the most

used system descriptions as part of threat modeling [Sho14]. The popular threat modeling

tool of Microsoft [Mic21] is also based on DFDs. Various extensions of DFDs exist to

support threat modeling regarding various security objectives [TCS18]. The discussion of

the state of the art in Chapter 9 gives more examples on DFD-based analyses.
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UML activity diagrams can represent data flows by so-called object flows. The UML is

commonly used to describe software architectures but many users do not strictly adhere

to the standard according to a survey with 80 architects [LCM06]. In addition, the UML

provides many types of model element but many of them are rarely used or even unknown

according to a literature study [Reg+15]. This informal use and the amount of model

elements to consider are challenging for automated analyses. As a consequence, we could

only find one approach [HSS14] that consequently uses object flows to identify violations

of confidentiality requirements.

System descriptions based on Petri nets as well as on DFDs are eligible foundations of

the syntax. We decide to use DFDs instead of Petri nets because DFDs are already used in

established approaches to identify violations of security requirements, i.e. threat modeling,

and the provided types of model elements match domain concepts known by architects

better than the types of model elements of Petri nets.

4.2.3. Syntax and Semantics: Propagation of Properties

To detect violations of confidentiality requirements, it is necessary to know, which data is

available in which part of the system. More precisely, it is necessary to know the properties

of data. It is possible to determine these properties manually by reasoning about data

processing and assigning the properties directly to data flows. However, this requires high

initial effort as well as high effort if the system changes. Additionally, it is a repetitive and

error-prone activity. Therefore, we aim for an automated propagation of data properties

as part of the semantics.

The syntax as well as the semantics have to cover data processing to determine their

effect on data properties, which is the core of the logic to propagate data properties. To

capture the processing effect, it is either possible to assign processing effects to elements

based on their type or assign processing effects to individual elements. For instance, Hoisl,

Sobernig, and Strembeck [HSS14] assign a propagation behavior to fork or condition nodes

in UML activity diagrams. The downside of this approach is that either the propagation

rules are limited because of the limited amount of available types of model elements or

dedicated models elements for specific purposes have to be introduced into the language.

This approach lowers the uniqueness [POB00], which aims for providing a small set of

powerful features in contrast to a large set of specific features. Additionally, it hinders

extensibility. In contrast, separating the specification of the processing effect and the

nodes improves uniqueness and also enables extensibility to effects not considered while

developing the syntax and the semantics. Therefore, we plan to assign the processing

effect to individual elements.

Especially for the semantics, the types of properties are relevant. The values of a property

can range from a set of discrete values, such as boolean variables or enumeration literals, to

continuous values, such as integer or real numbers. Continuous values are more expressive

but also requiremore complex data processing specifications and semantics. Discrete values

are simpler to handle and are also quite common in predicting confidentiality: Information
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flow analyses usually use a lattice of security labels [Smi+15]. Access control often decides

about access based on discrete values such as roles, security levels or individual access

rights [Fur08, pp. 61]. Because most established information flow and access control

mechanisms restrict themselves to discrete values, it is reasonable to adopt this limitations

to simplify modeling and analyzing systems.

The concept to propagate discrete values is already used in machine learning. In machine

learning, these discrete values are called labels and the propagation is called Label propa-
gation. According to Zhu and Ghahramani [ZG02], label propagation means that a set of

unlabeled data is incrementally labeled by deriving new labels from a small initial set of

labeled data. This definition matches our understanding of label propagation. However,

we will not derive the new labels by similarity, which is the approach initially suggested

by Zhu and Ghahramani [ZG02], but we will derive the labels from the effect of data pro-

cessing. We will use the term label propagation in the following to refer to our propagation

algorithm.
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DFDs are established models for reasoning about the security of systems. However, DFDs

are often used in an informal way because they lack means for representing properties

and behavior relevant for confidentiality in a precise way. Consequently, there are no

formalized semantics supporting automated analyses. Nevertheless, DFDs provide a good

foundation for developing our approach as motivated in Section 4.2. This chapter presents

solutions on how to bridge the existing gaps and how to meet the requirements given in

Section 4.1. All explanations in this chapter are based on a previous publication [Sei+22].

The solution involves defining an extended syntax as described in Section 5.1 as well

as corresponding semantics as described in Section 5.2. Together, syntax and semantics

provide means for defining automated confidentiality analyses. The implemented syntax

as well as the mapping for assigning the semantics to the syntax are available in our data

set [Sei22]. The limitations of the proposed solution as well as assumptions regarding its

usage are covered in Section 5.3. Eventually, Section 5.4 gives a short summary of the

whole chapter.

5.1. Extended Data Flow Diagram Syntax

The simple DFD syntax as introduced by DeMarco [DeM79, pp. 51] is not sufficient

for automated detection of confidentiality violations. An extension of the DFD syntax is

necessary to meet the requirements for the syntax described in Section 4.1.1. The identified

need for an extension is in line with recent security research using DFDs [TCS18; Sio+20].

To structure the extended syntax and illustrate its usage by stakeholders, we define

architectural viewpoints, which the ISO/IEC 42010 standard [Int11] suggested to reason

about architectural description languages. According to Goldschmidt, Becker, and Burger

[GBB12], a viewpoint addresses exactly one concern by potentially multiple view types.

A view type is an abstract syntax describing the part of the software architecture that is

necessary to address the concern of the viewpoint. Stakeholders are interested in concerns

and define, i.e. provide the requirements for, a viewpoint. The requirements described in

Section 4.1 address the three major concerns illustrated in Figure 5.1.
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Functional : Viewpoint Confidentiality Primitives :
Viewpoint

DFD : ViewType Characteristics : ViewTypeBehaviors : ViewTypeBinding : ViewType

defines definesdefines

Software Architect :
Stakeholder

Security Expert :
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defines defines

Describe Security
Primitives : Concern

Describe System
Structure : Concern

interestedIn interestedIn interestedIn representsrepresents

Confidentiality :
Viewpoint

Meet Confidentiality
Requirements : Concern

interestedIn

represents

defines defines

defines defines

Figure 5.1.: Overview on addressed viewpoints and view types including corresponding concerns and

stakeholders given as UML object diagram.

The most fundamental concern of a software architect is to describe the structure of the

system. This covers the used components, which can be system parts or actors, including

their interfaces as well as the wiring of components. DeMarco calls this the Functional
viewpoint [DeM79, p. 47] in the context of DFDs, so we stick to this term. Consequently,

the DFD is the view type used by architects to address the functional view point. The

extensions to this view type that address data processing of system parts and actors (R1.1)

as well as the definition of data interfaces are covered in Section 5.1.1.

The security expert is mainly concerned with describing security primitives. In the context

of this thesis, these primitives address confidentiality aspects only, i.e. confidentiality

properties (R1.2, R1.5) and fundamental behaviors affecting these properties (R1.3). In the

running example, the classification level applied to data is such a property and the declassi-

fication is a behavior that changes the particular classification of a data item. Consequently,

we call the corresponding viewpoint Confidentiality Primitives. The Characteristics view
type covers the confidentiality properties and the Behaviors view type covers the behavior

types. We describe both view types and how they address many of the requirements on

modeling confidentiality aspects in Section 5.1.2.

Both, the software architect and security expert, are interested in meeting the confiden-

tiality requirements in the system under design. The Confidentiality viewpoint represents

this concern by bridging the gap between pure system structure and pure confidentiality

primitives. The software architect can bridge this gap by binding confidentiality primitives

of the security expert to the system structure in the Binding view type. Additionally, it

might be necessary to define confidentiality properties and behaviors that are specific for

the particular system. In the running example, the particular clearance and classification

levels depend on the system, so they are no generic confidentiality primitives. The software

architect and the security expert work together in defining these system-specific properties

and behaviors. Additionally, the security expert might assist in binding the confidentiality
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DataFlowDiagram

DataFlow Process

ExternalActor

Store

Nodesrc
dst

**

ActorProcess

actor

srcPin
dstPin Pin

Figure 5.2.: Data Flow Diagram view type for the Functional viewpoint given as UML class diagram.

primitives to elements of the software system. Section 5.1.3 focuses on the Binding view

type but also discusses interactions between security experts and software architects.

A summarizing overview on how the extended syntax presented within the aforementioned

viewpoints meets the requirements presented in Section 4.1 is given in Section 5.1.4.

5.1.1. Functional Viewpoint

The Functional viewpoint represents the concern of the software architect to describe the

system structure. The view type that the architect uses within the viewpoint is an extended

version of the DFD as defined by DeMarco. The shaded elements in Figure 5.2 represent

the elements in the original definition, which already meet R1.1 to a large scale. In the

following, we discuss how the extensions illustrated by non-filled elements in Figure 5.2

meet the remaining aspects of the requirement.

In realistic systems, a system function is often used by various other system functions. In

control flow models, this would mean calls from multiple locations. In data flow models,

the equivalent to calls is sending data to a node. Therefore, using the very same node means

that there are multiple incoming data flows for the same type of required information, i.e.

there are alternative flows to choose from. However, there are no means for distinguishing

such alternative flows from mandatory flows. A clear interface definition can solve this

by defining types of mandatory incoming data. If more than one data flow for the same

type of data arrives, these are alternative flows. To realize this, we introduce the concept

of a Pin. A Pin describes a required input or provided output of a Node. All data flows
between nodes have to use these pins to avoid ambiguities. This means that nodes have

to send all data through pins. In Figure 5.3, we visualize these pins by empty squares at

the edges of nodes. Pins, which are the target of a data flow are input pins. Pins, which

are the source of a data flow are output pins. Because incoming or outgoing data is the

only way to communicate between nodes, the set of pins of a node defines its interface.

Multiple data flows arriving at a pin mean alternative sources of equivalent data. This

means that more than one node can provide equivalent data to another node, which is

roughly the same as calling the same operation from different sources in the control flow

terminology. Pins and the definition of interfaces are a commonly known and established

concept, which is also part of the UML [Obj17, p. 515]. The benefit of using a pin over
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Figure 5.3.: Excerpt of running example using the actor processes to describe data processing steps of actors

as well as pins to describe data interface.

other concepts such constraints for selecting flows or defining sets of valid flows is the

low effort for adding a new, mandatory input. To do so, it is sufficient to just add a new

pin. When using constraints, it would be necessary to adjust every constraint to include

the new mandatory input. The same holds for set definitions.

Besides the data processing of the system, R1.1 explicitly mentions the data processing

done by actors. To consider their data processing steps, we added the additional node

type ActorProcess. The new node type is essentially a process just like the ones used to

describe the data processing of the system but holds an additional reference to an actor.

The intended meaning of this reference is that the process belongs to the data processing

activities carried out by the referenced actor. The benefit of this modeling approach is

that software architects can use the already known modeling elements for describing data

processing steps for the system and actors. Nevertheless, the new ActorProcess maintains a

clear distinction between processes of systems and processes of actors. To give an example,

we demonstrate the usage of the actor processes in an excerpt of the running example

shown in Figure 5.3. The dashed line visualizes the reference of an ActorProcess to the

corresponding actor. The processes read CCD and request booking belong to the User and
describe the corresponding data processing steps: First, the user reads the credit card data

and sends it to the declassification. Next, the received declassified data is passed to the book
flight process together with the flight to be booked. Without these additional processes,

the user would directly receive and emit credit card data, which requires distinguishing

the declassified and regular credit card data by the name of the data flow. In contrast, the

additional processes allow a clear, structural separation between regular and declassified

credit card data because the data processing done by the user is clear now.

The requirement to represent deployment information (R1.1) will be addressed by the

mechanism to express properties of nodes. Deployment information is not different to

other properties relevant for confidentiality as long as the sole purpose of representing it

is considering it in finding violations of confidentiality requirements.
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5.1.2. Confidentiality Primitives Viewpoint

The Confidentiality Primitives viewpoint represents the concern of the security expert

to describe security primitives. Thereto, the security expert uses the Characteristics and
Behaviors view type. The following paragraphs explain how these view types support

the security expert and how they address many requirements regarding the definition

of confidentiality properties (R1.2 and R1.5) and behaviors (R1.3). Both view types do

not introduce concepts, which are specific for a particular confidentiality mechanism.

Instead, a security expert uses the generic concepts to introduce specific information

(R1.7), which also means that various confidentiality mechanisms can be mixed within

one model (R1.9).

5.1.2.1. Characteristics View Type

The characteristics view type provides means to describe available property types (R1.2)

and particular properties (R1.5). In the following, we use the term characteristic to refer to

properties of nodes and data to distinguish arbitrary, untyped properties describing aspects

of nodes and data from strongly typed characteristics that are relevant for confidentiality.

Using an unstructured set of properties would be possible but increases the specification

effort when propagating and comparing properties. The increased effort stems from the

missing ability to refer to groups and thereby treat a set of properties in the same way. In

unstructured properties, there has to be a dedicated rule for handling every property. In

our running example, comparing the classification and clearance properties would require

dedicated logic for every element of the cross product of these properties. Instead, types

and value ranges within properties can ease such comparisons. In our running example, it

would be sufficient to define the levels as ordered value range and compare the index of

the classification property with the index of the clearance property.

As Figure 5.4 illustrates, an Enumeration defines the range of values. The enumeration

holds a set of Literals. In the running example, the enumeration would be called Levels and
the literals would be the particular levels such as User or User,Airline. A CharacteristicType
is the type of a characteristic (R1.2). It uses an enumeration to define its range of values.

Separating the characteristic type and its used value range is beneficial because this allows

to reuse the value range in multiple characteristic types. In the running example, there

are two characteristic types: Clearance and Classification. Both characteristic types share

the same range of values, which are the Levels.

A Characteristic defines an instance of a characteristic type (R1.5). It refers to a particular

type and selects a set of applied literals. Selecting a set instead of a single literal is a

convenient way to avoid the need for defining multiple characteristics for the same type.

For instance, the selection of multiple literals is useful for assigning roles to a node. The

actual binding of such a characteristic to a node is covered by the Confidentiality viewpoint

(see Section 5.1.3).
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Figure 5.4.: Characteristics view type for the Confidentiality Primitives viewpoint given as UML class

diagram.

With respect to the planned label propagation approach mentioned in Section 4.2, a label

is the tuple of characteristic type and a literal. This is crucial because the same literal

can have different meanings depending on the corresponding characteristic type. In the

running example, the User label on data means that the data is classified for users. The

User label on a node means that the node is cleared for data classified by level User at
most. A characteristic referring to multiple literals implies a label for each literal, i.e. a

tuple of characteristic type and selected literal. Making type and value explicit, makes

comparisons type-safe and definitions of label propagation functions simpler. We will

illustrate the latter later by a so-called wildcard mechanism.

Labels, i.e. characteristic types and literals, can be specific to a particular system or generic.

The labels in the running example are specific to the system because the underlying

levels are named based on the involved nodes, which also applies to the labels. Therefore,

these labels are not reusable in other systems. In contrast, generic labels named high,
medium or low could express the confidentiality requirements in the same way but would

support reuse in further systems. The DataDictionary builds a catalog of characteristic

types, enumerations and characteristics. This catalog can contain reusable or specific

elements. This lowers the specification effort because confidentiality primitives only have

to be defined once but can be reused in various systems. In the running example, there is

also a catalog but it will not be used by other systems because the contained elements are

not reusable. However, changing the literals from system-specific to generic labels would

enable reuse.

5.1.2.2. Behaviors View Type

The behaviors view type covers behavior descriptions of nodes by means of label propaga-

tion functions (R1.3). A label propagation function describes how outgoing labels can be

derived from incoming labels.

Before describing the modeling approach for such functions, we describe the underlying

idea in an informal way: The fundamental design decisions influencing our solutions are

that i) a label is a tuple of a particular characteristic type and particular literal and ii) all

data flows have to go through pins. Consequently, labels leave and enter a node through

pins, so it is reasonable to always refer to pins when defining outgoing labels or using

incoming labels. Because there is a fixed set of available, discrete labels, the availability

of a particular label can be seen as a particular boolean variable with the value true. If
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the label is not available, the value would be false. Consequently, the set of available

labels at a particular pin is just a set of boolean variables describing the availability for

this particular pin. A label propagation function is essentially a sequence of assignments

of truth values to the boolean variables representing labels on output pins. The truth

value of the assignment can depend on boolean variables of incoming pins. The benefit of

assignments and truth values is that even complex logic can be realized by boolean logic

in an intuitive way.

The view type shown in Figure 5.5 realizes the idea of describing the label propagation

by a sequence of assignments and encapsulates it in a reusable BehaviorDefinition. This
definition consists of the set of input pins and output pins as well as the assignments. This

is reasonable because a label propagation function specifies labels for an output and relies

on incoming labels, so it assumes that a defined set of inputs and a defined set of outputs is

available. Both are essentially sets of pins. The list of assignments is ordered, which means

that an assignment to a variable in position 𝑛 can override an assignment to the same

variable in position𝑚 if 𝑛 > 𝑚. An assignment always consists of a left-hand side (lhs)
and right-hand side (rhs). The left-hand side is the boolean variable that shall be set. This

variable is given by a DataCharacteristicReference, which is a triple of pin, characteristic

type and literal. On the left-hand side, the pin must be an output pin because a node can

only affect outputs by its data processing. To simplify descriptions, we use the concrete

syntax pin.ct.l to refer to the boolean variable specified by the pin pin, characteristic

type ct and literal l. The right-hand side of the assignment is a Term. It is reasonable to

allow operations and truth values of boolean algebra to be terms. The supported operations

are Not, And and Or. The supported truth values are True and False. Additionally, referring
to boolean variables, which means labels on input pins, is necessary. Labels from input

pins can be referenced by a DataCharacteristicReference. On the right-hand side, such a

reference must refer to an input pin because labels on output pins are not available while

determining the very same labels on the output pins. In addition, labels on the node, which

is using the BehaviorDefinition, can be referenced by the ContainerCharacteristicReference
that requires a characteristic type and a literal to be given.

In the running example, the nodes filter flights and process booking have a label propagation
function that applies the highest received classification label to the output. This function

breaks down to three assignments for the three possible classification levels on the output

as shown in Listing 5.1. Line 1 means that the highest classification level User can be

assigned if one of the inputs (in1 or in2) has this classification level. Line 8 means that the

lowest classification level UserAirlineTA can be assigned if both inputs have this label. The

remaining lines mean that the medium classification level UserAirline can be assigned if

one input has this medium level and the other input has the medium or the lower level.

A wildcard mechanism allows omitting characteristic types and literals to safe specification

effort in some cases. If an element is omitted, we write * instead of the element in the

examples. We demonstrate the benefit in a moment after explaining the general idea. The

mechanism requires the characteristic types and literals to be omitted on the left-hand

side and the right-hand side. The meaning of omitted information is as follows: A missing

literal means that there is virtually one assignment for each literal of the corresponding

41



5. Modeling Confidentiality Characteristics of Systems by Data Flow Diagrams

Assignment

CharacteristicType Literal
DataCharacter- 
isticReference

0..1 0..1
ContainerCharac- 
teristicReference

Term
True

False

UnaryLogicTerm

BinaryLogicTerm

term

left
right

Not

Or

And

lhs

rhs Constant

DataDictionary

BehaviorDefinition
*

Pin

input
*

output
*

{ordered}

*

CharacteristicReference

Figure 5.5.: Behaviors view type for the Confidentiality Primitives viewpoint given as UML class diagram.

Listing 5.1: Example of assignments describing the behavior for joining two inputs with respect to data

classification.

1 out.class.User := in1.class.User OR in2.class.User

2 out.class.UserAirline :=

3 (in1.class.UserAirline AND

4 (in2.class.UserAirline OR in2.class.UserAirlineTA))

5 OR

6 (in2.class.UserAirline AND

7 (in1.class.UserAirline OR in1.class.UserAirlineTA))

8 out.class.UserAirlineTA := in1.class.UserAirlineTA AND in2.class.UserAirlineTA

characteristic type. In each of these assignments, the particular literal is inserted in

all empty literal places. In our running example, a missing literal in a reference to the

classification characteristic would virtually result in three assignments: one assignment

for the User level, one for the UserAirline level and one for the UserAirlineTA level. The

precondition to use literal wildcards is that all references omitting the literal reference a

characteristic type with the same enumeration, i.e. the characteristic types have the same

set of available literals. This is a reasonable precondition because otherwise characteristic

references could become invalid, i.e. the literal would not match the characteristic type.

The example shown in Listing 5.2 demonstrates the use of literal wildcards. The assignment

in line 1 specifies that the output out should have the classification literals enabled that

match the enabled clearance literals of the container. Such an assignment might be useful

when data is created because it is reasonable to assume that the created data has the same

classification level as the clearance of the creating node. Lines 2 to 4 are equivalent to

line 1. As this example demonstrates, only one instead of three assignments have to be

specified, which saves effort.
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Listing 5.2: Example of assignments illustrating use of wildcards to specify the creation of data.

1 out.class.* := container.clear.*
2 out.class.User := container.clear.User

3 out.class.UserAirline := container.clear.UserAirline

4 out.class.UserAirlineTA := container.clear.UserAirlineTA

Listing 5.3: Example of assignments illustrating use of wildcards to specify forwarding of data.

1 out.*.* := in.*.*
2 out.class.* := in.class.*
3 out.clear.* := out.clear.*

Assignments can also leave out characteristic types together with leaving out literals. A

missing characteristic type means that there is virtually one assignment for each character-

istic type, in which the particular characteristic type has been inserted. After that, the logic

for handling omitted literals described before applies. The example shown in Listing 5.3

illustrates such an assignment. The assignment in line 1 specifies that exactly all labels of

the input apply to the output. The lines 2 and 3 are equivalent to line 1, assuming that

there are two characteristic types to describe classifications class and to describe clearance
clear. The amount of saved assignments increases if the amount of available characteristic

types increases.

5.1.3. Confidentiality Viewpoint

The Confidentiality viewpoint addresses the concern of both, software architect and se-

curity expert, to meet confidentiality requirements in the system under design. Three

view types support the work of both stakeholders: The Characteristics and Behaviors view

types have already been introduced previously. In the context of the Confidentiality view-

point, these view types allow software architects to support security experts in defining

system-specific behaviors and characteristics, which includes deployment information

represented as characteristics on nodes (R1.1). The Binding view type is the third and new

view type in the Confidentiality viewpoint, which we describe in the following.

The Binding view type shown in Figure 5.6 allows the software architect to bind behaviors

and characteristics to nodes in the architecture. Thereto, all DFD nodes presented in the

Functional viewpoint must reference exactly one BehaviorDefinition and can reference

multiple Characteristics. All involved elements have already been created in other view

types like explained before. To bind labels, i.e. characteristics, to a node (R1.6), the architect

adds the corresponding characteristic to the list of referenced characteristics. To bind a

label propagation function, i.e. a behavior definition, to a node (R1.4), the architect sets the

reference to the behavior to the particular behavior definition. This means that architects

use the same means for assigning characteristics and behaviors to nodes no matter what

confidentiality mechanism is used (R1.8). Mixing confidentiality mechanism within one

model is also possible (R1.10).
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Figure 5.6.: Binding view type for the Confidentiality viewpoint given as UML class diagram.

There is one constraint for binding a behavior to a node: If the node is an actor, the behavior

must not include assignments that use DataCharacteristicReferences on the right-hand side

of an assignment. Doing so would imply that the labels on output pins depend on labels

on input pins. However, this would mean that an actor is no longer a source or sink of

data flows as initially defined by DeMarco. In our running example, this situation appears

when the user sends credit card data to the flight booking process. Certainly, the credit

card data sent to the flight booking process is the same as the data received from the credit

card center, so the labels should be the same. In such cases, ActorProcesses can establish

this relation without violating the source or sink role of an actor.

5.1.4. Requirements Coverage by Viewpoints

The previously described viewpoints and the view types supporting them address most of

the requirements regarding the syntax from Section 4.1.1. Table 5.1 gives a summarizing

overview on how the syntax meets the requirements.

The requirements R1.1 to R1.6 demand syntax extensions to represent information. As

the table illustrates, the extended DFD can represent the requested information. The

requirements R1.7 to R1.11 define how the extended DFD shall represent the information

or how the architect and expert use the extensions. The DFDmeets the requirements about

a unique representation of information (R1.7 and R1.8) and about representing information

specific for particular confidentiality within a single artifact (R1.9 and R1.10) by generic

modeling concepts for representing information specific for particular confidentiality

mechanisms. The last requirement about a low effort for switching confidentiality mecha-

nisms (R1.11) is met by the separation of the system structure and confidentiality-specific

information. It is possible to remove or replace the confidentiality-specific information

without the need for remodeling the whole system. This lowers the effort compared to

approaches that only support one particular confidentiality mechanism. However, this

aspect is also part of the validation described later.

5.2. Extended Data Flow Diagram Semantics

Clear semantics enable automated reasoning about properties of a model. DFDs as defined

by DeMarco do not have such clear semantics but an intuitive definition. As a consequence,

various approaches [Jil+08] to formalize DFD semantics have been made. None of these
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ID Description User Syntax Extension

R1.1 structure, usage, deployment,

behavior

architect actor processes, node characteristics

R1.2 property types expert characteristic types

R1.3 behavior types expert behavior definition

R1.4 bind behavior architect behavior reference for nodes

R1.5 define properties expert characteristics

R1.6 bind properties to nodes architect characteristics reference for nodes

R1.7 behavior/property types by

same concept

expert characteristic/behavior types

R1.8 bind behaviors/properties by

same concept

architect references to characteristic/behavior

types

R1.9 multiple confidentiality mech-

anisms in same artifact

expert characteristic/behavior types

R1.10 multiple confidentiality mech-

anisms in same artifact

architect references to characteristic/behavior

types

R1.11 low effort switching confiden-

tiality mechanisms

architect references to characteristic/behavior

types

Table 5.1.: Overview on extended syntax elements and met requirements by DFD syntax.

semantics provide commonly agreed universal semantics for DFDs but provides semantics

tailored to particular use cases. We also do not attempt to define such universal semantics

because this would not provide any benefit compared to tailored and concise semantics.

The semantics for the extended DFDs provide means for describing the label propagation

mechanism, which we motivated in Section 4.2.3. Security experts can use the analysis

framework built on the semantics to formulate an analysis goal (R2.4) that reveals violations

but we will describe building analyses as well as particular analyses for information flow

(R2.8) and access control (R2.9) in Chapter 6. The chapter will also describe ways of how

the software architect can formulate an analysis goal (R2.5).

We first explain the semantics in an intuitive way by demonstrating its meaning for the

running example in Section 5.2.1. Afterwards, we formalize the semantics in first-order

logic and describe the mapping between the extended DFD syntax and the semantics

in Section 5.2.2. We explain how the semantics meet the requirements regarding the

semantics in Section 5.2.3.

5.2.1. Intuitive Semantics of Extended Data Flow Diagrams

We already explained the meaning of the language constructs of the extended DFD syntax

as part of the introduction of the syntax in Section 5.1 to foster comprehensibility. In this

subsection, we focus on explaining the label propagation mechanism and detection goal

definition in an intuitive way by example.
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Listing 5.4: Assignments of credit card data initially created by the user.

1 ccd.class.User := true

Listing 5.5: Assignments of forwarding and store behavior in running example.

1 out.*.* := in.*.*

We use the version of the running example shown in Figure 5.7 that adopts the extended

DFD syntax. The difference to the plain DFD is the usage of pins, actor processes and

behaviors. A square at the border of a node represents a pin. Input pins only have incoming

edges and output pins only have outgoing edges. The actor processes are shown within

the corresponding actors. The behavior is shown by a symbol (↠,↣,⇝) within the

node. For a sake of simplicity, the figure does not include node characteristics because

the clearance of a node is the only applied characteristic. The clearance is already visible

by the gray filled headings in the top of the figure: Nodes lying under the CCC, User or
TravelPlanner heading have a clearance for the User level. Nodes under the TravelAgency
heading have clearance for the UserAirlineTA level. Nodes under the Airline heading have

clearance for the UserAirline level.

The violation to detect in the example is that a node with clearance level 𝑛 accesses data

with classification level𝑚, where 𝑛 < 𝑚. The levels are the already known levels User,
UserAirline and UserAirlineTA. The order of these levels is given by their order of definition

in the corresponding enumeration. Figure 5.8 illustrates this order by an annotated index.

To give a concrete example, a node with clearance for UserAirline (𝑛 = 1) accessing data

classified for User (𝑚 = 2) means a violation (1 < 2).

In order to detect such violations in the DFD, we have to know all labels of all nodes

and all labels of all data. The label propagation mechanism calculates all of these labels

by propagating a set of initial labels through the network of nodes. We cover the exact

procedure by the formalization in Section 5.2.2. In the following, we only describe the

underlying principle by example.

Assume, the propagation starts at the pin of the User yielding ccd. Because the user creates
and enters credit card data, there is no other source for deriving labels. Therefore, the data

needs an initial classification label that is specified by the excerpt of the behavior of the

user in Listing 5.4. The assignment explicitly sets the classification to the User level by
applying the corresponding label to the ccd output. Consequently, the data arriving at the

CCD Storage is classified for the user. The behavior of storages is essentially a forwarding

behavior (↠). As shown in Listing 5.5, this behavior takes the input labels and applies

them to the output. This means that the data yielded by the CCD Storage is also classified

for the User level.

The semantics of multiple data flows starting at an output pin is that the labels are

propagated to all destinations. Consequently, the User label from the CCD Storage is now
propagated to the declassify CCD process as well as the User. The declassify CCD process

has the declassification behavior (⇝) shown in Listing 5.6. All assignments are applied in
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Levels : Enumeration

User : Literal

UserAirline : Literal

UserAirlineTA : Literal

Clear : CharacteristicType

Class : CharacteristicType

type

Index: 0

Index: 1

Index: 2

Figure 5.8.: Characteristic types used in running example given as UML object diagram.

Listing 5.6: Assignments of declassification behavior in running example.

1 out.*.* := in.*.*
2 out.class.* := false

3 out.class.UserAirline := true

the given order before labels are emitted. First, all labels are copied from the input to the

output. This is essentially the forwarding behavior presented before. Next, the behavior has

to change the classification level. Thereto, it first deletes all classification labels and applies

the UserAirline label. The effect of this behavior is that all labels are copied unchanged

but the classification labels are replaced by a new label. At the declassify CCD process,

the incoming credit card data classified for User will be classified for UserAirline after the
processing. Labels of the incoming consent data are not important for the resulting labels,

so it is not considered in the assignments.

Next, the credit card data arrives at the input pin for credit card data at the User. Multiple

incoming data flows on the same pin mean that these data flows are alternatives. Because

we are interested in all potential violations, the label propagation mechanism has to

consider all possible choices. For the sake of simplicity, we assume that the mechanism

creates 𝑛 DFDs for 𝑛 possible input flows. Actually, the mechanism is more efficient, which

the formalization in the next section will show. In the particular example, the mechanism

creates two DFDs: one DFD selects the credit card data from the storage and the other one

selects the data from the declassification process. In these two DFDs, there are different

labels available at the pin: The DFD considering the data flow from the storage has the

User label available at the pin. The other DFD has the UserAirline label available at the pin.
The approach of creating a DFD for every alternative yields multiple deterministic DFDs,

i.e. DFDs without alternative data flows. The detection of violations has to consider all of

these DFDs.

For the sake of brevity, we do not discuss all propagations in detail but assume that all

propagations took place. The result are two fully labeled DFDs. In the first DFD, the credit

card data received by the user is classified by the User label. Consequently, the credit
card data arriving at the process booking process is classified the same. This implies a

violation because the process booking process has only a clearance label for UserAirline but
the arriving data is classified with the higher User label. In addition, a further violation

appears on the create booking process and the Booking Storage because of the same reason:
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5.2. Extended Data Flow Diagram Semantics

The create booking process joins (↣) the flight and the credit card data as specified by the

join behavior in Listing 5.1 on page 42, i.e. the highest incoming classification (User) is
applied to the outgoing classification. The Booking Storage receives the booking classified

by the User label but the storage only has a clearance label for UserAirline. In the second

DFD, there is no violation because the credit card data has been declassified and the

classification of the credit card data leaving the user is UserAirline. This is exactly the

same level as the clearance of the following nodes.

To summarize, a set of initial labels is given by behaviors assigning these labels explicitly.

The label propagation starts from these initial labels and sequentially applies the label

propagation functions. Whenever there are multiple incoming data flows for a pin, there

will be multiple DFDs, which only have exactly one incoming data flow for the pin. The

detection of violations takes place on each resulting DFD.

5.2.2. Formalization of Semantics in First-Order Logic

We formalize the previously introduced informal semantics by first-order logic. To do so,

we describe the meaning of every element of the extended DFD metamodel by a set of

clauses (R2.1). This description also serves as specification of the mapping between syntax

and semantics. We use the notion of Prolog as syntax for describing these clauses because

it is concise and yields ready to use logic programs. We use these logic programs to execute

the label propagation and label comparison in order to build automated analyses (R2.7) as

we show in Chapter 6.

In the following, we structure the description of the semantics by the view types introduced

in the syntax description in Section 5.1. This is reasonable because view types describe

subsets of the extended DFD metamodel and the formalization is about specifying the

meaning of metamodel elements. Section 5.2.2.1 describes the DFD view type, which is

about structural elements of DFDs. The characteristics view type mainly concerned with

the definition of characteristic types and instances of them is covered in Section 5.2.2.2. The

semantics of the behaviors defined in the behaviors view type is covered in Section 5.2.2.3.

The formalization of behaviors is also the formalization of the label propagation (R2.2). We

do not cover the binding view type explicitly because it is mainly concerned with binding

behaviors and characteristics to structural elements. Instead, we assume that this binding

already exists in the descriptions of the remaining view types. We also do not cover the

goal definition (R2.4 and R2.5) and do not discuss how to build particular information flow

and access control analyses (R2.8 and R2.9) in this chapter but discuss all of them as part

of the definition of particular analyses in Chapter 6.

5.2.2.1. Functional View Type

The functional view type covers the structure of the DFD. The only semantic aspect to

cover for the structure is to formalize that a structural DFD element of a certain type exists.
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Listing 5.7: Prolog facts describing nodes of a data flow diagram.

1 % all variables (sequence of capital letters) become constants

2 actor(N). % ExternalActor

3 store(N). % Store

4 process(N). % Process

5 actorProcess(N, A). % ActorProcess

6 inputPin(N, PIN). % Pin (in input reference)

7 outputPin(N, PIN). % Pin (in output reference)

8 dataflow(F, NSRC, PINSRC, NDST, PINDST). % DataFlow

Establishing the existence of structural elements is beneficial because analysis goals can

consider the various types of elements e.g. by only looking for violations at stores.

We use the facts as shown in Listing 5.7 to do so. The comments after facts describe the

corresponding class of the DFD metamodel. For every instance of such a class, we create

one particular fact that replaces the variables with particular identifiers. In our running

example, we create two facts describing the actors User and FlightPlanner by replacing N

in the fact in line 2 with a unique identifier for the particular external actor. We do the

same for all elements shown in listing 5.7. N is always replaced with the unique identifier

of the corresponding node. In line 5, we replace A with the identifier for the actor to which

the actor process belongs to.

For input and output pins, we create one fact for every node that uses a behavior containing

the pin. For instance, if 𝑛 nodes refer to the same behavior containing 𝑖 input pins and 𝑜

output pins, we create 𝑛 ∗ 𝑖 facts for input pins (see line 6) and 𝑛 ∗ 𝑜 facts for output pins

(see line 7). The effect of the label propagation does not depend on whether a behavior

is reused or not, so we do not represent reuse information in the semantics for a sake of

simplicity. For input pins and output pins as shown in lines 6 and 7, we replace N with

the identifier of the node that holds the behavior that contains the pin and replace PIN

with a unique identifier of the pin, i.e. the identifier uniquely identifies a particular pin at

a particular node without the need to know N.

For every data flow, we create a fact as shown in line 8. The fact represents all information

from the metamodel. We replace F with a unique identifier of the corresponding data

flow, NSRC with the identifier of the source node, PINSRC with the identifier of the source

pin, NDST with the identifier of the destination node and PINDST with the identifier of the

destination pin. The meaning of the data flow fact is that there exists a data flow F from

the source pin PINSRC of node NSRC to the destination pin PINDST of the destination node

NDST.

5.2.2.2. Characteristics View Type

The characteristics view type introduces characteristic types and characteristics. Along

the lines of DFD nodes and edges, we have to define the existence of characteristic types
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5.2. Extended Data Flow Diagram Semantics

Listing 5.8: Prolog facts describing characteristic types and characteristics.

1 % all variables (sequence of capital letters) become constants

2 characteristicType(CT). % CharacteristicType

3 characteristicTypeValue(CT, V, I). % Literal (transitively referenced by CT)

4 nodeCharacteristic(N, CT, V). % Characteristic (referenced by Node)

Listing 5.9: Prolog facts describing the classification characteristic type of the running example.

1 characteristicType(’class’).

2 characteristicTypeValue(’class’, ’UserAirlineTA’, 0).

3 characteristicTypeValue(’class’, ’UserAirline’, 1).

4 characteristicTypeValue(’class’, ’User’, 2).

and characteristics existence. We do so by the facts shown in Listing 5.8. The comment

after the fact describes the corresponding class of the DFD metamodel.

The facts in lines 2 and 3 of Listing 5.8 define the existence of a characteristic type. For

every instance of such a characteristic type, we create one particular fact that replaces

the variable CT with a particular identifier for that characteristic type. In our running

example, we create two facts defining the existence of the characteristic types representing

the clearance and classification by replacing CT in line 2 with a unique identifier for the

corresponding characteristic type. The meaning of the characteristicType fact is that

there exists a characteristic type with an identifier CT.

The fact in line 3 represents the literals available for a characteristic type. We do not

represent enumerations but directly relate the characteristic type to the literals of the

enumeration referenced by the characteristic type. Representing the enumeration is not

required for the label propagation, so we omit it to simplify the label propagation logic. In

the fact shown in line 3, we replace CT by the identifier of the characteristic type, V by the

identifier of the literal and I by the index of the literal in the enumeration referenced by

the characteristic type. This means that there are 𝑛 ∗ 𝑙 facts representing literals if there are
𝑛 characteristic types referring to the same enumeration that holds 𝑙 literals. For instance,

the characteristic type describing the classification of data in our running example yields

the facts shown in Listing 5.9. The meaning of the characteristicTypeValue fact is that

there is a literal V with index I that belongs to a characteristic type CT. Representing the

index is beneficial because analyses can use the order of literals. In our running example,

the literals are ordered in a way that literals with higher indexes are semantically bigger

than literals with lower indexes. Therefore, an analysis can use this order to compare

literals with each other.

The fact in line 4 represents characteristics bound to nodes (R2.2). We only represent

bound characteristics because unbound characteristics do not impact the label propagation.

For every binding of a characteristic to a node, we create a fact that replaces N with the

identifier of the node to which the characteristic is bound, CT with the identifier of a

characteristic type and Vwith the identifier of a literal. This means that we create 𝑙 ∗𝑛 facts

if a characteristic containing 𝑙 literals of a characteristic type is bound to 𝑛 nodes. The
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5. Modeling Confidentiality Characteristics of Systems by Data Flow Diagrams

Listing 5.10: Prolog clause documenting the type of behavior of a node.

1 % all variables (sequence of capital letters) become constants

2 behavior(N, B).

meaning of nodeCharacteristic is that the literal V of characteristic type CT is available

on node N.

5.2.2.3. Behaviors View Type

The behaviors view type represents the label propagation functions by sequences of

assignments. Therefore, the semantics described in the following define the behavior

of nodes rather than their pure existence. First, we explain and formalize the handling

of alternative data flow paths. As motivated by the running example, it is necessary

to consider all possible combinations of alternative data flow paths in order to identify

possible violations. We explain what an alternative flow path is and define the term flow
tree as representation of alternative data flow paths originating from a particular node.

The flow tree provides means to identify the source of data and its properties (R2.3 and

R2.6). Afterwards, we specify how the label propagation works for input pins and output

pins. To increase efficiency in presence of alternative flow paths, we replace forward label

propagation by backward label lookup. As part of the semantics definition for output pins,

we also cover how the assignments of the behavior definitions map to Prolog clauses.

Together, these semantics provide means to determine the properties of data based on

label propagation (R2.2).

Definition of Behavior The behavior definition covers the pins and the assignments. To

make the used behavior explicit in the semantics, we introduce a predicate behavior/2.

For every node, we add a fact as shown in Listing 5.10 for every node. The fact uses the

identifier of the node as a first argument and the identifier of the behavior, which the node

uses, as second argument. The main purpose of these facts is to be able to lookup nodes

by their used behavior. The effect of data processing on data and required foundations to

formalize this effect are discussed in the following paragraphs.

Alternative Data Flow Paths A data flow path is a sequence of data flows that a data

item traverses to reach a certain pin of a node. Multiple data flows targeting the same

pin on the same node mean that they all provide the same required type of data, i.e.

they are alternative inputs. Assignments can refer to data on every input pin, so we

require that a node selects at least one data flow for every input pin to guarantee that the

assignments can be made. In order to detect all possible violations, we have to consider all

possible combinations of alternative input flows for all pins on a node. This means

∏︁𝑛
𝑖=1

𝑓𝑖
combinations if 𝑛 is the amount of input pins of a node and 𝑓𝑖 is the amount of alternative

flows for pin 𝑖 with 𝑖 ∈ N∗. In the running example extended by pins in Figure 5.7 on page

47, the pin of the User actor that receives credit card data has two alternative inputs, so
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both flows have to be considered. Because data travels along a path of data flows through

the system, all possible combinations of alternative flows on every node on this path have

to be considered as well.

Alternative Data Flows We formalize the exploration of all possible input combinations

by the clauses shown in Listing 5.11. The goal of the rule in line 1 is twofold: First, it

finds a set of input flows FS that contains exactly one data flow for every input pin of

node N. Second, it finds the input flow FLOW from this set that targets the given pin PIN.

The rule is capable of finding all possible sets of input flows, which are available when

reevaluating the rule. After evaluating the rule, the variables FS and FLOW are bound to a

list of flows and a flow, respectively. To give an example, this rule can yield two sets of

variable bindings for the actor process book in our running example shown in Figure 5.7

on page 47: One binding set binds FLOW to the ccd data flow originating from the CCD
Storage and binds FS to the set of this flow and the data flow coming from the actor process

select. The other binding binds FLOW to the declassifiedCcd data flow originating from the

declassify CCD process and binds FS to the set of this flow and the data flow coming from

the actor process select.

To achieve this, the rule requires a set of clauses to be fulfilled: Line 2 ensures that the

given pin PIN of node N is an input pin. The clause in line 3 binds the variable FS to one

particular set of input flows for node N. This set has to contain one data flow for every

input pin of node N. The clause can find all possible combinations of input flows for the

node, which ensures that all possible combinations are considered. Line 4 now binds the

FLOW variable to a flow from the flow set FS that is an input flow for pin PIN. Finally, the

clause in line 5 ensures that the selected flow FLOW is not in the set of already visited flows

VISITED by ensuring that the intersection between the visited set and the set consisting

only of the selected flow is empty. This avoids evaluation cycles in DFDs containing loops.

If the flow has already been visited, the flow and the set of input flows cannot be used

anymore, so another set of flows has to be found. The resolution mechanism of Prolog

does this automatically. In the following, we explain the used clauses.

The inputFlowsSelection rule in line 6 finds a set of input flows FS for a given node

N. This rule finds all possible combination of input flows when reevaluating it. The

rule first identifies the set of input pins PINS for the node N. The clauses representing

the findAllInputPins predicate used in line 7 are given in Listing 5.12. Essentially, the

predicate yields a sorted list of all input pins of node N, so the predicate always only has

one valid variable binding. The predicate inputPinsFlowSelection finds a flow for every

pin in the set of input pins. The resulting set is bound to FS.

The inputPinsFlowSelection predicate finds a set of data flows for a set of pins so that the

set of data flows contains exactly one data flow to every pin. The corresponding clauses

do this by recursion. In the same way, the inputFlowSelection rules starting in line 13

find a data flow F for a given pin PIN by recursively searching the given list of flows for a

data flow targeting the requested pin.
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Listing 5.11: Prolog clauses describing the exploration of alternative inputs.

1 inputFlow(N, PIN, FS, FLOW, VISITED) :-

2 inputPin(N, PIN), % ensure pin is input pin

3 inputFlowsSelection(N, FS), % find set of input flows

4 inputFlowSelection(PIN, FS, FLOW), % find flow to pin from set

5 intersection(VISITED, [FLOW], []). % avoid data flow cycles

6 inputFlowsSelection(N, FS) :- % find input flows set for node

7 findAllInputPins(N, PINS),

8 inputPinsFlowSelection(PINS, FS).

9 inputPinsFlowSelection([], []). % end recursion (no pin left)

10 inputPinsFlowSelection([PIN|T], [F|FT]) :- % recursive: find flows to pins

11 dataflow(F, _, _, _, PIN),

12 inputPinsFlowSelection(T, FT).

13 inputFlowSelection(PIN, [F|_], F) :- % end recursion (found flow)

14 dataflow(F, _, _, _, PIN).

15 inputFlowSelection(PIN, [H|T], F) :- % recursive: find flow to pin

16 dataflow(H, _, _, _, PIN2),

17 PIN \= PIN2,

18 inputFlowSelection(PIN, T, F).

Listing 5.12: Prolog clauses finding all input pins for a given node.

1 findAllInputPins(N, PINS) :-

2 findAllInputPins(N, [], PINS),

3 sort(PINS, PINS).

4 findAllInputPins(N, PINS, RESULT) :-

5 inputPin(N, PIN),

6 intersection(PINS, [PIN], []),

7 findAllInputPins(N, [PIN | PINS], RESULT).

8 findAllInputPins(N, PINS, PINS) :-

9 \+ (

10 inputPin(N, PIN),

11 intersection(PINS, [PIN], [])

12 ).

Flow Trees To detect all possible confidentiality violations, it is not sufficient to only

consider alternative input flows at one node but also consider combinations of these

alternatives in a sequence of visited nodes. We call such a combination a flow tree. A flow

tree is a tree of reversed data flows. The root of such a tree is a node. In the second level,

there are nodes that send data to the root node. Data flows connect the nodes on the second

level to the root node. The third level is given by applying the previous construction rules

to all nodes on the second level. Because there can be multiple alternative flows, as we

explained in the paragraphs before, there can also be multiple flow trees for the same root

node. Figure 5.9 presents the excerpts of the two flow trees for the book actor process. In

Figure 5.9a, the process uses the credit card details from the storage. The right branch ends

when it reaches the user. The left branch continues until all branches end with an actor or

a process without inputs. In contrast, Figure 5.9b visualizes the selection of declassified

credit card data from the declassify CCD process. Again, the right branch ends with the

user.
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book

select CCD Storage

flight ccd

receive flights

filteredflights

User

ccd

...

filteredFlights

(a) Usage of plain credit card data.

book

select

CCD Storage

flight

ccd

receive flights

filteredflights

User

ccd

...

filteredFlights

declassify CCD

ccd

(b) Usage of declassified credit card data.

Figure 5.9.: Flow tree excerpts for the book actor process of the running example.

Simply said, the flow tree can be seen as a subgraph of the whole DFD that eliminates all

alternative data flows by selecting exactly one particular data flow whenever there is a

choice. The flow tree enables label propagation because it removes ambiguities, i.e. which

flow to use to collect labels to be used in the label propagation function. Additionally,

the flow tree reduces the amount of nodes and flows to be considered to the nodes that

actually can have an effect on the label propagation. For instance, nodes after the book
actor process cannot influence the labels available to the book process and do not have to

be considered therefore. To detect all possible violations, it is necessary to consider all

possible flow trees.

A flow tree can be found for every pin of every node by the clauses shown in Listing 5.13.

The predicate flowTree/3 shown in line 1 yields a flow tree S for the pin PIN of a node N.

The flow tree is a nested list of data flow identifiers. We omit the nodes in this list because

they can be easily derived from the data flows. The clauses for realizing the predicate

flowTree/3 have to consider three types of pins: i) output pins of actors, ii) output pins

of (actor) processes or stores and iii) input pins. This covers all possible pin types at all

possible node types. In the following, we explain the rules supporting these cases. The

flowTree/3 rule evaluates these specific rules with the same parameters and an additional

empty list of already visited flows that is used to break data flow cycles as already described

in the paragraphs before.

Flow trees for output pins of actors (i) are always empty because they are the start of a

data flow and therefore cannot depend on inputs. As the rule in line 3 shows, the flow

tree for an output pin PIN of actor N is always the empty list []. The already visited flows

passed in the fourth argument are not considered because no flow is to be selected by this

rule, so no flow cycle can be produced.
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Listing 5.13: Prolog clauses describing how to build a tree of data flows.

1 flowTree(N, PIN, S) :- % rule to be used by other rules

2 flowTree(N, PIN, S, []).

3 flowTree(N, PIN, [], _) :- % outputs of actors

4 outputPin(N, PIN),

5 actor(N).

6 flowTree(N, PIN, S, VISITED) :- % inputs of nodes

7 inputPin(N, PIN),

8 dataflow(F, NSRC, PINSRC, N, PIN),

9 flowTree(NSRC, PINSRC, TMP, [F|VISITED]),

10 S = [F|TMP].

11 flowTree(N, PIN, S, VISITED) :- % outputs of processes or stores

12 outputPin(N, PIN),

13 (process(N);store(N)),

14 inputFlowsSelection(N, FLOWS),

15 flowTreeForFlows(N, S, FLOWS, VISITED).

16 flowTreeForFlows(_, [], [], _). % end of recursion

17 flowTreeForFlows(N, S, [F|T], VISITED) :- % recursive sub tree derivation

18 intersection([F], VISITED, []),

19 flowTreeForFlows(N, STAIL, T, VISITED),

20 dataflow(F, NSRC, PINSRC, _, _),

21 flowTree(NSRC, PINSRC, TMP, [F|VISITED]),

22 SHEAD = [F|TMP],

23 S = [SHEAD|STAIL].

The flow tree of input pins of nodes (iii) always starts with a flow to this input pin and

continues with the flow tree for the output pin on the other end of the data flow. Therefore,

the rule in line 6 first finds a data flow F arriving at input pin PIN of node N. The dataflow

clause can find all possible data flows arriving at the requested pin. The solving algorithm

of Prolog automatically considers such other flows when reevaluating the rule, which

means that all flow trees starting with these flows are considered. Next, the rule finds the

flow tree TMP of the output pin PINSRC of node NSRC, which is the pin on the other side of

the selected data flow F. To avoid data flow cycles, the selected flow is added to the list

of already visited flows VISITED when evaluating the flowTree rule for the output pin in

line 9. The final flow tree S is given by concatenating the selected flow F with the flow

tree TMP of the output pin.

Output pins of processes or stores (ii) are more complicated because a set of input flows

has to be considered for these node types instead of only a single input flow. The rule in

line 11 does so. First, it ensures that the given node N is a process or store and that the

pin PIN is an output pin. Afterwards it finds a valid selection of incoming data flows by

evaluating the clause inputFlowsSelection as described in the paragraphs before. Again,

this clause can yield all possible combinations of input flows for the given node, so this

ensures that all possible flow trees are considered. Finally, the flowTreeForFlows clause

finds the flow tree S for the input flow selection FLOWSwhile considering the already visited

data flows VISITED. The flowTreeForFlows rule shown in line 17 takes a set of data flows

[F|T] and recursively determines the flow trees for all output pins that the given data

flows use. The full flow tree S is given by concatenating all flow trees for the output pins.

56



5.2. Extended Data Flow Diagram Semantics

Listing 5.14: Simplified examples of flow trees of the running example.

1 ?- flowTree(’User’, ’ccd’, S). % flow tree for output pin of actor

2 S = [].

3 ?- flowTree(’book’, ’ccd’, S). % flow trees for input pin of process

4 S = [’ccd’, [’ccd’]] .

5 S = [’declassifiedCCD’, [’ccd’, [’ccd’]]] ;

6 ?- flowTree(’book’, ’output’, S). % flow trees for output pin of process

7 S = [

8 [’flight’, [’filteredFlights’, [’filteredFlights’, [...|...]]]],

9 [’ccd’, [’ccd’]]

10 ] ;

11 S = [

12 [’flight’, [’filteredFlights’, [’filteredFlights’, [...|...]]]],

13 [’declassifiedCCD’, [’ccd’, [’ccd’]]]

14 ] .

For every flow in the flow set, the rule ensures that the flow has not already been visited

and recursively evaluates itself with the remaining set of flows T.

The flow trees for the three cases explained before look like shown in Listing 5.14. The

flow tree for output pins of actors is always empty as shown in line 1. As shown in line 3,

the flow trees for input pins always start with the flow to this pin. In the example, there

are two flow trees for the input pin receiving credit card information at the book process:

one tree uses the credit card data from the store and the other use uses the declassified

credit card data. Please note that the identifiers of the data flows have been shortened

for a sake of simplicity. In the full logic program, this identifier would be unique. The

flow trees for output pins of processes look basically the same but contain the flow trees

for all input pins of the node. In line 6, there are two flow trees for the output pin of the

book process. The flow tree is a list of two lists. The first list is the same in both examples

because there is only one data flow path that a flight can take to the book process. The

second list is essentially the flow tree for the input pin that we described before.

Label Lookup We formalize the label propagation as backward lookup instead of forward

propagation. Label lookup means that a label at a certain pin can be determined by looking

up labels on previous pins on a data flow path. This means, the lookup starts at the root of

the flow tree and traverses the branches. The benefit of using a backward lookup instead

of a forward propagation is that the lookup can stop if a label is found. For instance, there

is no need to continue looking up a label on previous nodes if a node explicitly sets a label,

which means that the labels of previous nodes are not necessary anymore to determine

whether the label shall be available at the pin. In contrast, a propagation starts at the

leaves of a flow tree and therefore requires the propagation to walk through the whole

tree to reach the root even if we are only interested in the labels available at the root node.

Because both methods yield the same labels, we choose the potentially more efficient

lookup approach. We introduce the predicate characteristic/6 that evaluates to true

if a label (literal of a characteristic type) is available at the pin of a certain node. In the

following, we describe how this predicate is defined for input and output pins.
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Listing 5.15: Rule to specify the label propagation on input pins.

1 characteristic(N, PIN, CT, V, [F|S], VISITED) :-

2 inputPin(N, PIN),

3 dataflow(F, NSRC, PINSRC, N, PIN),

4 intersection([F], VISITED, []),

5 characteristic(NSRC, PINSRC, CT, V, S, [F|VISITED]).

Label Lookup on Input Pins The labels available on an input pin solely depend on the

labels available at the output pin, from which a data flow is coming from. Therefore, the

characteristic rule as shown in Listing 5.15 only selects a matching incoming data flow,

ensures that this flow has not already been visited and determines if the characteristic

value V of characteristic type CT is available at the source of the data flow, i.e. the output

pin of the source node. By reevaluating the rule, all matching data flows are evaluated.

The flow tree for the input pin is given by the concatenation of the selected data flow F

and the flow tree S of the output pin, from which data flow F originates. Because the label

lookup at input pins does not depend on the assignments of the corresponding node, this

rule is sufficient to handle the lookup at all input pins, i.e. no specific rules are required.

Label Lookup on Output Pins The labels available on an output pin depend on the as-

signments of the corresponding behavior and on the labels on the input pins. We already

formalized the lookup of labels on input pins in the previous paragraph. Therefore, we

focus on the formalization of assignments in the following. Because assignments are

meant to be executed in the given order, later assignments can override effects of previous

assignments. We first describe how to identify the last and therefore effective assignment

for a literal of a characteristic type at a pin, i.e. the assignment that eventually defines

whether a label is available. It is only necessary to map this assignment for the triple of

pin, characteristic type and literal on the particular node. Afterwards, we describe how

assignments map to a characteristic rule for output pins, i.e. how the label lookup on

output pins is formalized.

Finding the effective assignment of an ordered set of assignments is necessary because

formalizing a sequence of assignments that override effects of previous assignments is hard

to do in Prolog, which we use as the underlying formalism. However, it is not necessary

to represent assignments that do not have an effect on the final labels. We motivate this

by the example originally given in Listing 5.6 on page 48. First of all, assignments can

never refer to the result of a previous assignment within the same behavior because the

left-hand side always has to refer to an output pin and the right-hand side can only refer to

input pins. If we want to know if the UserAirline literal of the characteristic type class will
be available at the output pin, it is sufficient to only consider the last assignment because

it is the last assignment for this literal. This assignment will always assign a value, so

previous assignments for the UserAirline literal of the characteristic type class will always
be overridden. Therefore, it is pointless to consider them for this particular combination

of characteristic type and literal. If we want to know if the User literal of the same

characteristic type will be available, it is sufficient to only look at the second assignment.
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Previous assignments will be overridden anyway and the assignment afterwards does not

consider the User literal. To summarize, it is sufficient to only look at the last assignment

that assigns a truth value to the triple of pin, characteristic type and literal on a particular

node. Consequently, we only have to consider that assignment during the mapping, which

we describe later.

The logic to find the last assignment that has an effect on a particular literal of a particular

characteristic type is given in Algorithm 5.1. The algorithm yields the effective assignment

for a given pin, characteristic type and literal based on a list of assignments. Essentially,

the algorithm traverses the list of assignments in reversed order and returns the first

assignment that matches, i.e. assigns a truth value to the triple of pin, characteristic type

and literal. Whether an assignment matches or not depends on the left-hand side and

right-hand side of the assignment. Both sides have to match the requested triple. The

left-hand side matches if it considers the same pin, characteristic type and literal. The

left-hand side also matches if wildcards are used, i.e. the literal is omitted or the literal

and the characteristic type are omitted. The logic to match the right-hand side of an

assignment is given in Algorithm 5.2. Essentially, the right-hand side is compatible if

it is a constant, all terms contained by a logic term (and/or/not) are compatible and if

the characteristic references to data/pins or nodes are compatible. The references are

compatible if there cannot be an error when instantiating wildcards. This is guaranteed

in three cases: i) If there are no wildcards involved, there cannot be a failure in binding

the wildcards to particular values. ii) If both, characteristic type and literal are wildcards,

binding these wildcards is always possible by using the characteristic type and the literal

from the left-hand side. iii) If there is only a literal wildcard, the characteristic type of the

right-hand side has to refer the same enumeration as the given characteristic type. Using

the same enum means that the value range of the characteristic type, i.e. the available

literals, are the same, so instantiation is always possible.

During the mapping from the extended DFD syntax to the first-order logic semantics,

the previously described algorithms are used. In general, the mapping works as follows:

There is exactly one characteristic rule for each item of the cross product of output

pins, characteristic types and literals of that characteristic type at a particular node. This

means that there is one rule to determine if a label, i.e. the tuple of characteristic type

and literal, is available on an output pin. If the rule evaluates to true, the label is available.

The clauses to be fulfilled as part of the rule are given by the last effective assignment

for the triple of pin, characteristic type and literal. We determine this assignment by the

previously described Algorithm 5.1.

Tomap an assignment, we first instantiate wildcards by inserting the characteristic type and

literal of the given triple into all wildcards. We already described wildcard instantiations in

the description of the syntax in Section 5.1.2. After that, we map the left-hand side of the

assignment to the head of the characteristic rule and the right-hand side to the clauses

in the rule body. The rule head is shown in line 2 of Listing 5.16. The lower case arguments

n, pin, ct and v become constants based on the node and the given triple. S is the flow tree

for the given pin and VISITED is the set of already visited data flows to break data flow

cycles. Examples of the mapping of terms on the right-hand side of an assignment are
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Algorithm 5.1 Identification of effective assignment for label on given pin.

function lastMatching(𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠 , 𝑝𝑖𝑛, 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑇𝑦𝑝𝑒 , 𝑙𝑖𝑡𝑒𝑟𝑎𝑙 )

for all 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 ∈ reverse(assignments) do
if matches(𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 , 𝑝𝑖𝑛, 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑇𝑦𝑝𝑒 , 𝑙𝑖𝑡𝑒𝑟𝑎𝑙 ) then

return 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡

end if
end for

end function
function matches(𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 , 𝑝𝑖𝑛, 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑇𝑦𝑝𝑒 , 𝑙𝑖𝑡𝑒𝑟𝑎𝑙 )

𝑙ℎ𝑠 ← lhs of 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡

𝑟ℎ𝑠 ← rhs of 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡

𝑝 ← pin of 𝑙ℎ𝑠

𝑐𝑡 ← characteristic type of 𝑙ℎ𝑠

𝑙 ← literal of 𝑙ℎ𝑠

if 𝑝 ≠ 𝑝𝑖𝑛 then
return false

else if 𝑐𝑡 is defined and 𝑐𝑡 ≠ 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑇𝑦𝑝𝑒 then
return false

else if 𝑙 is defined and 𝑙 ≠ 𝑙𝑖𝑡𝑒𝑟𝑎𝑙 then
return false

end if
return isCompatible(𝑟ℎ𝑠 , 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑇𝑦𝑝𝑒 , 𝑙𝑖𝑡𝑒𝑟𝑎𝑙 )

end function

Listing 5.16: Mapping examples of terms in output characteristic rule.

1 % lower case arguments become constants

2 characteristic(n, pin, ct, v, S, VISITED) :-

3 true, % True (Constant)

4 false, % False (Constant)

5 nodeCharacteristic(n, ct2, v2), % ContainerCharacteristicReference

6 characteristic(n, pin3, ct3, v3, S0, VISITED). % DataCharacteristicReference

given in Listing 5.16 starting with line 3. In general, constants also become constants in the

rule body. Logical terms become their Prolog counterparts. References to characteristics of

nodes become a nodeCharacteristic clause, in which the node n, characteristic type ct2

and literal v2 refer to the elements specified in the reference. References to characteristics

of data become a characteristic clause, in which the node n, pin pin3, characteristic type

ct3 and literal v3 refer to the elements specified in the reference. All of these references to

elements are given by constants, which are the identifiers of the corresponding elements.

The set of visited flows is passed unchanged to the characteristic clause referring to the

input pin.

The flow tree S of the output pin consists of a concatenation of flow trees for all input pins.

The flow trees of the input pins are used in the characteristic clauses in the body of the
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Algorithm 5.2 Compatibility check of right-hand side of assignment for assignment to

given label at pin.

function isCompatible(𝑡𝑒𝑟𝑚, 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑇𝑦𝑝𝑒 , 𝑙𝑖𝑡𝑒𝑟𝑎𝑙 )

𝑒𝑛𝑢𝑚𝑇𝑦𝑝𝑒 ←enum of 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑇𝑦𝑝𝑒

switch typeof(𝑡𝑒𝑟𝑚) do
case 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡

return true

case 𝐿𝑜𝑔𝑖𝑐𝑇𝑒𝑟𝑚
for all 𝑠𝑢𝑏𝑡𝑒𝑟𝑚 ∈ 𝑡𝑒𝑟𝑚 do

if not isCompatible(𝑠𝑢𝑏𝑡𝑒𝑟𝑚, 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑇𝑦𝑝𝑒 , 𝑙𝑖𝑡𝑒𝑟𝑎𝑙 ) then
return false

end if
end for
return true

case (𝐸𝑛𝑢𝑚𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑅𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒)

𝑐𝑡 ←characteristic type of 𝑡𝑒𝑟𝑚

𝑙 ←literal of 𝑡𝑒𝑟𝑚

𝑒 ←enum of 𝑐𝑡

if 𝑐𝑡 and 𝑙 are defined then
return true

else if 𝑐𝑡 is defined and 𝑙 is undefined and 𝑒 = 𝑒𝑛𝑢𝑚𝑇𝑦𝑝𝑒 then
return true

else if 𝑐𝑡 and 𝑙 are undefined then
return true

else
return false

end if
end function

characteristic rule of the output pin as can be seen in line 6 of Listing 5.16. The variable

S0 is the flow tree of the input pin pin3. In order to construct the valid flow tree S, all input

flow trees have to be available. An example of such a specification for the book process is

shown in Listing 5.17. First of all, an incoming flow F0/F1 has to be found for every input

pin. We use the previously described predicate inputFlow/5 to find these flows, which all

belong to the same set of input flows FLOWS. A flow tree for an input pin is then given by

using the incoming flow as a head of a list and leaving the tail unspecified. The benefit

of not fully specifying the flow tree is to increase efficiency. The flow tree has only be

resolved up to the point at which we know that the label will not change anymore. For

instance, assigning a constant is such a point. The full flow tree of the output pin is given

by concatenating the flow trees of the input pins. The given formalization is necessary to

ensure that reported labels are really available for the given flow tree. Therefore, every

characteristic rule of an output pin contains flow tree construction clauses as illustrated

in Listing 5.17. If there are no input pins on the given node or the node is an actor, the

flow tree S is the empty list.
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Listing 5.17: Example of clauses determining parts of the flow tree needed for label lookup at output pins of

book process of running example.

1 inputFlow(’book’, ’ccd’, FLOWS, F0, VISITED),

2 inputFlow(’book’, ’flight’, FLOWS, F1, VISITED),

3 S0 = [F0|_], % flow tree for ccd input pin

4 S1 = [F1|_], % flow tree for flight input pin

5 S = [S0,S1]. % flow tree for output pin

Listing 5.18: Characteristic rule for output pin of process booking process.

1 characteristic(’processBooking’,’booking’,’class’,’UserAirline’,S,V) :-

2 inputFlow(’processBooking’,’ccd’,FLOWS,F0,V),

3 inputFlow(’processBooking’,’flight’,FLOWS,F1,V),

4 S0 = [F0|_],

5 S1 = [F1|_],

6 S = [S0,S1],

7 (

8 characteristic(’processBooking’,’ccd’,’class’,’UserAirline’,S0,V),

9 (

10 characteristic(’processBooking’,’flight’,’class’,’UserAirline’,S1,V);

11 characteristic(’processBooking’,’flight’,’class’,’UserAirlineTA’,S1,V)

12 );

13 characteristic(’processBooking’,’flight’,’class’,’UserAirline’,S1,V),

14 (

15 characteristic(’processBooking’,’ccd’,’class’,’UserAirline’,S0,V);

16 characteristic(’processBooking’,’ccd’,’class’,’UserAirlineTA’,S0,V)

17 )

18 ).

To give a complete example, we illustrate the resulting rule for the process booking process

of the Airline from the running example given in Figure 5.7 on page 47. The process uses

the join behavior introduced in Listing 5.1 on page 42. Briefly explained, the behavior

has two input pins and one output pin. The classification label on the output pin is

the highest classification label received at any input pin. In Listing 5.18, we illustrate

the characteristic rule for the output pin of the process booking process for the literal

UserAirline of the classification characteristic type. This literal is the medium level because

the User level is higher and the UserArilineTA level is lower. Lines 2 to 6 build the flow trees

for the input pins by finding an incoming flow for every input pin. The following clauses

are the result of mapping the assignment. There are two cases that can yield the medium

classification level: The clauses in lines 8 to 12 say that the resulting label is UserAirline
if the incoming credit card data has this level and the incoming flight data has the same

or the lower level. The clauses in lines 13 to 17 are the same with the flight and credit

card data swapped. The clauses illustrate the interplay between the flow trees and the

characteristic clauses: The flow tree S0 for the input pin receiving credit card data is

passed to the characteristic clauses that refer to this input pin. The same holds for the

flight data.
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ID Description User Semantics Definition

R2.1 every element covered — clauses for viewpoints

R2.2 derivation of properties analysis label lookup

R2.3 origin of properties analysis flow tree

R2.4 analyses based on goals expert —

R2.5 analyses based on goals architect —

R2.6 tracing of properties architect flow tree

R2.7 automated analyses architect —

R2.8 information flow expert —

R2.9 access control expert —

Table 5.2.: Overview on semantics definitions and met requirements by DFD semantics.

To simplify usage of the characteristic/6 predicate, we define an additional charac-

teristic/5 predicate, which omits the last parameter. The last parameter contains the

already visited data flows, which is always empty in the beginning. Therefore, the

characteristic/5 predicate is realized by a rule that evaluates to true, if the charac-

teristic/6 predicate with the same arguments and an empty list of already visited flows

evaluates to true. The new predicate simplifies formulating queries for characteristics.

5.2.3. Requirements Coverage by Semantics

The semantics described before already cover half of the requirements for these semantics.

Table 5.2 gives an overview on the requirements and how the semantics meet them.

The semantics assigned a meaning to all metamodel elements (R2.1). The core of the

semantics is the derivation of properties (R2.2), i.e. the labels on data and nodes. The label

assignment to nodes and the label lookup for labels on data meet this requirement. The

flow tree provides the origin of data (R2.3) as well as trace information about all involved

data flows (R2.6).

The remaining requirements state that the semantics shall support various kinds of analyses.

Essentially, the semantics already meet these requirements: Security experts can already

define analyses based on analysis goals (R2.4) because the Prolog code that emerges from

mapping an extended DFD as explained in Section 5.2.2 already automatically derives

labels and it is only necessary to formulate a Prolog query to define an analysis. In theory,

software architects can use the same means as the security expert to define analyses

(R2.5) but expecting software architects to have expertise in Prolog might not be realistic.

Therefore, we address this particular requirement later in Section 6.5. Because the mapping

into Prolog code as well as the execution of the query can be automated, the resulting

analyses can also be automated (R2.7). As motivated in Section 4.2.3, labels can cover many

relevant properties for deciding about violated requirements of information flow (R2.8)

and access control (R2.9). However, we did not demonstrate meeting these requirements

by the definition of particular analyses based on the semantics yet. We do this as part of
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the analysis definition described in Chapter 6. The description will cover the procedure of

defining analyses as well as the particular analyses.

5.3. Assumptions and Limitations

This section discusses limitations of the extended DFD syntax and the corresponding

semantics, as well as assumptions regarding its usage.

Confidentiality properties as discrete value sets. One of the most fundamental limitation

of the extended DFD and its semantics is that confidentiality properties have to be repre-

sented as sets of discrete values. This works well for confidentiality properties such as

classification levels or roles because the instances of these properties are indeed discrete

values. However, this modeling approach does not work for confidentiality mechanisms

that define policies on arbitrary properties. For instance, the age of data might be a relevant

property in mechanisms such as ABAC. Representing every possible age as discrete value

is possible but certainly not feasible. However, usually not every single value has a different

meaning with respect to confidentiality. For instance, there might be several ranges of

data ages that can be treated in the same way. Representing these ranges of data ages

instead of the individual ages is feasible and might even improve the comprehensibility of

the resulting model. In addition, it is at least questionable if detailed information about

particular values is even available during the early design time.

Explicit data flows. Analysis or prediction results based on models are always limited

to what can be discovered on the modeled information. Therefore, the semantics can

only reason about data flows that have been modeled explicitly. With respect to the

popular confidentiality mechanism of information flow control, this limits detectable

violations to explicit flows instead of implicit flows caused by side-channels. Model-

based analyses always sacrifice finding the absolute truth in favor of feasibility. A model

capable of covering all types of side-channels would certainly have to be more detailed and

consequently would require more information to be available. However, this information

might not be available when creating the model, especially when talking about the early

design time. Therefore, the analyses on the presented semantics cannot and are not

meant to replace analyses on artifacts developed in later development phases. Instead, the

analyses focus on detecting violations early that would also occur in follow-up artifacts.

The earlier such violations are detected, the more efficient they can be fixed.

Independent data flow paths. The DFD semantics consider all possible combinations of

alternative data flows, i.e. flow trees. However, this can lead to false positives because

combinations that might never appear in realistic applications are checked as well. For

instance, the decision on where to send data might depend on the characteristics of data.

Consequently, the propagated labels might be different depending on these characteristics.
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The syntax does not provide means for expressing such dependencies for two reasons: First,

we aim for worst-case analyses. Because of implementation errors or faulty conditions on

the characteristics, data might still be sent to another connected node. The analysis should

reveal such potential issues, so the architect can decide whether the risk of a potential

faulty implementation and the resulting consequence is acceptable or the architecture

should be changed. Second, the specification becomes more complex when introducing

such data routing concepts. As soon as specifications require too much effort or are hard

to create, architects will less likely use the modeling and analysis approach.

Limited effect of loops. Data flow loops in a DFD potentially lead to endless recursions in

label propagations. The presented semantics break such loops by stopping the evaluation

of a path as soon as a loop is detected. This implies a limitation but is reasonable: If loops

continuously change labels, it is hard to knowwhen to stop the evaluation because a steady

state, i.e. a state in which no labels change anymore, cannot be reached. The meaning of

such oscillating labels or even when to use them as part of a label comparison is unclear.

Therefore, we do not consider DFDs introducing such oscillating labels as valid. If the

labels produced in a loop do not change anymore after the first iteration, the semantics

consider these labels: Visiting all data flows in the loop is possible because no flow in the

loop has already been visited. After one iteration of the loop, the semantics will not visit

the loop again, i.e. will not select the same data flow again, but will choose another data

flow to continue.

Availability of information. An assumption made by all model-based approaches is that

the information required to create the models is available. The information required for

creating an extended DFD are the system structure, the confidentiality policy as well as

relevant properties and behaviors. The structure of the system is known to the architect in

the required level of detail. The confidentiality policy might not be specified in full detail

but at least an abstraction of the intended security policy will certainly be available. The

more coarse-grained this policy is, the more coarse-grained the results will be but at least

there will be results. An architect might not be capable of defining the relevant properties

and behaviors to represent relevant parts for establishing confidentiality. However, security

experts that understand the underlying principles of the confidentiality policy and the

mechanisms that realize them can create properties and behaviors. It is also possible to

provide and reuse definitions for common access control and information flow policies, so

even that knowledge does not always have to be available from a security expert.

5.4. Summary

In this chapter, we presented the syntax and semantics of an DFD extended by confiden-

tiality concepts. The syntax and semantics meet the requirements for both, which we

identified in Section 4.1. The presented extended DFD is in line with the suggested solution

from Section 4.2.
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The extended syntax described in Section 5.1 addresses three viewpoints that we iden-

tified as relevant for the software architect and the security expert. The first viewpoint

addresses the concern of describing the system by introducing the concepts of pins to

enable reuse of nodes as well as the concept of actor processes to describe user behav-

ior. The second viewpoint addresses the concern of defining confidentiality primitives

by introducing the concepts of characteristics and behavior definitions. Characteristics

represent strongly typed labels. Behavior definitions represent label propagation functions.

The third viewpoint addresses the concern of meeting confidentiality requirements by

introducing binding concepts of characteristics and behaviors to nodes and data.

The denotational semantics described in Section 5.2 formalize the semantics of the extended

syntax in first-order logic. The semantics cover the existence of DFD nodes and edges, as

well as their behavior. The behavior is given by a formalization of the label propagation

function. To increase efficiency, the concept of label lookup is introduced, which is one way

to achieve the same results as by applying label propagation. The lookup is potentially

more efficient in presence of multiple alternative data flow paths through the system. To

yield valuable results, all of these different paths, as well as combinations, are considered

by the semantics. A flow tree describes one particular combination of paths through the

system.

The underlying assumptions as well as assumptions regarding the usage of the syntax

and semantics are discussed in Section 5.3. Limitations exist with respect to expressible

confidentiality properties, which are limited to sets of discrete values. Regarding the

results, there exist limitations implied by the considered data flows, the data flow paths

as well as the data flows that are part of a loop. A fundamental assumption shared with

other model-based analysis approaches is that the information required for modeling the

system is available.
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Label Propagation

The extended DFD syntax and corresponding semantics covered in Chapter 5 provide the

foundation for modeling software architectures and analyzing them for confidentiality

violations. This chapter describes how to define and conduct analyses of such DFDs.

The analysis procedure described in Section 6.1 specifies the interaction between security

experts, software architects and automated tooling. Section 6.2 covers particular analyses

for detecting violations of confidentiality requirements regarding established information

flow and access control mechanisms. Besides those two common confidentiality mecha-

nisms, we describe how to integrate encryption into these analyses in Section 6.3 as an

additional option to protect information. In addition to the integration of encryption, a

combination of multiple confidentiality mechanisms and their corresponding analyses can

be useful to improve the protection of confidential information. Section 6.4 describes this

combination of analyses.

To not only rely on security experts, software architects shall also be capable of defining

analyses. The DSL introduced in Section 6.5 provides the architect with means to specify

analyses without the need for expertise in the formal DFD semantics.

The analysis procedure, the particular analysis and the DSL address requirements for the

DFD semantics. Section 6.6 gives an overview on how the requirements are met. Sec-

tion 6.7 describes the assumptions and limitations of the analyses and the DSL. Eventually,

Section 6.8 summarizes the chapter.

6.1. Procedure for Analyses

In order to conduct analyses, the security expert and the software architect have to

collaborate. Figure 6.1 visualizes this collaboration in the Business Process Modeling

Notation (BPMN). Roughly said, the security expert has to provide confidentiality primi-

tives, i.e. characteristics, behavior types and a label comparison function. The software

architect uses these primitives to define a system including the aspects, which are relevant

for confidentiality. Automated tooling then analyzes the defined system for violations

of confidentiality requirements and reports violations to the software architect. The

software architect uses the reported violations to adjust the system in order to meet the

confidentiality requirements. In the following, we describe these steps in more detail.
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Figure 6.1.: Overview on analysis procedure given as BPMN diagram.

Analysis Definition The security expert defines the analysis by providing confidentiality

primitives, which are specific to particular confidentiality mechanisms, to the software

architect, who uses these primitives later to describe confidentiality aspects of the system.

More precisely, the security expert provides the characteristics and the behavior types,

which the software architect uses in the binding view type, as well as a label comparison

function, which detects violations. When talking about an analysis definition, we always
refer to a set of characteristics, characteristic types, behavior types and label comparison

function. The characteristic types have to be part of an analysis definition because these

types are necessary to define characteristics. The label comparison function includes the

confidentiality requirements and a definition on how to detect a violation of these require-

ments. Depending on the particular confidentiality mechanism and the requirements, the

analysis definition can be reused. This means that a security expert only has to be involved

in the analysis of systems if such a reusable analysis definition is not available yet.

System Definition The software architect defines the system in a DFD and uses the

confidentiality primitives defined by the security expert. The result is a DFD of the system

that describes the structure, usage and deployment as well as the behavior in terms of

processes, which change data characteristics.
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System Mapping The tooling maps the system given as extended DFD to a logic pro-

gram by applying the mapping rules for assigning semantics to syntax elements from

Section 5.2.2. The tooling does not require assistance of the software architect or the

security expert to execute the mapping rules because the mapping and all decisions are

given as algorithms, which do not need human inputs except for the system definition.

Consequently, the mapping can be fully automated. The result of the system mapping is a

Prolog program.

Label Comparison The tooling performs the actual analysis by executing a label compar-

ison within the logic program. The label comparison is essentially a query to the logic

program that compares the labels of data and nodes with expected labels. The security

expert can provide further clauses to define such expected labels in a query. The clauses

provide additional information about confidentiality requirements, which would have to

be encoded in the query otherwise. However, the query still formulates the analysis goal

(R2.4). The logic program already contains all necessary clauses to determine all labels of

all exchanged data via all possible data flow paths. The query triggers the label lookup

and compares the results. All of these steps can be fully automated by executing the query,

i.e. the label comparison, on the logic program within a Prolog interpreter. The result is a

list of detected violations within the logic program, which represents the system.

System Adjustment The software architects use the reported violations to adjust the sys-

tem in order to meet the confidentiality requirements. The violations contain information

about the flow tree, which allows the architects to trace the origin of labels to locate the

underlying design issue.

As mentioned before, the execution of the analysis can be fully automated as long as

the software architect has defined a system and the security expert has defined the label

comparison function. Therefore, the approach meets the requirement of providing the

software architect with automated analyses (R2.7).

6.2. Label-based Confidentiality Analysis Definitions

Because there are various ways to protect the confidentiality of information in software

systems, we cannot cover all possible mechanisms but focus on the most prominent

mechanisms. According to Shostack [Sho14, p. 154], encryption is the predominant way of

protecting information outside of a software system and access control is the predominant

way of protecting information inside a software system. However, Sabelfeld and Myers

[SM03] argue that these mechanisms are limited: Access control often only decides about

access to information in one particular place in the system and does not protect the

information after a user got access to it. Encryption cannot protect information after it

has been decrypted. On the other side, information flow considers such possible leaks of

information.
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In the following, we cover the common information flow analysis for noninterference

including declassification in Section 6.2.1. In Section 6.2.2, we define analyses for the four

most common access control models. We see encryption as a supporting confidentiality

mechanism, which protects data outside of systems or when transmitting data between

systems. Therefore, we do not consider encryption by a dedicated analysis but in com-

bination with information flow or access control analyses. We cover the integration of

encryption into these analyses in Section 6.3. Compared to our previous publication of

analysis definitions [Sei+22], we extended the descriptions of analyses by instructions on

how to deal with particular variants of information flow and access control requirements.

Namely, we extend the descriptions by a discussion of arbitrary lattices in information flow

analyses, the delegation of rights in DAC, the Needs-To-Know model in MAC, Hierarchical

and Constraint RBAC as well as hierarchies and constraints in ABAC.

Information flow and access control usually not only consider confidentiality but also

integrity. We do not cover the integrity aspects of these mechanisms in the following

because the goal of our approach is to detect confidentiality violations in software sys-

tems. Every time we claim support for a certain mechanism, we mean support for the

confidentiality aspect of the mechanism.

6.2.1. Information Flow Analyses

Information flow has been studied for decades, which lead to various notions of a secure

information flow [SM03]. In this section, we focus on the predominant notion noninter-
ference including ways to weaken the implied strong restrictions by declassification. We

recap the important fundamentals of this notion in the following. Afterwards, we show

how to define analyses for simple and more complex information flow requirements in

Section 6.2.1.1 and Section 6.2.1.2, respectively.

Noninterference is the predominant notion of secure information flows according to Hedin

and Sabelfeld [HS12]. Every piece of information is classified by a certain label. Simply

said, noninterference limits how information classified by different labels may influence

each other. Influencing means that there is an information flow. An information flow

can be explicit or implicit. An explicit information flow means that classified information

directly flows into other classified information such as by variable assignments. An implicit

information flow appears if classified information affects the control flow and thereby

implies different observable behavior for different values of classified information. Allowed

information flows are usually specified by lattices [Den76]. A lattice can be interpreted

as a directed, acyclic graph of labels 𝐿. A label is assigned to every piece of information.

The meaning of an edge 𝑎 → 𝑏 with 𝑎, 𝑏 ∈ 𝐿 is that information labeled with 𝑎 is allowed

to influence information labeled with 𝑏. This relation is transitive and reflexive. Often,

label 𝑏 is called higher than label 𝑎 if information labeled with 𝑎 is allowed to influence

information labeled with 𝑏. A declassification allows to reclassify information to a lower

classification to avoid violating the information flow requirements given by the lattice. A

practical example is a user, who allows sharing medical information with an electronic

health record service in order to use it. Such declassifications are always restricted to who
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can declassify information, what can be declassified, where information can be declassified

or when information can be declassified [HS12]. Otherwise, the lattice would not imply

restrictions anymore.

We solely focus on explicit information flows. First of all, implicit information flows as

defined by Hedin and Sabelfeld [HS12] occur when classified information affects control

flows. DFDs do not provide information about the control flow apart from a potential

execution order implied by data dependencies. Therefore, these types of system models

do not contain the necessary information to reason about implicit flows. However, this

does not mean that the decision to use DFDs was wrong: Reasoning about implicit flows

is a highly complex topic because all observable effects on the system behavior caused by

classified information imply an implicit flow. The problem is known since about a half

century [Lam73] but still one of the biggest challenges in information flow control up today

[SM03]. Reasoning about such implicit flows is hard even in presence of source code and

the real execution environment. Such detailed information is certainly not available during

the early design phase, so software architects simply cannot specify enough information.

We focus on explicit information flows because this is what software architects can know

and model.

An information flow is relevant for analyses if it might be observable. We already defined

that we can observe effects of explicit information flows, so this answers what we can
observe. However, we also have to define who can observe an effect. In a DFD, any type of

node can observe the effect of an explicit information flow by inspecting exchanged data.

If a node can observe an effect, this means that there is an information flow from data

to the node. Consequently, not only data but also nodes need a classification. To avoid

ambiguities, we use the term classification for the classification of data and use the term

clearance for the classification of a node. By evaluating the relations in the lattice, it is

possible to determine if an information flow is allowed: If data 𝑑 with classification 𝑐𝑑
flows to a node 𝑛 with clearance 𝑐𝑛 , the flow is allowed if the lattice contains a (transitive)

relation 𝑐𝑑 → 𝑐𝑛 .

6.2.1.1. Linear Ordered Lattice

A linear ordered lattice is a directed, acyclic graph of labels, in which there is one start

label, which has no incoming and exactly one outgoing edge, a stop label, which has

exactly one incoming and no outgoing edge, and an arbitrary number of labels, which

have exactly one incoming and one outgoing edge. The labels in the running example

form such a linear ordered lattice: UserAirlineTA is the lowest label that has an edge to

the UserAirline label. The User label is the highest label that is the target of an edge from

the UserAirline label. The lattice is UserAirlineTA→ UserAirline→ User. For instance, this
means that a node having clearance for UserAirline is allowed to observe information with

classification UserAirlineTA and also UserAirline. Table 6.1 visualizes the meaning of the

lattice in terms of an access control matrix: A node with a clearance given by the column

may have access to information with a classification given by the row if the resulting cell

contains a checkmark.
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Classification

Clearance

User UserAirline UserAirlineTA

User ✓
UserAirline ✓ ✓
UserAirlineTA ✓ ✓ ✓

Table 6.1.: Information flow requirements for the running example given as access control matrix.

The general idea of a confidentiality analysis looking for violations of such a linear ordered

lattice in DFDs is to 1) assign a clearance label to every node, 2) provide initial classifications

for data, 3) describe the propagation of data classifications within behaviors and 4) compare

the clearance of a node with the classification of incoming data. To identify a violation, the

comparison can simply test if the clearance of a node is less than the classification of data.

In the following, we introduce the characteristic types, characteristics, behaviors and the

comparison function required to realize the analysis. We discuss the analysis definition in

a generic way but give concrete examples based on the running example.

Characteristic Types. As motivated before, the required characteristic types are the

clearance and the classification. Both types share the same enumeration holding the

clearance/classification levels in ascending order, i.e. the lowest level comes first. There

have to be at least as much levels as there are clearance and classification levels. A too high

number is not problematic because unused levels do not affect the analysis. Therefore,

it is possible to define a set of generic levels and use these generic levels in behaviors.

However, it is usually useful to give levels appropriate names to foster comprehensibility.

In the running example, the levels are UserAirlineTA, UserAirline and User given in that

order. If levels have system-specific names, the enumeration of levels is not reusable but

the characteristic types still are.

Characteristics. A node can only have exactly one clearance level at a time. Data can

only have exactly one classification level at a time. Assuming there are 𝑛 levels, there

are exactly 𝑛 characteristics of the clearance characteristic type and 𝑛 characteristics

of the classification characteristic type. In the running example, there is one clearance

characteristic and one classification characteristic for every level, i.e. User, UserAirline
and UserAirlineTA. The characteristics are reusable in other systems if levels have generic

names. Otherwise, the characteristics are system-specific and therefore only reusable for

systems using similar clearance and classification levels.

Behaviors. There are three fundamental behaviors to cover system behavior with respect

to a linear ordered lattice: The Forward behavior simply propagates an incoming data

classification to its output. There is no change in the classification because there is no

additional information and the data processing does not produce a declassification effect.

In the running example, most of the processes do not affect the classification and therefore
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use a forwarding behavior. The Declassify behavior explicitly sets the data classification to

a predefined classification. This behavior is reasonable for data processing that is meant to

explicitly change the classification such as approvals by users. In the running example, the

declassify CCD process uses a declassifying behavior to explicitly reduce the classification

of credit card data based on the consent of the user. The Join behavior applies the highest

of multiple incoming data classifications to its outputs. This means that the most restrictive

classification level is used. This is reasonable when multiple data inputs are used and

the result uses information from multiple inputs. For instance, the create booking process

uses the joining behavior to combine a flight and credit card data into a booking in the

running example. All behaviors but the declassifying behavior do not refer to particular

classification levels, which means they are not system-specific and, therefore, reusable for

specifying other systems. The declassifying behavior can only be reused for systems that

use a similar set of classification levels.

Label Comparison. The label comparison function compares the classification label of

incoming data with the clearance label of the receiving node. If the classification label is

higher than the clearance label, there is a violation. Listing 6.1 presents this comparison

in terms of the semantics formalized in Prolog. Consequently, the comparison is given

as query to a logic program. To determine the clearance of a node N, the query uses the

nodeCharacteristic/3 predicate with the characteristic type representing the clearance

in line 1. This line finds the clearance level V_CLEAR of the node. Line 2 determines the

index of the clearance level, which we use to determine whether a level is higher or lower

compared to another level. Because we are interested in finding violations when receiving

data, line 3 identifies an input pin PIN of node N. For this input pin, line 4 determines the

classification level V_CLASS by using the characteristic/5 predicate. The index N_CLASS

of this classification level is determined in line 5. Eventually, line 6 tests whether the

classification index N_CLASS is bigger than the clearance index N_CLEAR, which implies that

the data classification of received data is higher than the clearance of the receiving node.

An answer to this query implies a violation of the information flow requirements given

by the lattice. Because the order to classification and clearance levels already defines the

lattice, we do not have to represent it explicitly. The query is capable of identifying all

violations by reevaluating it within a Prolog interpreter because neither the node, the

input pin nor the flow tree is bound to specific values before issuing the query. Therefore,

the solution algorithm of Prolog finds all possible combinations that lead to a violation.

The query does not refer to particular clearance or classification levels, so it is reusable for

analyzing multiple systems using a linear ordered lattice.

6.2.1.2. Arbitrary Lattice

Arbitrary lattices do not adhere to the restrictions given by linear ordered lattices, which we

discussed before. Instead, the lattice can be any directed, acyclic graph of labels. Compared

to the previously discussed linear ordered lattice, the specification effort increases because

the lattice has to be explicitly represented as part of the label comparison function by
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Listing 6.1: Query for detecting violations of information flow requirements given by linear ordered lattice.

1 ?- nodeCharacteristic(N,’clear’,V_CLEAR), % clearance of node

2 characteristicTypeValue(’clear’,V_CLEAR,N_CLEAR), % index of clearance

3 inputPin(N,PIN), % input pin of node

4 characteristic(N,PIN,’class’,V_CLASS,S), % classification of data

5 characteristicTypeValue(’class’,V_CLASS,N_CLASS), % index of classification

6 N_CLASS > N_CLEAR. % check of lattice

additional clauses and there is no generic Join behavior. We discuss both points as part of

the following analysis definition.

Characteristic Types. The required characteristic types are the same as for the linear

ordered lattice. Namely, a classification and a clearance characteristic type are necessary.

An enumeration holds all available levels. In contrast to the linear ordered lattice, the

order of the literals in the enumeration has no meaning anymore.

Characteristics. Data can only have one classification label and nodes can only have

one clearance label. Therefore, the required characteristics are the same as for the linear

ordered lattice. There is one characteristic of the classification characteristic type for each

level and one characteristic of the clearance characteristic type for each level.

Behaviors. The Forward and theDeclassify behavior are the same as for the linear ordered

lattice. A Join behavior is still necessary but its realization cannot be as generic as discussed
in the linear ordered lattice. It is not possible to create a generic realization because there

is no generally applicable ordering relation that supports finding the highest of two labels.

For instance, the lattice can be a disconnected graph, in which it is impossible to decide

which of two labels selected from two disconnected parts is semantically higher. As a

consequence, the joining behavior has to specify the processing effect for each possible

tuple of incoming labels in the worst case. However, exploiting the order of labels is still

possible for subsets of the literals, which can reduce the specification effort. Because the

joining behavior is tailored to the set of levels, it is only reusable for specifying systems

that use the same set of levels.

Label Comparison. The general idea of the label comparison is the same as for the linear

ordered lattice: The query finds the clearance of a node and the classification of incoming

data and reports a violation if an information flow violates the requirements given by

the lattice. To detect such a violation in an arbitrary lattice, the comparison looks for a

missing edge from the classification label to the clearance label in the transitive closure

of the lattice graph. In order to do so, it is necessary to encode the lattice by additional

clauses. Listing 6.2 exemplifies this by the linear ordered lattice. In lines 1 to 2, the lattice

is given by describing the edges of the graph. The rules in lines 3 to 4 build the transitive

closure by introducing the connected/2 predicate. The actual query definition shown in
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Listing 6.2: Clauses defining the arbitrary lattice and the transitive closure.

1 edge(’UserAirlineTA’, ’UserAirline’). % lattice definition

2 edge(’UserAirline’, ’User’). % lattice definition

3 connected(X, X). % relation is reflexive

4 connected(SRC, DST) :- % relation is transitive

5 edge(SRC, X),

6 connected(X, DST).

Listing 6.3: Query for detecting violations of information flow requirements given by arbitrary lattice.

1 ?- nodeCharacteristic(N,CT_CLEAR,V_CLEAR), % clearance of node

2 characteristicTypeValue(CT_CLEAR,V_CLEAR,N_CLEAR), % index of clearance

3 inputPin(N,PIN), % input pin of node

4 characteristic(N,PIN,CT_CLASS,V_CLASS,S), % classification of data

5 characteristicTypeValue(CT_CLASS,V_CLASS,N_CLASS), % index of classification

6 \+ connected(N_CLASS, N_CLEAR). % check of lattice

Listing 6.3 uses this predicate. The query is the same as for the linear ordered lattice but

replaces the index check in line 6 by a check of the transitive closure. A violation occurs

if the classification label is not connected to the clearance label. In the given excerpt,

we used the index values of the literals to query the lattice graph but using the literals

themselves would also be possible. The query itself is reusable for analyzing other systems

but the lattice depends on the particular levels. Therefore, the lattice can only be reused

for system sharing the same lattice, i.e. the same confidentiality requirements.

6.2.2. Access Control Analyses

Access control is a mechanism to restrict access to information within a software system.

The particular restrictions are given by a security model. To make clear that we talk

about security models used in access control, we simply use the term access control model.

Because access control has a long history, many different access control models have been

defined. However, only three access control models have been successful in practice up to

now according to Jin, Krishnan, and Sandhu [JKS12]: DAC, MAC and RBAC. Additionally,

researchers as well as practitioners have shown high interest in ABAC because of its

increased flexibility compared to previously mentioned access control models. There has

also been work [Fur08, pp. 79] [JKS12] on how to represent the established access control

models in ABAC. In the following, we briefly recap the essential aspects for these four

commonly used access control models and describe corresponding analysis definitions.

6.2.2.1. Discretionary Access Control (DAC)

DAC [Fur08, pp. 61] explicitly assigns access permissions between dedicated subjects and

dedicated objects. Permissions can be stored with the subjects, i.e. the subject knows which

objects it is allowed to access, or with the objects, i.e. the object knows which subjects are
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allowed to access it. Besides the direct assignment of access rights between subjects and

objects, there are two additional principles: the ownership of information, i.e. the creator

of an object becomes its owner, and the delegation of rights, i.e. subjects holding certain

rights can delegate these rights to other subjects.

The general idea of a confidentiality analysis looking for violations of requirements given

in DAC without considering owners and delegation of rights is to 1) assign an identity

label to all actors, 2) assign labels for representing read and write access to all stores,

3) trace back data from and to stores to actors and 4) compare the identity of actors

with the read and write access of the store. Identity labels (1) are necessary to clearly

identify a subject because there can be multiple actors, which represent the very same

subject. It is reasonable to represent objects as stores (2) because these DFD elements

represent persisted data, which matches the meaning of an object in a data-oriented

system description. Directly assigning access rights to the objects, i.e. the stores, is the

core concept of DAC. Tracing data (3) allows to find pairs of actors and stores, which

exchange data. If data flows from an actor to a store, it is reasonable to see this data flow

as a data flow writing information into the store. A data flow in the opposite direction

means that the actor receives data from a store, which certainly requires reading data

from the store. The analysis does not require the propagation of labels on data because an

analysis of the structure is sufficient.

When considering the owner and the delegation of rights, the analysis becomes more

complex. The general idea described before still applies but in addition it is necessary

to 5) assign an owner label to a store, 6) assign labels for adding an owner, read rights

or access rights to data and 7) compare the identity of actors accessing a store with the

access rights added via data. The newly introduced labels for data (6) are control messages.

If a data item arrives at a store that has a label to add an owner, read rights or access

rights, the access rights already assigned to a store are extended by the new access rights.

The owner label (5) is necessary to ensure that only owners change the access rights.

The extended analysis (7) now requires the propagation of labels on data. The previously

described idea does not consider the order, in which owners and permissions are added,

or the removal of them because this would require knowledge about the order of such

messages. However, DFDs do not provide means to describe control flows, so there are

also no means to describe the order of messages. We discuss this point in more detail in

Section 6.7. In the following, we explain the elements of the analysis definition in more

detail.

Characteristic Types. All following characteristic types use an enumeration of subject

identities as range of values. Because the enumeration is tailored to the particular system,

the enumeration itself is not reusable for other systems except for systems that contain

a subset of the identities. The characteristic types themselves are, however, reusable in

other systems. The Identity characteristic type assigns an identity to an actor. This is

useful because software architects can then represent the same subject by multiple actors,

which can simplify the modeling and can improve the visualization of user behavior.

The ReadAccess andWriteAccess characteristic types add access rights to a store, which
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represents an object. DAC demands such a direct assignment of access rights. The Owner
characteristic type assigns owners to a store, which is necessary to decide if an actor

is allowed to change access rights. The AddOwner, AddReadAccess and AddWriteAccess
characteristic types represent control information in data. This control information is

required to adjust the access rights.

Characteristics. Characteristics for all previously mentioned characteristic types except

for the Identity characteristic type can hold multiple values but at least one. This is

reasonable because it is possible to add multiple owners and access rights by one message.

In contrast, it is not useful to assign more than one identity to an actor because this would

violate the direct assignment of access rights between subjects and objects, which DAC

demands. All characteristics refer to particular identities, so they are only reusable in

systems that use a subset of these identities.

Behaviors. Data processing does not have an effect on the propagated labels on data.

Therefore, only the Forward behavior, which propagates all received labels from the

input to the output is necessary. Because the behavior does not depend on a particular

characteristic type it can be reused in other systems.

Label Comparison. The label comparison has to test for violations of an actor by reading

data from a store and by writing data into a store. Listing 6.4 presents the query to do so.

To improve comprehensibility, we added one rule to identify a violating read (line 1) and

one rule to identify a violating write (line 9). It is also possible to merge these two rules

into the query in lines 17 to 18 that asks for violations of any of these types. The rule for

identifying a read violation checks whether an actor A is allowed to receive data from a

store STORE. An actor receives data from a store if at least one flow tree of one of his/her

input pins (line 5) contains the store (line 6). A violation occurs if the identity Y of the

actor (line 7) does not have read access to the store (line 8). We explain the readAccess/2

predicate in the next paragraph. The rule for identifying a write violation checks whether

an actor A is allowed to send data into a store STORE. An actor sends data into a store if at

least one flow tree of one of the input pins of the store (line 13) contains the actor (line 14).

A violation occurs if the identity Y of the actor (line 15) does not have write access to the

store (line 16). We explain the writeAccess/2 predicate in the next paragraph. The query

does not depend on particular identities, so it is reusable for analyzing other systems.

Determining read or write access for a given identity is possible in two ways, which are

illustrated in Listing 6.5: If owners and the delegation of rights is not considered, the

bodies of the readAccess/2 rule in line 4 and the writeAccess/2 rule in line 7 would only

consist of the first clause, which queries the access rights directly assigned to the store.

The remaining clauses of Listing 6.5 would not be necessary. If owners and the delegation

of rights are considered, it becomes important to determine whether an actor is an owner

of a store. The rule in line 1 does this. An owner is either statically assigned to the store via

a node characteristic or he/she is dynamically added via a control message. The dynamic/3
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Listing 6.4: Query for detecting a violation of access control specified in DAC.

1 readViolation(A, STORE, S) :- % identify illegal read of A at STORE

2 store(STORE), % find store

3 actor(A), % find actor

4 inputPin(A, PIN), % find input on actor

5 flowTree(A, PIN, S), % find flow tree to input

6 traversedNode(S, STORE), % find store in flow tree

7 nodeCharacteristic(A, ’identity’, Y), % find identity of actor

8 \+ readAccess(Y, STORE). % check read permission of actor

9 writeViolation(A, STORE, S) :- % identify illegal write of A at STORE

10 store(STORE), % find store

11 actor(A), % find actor

12 inputPin(STORE, PIN), % find input on store

13 flowTree(STORE, PIN, S), % find flow tree to input

14 traversedNode(S, A), % find actor in flow tree

15 nodeCharacteristic(A, ’identity’, Y), % find identity of actor

16 \+ writeAccess(Y, STORE). % check write permission of actor

17 ?- readViolation(A, STORE, S); % report read violation or

18 writeViolation(A, STORE, S). % report write violation

rule in line 11 checks whether a change of an owner or an access permission took place

and whether this change was allowed. To identify the change, the labels of data arriving at

the store STORE are checked for a literal V of a characteristic type CT in line 13. For instance,

to find a label for adding an owner, the characteristic type would be AddOwner and the

literal would be the identity, which shall be added as owner. To check whether the actor

that initiated the change is an owner, the flow tree of the received message is found in

line 15. If an actor is part of the flow tree (line 16), the identity Y of that actor is found in

line 17. Eventually, line 18 checks whether the found identity is an owner. This lookup

is recursive, so all added owners and the initial owners are considered. The rules that

check the read and write access operate in the same way: before considering the effect of

the permission change, the sending actor is verified as owner. The presented clauses do

not refer to particular identities. This means the clauses and the query presented in the

paragraph before are reusable for analyzing other systems.

6.2.2.2. Mandatory Access Control (MAC)

MAC [Fur08, pp. 64] defines a set of mandatory rules that aim to not only control the

access to data but also the flow of information. There are two prominent access control

models for MAC: the military security model and the Need-to-Know model. The military

security model is essentially the same model as the information flow analysis using an

ordered lattice. We already described the analysis definition in Section 6.2.1.1, which can

also be used to model and analyze the military security model. Therefore, we only focus

on the Need-to-Know model in the following.

The underlying idea of the Need-to-Know model is to only allow subjects to access objects

if the subjects need the objects for their assigned work. A set of topics, also called
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Listing 6.5: Rules for determining read and write access in DAC.

1 owner(V, STORE) :- % V is owner of store

2 nodeCharacteristic(STORE, ’owner’, V); % check characteristic on node

3 dynamic(STORE, ’addOwner’, V). % check characteristic via data

4 readAccess(V, STORE) :- % V can read from store

5 nodeCharacteristic(STORE, ’read’, V); % check characteristic on node

6 dynamic(STORE, ’addRead’, V). % check characteristic via data

7 writeAccess(V, STORE) :- % V can write to store

8 nodeCharacteristic(STORE, ’write’, V); % check characteristic on node

9 dynamic(STORE, ’addWrite’, V). % check characteristic via data

10

11 dynamic(STORE, CT, V) :- % permission added via data

12 inputPin(STORE, PIN), % find input pin of store

13 characteristic(STORE, PIN, CT, V, S), % find permission on data

14 actor(A), % find actor

15 flowTree(STORE, PIN, S), % find flow tree to store

16 traversedNode(S, A), % find actor in flow tree

17 nodeCharacteristic(A, ’identity’, Y), % find identity of actor

18 owner(Y, STORE). % check that actor is owner

compartments, defines the work areas. Subjects as well as objects have topics assigned.

The topics of the subject 𝑠 are the needs to know 𝑁𝑠 . The topics of the object 𝑜 are its

compartments 𝐶𝑜 . A subject 𝑠 is allowed to read an object 𝑜 if 𝐶𝑜 ⊆ 𝑁𝑠 .

The general idea of a confidentiality analysis looking for violations of requirements given

in the Need-to-Know model is to 1) assign a set of topics to actors, 2) provide initial topics

for data, 3) describe the propagation of data topics within behaviors and 4) compare the

topics of data with the topics of actors. The comparison only needs to consider actors and

their activities, i.e. the actor processes, because these represent subjects. Consequently,

only actors and the actor processes (1) require assigned topics, i.e. the needs to know.

Transmitted data is the information, which actors would like to access, so data requires

compartments (2), which can change based on data processing (3). For every actor or actor

process, the comparison (4) has to identify the set of topics on the data and report a violation

if this set is not a subset of the topics on the actor or actor process. In the following, we

introduce the characteristic types, characteristics, behaviors and the comparison function

required to realize the analysis.

Characteristic Types. The required characteristic types are the needs to know and the

compartments. The value range of both types is a set of topics. The order of the topics

has no meaning. The topics are usually specific for the system under design. Therefore,

reusing the enumeration that defines the value range is only possible if other systems

support similar activities and are in the same application domain. The characteristic types

themselves are generic, so they can be reused for modeling other systems.

Characteristics. The particular characteristics depend on the system under design be-

cause a reasonable combination of topics for actors depends on their tasks. Any subset of
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the available topics can build a reasonable characteristic for actors or data. Consequently,

the particular characteristics are only reusable for systems supporting similar activities

and operating in the same application domain.

Behaviors. Data processing can affect the topics of exchanged data. There are three

relevant behavior types: The Forward behavior does not affect the topics of data, so it just

propagates the same set of topics from its input to its output. For instance, a validation

procedure for data could have such a behavior. The Join behavior combines incoming data

into a new data item. Because we cannot guarantee that information from an incoming

data item cannot be recovered, the safest assumption is that all incoming topics still apply

to the result of joining data. Consequently, the behavior applies the union of all incoming

topics to the output. A procedure, which creates a report of sick days for an employee,

could be an example of such a behavior because it combines information from a personal

topic, a health topic and a work planning topic into a report containing all three topics.

The Declassify behavior removes certain topics from an incoming data item and only

propagates the remaining topics. A procedure, which aggregates individual sick days

into a sum of sick days, can be an example of such a behavior because it removes the

work planning topic from the incoming data. All behaviors except for the declassifying

behavior are reusable for defining other software systems. The declassifying behavior is

not reusable because it refers to particular topics, which vary depending on the particular

system.

Label Comparison. The label comparison function has to identify data received by actors,

which do not need all the topics of the received data to do their work. Listing 6.6 presents

the query to do so. The query considers all inputs (line 2) of all actors and actor processes

(line 1) because only actors and their activities can violate the need-to-know rule. For

all possible flow trees of the identified inputs (line 3), the compartments L_COMP of the

incoming data, i.e. the data topics, are found (line 4). The topics L_NTK, which the actor

needs to know, are also collected (line 5). To collect L_COMP and L_NTK, the second-order

logic predicate findall/3 is used. The predicate finds all individual solutions X (first

argument) to a query template (second argument) and yields the list of all individual

solutions (third argument). Because findall/3 yields a list instead of a set of elements, the

results have to be transformed to a set before using set operations. The built-in predicate

sort/2 takes a list as first argument and yields a sorted set as second argument as shown

in line 6. The query reports a violation if the set of compartments COMP of data are no

subset of the set of needs to know NTK of an actor. The subset/2 predicate (line 6) is a

built-in predicate that evaluates to true if the first argument is a subset of the second

argument. The query does not refer to particular topics and can be reused for analyzing

other systems. The query does not need additional information about the confidentiality

requirements, i.e. additional clauses, because the Need-to-Know model only demands the

subset relation between the compartments and the needs to know and the query fully

covers this.
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Listing 6.6: Query for detecting a violation of access control specified in Need-to-Know (MAC).

1 ?- (actor(N);actorProcess(N, _)), % actor (process)

2 inputPin(N, PIN), % actor input

3 flowTree(N, PIN, S), % input flow tree

4 findall(X, characteristic(N,PIN,’compartment’,X,S), L_COMP), % data topics

5 findall(X, nodeCharacteristic(N,’needs to know’,X), L_NTK), % actor topics

6 sort(L_COMP, COMP), sort(L_NTK, NTK), \+ subset(COMP, NTK). % subset test

6.2.2.3. Role-based Access Control (RBAC)

RBAC [Fur08, pp. 70] is a commonly used access control model in organizations. The main

benefit of RBAC compared to DAC is the decoupling of access rights and users through

roles. The introduction of roles simplifies the administration of access control because the

access rights assigned to roles change less frequently than the assignment of roles to users.

The roles of users often simply stem from the position of a user in the organizational

structure, so assigning roles to users is fairly simple. Compared to DAC, the management

of access rights is centralized, which simplifies keeping track of assigned permissions as

well as revoking permissions.

There are three types of RBAC. Core RBAC describes the introduction of roles, the assign-

ment of access rights to roles and the assignment of roles to users. Hierarchical RBAC
adds hierarchies for roles. Users, which have been assigned a senior role, automatically

also have the corresponding junior roles assigned. Consequently, senior roles inherit

access permissions from junior roles. Constraint RBAC introduces static constraints on the

assignments of roles and dynamic constraints on the activation or usage of roles during

runtime.

The general idea to analyze Core RBAC is to assign roles to nodes and to assign permitted

roles to exchanged data. This closely represents the decoupling of users and permissions

by roles. Data processing can change the permitted roles, e.g. because a data item derived

from two other data items requires more protection. If the assigned and permitted roles

do not share at least one role, accessing data is forbidden and if a node still accesses the

data, a violation has been identified. The general idea to analyze Hierarchical RBAC is the

same but before every comparison of role sets, the set of assigned roles is extended by all

inherited roles according to the role hierarchy. The effect of extending the set is that all

permissions of junior roles are also considered during the comparison, which matches the

semantics of the role hierarchy. The general idea to analyze static constraints in RBAC is

the same as for Core RBAC but in addition, the constraints are checked for every node in the

system. To identify violations, the constraints can be negated, which means that all nodes

not adhering to the constraints are reported. For instance, a constraint saying that an actor

must not have two roles at the same time would be checked by looking for an actor, which

has these two roles at the same time. Analyzing dynamic constraints requires detailed

information about individual actors as well as dynamic activation and deactivation of roles

for individual users. DFDs and many languages targeting the architectural design phase

do not provide means to specify individual users but only classes of users. Therefore, there
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is no concept to analyze dynamic constraints. We will discuss this limitation and possible

alternatives for analyzing individual users in Section 6.7. In the following, we describe the

analysis definition for the three types of RBAC excluding dynamic constraints.

Characteristic Types. The required characteristic types are the assigned roles for nodes
and the permitted roles for data. Both characteristic types share the same value range,

which is the set of all available roles. The order of the roles does not imply any meaning.

The particular roles are only reusable if the organization using the system has similar

organization structures. The structure often implies the used roles, so the roles should be

similar as well. The characteristic types using these roles are generic and can be reused

for defining other systems.

Characteristics. The particular characteristics on data and nodes depend on the useful

combinations of assigned roles as well as permitted roles. In theory, any subset of the

available roles is a valid characteristic. However, only a small amount of these subsets

is reasonable in realistic scenarios. Because reasonable combinations depend on the

particular system and organization structure, the characteristics can only be reused for

similar systems and organization structures.

Behaviors. Data processing can affect the permitted roles of exchanged data. There are

three relevant behavior types: The Forward behavior does not affect the permitted roles

because it propagates the received permitted roles to the output. The behavior is necessary

because many processing steps of a system do not affect the permitted roles. For instance, a

validation of data does not affect the permitted roles. The Join behavior combines incoming

data into a new data item. A reasonable assumption for the resulting data item is that

the roles, which have access to all inputs also have access to the combination of these

inputs. Therefore, the behavior builds the intersection of permitted roles of all incoming

data items and applies the resulting permitted roles to the output. The Declassify behavior

explicitly adds roles to or removes roles from the outgoing data item. This is reasonable if

the result of a data processing step yields a less confidential item, e.g. because data has been

aggregated and individual inputs cannot be reconstructed anymore, or if the processing

yields a more confidential item, e.g. because certain combinations allow drawing more

conclusions than possible by looking at the individual data items. All behaviors except

the declassification do not depend on particular roles, so they can be reused in describing

other systems. The declassification assigns particular roles to or removes particular roles

from data, so the behavior depends on the particular system. Reusing the declassification

is only possible for systems using a similar set of roles with the same meaning.

Label Comparison (Core RBAC). The label comparison for Core RBAC compares the

permitted roles of received data and the assigned roles of a node to report a violation

if both sets of roles do not share at least one role. The query in Listing 6.7 shows the

corresponding query. First, the query looks for an input pin of a node (line 1) and a possible
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Listing 6.7: Query for detecting a violation of access control requirements specified in Core RBAC.

1 ?- inputPin(N, PIN), % input of any node

2 flowTree(N, PIN, S), % flow tree of input

3 findall(R, nodeCharacteristic(N,’assigned roles’,R), L_AR), % roles on node

4 findall(R, characteristic(N,PIN,’permitted roles’,R,S), L_PR), % roles on data

5 sort(L_AR, AR), sort(L_PR, PR), intersection(AR, PR, []). % empty intersection

path, on which data arrives at the node (line 2). For the arriving data, all permitted roles

L_PR are identified (line 4). We use the findall/3 predicate to collect all solutions L_PR to

the query template given as second argument. The permitted roles are compared with the

assigned roles L_AR of the node (line 3) by looking for the intersection between the two

sets of roles (line 5). Because the set operations require sets instead of lists of elements, we

build the sorted sets AR and PR by using the built-in sort/2 predicate. The intersection/3

predicate is a built-in predicate that evaluates to true if the intersection of the sets given as

first and second argument is equal to the set given as third argument. If the intersection of

the two sets is empty, a violation has been found because this means that the node does not

have at least one role that is permitted to access the data. The query is not tailored to the

particular system, so it can be reused to analyze other systems. No additional clauses are

necessary because comparing the intersection of permitted and assigned roles is sufficient

to identify all violations of the access control requirements, which restrict access to data

based on permitted roles.

Label Comparison (Hierarchical RBAC). The label comparison for Hierarchical RBAC is

based on on the previously described comparison for Core RBAC. Instead of just comparing

the roles assigned to a node with the permitted roles of data, the set of assigned roles is

extended by the inherited roles. Besides the previously presented query, additional clauses

are necessary to represent the role hierarchies and handle them properly. Listing 6.8 gives

an example of the senior/2 predicate, which we use to define the role hierarchies. The

role given as first argument is a senior role for the role given as second argument. The

meaning of the example is that the project lead role is senior to the engineering role. This

means that a project lead also has the rights of an engineer. All roles, to which a particular

role is transitively senior, have to be considered when comparing assigned roles with

permitted roles. Therefore, we have to find all transitive junior roles for the roles assigned

to a node. We do this by replacing the variable AR in line 5 of Listing 6.7 by the variable

ER, which is bound by the clause effectiveRoles(AR, ER). In the following, we explain

the definition of the effectiveRoles/2 predicate in Listing 6.9. The rule in line 2 takes a

list of roles as first argument and yields a list of effective roles. To do so, the transitive

closure H_ROLES of junior roles for a role H is found (line 3) and the remaining roles T are

considered in a recursion (line 4). In the end, the union HT_ROLES of all transitive closures

is built (line 5) and returned as sorted list of roles (line 6). The purpose of the fact in line 1

is to stop the previously mentioned recursion. To find the transitive closure of junior

roles for a given senior role, the includedRoles/2 predicate in line 8 starts a recursion

via the includedRoles/3 predicate. The predicate takes a senior role as first argument
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Listing 6.8: Example of clause defining a role hierarchy in RBAC.

1 senior(’Project Lead’, ’Engineer’). % project lead is senior role of engineer

and a list of already considered junior roles as second argument. The third argument

yields the transitive closure of junior roles. When starting the recursion, the already

considered list of junior roles is empty. Tracking considered roles is important to create a

set instead of a list of roles. The recursively considered rule in line 11 finds a junior role,

ensures that the role has not been considered yet and continues the recursion by adding

the found role to the list of considered roles. The recursion terminates if there are no more

junior rules that have not been considered yet (line 15). The junior/2 predicate describes

a reflexive (line 21) and transitive relation (line 22) between two roles. If the predicate

evaluates to true, the role given as first argument is a transitive junior role of the second

argument. The clause is similar to the connected/2 relation in Listing 6.2 on page 75. The

only difference is the clause starting in line 25, which ensures that only one path to prove

the relation is considered. The considered path always uses the smallest intermediate

roles according to their natural order (@<). This avoids reporting duplicate results, which

would not be harmful or lead to wrongly reported violations but would lead to multiply

reported violations. The presented clauses do not depend on particular roles, so they can

be used for analyzing other systems as well. The particular role hierarchies depend on

particular roles and are, therefore, only reusable for systems operating in similar domains

and organization structures.

Label Comparison (Constraint RBAC). Enforcing the static constraints regarding role

assignments does not interfere with the previously presented queries to analyze Core

RBAC and Hierarchical RBAC. Therefore, the query for detecting violations of the static

constraints is a second query to execute before or after the previously presented queries.

Essentially, a definition of the constraints and a corresponding check is necessary. A simple

form of constraint is a set of roles, which must never be assigned to a node at the same time.

Listing 6.10 defines such an illegal combination of roles by the illegalCombination/1

predicate. In the example, an actor must never hold a requestor and an approver role
together. The query to detect such a violation is shown in Listing 6.11. It identifies a

node N of any type (line 1), determines the assigned roles AR (line 2) and identifies the

effective roles ER as described before (line 3). A violation occurs, if any illegal set of roles

C (line 4) is a subset of the effective roles (line 5). The query does not depend on particular

levels, so it is reusable. The particular constraints depend on the particular system under

design, so they are only usable for systems operating in similar domains and organization

structures.

6.2.2.4. Attribute-based Access Control (ABAC)

ABAC [Fur08, pp. 74] decouples access rights from particular subjects or objects by so-

called identifiers. An identifier contains a set of attribute selectors, which describe criteria
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Listing 6.9: Clauses for handling role hierarchies in RBAC.

1 effectiveRoles([], []). % no effective roles for no roles

2 effectiveRoles([H|T], ROLES) :- % effective roles for role list

3 includedRoles(H, H_ROLES), % find for list head

4 effectiveRoles(T, T_ROLES), % recursive solving for list tail

5 union(H_ROLES, T_ROLES, HT_ROLES), % ensure found roles are set

6 sort(HT_ROLES, ROLES). % sort found roles

7

8 includedRoles(R, ROLES) :- % transitive closure for R

9 includedRoles(R, [], ROLES), % start recursion, no visited roles

10 sort(ROLES, ROLES). % sort found roles

11 includedRoles(R, ROLES, RESULT) :- % find roles not contained in ROLES

12 junior(X, R), % junior role X for R found

13 intersection(ROLES, [X], []), % X not part of ROLES

14 includedRoles(R, [X | ROLES], RESULT). % extend ROLES by X and recurse

15 includedRoles(R, ROLES, ROLES) :- % stop recursion

16 \+ ( % no new roles available

17 junior(X, R), % junior role X for R found

18 intersection(ROLES, [X], []) % role X already in ROLES

19 ).

20

21 junior(X, X). % reflexive relation

22 junior(X, Y) :- % transitive relation

23 senior(Y, Z), % Y is senior for intermediate Z

24 junior(X, Z), % X is junior for intermediate Z

25 \+ ( % no other intermediate Z2

26 senior(Y, Z2),

27 junior(X, Z2),

28 Z2 @< Z % intermediate Z2 smaller than Z

29 ).

Listing 6.10: Example of static constraint on role assignments in Constraint RBAC.

1 illegalCombination([’requestor’, ’approver’]). % constraint

for matching subjects or objects. A subject identifier contains selection criteria based on

attributes of a subject. An object identifier contains selection criteria based on attributes of

an object. An identifier can match multiple subjects or objects. Subjects or objects can

have multiple matching identifiers. Identifiers can be part of a hierarchy, in which specific

identifiers inherit the selection criteria from generic identifiers. An authorization refers to

one subject identifier and one object identifier and defines permissions of the matched

Listing 6.11: Query for detecting a violation of role assignment constraints in Constraint RBAC.

1 ?- (process(N);actor(N);store(N)), % find any node N

2 findall(R, nodeCharacteristic(N,’assigned roles’,R), AR), % assigned roles

3 effectiveRoles(AR, ER), % consider hierarchy

4 illegalCombination(C), % find constraint C

5 subset(C, ER). % test for violation
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subjects to the matched objects. In addition to the identifiers, an authorization can contain

conditions that must hold in order to use the permissions. Various works [JKS12] [Fur08,

pp. 79] see ABAC as a generalization of the previously described access control models

DAC, MAC and RBAC and provide instructions on how to describe the corresponding

requirements in ABAC.

The general idea to analyze ABAC is to 1) assign attributes to actors, 2) provide initial

attributes for data, 3) describe the propagation of data attributes within behaviors, 4)

define the subject and object identifiers by selection criteria, 5) define authorizations

based on subjects and object identifiers and 6) find an authorization for every input data

of an actor. It is reasonable to only consider actors (1) because subject descriptors often

only consider actors. However, it is also possible to consider other nodes as long as these

nodes have attributes assigned. Exchanged data closely matches the definition of an object,

which shall be accessed, so it is reasonable to cover the attributes of data (2) as well as

potential changes by data processing (3) in the system description. The subject and object

identifiers (4) as well as the authorizations (5) describe the requirements in ABAC, so

representing them is necessary to identify violations. A violation occurs if we cannot find

an authorization for incoming data of an actor (6). In the following, we introduce the

characteristic types, characteristics, behaviors and the comparison function required to

realize the analysis.

Characteristic Types. The characteristic types have to describe the attributes of subjects

and objects. These attributes highly depend on the particular system. Because of the

flexibility of ABAC regarding the considered attributes, it is not useful to prescribe any

characteristic types. However, the characteristic types have to distinguish attributes for

subjects and objects.

Characteristics. Because there are no prescribed characteristic types, prescribing char-

acteristics is not possible. When defining characteristics, it can be useful to provide

characteristics based on the subject and object identifiers. There is a high chance that the

characteristics representing identifiers are used multiple times.

Behaviors. The Forward behavior is a reasonable behavior to include. It propagates the

received labels of input data to the same labels of output data. It is reasonable to include

this behavior because many data processing steps in a system do not affect any labels but

just document the data processing to be implemented in the development phase. Providing

more behaviors is not possible because generic descriptions of the effect of joining or

declassifying data are not available for yet unknown attribute types. Instead, security

experts have to define system-specific behaviors to cover all relevant data processing.

Label Comparison. The label comparison consists of two parts: First, the subject iden-

tifiers, object identifiers and authorizations describe the ABAC requirements. We need
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additional clauses to represent this information. Second, the label comparison looks for

missing authorizations. The comparison is realized as query, which uses the additional

clauses.

Listing 6.12 presents examples of the ABAC requirements. Lines 2 to 5 describe subject

identifiers. The matchSubject/2 predicate provides a name for the subject identifier as first

argument and takes a node identifier N as second argument. A node argument is necessary

to test the given subject identifier for a particular node. The Clerk identifier matches nodes,

which have a Role characteristic with the value Clerk assigned. The Manager identifier
matches nodes, which have a Role characteristic with the value Manager assigned. Lines 8
to 10 describe object identifiers. The matchObject/4 predicate provides an name for the

object identifier as first argument and takes a node identifier N, a pin PIN and a flow tree S

as second, third or fourth argument, respectively. The triple of the node, pin and flow tree

arguments identifies data from or to a particular node via a particular flow tree. Because

data items are the objects, to which we would like to limit access, it is reasonable to

consider this identifying information in order to test the object identifier on particular

objects. The Regular identifier matches data, which only has the Regular value of the
Status characteristic type applied. The used exactCharacteristicValues/5 predicate is a

helper clause to collect all values of a given characteristic type and to compare the values

with a given set of values. The predicate evaluates to true if the set of values of data

and the given set of values are identical. More details on the predicate are available in

Appendix A. The All identifier matches all data. Establishing an identifier hierarchy is

possible by adding the generic identifier, i.e. the matchSubject/2 or matchObject/4 clauses

of the generic identifier, in the body of the rule, which represents the specific identifier. In

the example, we only consider authorizations to read, so we introduce the read/3 predicate.

The predicate takes all information to identify a node as well as data coming to or leaving

the node as arguments. The predicate evaluates to true if read access for the data at the

node is granted. The authorization in line 13 states that the subjects identified by the

Manager identifier have access to objects identified by the All identifier. To do so, the rule

requires the subject and the object identifiers to match. The authorization in line 16 refers

to the subject identifier Clerk and the object identifier Regular and establishes a condition

for the authorization. The condition also has to hold, so it is added in a conjunction to the

identifiers of the subject and object. The condition states that the Location L of the node

has to be the same as the Origin of the data.

The label comparison shown in Listing 6.13 identifies violations caused by missing autho-

rizations. In line 1, an actor A and one of his/her input pins PIN is found. A flow tree S

describes how data items arrive at the input pin (line 2). The actor A, pin PIN and flow

tree S identify data. A violation occurs if there is any data that arrives at the actor, for

which no authorization can be found. Line 3 tests this condition by proving that there is

no solution for read/3 with the specified data. Finding no solution means that there is no

authorization.
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Listing 6.12: Examples of subject and object identifiers as well as authorizations for ABAC.

1 % subject identifiers for node N with given name

2 matchSubject(’Clerk’, N) :-

3 nodeCharacteristic(N, ’Role’, ’Clerk’).

4 matchSubject(’Manager’, N) :-

5 nodeCharacteristic(N, ’Role’, ’Manager’).

6

7 % object identifiers for data on pin PIN of node N via flow tree S

8 matchObject(’Regular’, N, PIN, S) :-

9 exactCharacteristicValues(N, PIN, ’Status’, [’Regular’], S).

10 matchObject(’All’, _, _, _).

11

12 % authorizations for reading data on pin PIN of node N via flow tree S

13 read(N, PIN, S) :-

14 matchSubject(’Manager’, N), % subject identifier

15 matchObject(’All’, N, PIN, S). % object identifier

16 read(N, PIN, S) :-

17 matchSubject(’Clerk’, N), % subject identifier

18 matchObject(’Regular’, N, PIN, S), % object identifier

19 nodeCharacteristic(N, ’Location’, L), % start condition

20 exactCharacteristicValues(N, PIN, ’Origin’, [L], S). % end condition

Listing 6.13: Query for detecting a violation of ABAC requirements.

1 ?- actor(A), inputPin(A, PIN), % find input pin PIN for actor A

2 flowTree(A, PIN, S), % find flow tree for input

3 \+ read(A, PIN, S). % test for missing read permission

6.3. Consideration of Encryption in Confidentiality Analyses

According to Bauer [Bau05a], encryption converts a plaintext, which everyone can under-

stand, to a ciphertext, which is incomprehensible without further processing. Decryption

converts the ciphertext back into plaintext. Usually, a key is another parameter for a

cryptosystem, i.e. the encryption and decryption, to remove the obligation to keep the

encryption and decryption algorithms secret. Instead, only the key has to be kept se-

cret. There are symmetric and asymmetric cryptosystems. In a symmetric cryptosystem

[Kal05b], the same key is used for encryption and decryption. In an asymmetric cryptosys-

tem [Kal05a], different keys are used for encryption and decryption.

According to Shostack [Sho14, p. 154], encryption should be used to protect information

outside of a system because a system cannot protect the information out of its scope.

Consequently, encryption is also appropriate to protect information in systems of systems

because a single system cannot control the information in other systems. In DFDs, we

would represent systems of systems by a chain of processes, which belong to different

systems. Characteristics can represent the relation of a process to a system, e.g. by

annotating the system as a characteristic to the process.
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With respect to the information flow and access control analyses already presented in

Section 6.2, encryption can be seen as declassification because it makes information inac-

cessible to unauthorized actors and thereby lowers the needs to protect that information.

We already described the concept of declassification before but only gave examples of data

processing, which potentially has a declassifying effect on data characteristics. In the fol-

lowing, we describe how to integrate encryption into the previously described information

flow and access control analyses. The description focuses on the required extensions with

respect to characteristic types, behaviors and label comparison functions. In Section 6.3.1,

we describe a simple form of encryption that does not consider the key handling. For

instance, this simple form can represent systems using a symmetric cryptosystem with

shared keys. Section 6.3.2 extends the key-less encryption by key pairs of public and

private keys. This representation of encryption represents an asymmetric cryptosystem.

6.3.1. Encryption Without Keys

The core idea of using encryption and decryption is to temporarily hide information and

restore the information later. This helps protecting the information from unauthorized

access e.g. during a transmission. In the context of DFDs and label propagation, hiding

information means that previously applied labels do not apply anymore. However, the

labels shall be restored later upon decryption.

During an analysis, we do not really have to hide these labels but have to make clear

that the labels shall be hidden. Therefore, it is sufficient to introduce new characteristic

types, which share the value range with the affected characteristic types, change the

characteristic type of a label to the newly introduced characteristic type upon encryption

and reverse that change upon decryption. In addition, the encryption might add a label of

the old characteristic type, which expresses that the contained information is not accessible

anymore. For instance, consider a data item with a high label of the characteristic type

classification. Upon encryption, we can add a high label of a newly introduced characteristic
type old classification to the data item and replace the original classification label with a low
label. This means that now nodes only having clearance for low data are allowed to access

the data item because the information contained in the data item would not be accessible

to the node in a real system. Upon decryption, we revert this effect, i.e. we add the high
label of the characteristic type classification and remove the label of old classification. This
is reasonable because the data item provides access to the contained information after

decryption.

In the following, we describe how to extend an existing analysis definition to consider

encryption in existing information flow and access control analyses.

Characteristic Types. For every characteristic type, which refers to information hidden by

an encryption, a second characteristic type using the same value range is necessary. With

respect to the previously presented confidentiality analyses, the classification (information

flow analyses), the compartments (Needs-to-Know) and the permitted roles (RBAC) are
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characteristic types, which require a second characteristic type. All of these characteristic

types describe the information contained in a data item. This information is not accessible

anymore after encryption. The remaining characteristic types such as the ones to add

additional permissions in DAC do not require a second characteristic type.

Behaviors. There are two additional behaviors. The Encrypt behavior takes an input and

yields an output. The behavior forwards all labels but replaces the characteristic type of

all labels by the newly created second characteristic types if one is available. In addition,

the behavior adds new labels for the old characteristic types, which correctly characterize

the encrypted content. With respect to the previously presented confidentiality analyses,

there would be a new label with the lowest classification level (information flow analyses),

an empty compartments label (Needs-to-Know) and a set of all roles for the permitted roles

characteristic type (RBAC). The Decrypt behavior also takes an input and yields an output.

The behavior reverts the effect of the encrypting behavior. The behavior forwards all labels

but removes the new labels added during the encryption and replaces the characteristic

type of all labels referring to the newly created second characteristic types with the original

ones. The Forward and Declassify behaviors are not changed. The Join behavior can often

not be applied to encrypted data in a reasonable way. However, in cases where data is

just bundled in a tuple, the behavior should treat the labels for the newly introduced

second characteristic types in the same way as if they were specified for the original

characteristic types. For instance, joining encrypted data items, which had compartments

in the Need-to-Know access control model, should yield encrypted data, in which the

labels describing the original compartments are the union of all original compartments

of incoming data. After the decryption, the joined data item has the same labels as if the

input to the joining behavior was unencrypted data. Without this extended joining logic,

the effect of creating a tuple from the data would be lost during the decryption.

Label Comparison. The label comparisons introduced in the analysis definitions for

information flow and access control remain the same because the additional labels are

only necessary between encryption and decryption and the effect of encryption and

decryption is also visible on the existing labels. No additional checks regarding encryption

are necessary. For instance, if the travel agency in our running example receives encrypted

credit card data, the existing label comparison function would, correctly, not report a

violation because the travel agency cannot access the contained information and the

classification of the encrypted data would, consequently, be the lowest level. The travel

agency has a clearance for the lowest level, so access to the encrypted credit card data is

fine.

6.3.2. Encryption With Key Pairs

The encryption using key pairs has the same goals as the previously presented encryp-

tion without keys but now keys are mandatory inputs to the encryption and decryption
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processes. The idea to consider keys on top of the keyless encryption is twofold: First,

the encryption and decryption should only have an effect if the correct keys are given.

Second, the label comparison should detect incorrect key usage to reveal errors in applying

the encryption. We assume an encryption by public keys and a decryption by private

keys. Using a public and private key is a common approach for asymmetric encryption.

The encryption can use any public key to encrypt the content for one or more people,

which the given public key(s) represent. The decryption can only use any private key

that matches a public key, for which the data item has been encrypted. An additional

label comparison detects decryption attempts by wrong private keys. In the following,

we describe the key usage and label comparison as extension to the encryption without

keys.

Characteristic Types. To represent keys, it is necessary to declare its type, i.e. private or

public, and the identity, which the key represents. We introduce the characteristic types

public key of and private key of with a common value range of identities. The order of

the identities has no meaning. A public key has a public key of label assigned. A private

key has a private key of label assigned. After the encryption, we have to keep record

of the public keys, for which the data item has been encrypted. To do so, a decryptable
by characteristic type, which also uses the identities as values, represents the identities,

which can decrypt the data item using their private key.

Behaviors. All but the following behaviors remain the same. The Encrypt behavior
takes a public key as an additional input. In addition to the previously described effects,

the encrypting behavior creates one decryptable by label for each public key of label on

the received public key data. There can be multiple labels because the data item can

be encrypted for multiple public keys. The Decrypt behavior takes a private key as an

additional input. In addition to the previously described effects, the decrypting behavior

only has an effect if the private key of label of the private key data has a value, which is

also a value of any decryptable by label on the data to encrypt. Otherwise, the data item

remains encrypted. The Join behavior also has to consider the decryptable by label. If two

data items arrive, the intersection of the decryptable by labels of both inputs is applied to

the output. This is reasonable because only people, who can decrypt both data items, can

decrypt the joined data item.

Label Comparison. The label comparisons of the extended analysis definitions do not

have to be adjusted. However, we suggest adding a second query, which can identify failed

decryptions. A decryption fails if there is no private key of an identity, which is listed as

being able to decrypt the data. Listing 6.14 presents this query. First of all, the query is

only applicable to nodes, which have the Decrypt behavior. The clause in line 1 selects

nodes, which have this behavior. In line 2, two different input pins of the same node N are

found. The identities represented by the private keys given as incoming data of PIN0 are

found in line 3. We use the findall/3 predicate to find all identities. In line 4, we find all

identities, which are allowed to decrypt the incoming data. Because the private keys and
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Listing 6.14: Query for detecting invalid usage of private keys in decryption.

1 ?- behavior(N, ’Decrypt’), % decryptor

2 inputPin(N, PIN0), inputPin(N, PIN1), PIN0 \== PIN1, % pins

3 findall(X, characteristic(N,PIN0,’private key of’,X,S0), L_PROV), % prov. keys

4 findall(X, characteristic(N,PIN1,’decryptable by’,X,S1), L_REQ), % req. keys

5 sort(L_PROV, PROV), sort(L_REQ, REQ), % sets

6 intersection(PROV, REQ, []). % violation

the data item to be decrypted arrive at a node via different pins, the flow trees S0 and S1

are different. Because findall/3 yields lists instead of sets, we build the sets PROV and REQ

using the built-in predicate sort/2 in line 5. A violation occurs if the intersection between

the identities of the private keys PROV and the identities allowed to decrypt REQ is empty.

Line 6 tests this by the built-in predicate intersection/3.

6.4. Mixing Existing Confidentiality Analyses

A mixed confidentiality analysis means that a single analysis considers multiple confiden-

tiality mechanisms. Mixing multiple confidentiality mechanisms can be useful or even

required to cover realistic systems. For instance, a system of systems does not require all

systems using the same confidentiality mechanism but every system can decide on its own

depending on its particular confidentiality requirements. Systems can also decide to com-

bine multiple confidentiality mechanisms to achieve certain requirements in an efficient

way by combining the benefits and strengths of individual confidentiality mechanisms.

For instance, there are existing works [XBS06; Wan+09] that demonstrate the benefits of

combining information flow and access control.

In the following, we describe the required steps to combine multiple confidentiality analy-

ses. As a running example, we will use the combination of RBAC with a taint-analysis. A

taint-analysis taints, i.e. marks, data and taints all data, which gets in touch with tainted

data. Tainted data must not reach critical system parts. The semantics of a taint is often

that tainted data originates from untrusted sources and must, therefore, not be used in

critical system parts without proper validation. A validation removes the taint and critical

system parts can use the resulting data. Essentially, the taint-analysis is an information

flow analysis using a linear ordered lattice: The lattice is not-tainted→ tainted. Critical
nodes are cleared for not-tainted data, which means that tainted data must not flow to

such critical nodes. The RBAC analysis works as already described in Section 6.2.2.3.

To combine two analyses, a security expert has to merge the corresponding analysis

definitions. In the following, we assume that both analyses do not have side-effects on

each other. If analyses have such side-effects, the resulting mixed analysis is actually a new

analysis and security experts should define it like they define a new analysis. To merge

side-effect free analyses, the security experts have to merge the characteristic types and

characteristics first. Thereto, the security experts build the union of characteristic types or

characteristics respectively. In the example, the characteristic types would be the permitted
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Listing 6.15: Query for detecting violations of RBAC requirements and requirements regarding the use of

tainted data.

1 % generic selection of input pin and incoming flow tree

2 ?- inputPin(N, PIN), flowTree(N, PIN, S),

3 (

4 ( % RBAC analysis detecting missing assigned roles to access data

5 findall(R, nodeCharacteristic(N, ’assigned roles’, R), AR_L),

6 findall(R, characteristic(N, PIN, ’permitted roles’, R, S), PR_L),

7 sort(AR_L, AR), sort(PR_L, PR), intersection(AR, PR, [])

8 );

9 ( % information flow analysis detecting illegal flow of tainted data

10 nodeCharacteristic(N, ’clear’, V_CLEAR),

11 characteristicTypeValue(’clear’, V_CLEAR, N_CLEAR),

12 characteristic(N, PIN, ’class’, V_CLASS, S),

13 characteristicTypeValue(’class’, V_CLASS, N_CLASS),

14 N_CLASS > N_CLEAR

15 )

16 ).

roles and assigned roles from RBAC as well as the clearance and classification from the

information flow analysis. Because it is possible to assign multiple characteristics to nodes

as well as data, building the union of existing characteristics is reasonable. In contrast,

nodes can only have one behavior. Therefore, it is necessary to merge behaviors by

merging the contained assignments. In the example, there would still be the Forward, Join
and Declassify behaviors. The Forward behavior is identical in both analysis definitions, so

no changes are necessary. The Join behavior has to assign the intersection of the permitted

roles as well as the highest classification to the output. Because Declassify behaviors

are specific to particular systems and situations, it is reasonable to keep these behaviors

separated. Therefore, there will still be behaviors, which add or remove permitted roles

and there will be a behavior lowering the classification of data. The label comparison is

the disjunction of the clauses of both individual queries. However, duplications can be

removed. A disjunction is necessary because the query shall report a violation of either

the RBAC or the information flow analysis. Listing 6.15 presents the result for the example.

First, the common parts of selecting an input and a corresponding flow tree for a node are

extracted from both individual queries (line 2). Afterwards, the clauses of the RBAC query

(lines 4 to 8) and the clauses of the information flow query (lines 9 to 15) are connected by

a disjunction. This means, a violation occurs if any group of the analysis clauses evaluates

to true. An alternative solution would be to execute both queries of the individual analyses

after each other.

6.5. DSL for Defining Custom Analyses

The main motivation for creating a DSL for specifying label comparisons is to provide

software architects with means to specify analyses (R2.5) without the need for deep

knowledge about the formal semantics and logic programming. Custom analyses are a
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benefit compared to the state of the art, which either focuses on fixed, predefined analyses

[TSB19; HSS14] or only supports simple well-formedness constraints given in query

languages such as the Object Constraint Language (OCL) [AGI13]. In contrast, a label

comparison function triggers the label lookup and is, therefore, more complex than simple

well-formedness constraints. A DSL provides a tailored specification language focused on

the architectural domain, which software architects know well. Based on the specification

given in the DSL, an automated mapping generates a query for the logic program, which

identifies violations.

The adjusted procedure of confidentiality analyses using the DSL is as shown in Figure 6.2.

The security expert still provides the characteristic types and behaviors but the architect

now not only specifies the system but also a constraint. The constraint is then transformed

to a label comparison function, which identifies violations. To transform the constraint,

the trace of the system mapping, i.e. a record describing which element from the system

has been mapped to which element in the logic program, is necessary. Otherwise, the

constraint could not refer to characteristic types or system elements. The procedure shows

that all aspects related to the logic program are still hidden from the architect but he/she

can now define a constraint, which eventually defines the label comparison function.

In the following, we define the scope of the DSL in Section 6.5.1. The abstract syntax and

the concrete syntax, which represent the domain concept, are covered in Section 6.5.2

and Section 6.5.3. We briefly explain the mapping procedure from a specification given in

the DSL to a query in the logic program in Section 6.5.4. All explanations are based on

previously published work [Hah+21].

6.5.1. Scope

DSLs are languages “of limited expressiveness focused on a particular domain” [FP11,

p. 27]. Without sacrificing expressiveness, a DSL would only be another concrete syntax

for the concepts presented by the underlying domain, which would be Prolog in the context

of this thesis. The challenging part is to select an appropriate subset of domain concepts

to cover important use cases in a concise manner. We justify the selection of domain

concepts (D𝑛) by the following discussion of the scope of the DSL.

Confidentiality is violated as soon as unauthorized subjects access data. The extended

DFD represents information to decide about the authorization by labels on nodes and

data. The previously presented access control and information flow queries compare the

labels of nodes and the labels of arriving data in queries. Consequently, the DSL has to

provide means to D1) select a node and D2) select incoming data in order to select the

corresponding labels. In addition, it can be necessary to also consider the origin of arriving

data. Therefore, the DSL has to provide a way to D3) select the origin of data, i.e. a node

in the flow tree.

In a query, the label comparison describes a pattern based on labels, which must not appear

in the DFD. To correspond to this, the DSL also has to provide means to D4) specify a
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Figure 6.2.: Overview on analysis procedure when using the DSL given as BPMN diagram.

pattern, which indicates a violation of confidentiality requirements in a DFD, i.e. a pattern,

which must not appear.

There are different kinds of patterns. A fixed pattern identifies data and nodes based

on fixed labels. For instance, a pattern could look for a node cleared for low data that

receives data classified high. The low label on the node and the high label on data are

fixed. In contrast, a flexible pattern determines the labels on a node and a data item and

compares these labels. For instance, a pattern could capture the clearance of a node and the

classification of data and test whether the classification label is higher than the clearance

label based on the index in the enumeration, which defines the labels. The pattern does

not use any fixed label. Mixing static and flexible labels is also possible. The DSL has to

support D5) fixed patterns, D6) flexible patterns and D7) mixed patterns using fixed

and flexible parts. Because the DSL refers to labels, it has to have a mechanism to D8)

reference existing characteristic types.
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Figure 6.3.: Overview on metamodel of DSL given as UML class diagram.

6.5.2. Abstract Syntax

The abstract syntax describes the domain concepts, their relations and properties. We use a

metamodel given as UML class diagram to describe the abstract syntax like we already did

for describing the abstract syntax of extended DFDs. An overview on the most important

parts of the metamodel is given in Figure 6.3. In the following, we explain the elements

of the metamodel, their intuitive semantics and how the elements map to the domain

concepts (D𝑛) collected in Section 6.5.1.

The software architect specifies one or multiple constraints. A Constraint describes a
situation in the DFD, which shall not appear, i.e. a violation (D4). This means a constraint

represents one particular query for detecting violations in the logic program. Considering

multiple constraints is reasonable because it can be easier to write multiple specific

constraints than writing a large, combined constraint. We essentially created two queries

for representing DAC in Section 6.2.2.1 (one query for detecting read violations and

one query for detecting write violations) because the resulting queries were easier to

understand than a merged query.

The constraint specifies a label pattern that shall never appear in the DFD. A pattern has

to specify a set of labels on data and a set of labels on nodes. To specify relevant data

items (D2), the DSL uses a set of Data Selectors as part of a Data description. To specify a

node, which receives data (D1), the DSL uses a set of Node Selectors as part of a Destination
description. If required, the DSL can also describe a node, which is (one possible) source
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(D3) of the received data item, by a set of Node Selectors as part of a Source description.

In order to select a particular data item or a node, all selectors have to apply, i.e. have to

evaluate to true. Besides logical conjunction, it would also be possible to provide means

to specify logical disjunction between selectors. In order to reduce the complexity of the

DSL, we decided to only support conjunction. However, extending the DSL by disjunction

or negation would be possible.

There are various types of selectors to represent commonly used selection criteria for data

and nodes. The only information for selecting a data item are the labels applied to the

data item. Therefore, a selection either has to consider any data item or provide selection

criteria based on labels. The Any Selector selects all data items without any restriction. The

Property Selector selects a data item based on the applied labels. One or multiple labels,

which must refer to the same characteristic type, can be specified. If labels referring to

different characteristic types shall be available, multiple Property Selector can be combined.

The specified labels describe fixed patterns of labels (D5). However, it is also possible

to only specify the characteristic type in a Property Selector and capture available labels,

which refer to the characteristic type, in a variable. Later, the DSL allows to specify criteria

on such variables. This provides means to specify flexible patterns of labels (D6). Because

fixed labels and variables can be mixed, mixed patterns of labels (D7) are also supported.

Nodes can also be selected by a Property Selector because they also have labels applied. In

addition to labels, it is also possible to select nodes based on their type by using a Type
Selector. This is reasonable because some violations can only appear at actors or stores.

For instance, the ABAC query in Section 6.2.2.4 also limited its scope to actors or actor

processes. In case of constraints, which only affect individual nodes, it can be useful to

select nodes based on their identity. An Identity Selector provides this ability.

To formulate flexible and mixed patterns, the DSL has to provide means to compare the

variables of the Property Selectors. The Condition allows to use a Boolean Function to do so.

If the function evaluates to true, the condition holds, which means that a violation has been

identified. A boolean function is a function, which yields a boolean value. If a function

requires a parameter of a certain type and another function yields this type, the functions

can be nested. The DSL provides the boolean functions shown in Table 6.2. The first three

functions are logical connections, which allow to model conjunctions, disjunctions and

negations. This set of boolean functions is functional complete [End01, p. 49], i.e. all truth

tables, which can be constructed based on the given boolean parameters, can be expressed.

This expressiveness is useful because conditions are often not as simple as performing

one single test on variables. Besides the logical connections, the DSL provides functions

for performing tests on sets of labels, individual labels and on integers.

The functions for performing tests on sets of labels shall also be functional complete, i.e.

all tests covered by the algebra on sets shall be expressible. The functions set union ∪, set
intersection ∩ and set complement 𝑋𝐶

are functional complete to construct sets based on

existing sets [Sto79, p. 18]. The DSL covers all of these functions as shown in the list of

supported functions for constructing sets in Table 6.3. The provided complement function

provides a relative complement, i.e. a complement of a given set 𝑋 to another set𝑈 , for

which 𝑋 ⊆ 𝑈 holds. The elements in𝑈 depend on the particular context. Therefore, the
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Function First Input Second Input

And Boolean Boolean

Or Boolean Boolean

Negation Boolean Boolean

EmptySet CharacteristicSetReference —

Subset CharacteristicSetReference CharacteristicSetReference

ElementOf CharacteristicReference CharacteristicSetReference

Equality CharacteristicReference CharacteristicReference

Inequality CharacteristicReference CharacteristicReference

GreaterThan Integer Integer

LessThan Integer Integer

Table 6.2.: DSL functions yielding a boolean result.

Function First Input Second Input

Intersection CharacteristicSetReference CharacteristicSetReference

Union CharacteristicSetReference CharacteristicSetReference

Subtract CharacteristicSetReference CharacteristicSetReference

Complement Characteristic Types [1..*] CharacteristicSetReference

CreateSet CharacteristicReference —

Table 6.3.: DSL functions yielding a reference to a characteristic set.

function in the DSL takes a set of characteristic types as a first argument to construct𝑈

as a union of all literals of the characteristic types. The second argument is the set 𝑋 of

labels, for which a complement shall be constructed. The subset test ⊆ is feature complete

to perform tests on existing sets [Sto79, p. 20]. The DSL supports the subset test as shown

in Table 6.2.

To initially define sets, either variables or the CreateSet function (see Table 6.3) can be

used. Variables can stem from data and node selectors or from Constants. Considering
variables from the selectors is necessary to evaluate the available labels on nodes and data,

which is essential for identifying violations. Constants provide sets of fixed labels, which

can be used to construct new sets or compare existing sets with. For instance, a constant

can provide the empty set or a set of all labels of a certain characteristic type. Both sets

are valuable in comparisons. The CreateSet function converts a single label to a set, which

is necessary to compare it with sets.

The remaining boolean functions EmptySet, ElementOf, Equality and Inequality from Ta-

ble 6.2 are just shorthands for combinations of the previously described functions. Testing,

whether a set 𝑋 is empty, can be expressed by 𝑋 ⊆ {}, where a constant provides the
empty set. Testing whether an element 𝑥 is part of a set 𝑋 can be expressed by {𝑥} ⊆ 𝑋 ,

where the CreateSet function constructs a set from an element 𝑥 . Testing for equality of

two individual elements 𝑥 and 𝑦 can be expressed by {𝑥} ⊆ {𝑦} ∧ {𝑦} ⊆ {𝑥}. Testing for
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Function First Input Second Input

Index CharacteristicReference —

Table 6.4.: DSL functions yielding an integer result.

inequality of two elements is given by negating the equality test. The remaining charac-

teristic set function Subtract from Table 6.3 also just provides a shorthand. Constructing a

new set by subtracting set 𝐵 from set 𝐴, i.e. 𝐴/𝐵, can be expressed by 𝐴 ∩ 𝐵𝐶 , where the
complement of 𝐵 is defined with respect to the set of all elements of 𝐴 and 𝐵, i.e. 𝐴 ∪ 𝐵.

Using the index of a single label in a comparison is a useful feature, which we have used in

defining the label comparison for information flow analyses in Section 6.2.1.1. To support

this, the DSL provides the Index function shown in Table 6.4, which yields the index of the

label in the corresponding enumeration as integer. The boolean functions GreaterThan and

LessThan test whether integer 𝑖 is greater than 𝑗 or whether integer 𝑖 is less than integer 𝑗 ,

respectively. Because the only function providing integers in the DSL is the Index function,
those two boolean functions essentially always compare indexes of labels.

The only domain concept, which we have not explained so far, is the reuse of existing

characteristic types (D8). Essentially, we already referred to characteristic types in the

previous explanations and assumed that they are available. To actually make them avail-

able, we have to specify the location of the characteristic types as well as which of the

characteristic types at the specified location shall be used. To specify the location, the

DSL provides an Import statement. To specify the characteristic types to be used, the DSL

provides a Type statement. The type statement allows to rename the characteristic type in

the context of the DSL to make specifications more concise.

6.5.3. Concrete Syntax

The concrete syntax assigns one possible representation to the elements of the abstract

syntax. The sole purpose of the concrete syntax in this thesis is to make examples given in

the DSL readable and comprehensible. Therefore, we do not consider the concrete syntax

a contribution. Nevertheless, we define the concrete syntax according to common best

practices [Kar+09]. One of the provided guidelines suggest to use the same style over

multiple languages, which might be used. We use a textual syntax because the style of

writing expressions in textual notations is more common than writing them in graphical

notations. We extensively use expressions in conditions, which contribute a considerable

amount of expressiveness to the DSL. Therefore, it is reasonable to tailor the language to

writing expressions.

In the following, we introduce the concrete syntax using two examples. The first example

is a simple information flow analysis that detects when data, which has been classified as

high, arrives at a node, which has been cleared for low data. The example demonstrates

the usage of fixed label patterns to formulate constraints. The second example is the
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Listing 6.16: Constraint requiring data classified high to never flow to nodes cleared for low data.

1 import "characteristicTypes.xmi"

2 type Classification : "Classification"

3 type Clearance : "Clearance"

4

5 constraint NoFlowHighToLow {

6 data.property.Classification.High

7 NEVER FLOWS

8 node.property.Clearance.Low

9 }

information flow analysis using a linear ordered lattice as demonstrated in Section 6.2.1.1.

The example demonstrates the usage of flexible label patterns to formulate constraints.

We explain the remaining DSL elements not covered by the two examples afterwards.

The constraint definition for the first example is given in Listing 6.16. The constraint refers

to particular labels, which are a high data classification and a low node clearance. Before

the architect can use these labels, he/she has to specify the location of the characteristic

types via the import statement followed by the location (line 1). Afterwards, the architect

can specify the characteristic types he/she wants to use by the type statement. The

statement defines the name, which shall be used to refer to the characteristic type, in

constraints. This is beneficial because the names can be shortened to make the constraint

definition more concise. In lines 2 to 3, the characteristic types effectively do not get

a new name because the new name written first is the same as the old name written

second. A constraint can now refer to the characteristic type. To define a constraint, the

keyword constraint is used followed by the name of the constraint. In line 5, the name is

NoFlowHighToLow. The definition of the constraint is placed within a block delimited by

curly brackets, which is a commonly used notation in various programming languages.

The constraint definition for fixed label patterns is usually shorter than for flexible label

patterns because only few specification elements are necessary. Every constraint definition

has to contain at least one data selector to specify the data to be tested and at least one

destination selector to specify the node to be tested. A data selector always starts with the

keyword data as shown in line 6. A data selector for a label continues with the keyword

property followed by the characteristic type of the label. In our example, we would

like to select data, which is classified high. Therefore, we append the High literal to the

characteristic type. All parts of the data selector are connected by dots, which is also a

commonly used notation for navigating through properties of elements in programming

languages. A node selector always starts with the keyword node as shown in line 8. A node

selector for a label continues with the keyword property followed by the characteristic

type of the label. In our example, we select the Low literal from the Clearance characteristic

type. The selectors are connected by the NEVER FLOWS keywords (line 7).

The constraint definition for flexible label patterns is based on the previously described

language elements but uses conditions and variables in addition. The example shown in

Listing 6.17 presents the constraint used to detect violations of information flow require-
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Listing 6.17: Constraint requiring that data classifications must never be lower than node clearances.

1 import "characteristicTypes.xmi"

2 type Classification : "Classification"

3 type Clearance : "Clearance"

4

5 constraint NoFlowAgainstLattice {

6 data.attribute.Classification.$CLASS

7 NEVER FLOWS

8 node.property.Clearance.$CLEAR

9 WHERE

10 index(CLASS) > index(CLEAR)

11 }

ments given by a linear ordered lattice. The language constructs up to including line 5

are the same as in the previous example. The first difference is the data selector in line 6.

Instead of a fixed literal, the selector defines a variable CLASS. To indicate that the name is

not the name of a literal but the name of a variable, a dollar sign $ is prepended. Various

programming languages such as PHP use dollar signs to mark variables. The node selector

in line 8 also introduces a variable instead of using a fixed literal. As already explained as

part of the abstract syntax, the meaning of a variable is that the particular classification or

clearance label is stored in the variable. To compare the variables, which makes the label

pattern flexible, architects have to formulate a condition on the variables. A condition

always starts with the WHERE keyword (line 9), which is also used in query languages such

as SQL to start conditions. The actual condition is given by a boolean expression. In our

example, the condition is that the index of the data classification literal is greater than

the index of the node clearance literal. The boolean expression is given by the greater

function. The operands are integers yielded by the index functions. The greater function

is an infix operation taking two arguments, which is the commonly used definition for

this function in many programming languages.

Constants provide the means to define variables holding labels without referring to par-

ticular data or nodes. Constants are useful if predefined sets of labels shall be used in

multiple comparisons. In ABAC, such predefined sets can represent the subject and object

identifiers. Listing 6.18 illustrates various constant definitions. Constants are defined after

types and before constraints. A constant always starts with the keyword const followed

by the identifier of the constant. If a constant describes a set of labels, the identifier has

curly brackets as a postfix. This is the same notation as for defining set variables in data

and node selectors. To define the constant, an equal sign followed by the characteristic

type and a literal selector has to be given. If a constant only holds one label like shown in

line 1, the literal can be directly connected to the characteristic type via a dot. If multiple

labels shall be part of a set like shown in line 2, the literals are written within square

brackets and separated by commas. If all available literals of a characteristic type shall be

selected, an asterisk can replace the literal selector as shown in line 3. The notation to

select labels is the same as the selection of fixed labels in node and data selectors.
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Listing 6.18: Excerpt of concrete syntax demonstrating the definition of constants.

1 const HIGH = Classification.High

2 const HIGH_AND_LOW{} = Classification.[Low,High]

3 const ALL{} = Classification.*

Listing 6.19: Excerpt of concrete syntax demonstrating the use of selectors.

1 constraint Demonstration {

2 data.any

3 NEVER FLOWS

4 node.type.Actor & node.property.Clearance.LOW

5 FROM

6 node.property.Clearance.HIGH

7 }

Within the constraint, a software architect can use more data and node selectors than

shown in the previous two examples. Listing 6.19 shows an excerpt of a constraint requiring

that any type of data must never flow from a node with high clearance to an actor node,

which has low clearance. To not restrict the considered data, the any selector can be used

on data as shown in line 2. Besides the properties of a node, its type can also be considered

as shown in line 4. Possible choices of node types are Actor, ActorProcess, Store and

Process. To select a node, from which the selected data has been transitively received, the

FROM keyword can be used after the node selectors of the destination as shown in line 5.

After the keyword, all node selectors, which can also be used to select the destination

node, can be used as shown in line 6.

Besides the already presented functions, all functions introduced in Section 6.5.2 have a

corresponding concrete syntax and can be used. To solve ambiguities when using multiple

functions, we define the function precedence as well as the associativity as shown in

Table 6.5. Functions with precedence 𝑖 are evaluated before functions with precedence

𝑗 if 𝑖 > 𝑗 . We use the infix notation, i.e. we place the function symbol between the two

operands, if common programming languages also use this notation. For instance, it is a

common approach to place the function symbols for logical conjunction and disjunction

between the two operands. The same holds for comparisons known from arithmetic such

as testing for greater, less, equal and inequal operands. For all remaining functions, we

use the prefix notation. This is reasonable for set functions because these functions use

dedicated symbols when provided in infix notation. However, using special symbols not

available in the ASCII character set makes using the DSL more complicated. To meet

the standards of common programming languages, we made the logical conjunction and

disjunction left-associative and the logical negation right-associative. The remaining

functions are not associative because there is no ambiguity to solve: the boolean infix

functions and the remaining prefix functions cannot appear directly after each other or

clearly mark their arguments using parentheses.
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Precedence Associativity Notation Functions

1 left infix Or

2 left infix And

3 right prefix Negation

4 none infix Greater, Less, Equality, Inequality

4 none prefix all remaining functions

Table 6.5.: Function precedence, associativity and notation in DSL.

6.5.4. Mapping to Logic Program

We assign formal semantics to the elements of the DSL by describing how to map these

elements to Prolog clauses. Using a mapping to describe the formal semantics of elements

of an abstract syntax is the same approach as we have used in assigning formal semantics

to the elements of the extended DFDs. In the following, we describe one fundamental

assumption for the mapping and explain the mapping rules afterwards.

The following mapping rules assume that the mapping from the DFD, on which the query

shall be executed, to the logic program already has been executed and that a transformation

trace is available. The trace describes which DFD element has been mapped to which

element in the logic program. This information is necessary to resolve references from

the DSL constraint to elements of the extended DFD. In order to resolve, for instance, a

reference to a characteristic type in a constraint, the mapping has to look up the clause

in the logic program, which represents that particular characteristic type. The clauses

resulting from mapping the constraint to a logic program can then refer to the correct

characteristic type clause.

A constraint describes a pattern for detecting certain data, which arrives at a certain

node. To allow to evaluate that pattern, a rule taking the node, the input pin and a

flow tree is useful. This triple of information uniquely identifies an arriving data item.

Because there can be multiple constraints, it is necessary to distinguish multiple rules for

multiple constraints. An argument, which contains the name of the constraint, is a good

approach because this preserves the particular constraint name and, therefore, makes it

easy for a software architect to relate a result to a particular constraint later. Encoding

the constraint name in the rule name would also be possible but provides no benefit

compared to the argument containing the constraint name. The resulting rule looks like

illustrated in the first mapping rule shown in Figure 6.4. The upper part shows an excerpt

of a constraint given in the DSL. The lower part shows an excerpt of the resulting logic

program. The body of the rule binds the variables given in the head of the rule by using

the inputPin/2 and flowTree/3 clauses. The two clauses are necessary for considering all

possible combinations of nodes N, input pins PIN and flow trees S by reevaluating the rule.

The following mapping rules extend the rule body by the selection criteria. Because the

selection criteria have to match the data and node, the criteria is added to the conjunction

of clauses in the rule body, i.e. the clauses have to be true.
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1 constraint Foo {

2 // content omitted

3 }

⇓
4 constraint(’Foo’, N, PIN, S) :-

5 inputPin(N, PIN),

6 flowTree(N, PIN, S).

Figure 6.4.: Example of mapping from empty DSL constraint to logic program.

1 const HIGH = Classification.High

2 const HIGH_AND_LOW{} = Classification.[Low,High]

3 const ALL{} = Classification.*
4 const EMPTY{} = []

⇓
5 constraint(’Foo’, N, PIN, S) :-

6 % omitted standard clauses

7 Var_HIGH = ’High’,

8 VarSet_HIGH_AND_LOW = [’Low’, ’High’].

9 VarSet_ALL = [’Low’, ’High’],

10 VarSet_EMPTY = [],

Figure 6.5.: Example of mapping constants from DSL to logic program.

Constants provide variables to be used in comparisons or set functions inside conditions.

A constant contains an arbitrary number of literals. It is reasonable to consider literals

instead of labels, i.e. the tuple of characteristic type and literal, because this enables flexible

comparisons: All analyses described in Section 6.2 compare literals from different charac-

teristic types, which is possible because the value range, i.e. the underlying enumeration,

is the same. Therefore, constants can be mapped to literals or sets of literals as shown in

Figure 6.5. A constant, which refers to a literal, is mapped to a variable, which represents

exactly this literal. In this and all following examples, the identifiers of the literals and

characteristic types are just their names for the sake of simplicity. In the actual mapping,

the identifiers would be unique and would have to be looked up in the transformation

trace of the DFD. A set constant is mapped to a variable unified with a list. If particular

literals are given, these literals are added to the list. A wildcard * is mapped to all literals

of that particular characteristic type. Empty set constants are also possible and mapped to

an empty list. All variables resulting from the mapping are added to the rule body after the

standard clauses as presented in Figure 6.4. This is reasonable because all following clauses

can refer to these variables, which is the expected usage scope of global constants.

Data selectors specify selection criteria on data. There are two types of selectors. The

Any Selector selects any data, which means that the constraint shall consider all possible

incoming data items. Because the standard clauses already consider all possible incoming

data items, no further clauses are necessary. The Foo constraint in Figure 6.6 uses the Any
Selector, which does not lead to any additional clauses in the corresponding Prolog rule.

104



6.5. DSL for Defining Custom Analyses

1 constraint Foo {

2 data.any NEVER FLOWS // remainder omitted

3 }

4 constraint Bar {

5 data.property.Classification.High &

6 data.property.Classification.$CLASS{} NEVER FLOWS // remainder omitted

7 }

⇓
8 constraint(’Foo’, N, PIN, S) :-

9 % omitted standard clauses

10 % no added clauses based on any selector

11 constraint(’Bar’, N, PIN, S, VarSet_CLASS) :-

12 % omitted standard clauses

13 (

14 characteristic(N, PIN, ’Classification’, ’High’, S),

15 findall(V, characteristic(N, PIN, ’Classification’, V, S), VarSet_CLASS)

16 )

Figure 6.6.: Example of mapping data selectors from DSL constraint to logic program.

The Property Selector selects data items based on their assigned labels. A selector referring

to a particular label such as the selector in line 5 of Figure 6.6 requires that a particular

label is available on the data item. The characteristic/5 clause shown in line 14 has

the same meaning: the clause evaluates to true if the particular label is available for the

node, pin and flow tree under consideration. Consequently, the mapping generates such a

characteristic/5 clause for every property selector referring to a particular label. If the

property selector introduces a characteristic set variable, the intended meaning is that the

variable captures all literals for the given characteristic type on the incoming data item. It

does not influence the selection of data directly because only conditions evaluating the

introduced variable affect the selection. In line 6 of Figure 6.6, all classification literals shall

be captured in the variable CLASS. In Prolog, the clause in line 15 has the same semantics.

The findall/3 clause finds all solutions for the goal template given as second argument.

The variable given as first argument represents a single solution in the goal. The variable in

the third argument is unified with the list of solutions, i.e. all solutions. The goal template

is the same clause as for matching particular literals but the goal template uses the solution

variable in place of the particular literal. The solutions are available via the third argument,

which is the variable VarSet_CLASS in Figure 6.6. For every variable introduced in the

DSL, an additional argument is added to the head of the constraint/4 clause. This is

necessary to report the contents of the variable back to the software architect. The meaning

of multiple selectors in the DSL is that all individual selectors have to match. Using a

conjunction to connect the individual clauses resulting from property selectors has the

same meaning in Prolog.

Node selectors specify selection criteria for nodes. The selectors can specify the Destination
of data as well as the Source of data. In the following, we explain the usage of the selectors

to specify the Destination and will explain the usage for specifying the Source in the next
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1 constraint Foo {

2 // data selector omitted

3 NEVER FLOWS node.property.Clearance.Low

4 }

5 constraint Bar {

6 // data selector omitted

7 NEVER FLOWS node.type.Actor & node.property.Clearance.$CLEAR{}

8 }

⇓
9 constraint(’Foo’, N, PIN, S) :-

10 % omitted standard and data selector clauses

11 nodeCharacteristic(N, ’Clearance’, ’Low’).

12 constraint(’Bar’, N, PIN, S, VarSet_CLEAR) :-

13 % omitted standard and data selector clauses

14 (

15 actor(N),

16 findall(V, nodeCharacteristic(N, ’Clearance’, V), VarSet_CLEAR)

17 )

Figure 6.7.: Example of mapping node selectors from DSL constraint to logic program.

paragraph. There are three types of selectors. The Property Selector selects nodes based on

assigned labels. A fixed label in the property selector as illustrated in line 3 of Figure 6.7

means that that fixed label has to be assigned to a node. The nodeCharacteristic/3

clause in line 11 with the label, i.e. the characteristic type and the literal as second and

third parameter, tests this criteria on a node N. Besides fixed labels, variables can capture

literals of a certain characteristic type applied to a node. The second selector in line 7

introduces the CLEAR variable to capture all applied clearance labels of the node. In Prolog,

a findall/3 clause as shown in line 16 captures the literals in the variable VarSet_CLEAR.

Node selectors, which introduce variables, do not imply restrictions for selecting nodes

but just capture information to be evaluated later. The Type Selector selects nodes based
on their type. The first selector in line 7 selects actor nodes. In Prolog, the corresponding

counterpart is the clause, which introduced the identifier of a node of a certain type. In

the particular example, the actor/1 clause as shown in line 15 ensures that the node

identifier N belongs to an actor. The mapping rules for other node types are analogous.

The Identity Selector selects nodes based on their identity. To map such a selector to Prolog,

the mapping first looks up the node in the trace to find its identifier in Prolog. Second, a

unification of the node variable N with this identifier is added. The meaning of multiple

selectors in the DSL is that all individual selectors have to match. Using a conjunction

to connect the individual clauses resulting from the selectors has the same meaning in

Prolog.

To specify the Source of data, the same types of node selectors can be used as for specifying

the Destination of data. The major difference in mapping the selectors for sources is that

an additional argument N_FROM is added to the head of the constraint as shown in line 5 of

Figure 6.8. Adding the argument is necessary to report the identified source node back to

software architects. The clauses resulting from the mapping of the node selectors are the
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1 constraint Foo {

2 // data and node selector omitted

3 FROM node.type.Actor

4 }

⇓
5 constraint(’Foo’, N, N_FROM, PIN, S) :-

6 % omitted standard and data selector clauses

7 actor(N_FROM).

Figure 6.8.: Example of mapping origin node selectors from DSL constraint to logic program.

same but all usages of the variable N, which represents the destination node, are replaced

by the variable N_FROM, which represents the source node. An example of the resulting

clause for the type selector used in line 3 is given in line 7.

The condition specifies selection criteria based on the variables used in property selectors.

The clauses resulting from mapping the condition are added to the conjunction of previous

clauses. The mapping of individual DSL functions to Prolog clauses is as shown in Table 6.6.

Functions representing boolean logic and boolean functions are directly mapped to their

Prolog equivalents. The functions and Prolog predicates in the same row of the table

have the same meaning. The only difference is the mapping of the EmptySet function.
The function is mapped to the Prolog clause length/2 with 0 as a fixed second argument.

Because a length of zero elements is the same as an empty set, the meaning remains

the same. Functions not yielding booleans cannot be mapped as straight forward as

boolean functions because Prolog does not support nesting functions like the DSL does.

Others such as Cabot, Clarisó, and Riera [CCR14] also recognized this challenge when

mapping functional to logic expressions. Logic clauses store the result of a function not

yielding a boolean value in a dedicated variable. All functions yielding sets as well as

the Index operation yielding an integer have a dedicated argument in their signature.

Therefore, a function 𝑓 having another function 𝑔 as an argument in the DSL refers to

the result variable of 𝑔 in the logic program. In Prolog, it is not necessary that the result

of function 𝑔 is available before evaluating function 𝑓 because Prolog can determine

valid inputs, which make 𝑓 succeed. If the predicted input is no output of 𝑔, the solving

algorithm uses backtracking to determine other possible input values for 𝑓 . However,

evaluating the functions in applicative order [ASS96, p. 399], i.e. evaluating all arguments

to a function before evaluating the function, can reduce the amount of used backtracking.

In the following, we explain the mapping of nested functions using the applicative order.

The algorithm for mapping nested functions is essentially a depth-first search always

starting at a boolean function taking at least one non-boolean argument. Only functions are

considered in the algorithm. A function is mapped to the corresponding clause according

to Table 6.6 and a temporary variable is introduced for representing the result if a result

variable is necessary. In the example given in Figure 6.9, the non-boolean function of type

Union is mapped to the Union clause and an anonymous result variable. The arguments

of the functions are mapped based on the following rules: A characteristic set reference

107



6. Confidentiality Analyses based on Label Propagation

Function Predicate Result Variable

And ,/2 —

Or ;/2 —

Negation \+/1 —

ElementOf memberchk/2 —

EmptySet length/2 —

Equality =/2 —

GreaterThan >/2 —

Inequality \=/2 —

LessThan </2 —

Subset subset/2 —

Complement complement/3 ✓
CreateSet =/2 and [] ✓
Index characteristicTypeValue/3 ✓
Intersection intersection/3 ✓
Subtract subtract/3 ✓
Union union/3 ✓

Table 6.6.: Mapping between functions in conditions of DSL and clauses in logic program.

left

right

: Or

value

: EmptySet

left right

: ElementOf

c : CharRef

left right

: Union

A : SetRef B : SetRef

left

right

: Or

listsize

: Length

0 : Int

left

right

: And

1 2 result

: Union

B : VarA : Var : Var

elementlist

: Member

c : Var

Figure 6.9.: Example of mapping between DSL condition (left) and Prolog (right) given as UML object

diagram.

is mapped to a variable. In the example, the characteristic set reference A is mapped to

a variable A in the logic program. A function (used as argument in another function) is

mapped to the variable representing the result. In the example, the Member clause refers

to the result variable of the Union clause. Because the depth-first search ensures that all

arguments are evaluated before their use, the conjunction of all generated clauses in the

order of their generation ensures an efficient evaluation without the need for extensive

backtracking.
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ID Description User Covering Part

R2.1 every element covered — — (already met before)

R2.2 derivation of properties analysis — (already met before)

R2.3 origin of properties analysis — (already met before)

R2.4 analyses based on goals expert analysis procedure

R2.5 analyses based on goals architect DSL for custom analyses

R2.6 tracing of properties architect — (already met before)

R2.7 automated analyses architect analysis procedure

R2.8 information flow expert information flow analyses

R2.9 access control expert access control analyses

Table 6.7.: Overview on described parts and met requirements by analysis definitions.

6.6. Requirements Coverage

The analysis procedure, the DSL as well as the particular analyses cover the requirements

regarding the semantics, which have not been covered so far. Table 5.2 gives an overview

on the requirements and how the parts of this chapter address them. Requirements that are

not addressed (indicated by dash in the last column) are already covered by the semantics

as described in Section 5.2.3.

As part of the analysis procedure, we sketched how security experts can define analyses

based on analysis goals (R2.4). We demonstrated the definition of analyses by the security

expert for particular information flow analyses as well as access control analyses. Thereby,

we showed that the underlying semantics support information flow analyses (R2.8) as well

as access control analyses (R2.9). Software architects can define analyses (R2.5) based on

their analysis goals using a DSL, which frees the architect from learning logic programming

to formulate analyses. As the procedures for analyses defined by security experts as well

as by software architects show, the defined analyses can be fully automated after their

definition (R2.7). Software architects can execute the analyses without additional inputs

besides the software architecture and the predefined analysis definition.

The DFD semantics meet all requirements regarding the semantics, which we demonstrated

jointly in this section and in Section 5.2.3.

6.7. Assumptions and Limitations

This section discusses assumptions and limitations of the particular confidentiality analyses

and the DSL for formulating analyses.
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Consideration of incoming flows Constraints formulated in the DSL describe forbidden

data flows to nodes. Consequently, the generated label comparison function tests for

illegal incoming data flows, i.e. data flows arriving at an input pin. We assume that

only considering incoming data is sufficient because all particular analyses presented

in this chapter only consider incoming data flows. Outgoing data flows, i.e. data flows

leaving an output pin, are not considered and software architects cannot write constraints

for outgoing data. Testing outgoing data flows for confidentiality violations is counter-

intuitive: If the node must not access the outgoing data item, it is likely that the node

also was not allowed to access the incoming data items used to create the outgoing data

item in the first place. If the node produces data, which it is not allowed to access, it is

questionable how the node actually produced this data item. It is more likely that the

intention of a constraint on outgoing data is to limit the data, which a node can inject into

the system. However, such a limitation targets integrity rather than confidentiality.

Focus on confidentiality All presented analyses focus on confidentiality, which is also the

focused security objective of this thesis. However, the confidentiality mechanisms usually

also provide means for enforcing integrity. We demonstrated how an analysis definition

can consider integrity aspects in the DAC analysis for write violations in Section 6.2.2.1 on

page 75. Therefore, we are positive that the analysis definition can also capture integrity

aspects of the confidentiality mechanisms. However, profound research on considering

other security objectives such as integrity is not in the focus of this thesis but left to future

work.

Confidentiality requirements in logic program The extended DFDs focus on representing

relevant information about data and nodes via labels. The confidentiality requirements

are encoded in the label comparison function. If comparing labels is not sufficient to

represent the confidentiality requirements, security experts can provide additional in-

formation. However, security experts can only provide this information via additional

clauses in the logic program. There are no dedicated, tailored models to represent the

requirements. We do not see this as a crucial limitation because it is always possible to

create a metamodel for representing the requirements. An automated mapping can then

transform the requirements into the additional clauses in the logic program.

No state or time in analyses The DFD semantics do not provide a notion of state or time.

Therefore, analyses cannot refer to a certain state and cannot build temporal relations.

However, this would be necessary to represent specific aspects of confidentiality mech-

anisms such as the revocation of rights in DAC or changing assignments within RBAC

sessions. Missing state and time limits the expressiveness of analyses but it favors system

models with low complexity. Considering state or time would require more detailed system

specifications, which are more challenging to create for software architects. The gaps

in expressiveness only affect specific aspects of confidentiality mechanisms but not the

fundamental concepts.
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No instance information in analyses The DFDs describe systems, actors and data on a type

level, which means they do not represent individual users or data. Consequently, analyses

cannot refer to individual actors or data, which would be necessary to consider dynamic

constraints in RBAC that affect role assignments to individual users. This limitation is

the result of a trade-off between expressiveness and the required complexity for creating

the DFDs. It is questionable whether software architects actually have such detailed

information about individual actors and data while creating the software architecture.

6.8. Summary

In this chapter, we presented the means for defining analyses and we presented particular

analyses. Together, both meet the remaining open requirements regarding the DFD

semantics defined in Section 4.1 or at least demonstrate that the semantics meet the

requirements. We elaborated on the requirements in Section 6.6.

The analysis procedure covered in Section 6.1 specifies the interaction between a security

expert, a software architect and automated tooling. Security experts provide reusable

characteristics, behaviors and a label comparison function. Software architects bind these

elements to system elements in the software architecture to enrich the architecture by

information relevant for confidentiality. The automated toolingmaps the enriched software

architecture and the label comparison function to a logic program based on the mapping

described in Section 5.2.2. Executing the query, i.e. the label comparison function, yields

violations.

Representing particular analyses in terms of labels, label propagation and label comparison

functions requires security expertise. We illustrate how to define analyses for common

information flow and access control mechanisms in Section 6.2. These mechanisms can be

extended by encryption as an additional option to protect information, which we describe

in Section 6.3. Combining multiple confidentiality mechanisms, and therefore also the

corresponding analyses, can provide improved protection of confidentiality. We describe

how to integrate multiple analyses as part of Section 6.4.

To support software architects in defining confidentiality analyses, we introduce a DSL,

which does not require expertise in logic programming, in Section 6.5. The DSL sacrifices

expressiveness compared to label comparison functions specified by logic programming

in favor of comprehensibility and low initial learning effort. Constraints specified in the

DSL are mapped to a query to the logic program, which can then be used to identify

violations.

The major assumption, which we discuss in Section 6.7, is that only incoming data flows

are relevant for detecting confidentiality violations. We justify this assumption by the

analyses for the most common information flow and access control mechanisms. Major

limitations also discussed in Section 6.7 are that analyses cannot refer to state, time or

instance level information. This limits expressiveness regarding some specific aspects

of confidentiality mechanisms. We do not consider this limitation crucial because the
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aspects, which we cannot express, only represent a small amount of aspects within the

respective confidentiality mechanisms and because information for creating detailed

models containing state, time and instances cannot be expected to be available while

creating the software architecture.
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The DFD syntax and semantics described in Chapter 5 and the DFD analyses described

in Chapter 6 provide powerful means to analyze DFDs for violations of confidentiality

requirements. However, the restriction to DFDs as ADL is too limiting for software

architects because they often use other ADLs as a survey on the use of ADLs [Ozk18]

shows. Therefore, we provide guidelines on how to integrate the DFD-based analyses into

existing ADLs.

The integration guidelines in Section 7.1 introduce the role of a tool engineer and provide

him/her with a process for extending an existing ADL. We refer to this process as inte-
gration procedure. To demonstrate that the procedure is applicable to ADLs, which use

communication based on control flows, and to ADLs, which use communication based on

data flows, we apply the procedure to the Palladio ADL in Section 7.2. The Palladio ADL

[Reu+16] uses communication based on control flows but can also make use of data flows

with a recent extension [WSK20]. By applying the procedure to a subset of Palladio, which

uses control flows, and to another subset of Palladio, which uses data flows, we can show

the applicability to both types of ADLs. In addition, we show how to make the DSL for

formulating custom analyses usable with the ADLs. The integration guidelines as well as

the applications to Palladio are based on existing publications [SHR19; Sei+21]. In contrast

to our previous publications, we detail the descriptions and provide more fine-grained

guidelines.

Eventually, we show that the integration guidelines meet the requirements for these

guidelines in Section 7.3. We discuss assumptions and limitations in Section 7.4 and

summarize the chapter in Section 7.5.

7.1. Integration Guidelines

The fundamental idea to realize the integration of the DFD analyses into ADLs is to map

architectures given in the ADL to a DFD and reuse the analysis capabilities presented in

Chapter 5 to identify confidentiality violations. The approach is beneficial because the

existing analysis framework as well as the analysis definitions for DFDs can be reused. The

prerequisite for defining the mapping between ADL and DFD is that the ADL provides all

domain concepts, which are necessary to define the DFD. It can be necessary to extend the

existing ADL to bridge potential gaps by adding missing concepts. The DSL for defining
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constraints can be reused as well but it has to be adjusted to comply with the terminology

of the ADL. In the following, we explain these steps of the integration in more detail.

We introduce the tool engineer role, which is responsible for executing the integration

procedure illustrated in Figure 7.1. The first activity is to compare the domain concepts,

which are available in the ADL, with the essential domain concepts for conducting DFD-

based analyses. For instance, descriptions of users are one essential domain concept. Next,

the tool engineer addresses the identifiedmissing concepts by an ADL extension. Amissing

concept is a concept, which is required for confidentiality analyses but is not available

in the ADL, i.e. the ADL does not provide the required information. The comparison of

existing with required concepts lowers the amount of necessary changes in the ADL and

increases reuse (R3.3). The resulting extended ADL provides concepts to represent all

information required for creating a DFD including confidentiality aspects. Based on the

extended ADL, the tool engineer creates a mapping to a DFD. After this step, software

architects can map architectures given in the ADL to DFDs and can then use the existing

analysis capabilities for DFDs. Reusing the analysis framework for DFDs supports the

tool engineer in creating an analysis framework for the ADL, which is as powerful as

the analysis framework for DFDs (R3.4). This means software architects can analyze

architectures given in the extended ADL for the same confidentiality violations as they

already can for DFDs. To formulate custom analyses, software architects need an adjusted

DSL for formulating analyses. The tool engineer creates a new so-called constraint DSL,

which only uses concepts from the extended ADL. The DSL for the ADL is based on the

DSL for DFDs. The DSL together with the mapping allows the architect to model and

analyze architectures without knowledge about DFDs and logic programming (R3.5 and

R2.5). In conclusion, the integration procedure yields an extended ADL, a mapping form

the ADL to a DFD and the constraint DSL. In the following, we give more details on the

analysis procedure, the essential concepts and the steps of the integration procedure.

Software architects can conduct analyses in a similar way as for DFDs after the tool

engineer has applied the integration procedure to an existing ADL. The analysis procedure

shown in Figure 7.2 is an extended version of the analysis procedure for DFDs, which

we presented in Section 6.1. The definition of analyses is still the task of the security

expert and the activities to be done by the software architect are also the same as for DFDs:

he/she has to define the system, might define a custom constraint and has to adjust the

system in case of identified violations. The only difference in the analysis procedure is

that the tooling has to carry out two mappings: First, the tooling maps the architecture

given in the ADL to a DFD. As a result, the step produces a DFD as well as a trace, which

links elements from the architecture to newly created elements in the DFD. Second, the

tooling maps the DFD to a logic program. As a result, the step produces a logic program

as well as a transitive trace, which links elements from the architecture to elements in the

newly created logic program. After these two mappings, the remaining analysis procedure

is the same as for DFDs. If the software architect has defined a custom constraint, the

tooling maps the constraint to a label comparison function. The mapping now uses the

transitive transformation trace because the architect used elements from the architecture

to define the constraint instead of DFD elements. Afterwards, the tooling runs the label

comparison by propagating labels and comparing the labels using the comparison function.
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Figure 7.1.: Overview on integration procedure given as BPMN diagram.

The software architect uses the detected violations to adjust the system. The benefit of

this procedure is that we can reuse most of the existing tooling as well as existing analyses.

The software architect does not have to be aware of the DFD or even logic programming

because the tooling does all steps involving DFDs or logic programming automatically

without intervention of the software architect. Consequently, the analysis of a modeled

architecture can be fully automated (R2.7).

Before we give details on the individual activities of the integration procedure, we collect

the essential concepts for deriving a DFD from an architecture given in an ADL. First of

all, the ADL has to provide means for describing processing steps (I1) and communication

between these steps (I2). These concepts are necessary to derive the system structure

consisting of processes and data flows. The processing steps can be given as coarse-grained

components or fine-grained activities. The communication can be calls, exchanged events

or exchanged data. We do not restrict the communication paradigm here as requested by

the requirements to support ADLs using control flows (R3.1) as well as ADLs using data

flows (R3.2). A notion of stores, e.g. by describing databases or filesystems, is helpful to

recognize stores and recreate them in the DFD but this is not essential. To derive actors, a

notion of a user (I3) and his/her interaction with the system (I4) is necessary. Users are

crucial because they start and terminate data flows. Covering their interaction with the

system is necessary to determine the data flows from and to the users. The concepts up to

now represent the DFD structure. ADLs usually already provide these concepts because it

is essential to describe the structure and behavior of the architecture. To summarize, the

following concepts are essential for representing the DFD structure:

I1) processing steps
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already part of the DFD analysis procedure).

I2) communication between processing steps

I3) users

I4) user activities

The ADL has to contain concepts to represent information relevant for expressing and an-

alyzing confidentiality. The properties of nodes (I5), which are relevant for confidentiality,

have to be part of the ADL. It is not important whether these properties are predefined,

given by particular node types or encoded in textual annotations as long as the used

modeling mechanism allows to represent discrete values. In the analysis definitions pre-

sented in Section 6.2, the properties of nodes were essential to detect violations in the

label comparison. Besides properties of nodes, properties of data are the other input to
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label comparisons. The ADL has to provide concepts for representing initial properties

of data (I6) as well as the effect of data processing on data properties (I7). Both concepts

are essential for executing the label propagation because the propagation requires initial

labels as well as propagation functions. Again, it does not matter whether the modeling

mechanism uses predefined behaviors or flexible means for representing the behavior as

long as the mechanism can describe the effect on data properties. Together, these three

concepts provide the confidentiality-specific information for the DFD. To summarize, the

following concepts are essential for representing the DFD structure:

I5) node properties

I6) initial data properties

I7) effect of data processing

In the following, we describe the individual activities of the tool engineer within the

integration procedure in more detail. While executing the activities, he/she uses the

previously described information about essential concepts to reason about necessary

extensions.

Identify Missing Concepts In order to identify the missing concepts, the tool engineer

looks for the previously mentioned essential concepts I𝑛 but he/she also captures other

concepts, which can represent equivalent information or at least a part of the required

information. In particular, the parts about communication, users, behavior and annotation

mechanisms are of high interest. Often, concepts for representing the structure, behavior

and user are available but the annotation of properties as well as the behavior description

regarding such properties is missing. The tool engineer compares the identified concepts

and the essential concepts I𝑛. An ADL concept matches an essential concept if it provides

at least the information required by the essential concept and the meanings of the concepts

are not contradicting. For instance, if a concept describes a forbidden data flow, it provides

information about data flows but does not have the same meaning as a data flow in a DFD.

The concept can still be useful but further investigations on how to reuse the concept in an

ADL extension are necessary. If an essential concept is missing, the tool engineer adds it

to the list of missing concepts. If there are concepts in the ADL, which partially represent

an essential concept, the essential concept is still missing but the identified partial match

helps in building the ADL extension in the next step. The result of the activity is a list of

missing essential concepts in the ADL.

Extend ADL The tool engineer has to extend the modeling language, i.e. the ADL, but also

the corresponding architecture development process. To extend the modeling language,

the tool engineer uses the list of missing concepts as well as the ADL concepts, which

partially represent required information. The challenge in extending the ADL is to keep

the introduced modeling mechanisms consistent to existing modeling mechanisms. A

modeling mechanism is a way of representing information in an ADL. For instance,

in order to model properties of nodes, the tool engineer can introduce strongly typed
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characteristics as used in the DFD or he/she can also add free text annotations to the

elements. If the ADL already uses free text specifications in several places, it is reasonable

to stick to this modeling mechanism to create a consistent modeling language. If the

ADL does not provide means for specifying additional information at all, it is reasonable

to choose the modeling mechanism, which matches the mechanisms used in the DFD.

The main reason to reuse DFD mechanisms is to ease the mapping between the ADL

and the DFD. Because the software architect is not aware of a particular mechanism for

representing flexible annotations such as node properties yet, it does not matter to him/her,

which modeling mechanism the tool engineer uses. The overall goal is to introduce as

less new concepts and modeling mechanisms as possible but as much as necessary. To

extend the modeling process, the tool engineer has to define the responsibilities of roles

for creating model elements that represent the essential concepts and he/she has to specify

when confidentiality analyses shall be conducted. If the modeling process for an ADL

already specifies roles, the tool engineer tries to reuse the existing roles. Usually, there are

roles for specifying the structure, behavior and interaction of users with the system. Often,

it is necessary to introduce a security expert, who can specify the analysis definition as

described in Section 6.1. If the ADL is already used for quality analyses, it is reasonable to

conduct confidentiality analyses together with other quality analyses. If such an activity

is not available, the tool engineer has to introduce it in the existing modeling process.

The result of the activity is an ADL extension of the modeling language as well as of the

corresponding modeling process.

Define Mapping to DFD The tool engineer uses the knowledge about the modeling con-

cepts in the ADL and the DFD to define a mapping from the ADL to the DFD. The mapping

of communication to data flows is not straight forward because not all ADLs natively

support or use data flows. Instead, the tool engineer has to identify data flows from existing

communication and has to map these implicitly specified data flows to data flows in the

DFD. Because the analyses operate on DFDs, the tool engineer cannot always map all

aspects of all ways of communication. We discuss these limitations in Section 7.4. The

mapping of the remaining concepts is simpler because there is a high chance that the

semantics of the concepts match well after the ADL has been extended. The result of the

activity is a mapping description, which can be executed in a fully automated way.

Create Constraint DSL The tool engineer can reuse the constraint DSL as presented in

Section 6.5 to a large extent. He/she has to replace the DFD concepts with ADL concepts.

Especially, this affects the concrete syntax as well as the type and identity selector in

the abstract syntax. The type selector refers to DFD node types but ADLs usually use

other types of nodes. Therefore, the type selector has to refer to the new types. Because

the information, which uniquely identifies nodes, is different for various node types, the

identity selector also has to be changed. The concrete syntax uses DFD terminology such

as the term node. The tool engineer has to replace these terms. In addition to the syntax,

the mapping from the DSL to a logic program also has to be changed. Instead of resolving

references to elements by looking up the trace from the DFD to the logic program, the

118



7.2. Integrating DFD Analyses with Palladio

mapping now has to consider the trace from the ADL to the DFD first. Thereto, the tool

engineer creates a transitive trace that supports looking up identifiers in the logic program

based on ADL elements. The result of the activity is an adjusted constraint DSL including

an adjusted mapping procedure to a logic program.

7.2. Integrating DFD Analyses with Palladio

In this section, we apply the integration procedure resulting from the integration guide-

lines to the ADL Palladio [Reu+16]. We apply the integration procedure to illustrate the

guidelines by an example in order to foster comprehensibility and also to demonstrate

applicability. In addition, we demonstrate that the integration guidelines meet the require-

ments for the integration guidelines, which we defined in Section 4.1.3. In particular, we

show that the resulting analysis framework for the ADL meets all requirements for the

DFD-based analysis framework (R3.4), which we defined in Section 4.1.2.

We decided to use Palladio because it is an representative example for an ADL, it has been

used before to predict quality properties of software architectures and it supports control

flows as well as data flows. Palladio is representative because it shares fundamental con-

cepts with many other ADLs such as components, defined interfaces and call-and-return

communication. According to Ozkaya [Ozk18], Palladio considers all viewpoints found to

be relevant for describing architectures, which means the ADL has good expressiveness.

In addition, Palladio is used in practice according to an interview of practitioners [Mal+13].

Because Palladio is a representative ADL, the insights from applying the integration guide-

lines to it are also valid for other ADLs. Palladio focuses on essential concepts for predicting

quality properties of software architectures. This is beneficial to reduce the overhead

while applying the integration guidelines. In contrast, UML, which is used more often

in practice, contains many different ways of expressing certain structures or behaviors.

The tool engineer has to consider all different ways of expressing architectural aspects,

which increases the effort for mapping the architecture to a DFD. From the perspective of

a researcher, this additional effort does not pay off because it does not provide additional

insights from applying the integration guidelines. It is realistic to assume that users of

Palladio are interested in additional quality analyses because it already has been designed

and extended to support various quality properties such as performance [BKR09], reliabil-

ity [Bro+12] or maintainability [BSK15] in the past. Therefore, integrating confidentiality

analyses in Palladio is a realistic application scenario. With the recent Palladio extension

called Indirections [WSK20], Palladio supports communication via data flows in addition

to control flows. An ADL supporting both communication paradigms is beneficial because

this lowers the effort for demonstrating the integration guidelines for control flows (R3.1)

and data flows (R3.2).

In the following, we describe the application of the integration guidelines to the subset of

Palladio, which uses control flows in Section 7.2.1, and to the subset of Palladio, which
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uses data flows, in Section 7.2.2. For both applications, we use Palladio 5.1
1
. The last step

of adjusting the DSL for formulating constraints does not depend on the communication

paradigm, so we describe this step together for both previously mentioned integrations in

Section 7.2.3.

7.2.1. Call and Return Communication

We demonstrate application of the integration guidelines for the subset of the Palladio

ADL, which models systems based on control flows. We structure the description by the

steps of the integration guidelines, which we described in Section 7.1: In Section 7.2.1.1,

we identify the concepts, which are missing in the ADL. We bridge the identified gaps

by an ADL extension, which we describe in Section 7.2.1.2. The mapping of architectures

given in the extended ADL to an architecture given in an extended DFD is covered in

Section 7.2.1.3.

7.2.1.1. Identify Missing Concepts

We identify concepts (I1–I7), which provide required information, based on publications

on Palladio [Reu+11; Reu+16] as well as based on the Palladio metamodel [Pal21b]. We

structure the discussion by the concepts.

Processing Steps (I1) describe the data processing excluding its effect on data. The effect

is another required piece of information to be discussed later. In Palladio, data is exchanged

via parameters in the control flow [Reu+16, pp. 263]. Parameters are sent when calling a

service and received when a called service returns. Therefore, to identify processing steps,

it is necessary to consider the ADL elements affecting the control flow as well as elements

affecting the parameters. Various elements of the ADL work together to specify the control

flow: Interfaces specify the services, which can be called [Reu+16, p. 45]. Components

can provide interfaces, i.e. offer the services described in the interfaces, and can require

interfaces, i.e. request services described in the interfaces [Reu+16, pp. 47]. Instances of

components, so-called Assembly Contexts or short Assemblies, can be wired based on the

provided and required interfaces [Reu+16, pp. 49]. The resulting network of assemblies

builds the overall system, which provides interfaces in order to offer services to users

[Reu+16, p. 50]. This means that starting from a user, the wired assemblies together with

the parameters and return values of the called services define the control flow given by

the structure of the software system. In addition, there is an abstract description of the

service behavior for every provided service of a component, which is called Service-Effect
Specification (SEFF) [Reu+16, pp. 53]. Within such a SEFF, a sequence of actions describes

the behavior. The most important action affecting the control flow is a call action, which

calls a service from a required interface [Reu+16, p. 102]. Apart from that, there are other

1 https://web.archive.org/web/20220129154253/https://sdqweb.ipd.kit.edu/wiki/PCM_5.1
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actions such as branching actions, which also affect the control flow [Reu+16, p. 100].

This means that the actions in a SEFF define the control flow within the component as

well as the control flow between the corresponding component and potentially called

components. To summarize, the ADL already provides model elements to describe data

processing activities, which are components, assemblies, SEFFs and actions within SEFFs.

Therefore, the information to represent I1 is available.

Communication between Processing Steps (I2) describes what data individual processing

steps exchange. As already explained as part of the discussion of I1, the wiring of assemblies

as well as the call actions in the SEFFs define the paths, over which data is exchanged.

Call actions send data to the called service via parameters and receive data from a called

service via the return value. The data to be exchanged is defined by the parameters as

well as the return values. Because the communication is done via call-and-return, it is also

clear, that all parameters have to be available when starting the communication, i.e. doing

the call, and the return value has to be available when ending the communication, i.e.

the call is returning. This covers all information required to describe the communication

between processing steps. Therefore, the information to represent I2 is available.

Users (I3) describe the external actors, i.e. actors outside the system. In Palladio, there are

dedicated usage models to describe external actors and their behavior. Within these models,

there are usage scenarios, which describe the behavior of a group of actors. Because the

model does not contain information about individual actors but only about the group of

actors, this description represents a type of actor [Reu+16, pp. 56]. It is possible that there

are multiple usage scenarios, which actually describe different behaviors of the same type

of actor. However, the usage model does not provide means to group these usage scenarios.

Therefore, every usage scenario can be seen as an individual type of actor. This covers all

information to identify users and external actors. Therefore, the information to represent

I3 is available.

User Activities (I4) describe the data processing done by external actors. As explained

while discussing I3, the usage scenarios in the usage models describe the behavior of

external actors. The usage scenarios consist of a sequence of actions [Reu+16, p. 56].

There are call actions as well as branch actions, which affect the control flow [Reu+16,

pp. 103]. Call actions can call services provided by systems and the system delegates the

call to the assembly, which provides the service. External actors use parameters to pass

information to the system and use return values to receive information from the system.

Branch actions introduce conditional executions and can also affect the control flow. The

information provided by the usage scenario regarding the data processing activities of

external actors is equivalent to the information provided by the SEFFs regarding the data

processing activities of components. Therefore, the provided information is sufficient, i.e.

all information to represent I4 is available.
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Node Properties (I5) focus on node properties, which affect confidentiality, i.e. which

are used to derive confidentiality properties of data or to identify violations of confiden-

tiality requirements. Palladio provides two ways of specifying properties of system parts:

deployment information and component parameters. Deployment information is specified

by allocating an assembly on a node in the resource environment. Every assembly has

to be transitively deployed on a node [Reu+16, p. 58]. Transitively means that an assem-

bly can be nested and is, therefore, deployed on the same node as the nesting assembly.

Component parameters introduce variables to components. A variable can hold multiple

variable characterizations, which describes the properties of the variable and, therefore,

also the properties of the component [Reu+16, p. 107]. The characterizations are limited

to five types, which describe the value, byte size, number of elements, structure and type

of the variable [Reu+11, p. 102]. The variable characterizations cannot represent all node

properties, which affect confidentiality. For instance, describing the clearance of a node is

not possible without changing the semantics of an existing characterization type, e.g. by

encoding the clearance level in the characterization describing the structure of a variable.

Therefore, concepts for describing properties of nodes, which focus on confidentiality, are

still missing to fully represent I5.

Initial Data Properties (I6) define the properties of data when it is created. Creating data

when only considering control flows in Palladio means that a parameter or return value

is defined and it does not refer to other data in order to derive properties. In Palladio,

parameters are created when defining a call action and return values are created when

defining a so-called SetVariableAction [Reu+16, pp. 263]. Palladio specifies properties of

parameters and return values in terms of variable characterizations, which we already

discussed for I5. The characterizations are limited to five types of characteristics, which

cannot cover all information, which is relevant to reason about confidentiality. Besides

constants and logical connectors, the expressions to specify the values of the characteriza-

tions can also refer to the characterizations of other variables, i.e. return values of previous

calls or parameters of the call to the provided service. Encoding the initial properties of

data into the five predefined characterization types could be possible but this violates

the intended semantics of the characterization types and does not guarantee type-safety

anymore. Therefore, a type-safe way of defining arbitrary variable characterizations,

which are not limited to a predefined set of five characterization types, is missing to fully

represent I6.

Effects of Data Processing (I7) describe how data processing steps affect the properties of

data. In Palladio, data, i.e. parameters and return values, have variable characterizations,

which describe the properties of data. As already discussed for I6, these characterizations

can be defined in call actions and actions for setting variables. To define the value of one of

these characterizations, so-called stochastic expressions are used [Reu+16, p. 103]. Stochastic
expressions define the values of characterizations and can refer to other characterizations

to describe the propagation of data as well as the effect of data processing on the data

properties. However, the restriction to the five predefined characterization types still
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applies. Therefore, a type-safe way of defining arbitrary variable characterizations, which

are not limited to a predefined set of five characterization types, is still missing to fully

represent I7.

7.2.1.2. Extend ADL

We have to extend the development process for creating and analyzing the software

architecture and we have to extend the ADL to support the missing concepts.

The extension of the process for modeling and analyzing the software architecture is rather

small: Palladio already defines the role of a quality analyst [Reu+16, p. 205], who supports

the other roles involved in the development of the architecture, provides quality-specific

information and conducts quality analyses. The responsibilities of the previously defined

security expert for DFDs match this role. In our context, the quality analyst creates the

analysis definitions and runs the analyses. The existing roles defined for Palladio (software

architect, component developer, system deployer and domain expert) [Reu+16, pp. 12] bind

the confidentiality primitives, i.e. characteristics and behaviors, to the Palladio elements.

Please note that the existence of a dedicated quality analyst role does not imply that

creating a software architecture and analyzing the quality properties have to be done

by two dedicated persons. The person having the role of a software architect can also

(partially) have the role of a quality analyst, which explicitly includes running analyses.

We identified three missing concepts, which we have to introduce in the Palladio ADL.

The missing concepts are node properties (I5), initial data properties (I6) and effects of

data processing (I7). In the following, we explain the extension of the Palladio ADL by

these concepts. Because the syntax of Palladio is specified as a metamodel, we describe

the extensions as metamodel extensions.

In DFDs, we used characteristics to describe properties of nodes (I5). First of all, it is

necessary to define what a node means in the context of the Palladio ADL. From a

structural point of view, the assemblies, i.e. the component instances, are the smallest unit

of composition in the architecture. These assemblies are deployed on hardware resources,

the so-called ResourceContainers. The wired network of assemblies builds the system.

All of the mentioned model elements can be seen as nodes, which can have different

properties. However, defining properties of the whole system actually means defining

properties, which apply to all parts of the system. Such properties have the character

of global properties, which can also be represented in the confidentiality requirements.

Therefore, only considering assemblies and resources as owners of properties is sufficient

to cover all non-global properties of nodes within the system. The only elements, which

can be classified as nodes outside of the system, are users. Users can also have properties,

so it is reasonable to also consider them in the extension for node properties.

Because Palladio does not provide flexible annotations of node properties or flexible

definitions of properties and property types yet, we have to introduce a completely new

concept. Therefore, we can reuse the DFD parts, which describe characteristic types

and characteristics, without breaking with existing modeling conventions. To assign
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<<Stereotype>> 
Characterizable

Characteristic

*

Usage Scenario Resource Container Assembly Context

Figure 7.3.: Extension of Palladio metamodel to capture properties of nodes given as UML class diagram.

Light gray elements are already part of Palladio, dark gray elements are reused elements of the DFD syntax

and non-filled elements are newly introduced elements.

these characteristics, we define the stereotype as illustrated in Figure 7.3. A stereotype

is an extension mechanism known from UML [Obj20, pp. 252], which allows to extend

a UML model element by additional attributes or references. EMF Profiles [Lan+12]

provide stereotypes for the Eclipse Modeling Framework (EMF) [Ste09], which Palladio

uses as meta-language to define its metamodel. The stereotypes of EMF Profiles are

one of the suggested extension mechanisms for Palladio [HSR21]. The meaning of the

stereotype visualized in Figure 7.3 is as follows: The stereotype has a reference to multiple

characteristics. The stereotype can be applied to the metamodel elements Usage Scenario,
Resource Container and Assembly Context. When applying the stereotype, the metamodel

elements are virtually extended by an additional reference to the characteristics. Therefore,

instances of the metamodel elements can refer to characteristics, which describes their

properties. The three metamodel elements represent the relevant nodes as discussed in

the paragraph before. Therefore, the extension provides the missing concept of node

properties (I5).

Palladio already provides means to describe initial data properties (I6) and effects of data

processing (I7) but the types of properties are fixed and can, therefore, no cover the

properties, which are required to express and analyze confidentiality. Nevertheless, we

aim to reuse the modeling concepts and extend them. The existing modeling concepts

are the definition of characteristics of sent parameters and received return values. The

available characteristics in Palladio are not flexible or extensible. In our extension, we

aim to provide modeling concepts to use the characteristic types and characteristics as

defined for DFDs. This is reasonable because we already use these characteristics and

characteristic types for describing node properties. Additionally, there does not exist any

flexible way of defining characteristics in Palladio yet. Therefore, we do not break with

existing modeling concepts for characteristics.

The Palladio extension to cover data properties and the effect of data properties is illus-

trated in Figure 7.4. The existing model element to capture characteristics of parameters

and return values is the Variable Usage. It contains an Abstract Named Reference, which
represents the name of the parameter or return value to be characterized. An actual

characteristic is specified by a Variable Characterization, which is contained in the Variable
Usage. In order to extend the usable characteristics, we introduce the new model element

Confidentiality Variable Characterization, which is a subclass of a Variable Characterization.
The benefit of this inheritance relation is that the new element can be used together
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Basic Component

Operational Data
Store Component

Variable
Characterization

Confidentiality Variable
Characterization

Variable Usage Abstract Named
Reference

* 1

1

Named Enum
Characteristic Reference

Enum Characteristic
Reference

Lhs Enum Characteristic
Reference

Term

lhs

rhs

Figure 7.4.: Extension of Palladio metamodel to capture stores and properties of data given as UML class

diagram. Light gray elements are already part of Palladio, dark gray elements are reused elements of the

DFD syntax and non-filled elements are newly introduced elements.

with the old model elements. Therefore, existing software architectures do not become

incompatible but only have to be extended by new model elements. In contrast to the old

characterization, the new Confidentiality Variable Characterization defines characteristics

based on characteristic references and terms as already known from the DFD extension

described in Section 5.1.2. More precisely, such a characterization is equivalent to an

Assignment in a DFD: a term on a right-hand side assigns a boolean value to a boolean

variable represented by a characteristic reference on the left-hand side. If the boolean

value is true, the label, i.e. the tuple of characteristic type and literal, is available on the

variable specified in the corresponding variable usage. Most of the terms can be reused

from the DFD syntax. Only the DataCharacteristicReference (see Figure 5.5 on page 42)

has to be replaced because there are no pins in Palladio. Instead, we use a Named Enum
Characteristic Reference, which uses a name instead of a pin to refer to characteristics of

other parameters or return values. The Lhs Enum Characteristic Reference does not require

a name because it refers to a characteristic of the variable, i.e. parameter or return value,

which is specified by the Variable Usage. It must only be used on the left-hand side of a

Confidentiality Variable Characterization. The extension fully provides the missing concepts

for describing initial data properties (I6) and effects of data processing (I7). By reusing

parts of the DFD syntax (definition of characteristic types, characteristics and terms), the

extension is small and streamlined with the extension for node properties.

All missing essential concepts are covered by the previously described ADL extensions.

However, the integration guidelines in Section 7.1 mention the non-essential but helpful

concept of a data store. The concept is non-essential because it can be replaced by a node,

which uses the behavior of a store. However, having a dedicated element to represent a

store is potentially more comprehensible than replicating the behavior of a store. Therefore,

we add an Operational Data Store Component, which inherits from Basic Component. Such a

store has limited features compared to a regular component: The store must only provide

one interface and must not require an interface. The interface must have exactly two

operations. One operation takes a parameter of a certain data type but does not return

anything. This operation represents an operation for adding data to the store. One

operation takes no parameters but returns data of the same data type as used in the other

operation. This operation represents an operation for reading data from the store. There
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does not have to be a behavior specification for these operations, i.e. SEFFs, because the

behavior is always the behavior of a store. We elaborate on this when defining the mapping

to a DFD in Section 7.2.1.3.

7.2.1.3. Define Mapping to DFD

The goal of mapping the architecture given in Palladio to a DFD is to make use of existing

DFD-based analyses. Consequently, the mapping does not have to represent every aspect

of the architecture but only the aspects required for analyzing confidentiality. The mapping

has to yield a DFD, i.e. the structure given by nodes and data flows, the properties of nodes

as well as the behavior given as label propagation functions. In the following, we structure

the explanation of the mapping by these three parts of the DFD.

Prerequisite: Characteristic Types. In the following mappings, we always assume that

the characteristic types are available. This implies no limitations or excluded manual

work because we reuse the metamodel elements for describing characteristic types and

characteristics from the DFD syntax. Therefore, a mapping of the characteristic types is

not necessary.

Prerequisite: Unique Identifiers. In the descriptions of the mappings, we use intuitive,

short identifiers for elements for a sake of comprehensibility. When realizing the mapping,

such identifiers have to be unique to avoid ambiguities. Because most model elements in a

software architecture given in Palladio already have unique identifiers, constructing unique

identifiers to be used in DFDs is possible. However, we do not describe this aspect because

this is rather a technical than a conceptual issue. Instead, we assume that identifiers are

unique in the following descriptions.

Additional Characteristic Types. Besides the characteristic types specified by the security

expert, we add two additional characteristic types, which we use to represent information

from the software architecture given in Palladio in the DFD. Such information can be

useful for formulating custom analyses that refer to architectural information modeled in

Palladio. The first information is the containing architectural element. We represent this

information in a characteristic type, which we call Containing. For instance, an action in a

SEFF is contained in a component and an action in a usage model is contained in a scenario

behavior. We distinguish the containing elements Scenario Behavior and Component. This
information is useful for analyses that only look for violations in the behavior of the

user, for instance. Such analyses can select nodes to consider by an applied label Scenario
Behavior of the characteristic type Containing. We explain how we assign such labels to

nodes when describing the structural mapping of elements in the following. The second

information to represent by an additional characteristic type is call-related information.

We refer to this characteristic type by the name CallRole. A call always consists of a

sending and a receiving part. The called element receives the call and returns the call. The
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<<Usage Scenario>> 
User

<<ScenarioBehavior>>

<<EntryLevelSystemCall>> 
find flights

EntryProcess 
User find flights

User

ExitProcess 
User find flights

...

...

criteria

flights

Figure 7.5.: Example of mapping usage scenarios and user actions from Palladio (left) to a DFD (right).

corresponding characteristic type provides means to describe the sending and receiving

parts for the caller and the callee. An analysis, which only detects violations caused by

communication between components, can make use of the resulting labels on nodes. We

explain how we assign such labels to nodes when describing the structural mapping of

elements in the following.

Structure: External Actors. In Palladio, software architects describe external actors in

usagemodels. Usagemodels consist of multiple usage scenarios. A usage scenario describes

a group of users, who interact with a system in the same way. We interpret such a group

of users as a type of user. Therefore, we map each usage scenario to an external actor in

the DFD. Figure 7.5 illustrates this mapping for an excerpt of the user behavior in our

running example. The group of users described by the usage scenario performs all actions

described in the corresponding scenario behavior. Therefore, it is reasonable to interpret

all of these actions as actor processes, i.e. processes done by an actor. Figure 7.5 illustrates

actor processes by a dashed line between the process and the actor, to whom the process

belongs. We will explain the remainder of the illustration when explaining the mapping

of call actions. Because the actor processes originate from the scenario behavior, we add a

label of the Containing characteristic type with the value Scenario Behavior to all actor

processes.

Behavior: External Actors. The external actors in the DFD do not own a behavior defini-

tion because the mapping only yields external actors without incoming or outgoing data

flows. Instead, the behavior of actors is given by the actor processes, which we derive

from the actions of the actors. This is not problematic because the actor processes are

clearly related to the corresponding actors and analyses can look for violations on actor

processes to identify violations of actors.

Structure: SEFF A SEFF describes the behavior of a service in a component. In a system,

there can be multiple assemblies, i.e. component instances, which use the same SEFF.
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A call always targets a SEFF of an assembly: A call from an assembly can only target

a service of another assembly, i.e. a SEFF of an assembly. A call from a user targets a

system service but the system directly delegates the call to an assembly, which provides

this service. A SEFF consists of actions. Every action can make use of the parameters

received via a call to the SEFF. After all actions have been executed, the SEFF returns the

return value. It is important to represent this receiving of parameters and returning of

values because these actions can violate confidentiality requirements. To represent the

SEFF in a DFD, we map every SEFF to two processes: One process receives the parameters

and provides the parameters to processes originating from actions within the SEFF. We

refer to the process, which receives parameters, as entry process. To recognized this

process in the DFD, we add a label of the CallRole characteristic type with the value

SEFFEntry to the process. One process receives the result value and provides the value

to the calling processes. We refer to the process, which provides the return value to

callers, as exit process. To recognized this process in the DFD, we add a label of the

CallRole characteristic type with the value SEFFExit to the process. Because the SEFF is
always part of a component, we add a label of the Containing characteristic type with

value Component to both processes. If the service described by the SEFF does not receive

parameters, we omit the entry process. If the service described by the SEFF does not

return a value, we omit the exit process. Figure 7.6 illustrates this mapping. The SEFF

findFlights of the airline is mapped to an entry and an exit process. Because the service

described by the SEFF receives a query as parameter, the entry process receives query data

via an input pin. For every received data, i.e. input pin, there is one output pin, which

provides the received data to other processes, which originate from actions within the

SEFF. The service described by the SEFF of the airline returns a value. Consequently, the

exit process provides result data via an output pin. The mapping rules for deriving the

input pins of the exit process are discussed later. Because there can be multiple component

instances, i.e. assemblies, of the same component, there can also be multiple instances

of the same service. In addition, assemblies can be nested. The example illustrated in

Figure 7.7 demonstrates the nesting of assemblies for the CreditCardCenter component.

The component consists of an instance of the CreditCardCenterLogic component and an

instance of the CreditCardCenterDB component. When an instance of the CreditCardCenter
component is called, the call is delegated to the CreditCardCenterLogic assembly. To

uniquely identify an instance of a component, a SEFF or any action within a SEFF, the

complete hierarchy of assemblies has to be given. For instance, to uniquely identify the

SEFF of the declassify service, we have to know the assembly of the CreditCardCenter
component as well as the assembly of the CreditCardCenterLogic component. Therefore,

we apply the mapping rules described above to every tuple of a SEFF and an assembly

hierarchy. We map every tuple of assembly hierarchy and action within a SEFF according

to the descriptions in the following paragraphs.

Behavior: SEFF. The behavior of the entry and exit processes of SEFFs is the forwarding

behavior. An entry process of a SEFF owns one input pin and one output pin for each

parameter of the described service. The labels of an input pin are directly copied to the

corresponding output pin. The forwarding behavior is appropriate here because data is
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<<Assembly>> 
Airline

<<SEFF>> 
findFlights

EntryProcess 
findFlights

ExitProcess 
findFlights RETURN

query query

Figure 7.6.: Example of mapping a SEFF from Palladio (left) to entry and exit processes in a DFD (right).

<<Component>> 
CreditCardCenter

<<Assembly>> 
CreditCardCenterLogic

<<Assembly>> 
CreditCardCenterDB

<<Component>> 
CreditCardCenterLogic

<<Component>> 
CreditCardCenterDB

<<Interface>> 
CCDDB

add(ccd) : void 
get() : ccd

<<Interface>> 
CCC

declassify(ccd) : ccd

CCDDB

CCC

CCC

CCCCCDDB

CCDDB

Figure 7.7.: Example illustrating nested assemblies in the CreditCardCenter component.

not changed by just sending it from a caller to a callee. An exit process of a SEFF owns

one input pin and one output pin. The labels of the input pin are directly copied to the

corresponding output pin. The forwarding behavior is appropriate here because data is

not changed by just sending it to a caller.

Structure: Data Stores. We introduced OperationalDataStores to the ADL to mark a

component as a data store. The store provides one interface containing a service for adding

data and one service for receiving data. We map the corresponding SEFFs according to

the mapping rules before, which yields one entry process for the service to add data and

one exit process for the service to get data. The SEFFs of a data store are always empty

because stores have a fixed behavior that must not be changed. Instead of allowing actions

within the SEFFs, we create one Store in the DFD and add one data flow from the created

entry process to the store and one data flow from the store to the created exit process.

Figure 7.8 illustrates the mapping of the FlightDB data store from the running example

according to the mapping rules given above. Because the data store component can be

instantiated and nested multiple times, we execute the described mapping for every tuple

of data store assembly and assembly hierarchy.

Behavior: Data Stores. The behavior of data stores is already given by the data store in

the DFD. The behavior of the entry and exit processes, which result from mapping an
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<<Assembly>> 
FlightDB

<<SEFF>> 
add

flight<<SEFF>> 
get

FlightDB

EntryProcess 
add

ExitProcess 
get

flight

Figure 7.8.: Example illustrating the mapping of a data store in Palladio (left) to a store in a DFD (right).

Operational Data Store to a DFD, is the forwarding behavior as previously described for

SEFFs.

Structure: Set Variable Actions. The SetVariableAction is an action used in a SEFF to

specify the result value. The result is returned when the sequence of actions in a SEFF

ends. Because the action consumes data and yields data without further communication

with other actions in-between, the behavior of the action closely matches the semantics of

a DFD process. Therefore, we can map the action to a single process. We add a label of

the Containing characteristic type with value Component to indicate that the process is
contained in a component. Because a SetVariableAction can only occur in a SEFF, we have

to consider the nesting of assemblies. Therefore, we create one process for every tuple of

action and assembly hierarchy.

Behavior: Set Variable Actions. The behavior of the process resulting from mapping

the Set Variable Action depends on the Confidentiality Variable Characterizations for the

RETURN variable. Such characterizations are the counterpart of assignments in DFDs

and specify the labels of the output based on labels of the inputs. The behavior of the

process derived from the Set Variable Action has one output pin as well as one input pin

for every variable, i.e. data from parameters or other actions, used within the variable

characterizations. The assignments of the behavior are created based on the Confidentiality
Variable Characterizations. Because we use the same terms as for specifying the behavior

in DFDs, the mapping is straight forward: A term of a certain type in Palladio is mapped

to a term of the same type in the DFD. The only difference is the mapping of Named
Enum Characteristic References. The Named Enum Characteristic Reference is mapped to

a Characteristic Reference using the same characteristic type and literals. Instead of the

variable name, the corresponding pin is used. In the example shown in Figure 7.9, the

pins have the same name as the variables in Palladio. Therefore, the concrete syntax of

the variable characterization looks the same as the concrete syntax of the assignment in

the behavior. However, the names in the assignments of the DFD refer to pins instead of
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return flights
flights

RETURNquery
Assignments 

RETURN.Classification.Low :=
query.Classification.Low & flights.Classification.Low 

... 

<<SetVariableAction>> 
return flights

Output Characterizations 
RETURN.Classification.Low := query.Classification.Low & flights.Classification.Low 

...

Figure 7.9.: Example of mapping the behavior of a SetVariableAction (top) to the behavior of a process

(bottom).

variables. The action in Palladio uses the query and flights variables. Therefore, the DFD
process has two input pins.

Structure: Call Actions. Calls are a concept of the control flow paradigm. In Palladio, calls

can occur in a scenario behavior or in a SEFF. The calls in the scenario behavior originate

from users and target services of the system, which delegates calls to the responsible

assemblies. The calls in SEFFs originate from assemblies and target services of other

assemblies. There is no counterpart of calls in DFDs. However, parameters and return

values exchanged via calls can be seen as data to be exchanged. Therefore, a call can be

seen as a pair of processes: one process sends data (the parameters) to another process

and one process receives data (the return value) from another process. Consequently,

we map every call action to two processes as illustrated in Figure 7.5. We refer to the

process sending data as entry process and to the process receiving data as exit process.
We add a label of the CallRole characteristic type with value CallSending to the entry

process and label with value CallReceiving to the exit process in order to indicate the role

of the processes within the call-based communication. We add a label of the Containing
characteristic type with value Component to indicate that the processes are contained in a

component. If the call does not send parameters, we omit the entry process. If the call

does not receive a return value, we omit the exit process. If a call action is placed within a

SEFF, we have to consider the nesting of assemblies, so we have to create the entry and

exit processes for every tuple of action and assembly hierarchy. We discuss data flows

derived from calls later.

Behavior: Call Actions. We define behaviors for the entry as well as the exit processes.

For entry processes, the variable characterizations of input parameters are important to

consider. There is one variable usage for every input parameter of a call and each of these

variable usages can contain multiple variable characterizations. The entry process has

one input pin for every variable name, which is used in the variable characterizations of

the inputs of the call. There is one output pin for every parameter of the called service.
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<<Usage Scenario>>
User

<<ScenarioBehavior>>

<<Assembly>> 
CCC

EntryProcess 
User declassify CCD

User

ExitProcess 
User declassify CCD

ccd

RETURN

<<SEFF>> 
declassifyCCDcall via 

system 
provided 

role

return

EntryProcess 
CCC declassifyCCD

ExitProcess 
CCC declassifyCCD

...ccd

RETURN

<<EntryLevelSystemCall>> 
declassify CCD

...

Figure 7.10.: Example of mapping a call action (top) to DFD processes (bottom).

The assignments of the behavior are created based on the variable characterizations as

described for the SetVariableAction. For exit processes, the variable characterizations of
so-called output variables are important to consider. A call action can define arbitrary

output variables by multiple variable usages. The variable characterizations within the

variable usages can refer to the return value of the called service but also to other variables

or parameters within the SEFF. The exit process has one input pin for the result of the

called service, potentially multiple input pins for other variables used within the variable

characterizations and one output pin for every defined variable, i.e. VariableUsage. The
assignments of the behavior are created based on the variable characterizations as described

for the SetVariableAction.

Structure: Data Flows between Services. We map calls to data flows if a parameter or

return value is exchanged via a call. When calling a SEFF of an assembly, there is one

data flow from the entry process of the call to the entry process of the SEFF for every

parameter of the service described by the SEFF. Figure 7.10 illustrates the mapping of calls

to data flows for the declassification of credit card data in our running example. If the

service provides a return value, there is one data flow from the exit process of the SEFF to

the exit process of the call action. To identify the destination of a call, we can follow the

connections between required and provided interfaces of the assemblies. The destination

of a call is uniquely identified by the called SEFF and the assembly hierarchy.
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Structure: Data Flows between Actions. Data flows between actions in usage scenarios

or SEFFs occur by reading parameters, which have been received via a call to the SEFF, or

by reading so-called Variables, which other actions define in Variable Usages. Therefore, we
map every reading of these variables to data flows between actions. The example shown

in Figure 7.11 illustrates the mapping for the service of finding flights at the airline in

our running example. Reading parameters or variables is only possible within a Variable
Characterization, i.e. the Terms, which we introduced as an extension of Palladio. To identify,
which variables a process reads, we look for Named Enum Characteristic References and
extract the variable name. The resulting set of variable names defines the required data.

We add one data flow from the process, which defines the variable, to the process, which

uses the variable in a characterization. The source of parameters, which have been received

from a call to the SEFF, is the entry process of the SEFF. The source of result values of

calls is the exit process of a call action. In Figure 7.11, the return flights action refers to

the query parameter as well as the flights variable. The use of the parameter is mapped

to a data flow from the SEFF entry process to the process representing the return flights
action. The use of the variable is mapped to a data flow from the exit process of the call

action. In this and all following examples, we use the variable name RETURN to refer to

the result of a call. This is also the suggested convention in Palladio
2
. The return flights

action defines the variable RETURN, which represents the result of the call to the SEFF

findFlights. In order to make the result, which the return flights action defined, available to

callers, we add a data flow from the return flights action to the exit process of the SEFF.

The exit process makes the result available to the calling process. The call action call DB
also uses a RETURN variable but this variable refers to the result of the call to be done

by the action and not to the result of the currently executed SEFF. In consequence, the

exit process of the call action receives a data flow from the exit process of the called SEFF.

When mapping actions in SEFFs, we have to consider nested assemblies. Therefore, we

execute these mappings for all tuples of actions and assembly hierarchies.

Node Properties. We extended Palladio by means to assign characteristics to elements in

the software architecture. The assigned characteristics represent the properties of nodes,

which result from the structural mapping explained before. Mapping the characteristics

themselves is straight forward because we use the same metamodel elements as the DFD

syntax to represent them. Therefore, mapping characteristics as well as characteristic types

is a simple one-to-one mapping. However, there are two aspects to be defined: determining

the effective characteristics and determining the covered nodes. Determining effective

characteristics is necessary because we can assign characteristics to assemblies as well

as to resources, which are organized in a hierarchy. The hierarchy of assemblies is given

by their nesting. Resources are always the outermost elements because assemblies are

allocated on resources. If there are multiple characteristics using the same characteristic

type, a precedence rule is necessary to decide for an effective characteristic. For instance,

if a resource is cleared for low data but an assembly, which is allocated on the resource,

2 https://web.archive.org/web/20220119133503/https://www.palladio-simulator.com/fileadmin/u

ser_upload/palladio-simulator/videos-screencasts/pcm_8_returnvalue.mp4
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<<Assembly>> 
Airline

<<SEFF>> 
findFlights

EntryProcess 
findFlights

ExitProcess 
findFlights

return flights

flightsRETURN

<<ExternalCallAction>> 
call DB

InputCharacterizations 

Output Characterizations 
flights.*.* := RETURN.*.*

ExitProcess 
call DB

<<SetVariableAction>> 
return flights

Output Characterizations 
RETURN.Classification.Low :=

query.Classification.Low & flights.Classification.Low 
...

query EntryProcess 
call DB

Figure 7.11.: Example of mapping actions (top) to data flows (bottom).

is cleared for high data, the clearance levels clash. To solve this conflict, we define the

precedence of characteristics for the same characteristic type in a way that always uses

the characteristic of the model element, which is nested the most. In the given example,

the clearance of the assembly would override the clearance of the resource because the

assembly is more nested than the resource. The precedence rules allow to define general

applicable characteristics but also allow to define exceptions. Determining the DFD

elements, which are covered by a characteristic, is simple: every DFD element, which

has been mapped from a Palladio element, which is contained in the element having a

characteristic, uses the characteristics of the containing Palladio element. For the scenario

behavior, this means that the actor derived from the scenario behavior as well as all actor

processes derived from the call actions within the scenario behavior use the characteristics

of the scenario behavior. For SEFFs and actions within a SEFF, this means that processes

and stores derived from them use the effective characteristics, which are determined based

on the corresponding assembly hierarchy and the resource container.

Additional Prolog Clauses. The previously described mapping rules map a software

architecture given in the Palladio ADL to a DFD. Later, the DFD is mapped to a logic

program. To ease using the node properties of the CallRole and Containing characteristic

types, we add the additional Prolog clauses shown in Listing 7.1 to the result of the mapping

to a logic program. The clauses are shorthands for writing a nodeCharacteristic/3 clause

and not mandatory for analyses: Omitting these additional clauses would not lower

the expressiveness because it is always possible to replace the additional clauses by the

corresponding nodeCharacteristic/3 clauses.
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Listing 7.1: Additional Prolog clauses to simplify accessing additional node properties.

1 isACallSending(N) :- nodeCharacteristic(N, ’CallRole’, ’CallSending’).

2 isACallReceiving(N) :- nodeCharacteristic(N, ’CallRole’, ’CallReceiving’).

3 isASEFFEntry(N) :- nodeCharacteristic(N, ’CallRole’, ’SEFFEntry’).

4 isASEFFExit(N) :- nodeCharacteristic(N, ’CallRole’, ’SEFFExit’).

5 containedInScenarioBehaviour(N) :- nodeCharacteristic(N, ’Containing’, ’Scenario

Behavior’).

6 containedInComponent(N) :- nodeCharacteristic(N, ’Containing’, ’Component’).

7.2.2. Data-oriented Communication

We demonstrate the integration procedure for the Palladio ADL, which has been extended

by data flows as part of the Indirections project [WSK20]. We structure the description by

the steps of the integration procedure, which we described in Section 7.1: In Section 7.2.2.1,

we identify the concepts, which are missing in the ADL. We bridge the identified gaps

by an ADL extension, which we describe in Section 7.2.2.2. The mapping of architectures

given in the extended ADL to an architecture given in an extended DFD is covered in

Section 7.2.2.3.

7.2.2.1. Identify Missing Concepts

We identify concepts (I1–I7), which provide required information, based on publications

on Palladio [Reu+11; Reu+16], a publication on Indirections [WSK20] as well as based on

the Palladio metamodel [Pal21b] and the metamodel of Indirections [Pal21a]. We structure

the discussion by the concepts.

Users (I3) describe the external actors, i.e. actors outside the system. The Indirections
extension does not extend the usage model, which means it does not introduce data flows

for external users and their behavior. Therefore, the usage scenarios, which we already

discussed in Section 7.2.1.1, are still the elements, which represent external users of systems

in Palladio. Therefore, the information to represent I3 is available.

User Activities (I4) describe the data processing of external actors. The Indirections
extension does not extend the usage model, which means it does not introduce data flows

for external users and their behavior. Therefore, the call actions in the scenario behaviors,

which we already discussed in Section 7.2.1.1, are still the elements, which represent

the behavior of users, i.e. their data processing activities. Therefore, the information to

represent I4 is available.
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Processing Steps (I1) describe the data processing excluding its effect on data. The effect

is another required piece of information to be discussed later. The Indirections extension
introduces data channels to describe data processing within systems. A data channel

consumes data, processes data and yields data. If a data channel can consume a certain

data type, it provides a sink for this data type. If a data channel can yield a certain data

type, it provides a source for this data type. Data channels are special types of components

and have to be instantiated to be used within the system. An instantiated data channel

is also called assembly. Connectors wire assemblies from sources to sinks. The resulting

network of data channel assemblies describes the structure of data processing steps, i.e.

their existence and their relations. Because the Indirections extension does not introduce

data flows for users, users still use system services via calls. Therefore, there still have to be

components, which provide services. SEFFs still describe these services but a component

can also communicate with a data channel via sinks and sources for data. Components

can interact with data channels through these sources and sinks after they have been

instantiated and a connector between them has been created. SEFFs contain additional

actions to explicitly create data from parameters or variables (CreateDateAction), to send

data through sources to data channels (EmitDataAction) and to consume data through

sinks from data channels (ConsumeDataAction). Because these actions are contained in

a component and a component can be instantiated, there are also multiple instances of

these actions. Each of these action instances describes a data processing by either creating

or transmitting data. To summarize, the instances of data channels, SEFFs and actions

within SEFFs provide the processing steps. Therefore, the information to represent (I1) is

available.

Communication between Processing Steps (I2) describes what data individual processing

steps exchange. As explained before, the instances of data channels and components

are connected, i.e. sources are connected to sinks and required services are connected to

provided services. These connections between the assemblies specify the data, which can

be exchanged between the assemblies. For sources and sinks, the exchanged data type

is made explicit. For required and provided services, the exchanged data is given by the

sent parameters as well as by the return value. Within assemblies, i.e. between actions

of a SEFF, the exchanged data is given by the parameters and return values, which are

used to create a data item or which are sent or received. Because a SEFF still describes a

control flow, it is clear that used data has to be available before executing an action. To

summarize, the connections between assemblies as well as the used data of actions provide

all information to describe the communication between processing steps. Therefore, the

information to represent I2 is available.

Node Properties (I5) focus on node properties, which affect confidentiality, i.e. which are

used to derive confidentiality properties of data or to identify violations of confidentiality

requirements. The Indirections extension does not extend the annotation mechanisms for

components, SEFFs, resources or usage scenarios. Therefore, the limitations of representing

node properties already discussed in Section 7.2.1.1 still apply. This means that Palladio still
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cannot express properties except for deployment information. The newly introduced data

channels provide means to add configurations to data channels. A configuration entry can

be any string. However, using these configuration entries for representing node properties

would differ from the intended semantics of the entries, which is passing parameters to

the behavior of the data channel. Therefore, we do not consider the configurations as

means to express node properties. To conclude, Palladio and the Indirections extension do

not provide sufficient means to describe node properties. Therefore, the information to

fully represent I5 is not available yet.

Initial Data Properties (I6) define the properties of data when it is created. Data in

Palladio are either variables within SEFFs, parameters or return values. The Indirections
extension additionally introduces data, which is exchanged between sources and sinks.

The properties of data in Palladio are specified using characterizations, which are specified

within the action, which creates or transmits data. Data exchanged via sources and sinks

either originates from an action or from a data channel. The data properties of data going

through actions are specified by the Palladio characterizations. The data properties of

data going through data channels are specified by the behavior of the data channel but

the behavior also uses the Palladio characterizations. These characterizations are limited

to five predefined types of characterizations. As already discussed in Section 7.2.1.1, this

limitation is too strict and prohibits expressing all data characteristics, which are necessary

to analyze confidentiality. Therefore, the information to fully represent I6 is not available

yet.

Effects of Data Processing (I7) describe how data processing steps affect the properties

of data. The processing effects implied by user behaviors, SEFFs and actions are already

covered in Section 7.2.1.1. The expressible effects are limited by the five predefined types

of characteristics, which are not sufficient for analyzing confidentiality. The Indirections
extension does not prescribe how the behavior of a data channel is described but provides

an abstract metamodel element, which tool engineers have to implement. The extension

provides one implemented metamodel element for describing the behavior, which uses

Java code as description language. Obviously, Java code is expressive enough to describe

all processing effects on data properties but the Java API of Indirections is focused on

performance simulations and extending the code would require introducing new concepts.

Therefore, a concept for describing the processing effect of data channels in terms of

data properties is still missing. To summarize, the information to fully represent I7 is not

available yet.

7.2.2.2. Extend ADL

We have to extend the development process for creating and analyzing the software archi-

tecture and we have to extend the ADL to support the missing concepts. The Indirections
extension does not extend the development process of Palladio but uses the process as
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it is. This means that the extension of the development process for Palladio using con-

trol flows, which we already described in Section 7.2.1.2, is also applicable to Palladio

using Indirections. Therefore, we only describe the required extensions of the ADL in this

section.

We identified three missing concepts, which we have to introduce in the Palladio ADL

including Indirections. The missing concepts are node properties (I5), initial data properties

(I6) and effects of data processing (I7). In the following, we explain the extension of the

Palladio ADL by these concepts. Because the syntax of Palladio is specified as a metamodel,

we describe the extensions as metamodel extensions.

To describe node properties (I5), we can reuse the extension, which we have defined for

the Palladio subset using control flows. The extension illustrated in Figure 7.3 on page 124

introduces a stereotype, which is applicable to Usage Scenarios, Resource Containers and
Assembly Contexts. Because instantiated data channels are also represented by Assembly
Contexts, the extension already considers the newly introduced data channels. Apart

from the data channels, there are no new metamodel elements, which need dedicated

assignments of node properties. Therefore, the already defined extension is sufficient to

represent node properties (I5).

Palladio uses characterizations to describe properties of data (I6). To circumvent the

limitation to five predefined characterization types, we introduced Confidentiality Vari-
able Characterizations for the subset of Palladio, which uses control flows. Figure 7.4 on

page 125 illustrates the extension, which allows to use the characteristic types and the

expressions already known from the DFD syntax. Palladio including Indirections also
uses the characterizations to specify properties of data in the newly introduced actions.

Therefore, the extension is also applicable here. The extension also already covers the

effects of data processing (I7) for all existing Palladio elements as well as all elements of

Indirections except for data channels. We will address data channels in the next paragraph.

The extension is sufficient to represent the properties of data (I6) and the effects of data

processing (I7), for all Palladio elements except for data channels.

To represent the effects of data processing (I7) as well as data properties assigned by data

channels (I6), we have to specify the behavior of data channels. As already explained in

Section 7.2.2.1, the Indirections only provide means to specify the effects on performance

for data channels by Java code or require a tool engineer to create alternative means.

Because we do not want to introduce alternative means, which are incompatible to the

Java-based solution, we decided to introduce the stereotype illustrated in Figure 7.12. The

stereotype can be applied to any data channel implementation and is, therefore, compatible

to the Java-based solution as well as to solutions, which might be introduced in the future.

The stereotype Confidentiality Behavior links a Data Channel Behavior to a Data Channel. The
Data Channel already contains sources and sinks, which have names. The Data Channel
Behavior describes the effect of data processing by defining one Variable Usage for every

data source provided by the data channel. A variable usage refers to the name of the

data source and specifies Confidentiality Variable Characterizations, which we introduced

in a previous extension illustrated in Figure 7.4 on page 125. These characterizations

define the properties of data (I6). The expressions in the characterizations can refer to
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Figure 7.12.: Extension of Palladio metamodel to capture the data processing effect of data channels given as

UML class diagram. Gray elements are already part of Palladio or the Indirections extension and non-filled

elements are newly introduced elements.

the characteristics of incoming data by the name of the corresponding data sink of the

data channel. This provides the means to specify the propagation of characteristics from

the inputs to the outputs, which is also the effect of data processing (I7). Making use

of the already introduced extension lowers the amount of required changes in the ADL

and provides streamlined modeling of data properties and processing effects. Streamlined

means that the same model elements can be used for the same purpose, i.e. describing the

effect of data processing.

The previously explained subset of the extension shown in Figure 7.12 is already sufficient

to represent all required information. However, modeling the same processing effects

multiple times is cumbersome, prone to errors and increases maintenance efforts in case of

required changes. A mechanism to specify types of processing effects (Reusable Behavior)
and reusing them (Behavior Reuse) to describe behaviors of data channels addresses these

problems. A Reusable Behavior specifies the effect of data processing by Variable Usages
just like a Data Channel Behavior does. However, the Reusable Behavior shall not refer to
particular sinks in the expressions of the characterizations of outputs because it shall be

independent of a particular usage context. Instead, a Reusable Behavior introduces variables
for inputs and outputs, which the expressions can use. A Behavior Reuse defines Variable
Bindings, which bind a value, i.e. a name of a particular sink, to a variable defined in the

Reusable Behavior. By binding the variables with values from the context, the behavior

can be used in a particular context. It is possible to reuse multiple behaviors, i.e. define

multiple Behavior Reuse elements for the same Data Channel Behavior. In this case, the

processing effects are applied in the order of definition of the reuse elements. Processing

effects executed later can override processing effects executed earlier, which are the same

semantics as for assignments in DFDs or characterizations in Variable Usages. Variable
Usages directly assigned to a Data Channel Behavior are always executed last, i.e. they can

override the effects of all reused behaviors. This follows the commonly used practice

that specific elements, i.e. the particular Data Channel Behavior, can override properties or

definitions of generic elements, i.e. the reused behaviors.
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The presented reuse approach for behaviors is more flexible than reusing whole data

channels by instantiating them: The reuse of behaviors supports defining behaviors on

the same level as we did in Section 6.2, e.g. we can define a forwarding behavior, a joining

behavior and so on. The behaviors are applicable to any data channel, where the number of

output variables matches the data sources and the number of input variables matches the

data sinks. Reusing the whole data channel behavior, i.e. the Data Channel Behavior instead
of Reusable Behavior, is only possible if the names of data sources and data sinks match

the names used in the variable characterizations. Therefore, such a reuse approach would

restrict the naming of data sources and data sinks, which can impact the comprehensibility

negatively. Reusing a whole data channel is even more inflexible: It is possible to define

data channels, which are essentially forwarding data channels or joining data channels.

By instantiating them multiple times and connecting them to other data channels, it is

possible to reuse the data channels. There are two problems with this approach: First, the

names of data sources and data sinks will be, most probably, generic, which can affect

comprehensibility negatively. Second, the data sources and data sinks refer to particular

data types, which restricts the reuse of a data channel to contexts, in which the exact

same data types are received and yielded. To circumvent this problem, either multiple

versions of the same behavior have to be created for multiple combinations of data types

or only generic data types such as Object have to be used. The first approach requires

considerable effort and the second approach reduces comprehensibility. In contrast, the

explicit definition of reusable behaviors and reusing them with the mechanism illustrated

in Figure 7.12 does not imply such disadvantages.

7.2.2.3. Define Mapping to DFD

The goal of mapping the architecture given in Palladio to a DFD is to make use of existing

DFD-based analyses. Consequently, the mapping does not have to represent every aspect

of the architecture but only the aspects required for analyzing confidentiality. The mapping

has to yield a DFD, i.e. the structure given by nodes and data flows, the properties of

nodes as well as the behavior given as label propagation functions. Because Palladio using

Indirections still requires control flow aspects such as the usage scenarios or SEFFs, we

build the mapping to the DFD on top of the already described mapping for control flows

in Section 7.2.1.3. This means that all mapping rules described for control flows also apply

for a Palladio architecture using the data channels of Indirections. In the following, we

only describe the additions required for properly handling data sinks, data sources and

data channels.

Additional Characteristic Types. The mapping rules for communication via control flows

introduced additional characteristic types. We can reuse all of these types but add the

value Data Channel to the Containing characteristic type. This allows to identify process,

which represent data channels.
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Figure 7.13.: Example of mapping data flows through sources and sinks (top) to data flows in a DFD (bottom).

Structure: Data Channels Data channels have dedicated data inputs (data sinks) and

dedicated data outputs (data sources). The data processing within data channels uses data

inputs and yields data outputs. This behavior closely matches the behavior of processes

in DFDs, so we can map data channels to processes. We apply a label of the Containing
characteristic type with value Data Channel to the processes to indicate that the processes

originate from data channels. In addition, we map every data source of a data channel to

an output pin and every data sink to an input pin. This mapping is useful because the

semantics of a data source or data sink matches the semantics of a pin: all elements specify

that a certain type of data shall be exchanged. Because data channels can be instantiated

multiple times, we map every assembly of a data channel to a process. In the example

shown in Figure 7.13, we map each data channel assembly (TravelAgencyQueryBuilder
and TravelAgencyFlightsDelegator) to one dedicated process having the corresponding

names.

Structure: Actions The newly introduced actions CreateDateAction, EmitDataAction and

ConsumeDataAction consume data and yield data without communication with other

actions in-between. Therefore, these actions match the semantics of DFD processes. We

add a label of the characteristic type Containing with the value Component to the processes
to indicate that the processes originate from model elements contained in a component.
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Figure 7.14.: Example of mapping data flows between assemblies of data channels (left) to data flows in a

DFD (right).

Because these actions are part of SEFFs, we have to consider the assembly hierarchy in

the mapping. Therefore, we map each tuple of action and assembly hierarchy to one

process. The mapping of data flows between these and other actions within a SEFF already

described in Section 7.2.1.3 still applies. This means, we create one input pin for each

variable, which the CreateDateAction uses to specify the characterization of the created date.

We create one input pin for the ConsumeDataAction and EmitDataAction action because

both receive exactly one data item. We create one output pin for the all three actions

because all yield exactly one data item.

Structure: Data Flows between Sources/Sinks of Data Channels Data flows as defined

by Indirections always use data sources and data sinks. A data source or sink is always

defined for a single data type. A connector between the data source of an assembly and

the data sink of another assembly enables data flows between the assemblies. If both

involved assemblies are data channels, a connector represents one data flow because the

data channel sending data through a data source is the only provider of data for this data

source and the data channel receiving data through a data sink is the only consumer of

data for this data sink. We illustrate this situation in Figure 7.14. All assemblies in the

illustration are data channels. We map each connector, which is illustrated as dashed edge,

to a data flow between the processes of the two involved data channels. This mapping

closely matches the semantics of such a connector by representing the direct data flow

between the data channels. The Indirections do not define selection semantics for the

case that multiple connectors originate from the same data source. Therefore, we do not

restrict the data flows here but stick to the mapping, which creates one data flow for each

connector. The data flows originating from the FlightProvider both use the same output

pin of the process resulting from mapping the data channel.

Structure: Data Flows between Sources/Sinks of Components Data flows as defined by

Indirections always use data sources and data sinks. A data source or sink is always defined

for a single data type. A connector between the data source of an assembly and the data

sink of another assembly enables data flows between the assemblies. If at least one of

the involved assemblies is a component, a connector can represent multiple data flows

because there can be multiple actions using the same data source or data sink. Figure 7.15

gives an example of such a situation. The assembly TravelPlannerFacade is a component.
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Listing 7.2: Additional Prolog clause to simplify accessing additional node properties for data channels.

1 containedInDataChannel(N) :-

2 nodeCharacteristic(N, ’Containing’, ’Data Channel’).

The remaining assemblies are data channels. In the SEFF findFlights, the actions send
the criteria for flights two times and receive the list of flights two times. The actions for

emitting data use the same data source and the actions for consuming data use the same

data sink. The Indirections do not define semantics on how to distribute data received on

the data sink to the actions, i.e. it is unclear if the first or second consume action shall

receive data. Therefore, two data flows are possible. This means, we have to map the

connector from the TravelAgencyFlightsDelegator to the TravelPlannerFacade to two data

flows: Both data flows start at the output pin of the process TravelAgencyFlightsDelegator,
which represents the data channel in the DFD. One of the data flows targets the input pin

of the receive flights 1 process, which represents the first consume action from the SEFF.

The other data flow targets the input pin of the receive flights 2 process. The connector from
the TravelPlannerFacade to the TravelAgencyQueryBuilder also represents two potential

data flows: One data flow originates from the first emit action and one data flow origi-

nates from the second emit action. Both data flows target the TravelAgencyQueryBuilder.
Consequently, we have to map the connector to two data flows in the DFD. One data flow

starts at the output pin of the process, which represents the first emit action. The other

data flow starts at the output pin of the process, which represents the other emit action.

Both data flows target the input pin of the TravelAgencyQueryBuilder process.

Additional Prolog Clauses. The previously described mapping rules map a software

architecture given in the Palladio ADL to a DFD. Later, the DFD is mapped to a logic

program. To ease using the node properties of the CallRole and Containing characteristic

types, we already added additional Prolog clauses as part of the mapping of control flow

communication of Palladio. We extend these clauses by the clause shown in Listing 7.2 to

handle the value Data Channel, which we added to the Containing characteristic type.

7.2.3. DSL for Defining Custom Analyses

Software architects cannot directly use the DSL for defining custom analyses as introduced

for DFDs in Section 6.5 to formulate custom analyses for software architectures given in

another ADL. First of all, the mapping from the DSL to a query in the logic program has

to be changed to use the transitive transformation trace to resolve referenced elements

of the software architecture. For instance, a DSL constraint, which uses the clearance

characteristic type from the running example, could not be mapped to a query in the logic

program because the identifier of the characteristic type in the logic program would be

unknown. Second, the abstract and concrete syntax do not reflect the types of elements,

which are available in the ADL. For instance, the DSL refers to processes and nodes, which
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Figure 7.15.: Example of mapping between data flows from and to actions (top) to data flows between

processes in a DFD (bottom).

are no domain concepts of the Palladio ADL. In addition, the DSL does not provide means

to refer to actions in usage models or to particular SEFFs.

The previously mentioned shortcomings render the existing DSL useless but the tool

engineer can define a new DSL, which is tailored to the ADL. However, the tool engineer

does not have to recreate the DSL from scratch. He/she can reuse most parts of the abstract

and concrete syntax as well as of the mapping and can address the shortcomings by

changing the syntax or mapping.
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Figure 7.16.: Overview on adjusted elements of metamodel of DSL given as UML class diagram (light gray

elements are part of the original DSL metamodel, dark gray elements are elements of the Palladio ADL and

non-filled elements are newly defined or changed elements).

In the following, we describe the necessary changes in the abstract syntax, the concrete

syntax and the mapping. We do not describe all parts of the newly created DSL because

the descriptions in Section 6.5 already cover most aspects of the DSL. Instead, we only

explain the adjusted parts of the DSL.

7.2.3.1. Abstract Syntax

The abstract syntax of the DSL is given as a metamodel. Most information described by

the original metamodel, which we have introduced in Section 6.5.2, is still necessary and

usable for describing analyses of software architectures given in an ADL: The selection of

data as well as the conditions based on characteristic variables remain the same. However,

the selection of nodes is different because the model elements, which represent nodes, are

different. In the mappings described in Section 7.2.1.3 and Section 7.2.2.3, we consider six

model elements of the Palladio ADL as nodes. We consider each of these model elements in

the node selectors of types (Type Selector) and node selectors of identities (Identity Selector).
Figure 7.16 visualizes an excerpt of the extended metamodel of the DSL to be used together

with Palladio. In the following, we describe the six considered node types and how the

extended metamodel represents them.

A Usage Scenario is mapped to an external actor. Consequently, the User Identity selector

refers to a Usage Scenario to uniquely identify a user. An Entry Level System Call is a call
action executed by a user. It is the only node of the user behavior, which is considered in

the mapping. Consequently, the User Action Identity selector refers to an Entry Level System
Call to uniquely identify that action.

The remaining nodes are represented by elements within the system. Because the system

consists of assemblies, i.e. instances of components or data channels, the assembly hierar-

chy always has to be consideredwhen uniquely identifying an element. The Assembly-based
Selector is a supertype for all Identity Selectors, which refer to system elements. The selector
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requires an ordered list of Assembly Contexts, which represents the assembly hierarchy.

The first element is the outermost assembly, i.e. the assembly directly contained in the

system. The last element is the most nested assembly.

A store is represented by a special type of component. The assembly hierarchy of the

Assembly-based Selector is already sufficient to uniquely identify a store. The store is

always the last element of the ordered list of Assembly Contexts. Consequently, the Store
Identity selector does not require additional information except for the assembly hierarchy

provided by the Assembly-based Selector.

A data channel is also a special type of component. Therefore, the same considerations as

for stores apply to data channels as well. Consequently, the Data Channel Identity selector

only uses the assembly hierarchy provided by the Assembly-based Selector.

A SEFF describes the behavior of a component for a provided service. A provided service

is identified by a Signature, through which a service can be called. This means that an

assembly hierarchy uniquely identifies a component instance and a signature uniquely

identifies a SEFF at such a component instance. Consequently, the SEFF Identity selector

uses the assembly hierarchy provided by the Assembly-based Selector and a Signature to

uniquely identify a SEFF.

An action within a SEFF can be identified by the action itself after the SEFF has been

identified. Because the mapping not only considers call actions but also other types of

actions such as actions for emitting data or defining return values, the Action Identity
selector refers to an Abstract Action, which is the supertype of all actions within a SEFF.

In addition, the Action Identity uses the assembly hierarchy and the Signature to uniquely

identify the action.

The Type Selector also considers the six node types. The selector allows to choose any of

the six previously mentioned node types (user, user action, store, data channel, SEFF and

action). The semantics of this selection is that all nodes of that type are selected.

7.2.3.2. Concrete Syntax

Most parts of the concrete syntax, which we introduced in Section 6.5.3, remain the same.

The parts of the concrete syntax, which we have to change or adjust, are the keyword for

referring to nodes, the identity selectors and the type selector. We explain these changes

in the following.

The keyword for referring to nodes was node in the original definition of the concrete

syntax of the DSL. Because the term node is not used in the Palladio ADL, we do not use

it anymore to avoid confusion. Instead, we use the keyword element, which does not use

terminology of DFDs and can represent all six types of nodes, which we introduced in

the discussion of the abstract syntax. In the following descriptions, we will also refer to

element instead of node.
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The abstract syntax contains various types of identity selectors for elements. To make them

usable, we define a concrete syntax for all of these selectors. Examples of the concrete

syntax are given in Listing 7.3. The imports in lines 1 to 3 are necessary because we

refer to elements contained within these imported models. The concrete syntax of all

identity selectors starts with the sequence element.identity. As already motivated for

the original DSL, using dots to connect elements in an expression to navigate to a certain

object or element is common practice, so we also connect the individual parts of the

identity selectors by dots. Afterwards, the type of element has to be specified. In line 5, a

user shall be selected by his/her identifier, so the keyword SystemUser is used. As can be

seen in Listing 7.3, there are keywords for all six element types. After the keyword, the

element has to be specified. For users (see line 5), the identifier only consists of the name

of the user, i.e. the name of the user represents the reference to the Usage Scenario from

the abstract syntax. For user actions (see line 8), the identifier consists of the identifier

of the user followed by the name of the action of that user, i.e. the name of the action

represents the reference to the Entry Level System Call from the abstract syntax. For stores

(see line 11), the identifier consists of an ordered list of assembly names connected by dots,

i.e. the sequence of names represents the ordered list of Assembly Contexts from the abstract

syntax. In the given example, FlightDB is the name of the instance of the store. Airline

is the name of the component instance, which contains the store. For data channels (see

line 14), the identifier is essentially the same as for stores but the last assembly name has

to refer to an instance of a data channel instead of a store. For SEFFs (see line 17), the

identifier also uses the sequence of assembly names but adds the name of the signature,

which the SEFF describes, to the end, i.e. the name of the signature represents the reference

to the Signature from the abstract syntax. For actions (see line 20), the identifier also uses

the sequence of assembly names and the name of the signature but adds name of the action

to the end, i.e. the name of the action represents the reference to the Abstract Action from

the abstract syntax.

The concrete syntax of a type selector is as shown in Listing 7.4. The selector starts

with the sequence element.type followed by the selected type connected by a dot. In the

example, the elements representing a user are selected by the keyword SystemUser. The

keywords are the same keywords as used for identity selectors.

7.2.3.3. Mapping to Logic Program

The description of a mapping from the model elements of the abstract syntax of the

DSL to clauses in the logic program serves two purposes: First, it assigns a meaning

to an element of the abstract syntax. Second, it enables automated evaluations of the

specified analyses within tooling. We already described the mapping of the DSL without

the adjustments for Palladio in Section 6.5.4. The major part of this description still holds.

Especially, the mapping of data selectors, conditions and node selectors for properties is

still valid. However, we did not define the meaning for and the mapping of the newly

introduced selectors for the identity and type of elements yet. We describe their meaning

and mapping in the following but omit general explanations of default clauses such as
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7. Integrating DFD Analyses in Architectural Description Languages

Listing 7.3: Examples of identity selectors in constraint DSL.

1 import "travelPlanner.usagemodel"

2 import "travelPlanner.system"

3 import "travelPlanner.repository"

4 constraint NoFlowsToUser {

5 data.any NEVER FLOWS element.identity.SystemUser.User

6 }

7 constraint NoFlowsToUserAction {

8 data.any NEVER FLOWS element.identity.UserAction.User.findFlights

9 }

10 constraint NoFlowsToStore {

11 data.any NEVER FLOWS element.identity.Store.Airline.FlightDB

12 }

13 constraint NoFlowsToDataChannel {

14 data.any NEVER FLOWS element.identity.DataChannel.Airline.FlightSelector

15 }

16 constraint NoFlowsToSEFF {

17 data.any NEVER FLOWS element.identity.SEFF.Airline.AirlineLogic.addFlight

18 }

19 constraint NoFlowsToAction {

20 data.any NEVER FLOWS element.identity.Action.Airline.AirlineLogic.addFlight.call

21 }

Listing 7.4: Examples of type selector in constraint DSL.

1 constraint NoFlowsToAnyUser {

2 data.any NEVER FLOWS element.type.SystemUser

3 }

inputPin/2 or flowTree/3 because we already explained them in depth in the mapping of

the DSL without the adjustments for Palladio.

User Identity Selector. An identity selector selects elements based on their identifier. In

the DSL, the selector always refers to one particular element in the software architecture

given in Palladio. Because we map model elements of Palladio to one or multiple elements,

it is possible that an identity selector does not only refer to a single element in the DFD

and also in the logic program but to multiple elements. The identity selector in Figure 7.17

selects the user named User. In our mapping of the extended Palladio ADL to a DFD,

we mapped a usage scenario to an actor in the DFD. The calls of the user became actor

processes in the DFD. The actor itself does not emit or consume data but uses the actor

processes to process data. Consequently, when referring to a user in an analysis definition,

it is reasonable and intuitive to consider all activities of this user. Figure 7.18 visualizes

this for the user selector. This means, we map the identity selector for a user to all actor

processes, which belong to the selected user. We use the transformation trace to look up

the identifiers of the actor processes in the logic program, which match the selection. In

the example in Figure 7.17, the nodes are the entry and exit processes of the calls of the

user. The individual clauses that unify the node identifier N in the logic program with the
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1 constraint NoFlowsToUser {

2 data.any NEVER FLOWS element.identity.SystemUser.User

3 }

⇓
4 constraint(’NoFlowsToUser’, N, PIN, S) :-

5 inputPin(N, PIN),

6 flowTree(N, PIN, S),

7 (

8 N = ’User.findFlights entry’;

9 N = ’User.findFlights exit’;

10 N = ’User.getCCD entry’;

11 N = ’User.getCCD exit’;

12 N = ’User.bookFlight entry’;

13 N = ’User.bookFlight exit’

14 ).

Figure 7.17.: Example of mapping an identity selector for a user from DSL constraint to logic program.

EntryProcess 
User find flights

User

ExitProcess 
User find flights ...

: User Identity

User : Usage Scenario

Figure 7.18.: DFD elements (right) considered by an identity selector for a user (left).

selected identifier, are collected in a disjunction. This means that any of the selected nodes

can be used to identify a violation.

Remaining Identity Selectors. All identity selectors follow the structure illustrated in

Figure 7.17, i.e. there is a disjunction of identified elements, which are derived from the

selected Palladio element by looking up related elements in the transformation trace.

However, the considered DFD elements are different for all types of identity selectors. For

selectors of user actions, the entry and exit processes, which correspond to the selected

call action of the user according to the transformation trace, are considered as shown in

Figure 7.19. There are no other related elements to be considered. For selectors of stores,

the DFD store mapped from the store in Palladio is considered as shown in Figure 7.20. It

would also be possible to consider the entry and exit processes of the store but because

there is only one data flow from the entry process and one data flow to the exit process

and both data flows are connected to the store, it is sufficient to only consider the store.

For selectors of data channels, the process mapped from the data channel instance in

Palladio is considered as shown in Figure 7.21. There are no other elements related to the

data channel, which could be considered. For selectors of SEFFs, the entry as well as the

exit process mapped from the selected SEFF are considered as shown in Figure 7.22. We

do not consider the actions within the selected SEFF because these elements can also be
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EntryProcess 
User find flights

ExitProcess 
User find flights: User Action Identity User : Entry Level

System Call

Figure 7.19.: DFD elements (right) considered by an identity selector for a user action (left).

: Store Identity
Airline : Assembly Context

FlightDB : Assembly Context
FlightDB

Figure 7.20.: DFD elements (right) considered by an identity selector for a store (left).

selected by the identity selectors of the actions and it can be useful to only consider the

data exchanged by a SEFF via a call. The entry and exit processes are appropriate for this

purpose. For selectors of actions within a SEFF, we consider the processes mapped from

the selected action as shown in Figure 7.23. There are no other elements related to the

action, which we could consider.

Type Selectors for Users/User Actions. The meaning of a type selector is that all model

elements, which are of a certain type, shall be considered in the analysis. The types are

given as types from the Palladio ADL. The available types of elements are the six types,

which we already discussed for the identity selectors. The type selectors for users and user

actions essentially map to the same clauses as shown in Figure 7.24. The mapping uses the

clause containedInScenarioBehaviour/1, which we introduced in the mapping from the

Palladio ADL to a DFD as an additional clause. The clause matches all identifiers of nodes

𝑁 , which originate from call actions of a user. It is reasonable to not distinguish between

the user and its actions because the user himself/herself does not have a dedicated behavior

but his/her behavior is defined by the actor processes, which belong to him/her.

Type Selectors for Remaining Types. The mapping of the type selector for stores shown

in Figure 7.25 is rather simple because we can simply test if a given node 𝑁 is a store in the

DFD by using the store/1 clause. This selector matches all Palladio elements, which are

mapped to stores. The mapping of the type selector for data channels shown in Figure 7.26

shall match all DFD elements, which have been mapped from a data channel. We use

the containedInDataChannel/1 clause, which we introduced in the mapping from the

Palladio ADL to a DFD as an additional clause. The clause considers exactly all processes,

which have been mapped from a data channel. The mapping of the type selector for SEFFs

: Data Channel Identity
Airline : Assembly Context

Flight Selector : Assembly Context
Flight Selector

Figure 7.21.: DFD elements (right) considered by an identity selector for a data channel (left).
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: SEFF Identity Airline : Assembly Context

Airline Logic : Assembly ContextaddFlight : Signature

EntryProcess 
addFlight

ExitProcess 
addFlight

Figure 7.22.: DFD elements (right) considered by an identity selector for a SEFF (left).

: Action Identity Airline : Assembly Context

Airline Logic : Assembly Context

addFlight : Signature

EntryProcess 
call

ExitProcess 
callcall : External Call Action

Figure 7.23.: DFD elements (right) considered by an identity selector for an action in a SEFF (left).

shown in Figure 7.27 matches the entry and exit processes of SEFFs. It is reasonable to

only match these two types of processes because they are additional processes only added

to represent the call receiving and returning of a service. By only matching these two

processes, it is possible to ignore the data processing within a SEFF but focus on the data

transmissions when calling a service as well as when returning from a service. We use

the clauses isASEFFEntry/1 and isASEFFExit/1, which we introduced in the mapping

from the Palladio ADL to a DFD as an additional clause, in a disjunction. This means all

entry and exit processes are considered. The mapping of the type selector for actions

within SEFFs also shown in Figure 7.27 matches the remaining processes, which have been

mapped from actions within SEFFs. We use the containedInComponent/1 clause, which

we introduced in the mapping from the Palladio ADL to a DFD as an additional clause,

to identify processes, which have been created by a mapping from an element within a

component, i.e. actions and SEFF entry and exit processes. Because the SEFF entry and

1 constraint NoFlowsToAnyUser {

2 data.any NEVER FLOWS element.type.SystemUser

3 }

4 constraint NoFlowsToAnyUserAction {

5 data.any NEVER FLOWS element.type.UserAction

6 }

⇓
7 constraint(’NoFlowsToAnyUser’, N, PIN, S) :-

8 inputPin(N, PIN), flowTree(N, PIN, S),

9 containedInScenarioBehaviour(N).

10 constraint(’NoFlowsToAnyUserAction’, N, PIN, S) :-

11 inputPin(N, PIN), flowTree(N, PIN, S),

12 containedInScenarioBehaviour(N).

Figure 7.24.: Example of mapping a type selector for users or user actions from DSL constraints to logic

programs.
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1 constraint NoFlowsToAnyStore {

2 data.any NEVER FLOWS element.type.Store

3 }

⇓
4 constraint(’NoFlowsToAnyStore’, N, PIN, S) :-

5 inputPin(N, PIN), flowTree(N, PIN, S),

6 store(N).

Figure 7.25.: Example of mapping a type selector for stores from DSL constraint to the logic program.

1 constraint NoFlowsToAnyDataChannel {

2 data.any NEVER FLOWS element.type.DataChannel

3 }

⇓
4 constraint(’NoFlowsToAnyDataChannel’, N, PIN, S) :-

5 inputPin(N, PIN), flowTree(N, PIN, S),

6 containedInDataChannel(N).

Figure 7.26.: Example of mapping a type selector for data channels from DSL constraint to the logic program.

exit processes do not originate from actions, we exclude them by requesting that a node

𝑁 originated from a component but is not a SEFF entry or exit process.

1 constraint NoFlowsToAnySEFF {

2 data.any NEVER FLOWS element.type.SEFF

3 }

4 constraint NoFlowsToAnyAction {

5 data.any NEVER FLOWS element.type.Action

6 }

⇓
7 constraint(’NoFlowsToAnySEFF’, N, PIN, S) :-

8 inputPin(N, PIN), flowTree(N, PIN, S),

9 (isASEFFEntry(N); isASEFFExit(N)).

10 constraint(’NoFlowsToAnyAction’, N, PIN, S) :-

11 inputPin(N, PIN), flowTree(N, PIN, S),

12 (containedInComponent(N), \+ isASEFFEntry(N), \+ isASEFFExit(N)).

Figure 7.27.: Example of mapping a type selector for SEFFs or actions within SEFFs from DSL constraints to

logic programs.
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7.3. Requirements Coverage

ID Description Covering Part

R3.1 support control flow ADLs guidelines and application to Palladio

R3.2 support data flow ADLs guidelines and application to Palladio

R3.3 high reuse of ADL elements identification/extension steps

R3.4 analysis framework see Table 7.2

R3.5 stay on architecture level mapping and analysis DSL

Table 7.1.: Overview on requirements on the integration guidelines and how they are met.

7.3. Requirements Coverage

The integration guidelines presented in this chapter meet all requirements, which we

defined in Section 4.1.3. Table 7.1 gives an overview on the requirements as well as how

the integration guidelines meet these requirements.

The requirements to support ADLs using control flows (R3.1) and ADLs using data flows

(R3.2) are met by the integration guidelines, which we introduce in Section 7.1. We show

that the guidelines are applicable to ADLs using control flows by applying them to the

subset of Palladio, which uses control flows, in Section 7.2.1. We show that the guidelines

are applicable to ADLs using data flows by applying them to the subset of Palladio, which

uses data flows, in Section 7.2.2. To reuse as much ADL elements as possible (R3.3), we

introduced a step to capture missing but mandatory concepts of the existing ADL in

the integration guidelines in Section 7.1. The step to extend the ADL only introduces

new concepts if there is no matching concept available. Therefore, the tool engineer

has to make use of as much existing concepts as possible, which also implies a high

reuse of ADL elements. The architect does not have to be aware of DFDs and Prolog, i.e.

only has to be aware of domain concepts of the architectural design level (R3.5), because

everything, which uses concepts not present in the ADL, is hidden from the architect: The

guidelines in Section 7.1 yield a mapping for the software architecture given in an ADL

to a DFD as well as a DSL for formulating custom analyses. Because the mapping can be

automated completely and the DSL avoids writing Prolog code, the architect can model

and analyze architectures without the need to be aware of any underlying concept. The

requirement on the analysis framework (R3.4) is that the analysis framework yielded by

the integration guidelines shall meet all requirements on the analysis framework for DFDs.

Table 7.2 provides an overview on how the analysis framework resulting from applying the

integration guidelines meet these requirements. We discuss the table in the following.

The analysis framework yielded by the integration guidelines describes the semantics of the

ADL elements by a mapping to a DFD. We demonstrated this for Palladio in Section 7.2.1.3

and Section 7.2.2.3. The description of the mapping only covers ADL elements, which

actually have an effect on data flows. However, themapping still describes the semantics for

all ADL elements (R2.1) because every ADL element, which is not explicitly mentioned in

the mapping, is a neutral element with respect to the data flows. This means it does neither

affect the structure of the resulting DFD nor the behavior of the label propagation.
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ID Description User Covering Part

R2.1 every element covered — mapping to DFD

R2.2 derivation of properties analysis label lookup in DFDs

R2.3 origin of properties analysis flow tree from DFDs

R2.4 analyses based on goals expert analysis procedure for DFDs

R2.5 analyses based on goals architect DSL for custom analyses

R2.6 tracing of properties architect flow tree from DFDs

R2.7 automated analyses architect analysis procedure

R2.8 information flow expert analysis definitions for DFDs

R2.9 access control expert analysis definitions for DFDs

Table 7.2.: Overview on requirements on the analysis framework and how the analysis framework of the

integration procedure meets them.

The mapping from an architecture given in an ADL to a DFD allows to reuse the analysis

framework for DFDs. Therefore, we automatically meet the requirements regarding the

derivation of properties (R2.2), the tracing of properties (R2.3 and R2.6), the definition of

analyses based on goals by the security expert (R2.4) as well as the support for information

flow analyses (R2.8) and access control analyses (R2.9).

The DSL for formulating custom analyses meets the requirement regarding the definition

of analyses based on goals by the software architect (R2.5). As we describe in Section 7.2.3,

the DSL does not require knowledge about DFDs or logic programming but only knowledge

about software architectures.

The analysis procedure described in Section 7.1 supports automated analyses (R2.7). This

is possible because all mappings as well as the label propagation and comparison can be

fully automated.

7.4. Assumptions and Limitations

This section discusses assumptions and limitations of the integration guidelines as well as

of the particular integrations into Palladio.

Implications of reuse The integration guidelines aim for reusing as much as possible of

the analysis framework and the analysis definitions for DFDs. Therefore, the resulting inte-

gration shares the assumptions of limitations of the analysis framework, which we discuss

in Section 5.3, as well as of the analysis definitions, which we discuss in Section 6.7.

No implicit flows In mappings from ADLs, which use control flows, to DFDs, it is nec-

essary to derive data flows from the existing descriptions. The approach presented in

the previous sections is to treat exchanged parameters and return values as data and the
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exchange as a data flow. We make these data flows explicit by mapping them to data

flows in the DFD. However, there are also implicit information flows such as changed

timing-behavior, which an attacker can observe. As already discussed in Section 6.2.1, we

exclude such implicit flows because software architectures do not provide information

with enough details to reason about implicit flows.

ADL elements without effect In themappings from architectures given in anADL toDFDs,

usually not all ADL elements are mapped to a counterpart in a DFD. This is not surprising

because ADLs often not only represent information to analyze confidentiality properties

but also information for other quality properties. The assumption in the mappings is that

the ADL elements, which are not mapped, do not affect confidentiality. This is not entirely

true in our mappings because we do not represent ADL elements, which affect control

flows, in the DFDs. However, elements such as branches can imply implicit flows. Instead,

we only consider the explicitly exchanged data between actions within a control flow.

However, the assumption that these elements do not affect confidentiality is true with

respect to the confidentiality analyses, which we want to conduct. As described before,

we exclude implicit flows anyways, so there is no effect on the confidentiality analyses.

Independent treatment of parameters As part of the integration of confidentiality analy-

ses in Palladio, we map each parameter transmitted via a calling action to one data flow. If

there are multiple calls to the same SEFF, there will be multiple data flows to the same

pin. All of these data flows are treated independently. This means that the analysis also

combines data flows from two different calls when propagating labels. The reason to

do this is that a DFD process could potentially cache received parameters and combine

cached parameters with newly received parameters. Thereby, the analysis overestimates

potential confidentiality problems. It is possible to avoid this overestimation by providing

special flowTree/3 clauses, which only yield flow trees that use flows from the same

source. However, we did not implement this option.

Overestimation of data flows via sinks and sources As already discussed in Section 7.2.2.3,

we consider all possible combinations of data flows between data sources and data sinks

if an action in a SEFF is involved. We do this because the Palladio extension Indirections
does not provide semantics for the case that there are multiple actions using the same

data sinks or data sources. Doing an overestimation is the most conservative handling of

this situation. As soon as there are semantics for this situation, the mapping can consider

them.
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7.5. Summary

In this chapter, we presented how to integrate DFD-based confidentiality analyses into

existing ADLs. A set of integration guidelines specifies the integration procedure and the

application of the guidelines to the Palladio ADL demonstrated their applicability.

The integration guidelines in Section 7.1 provide a process to integrate DFD-based analyses

into existing ADLs. The process consists of four steps: First, the tool engineer identifies

concepts, which are essential but which are not represented in the ADL. An extension

of the ADL introduces these concepts. A definition of a mapping from the ADL to a DFD

enables reusing the existing analysis framework for DFD-based analyses. By adjusting the

DSL for formulating custom analyses, the tool engineer provides the software architect

with the means to define new analyses.

The application of the integration guidelines to the Palladio ADL demonstrates the applica-

bility of the guidelines in Section 7.2. Because Palladio uses call-and-return communication

as well as communication based on data flows, we can demonstrate the integration guide-

lines for the subset of the Palladio ADL, which uses control flows, in Section 7.2.1 as well

as for the subset of the Palladio ADL, which uses data flows, in Section 7.2.2. In addition,

we show how a tool engineer can adjust the DSL for formulating custom analyses in

Section 7.2.3.

The integration guidelines meet the corresponding requirements, which we defined in

Section 4.1.3. We explain how the integration guidelines meet the requirements in Sec-

tion 7.3.

Because the integration guidelines aim to reuse the analysis framework for DFDs, they

share the same assumptions and limitations but there are also additional assumptions

and limitations, which we discuss in Section 7.4. The most prominent limitation is the

exclusion of implicit information flows. The most prominent assumptions are that certain

ADL elements do not affect confidentiality and that overestimations of data flows are

reasonable.
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8. Validation

The overall goal of the validation is to show that the contributions sufficiently answer the

corresponding research questions. To ensure that the validation achieves this goal, we

refine this high-level goal into further validation goals and discuss the data, which we

have to collect to decide whether a goal is achieved. We present the validation goals and

the necessary data in the overview on our validation in Section 8.1.

The major part of the validation is based on case studies. A case study always involves

particular systems, to which the contributions are applied. To ensure that the case study

systems support the validation, we derive requirements on the selection of the systems

and the systems themselves. Afterwards we present the selected systems. We describe the

requirements and the selected systems in Section 8.2.

We structure the presentation of the actual validations by the validation goals, which also

align with the contributions. For every validation goal, we present the validation design

and the results. Afterwards, we discuss these results as well as threats to validity. The

validation of the extended DFD syntax (C1) is covered in Section 8.3. Section 8.4 describes

the validation of the DFD analyses (C3). The validation of the DFD semantics (C2) is subject

to Section 8.5. Eventually, we describe the validation of the ADL integration guidelines

(C4) in Section 8.6. We summarize the results of the validations and the implications on

the validation goals in Section 8.7.

8.1. Overview

The goal of the validation is to show that we sufficiently answered the research questions

presented in Section 1.4. Therefore, we structure the validation by the contributions,

which represent the answers to the research questions. We applied the Goal-Question-

Metric (GQM) approach [BW84; BCR94], which we explain in the next paragraph, to break

down the high-level validation goals into validation questions and corresponding metrics

to answer these questions. These validation questions and metrics support a focused

validation design. In this section, we focus on the resulting so-called GQM plan.

The GQM approach [BW84; BCR94] provides guidelines on how to effectively achieve a

certain goal. In the context of a validation, the goal is usually to validate that a certain

contribution meets certain quality standards or appropriately answers research questions.

Usually, a measurement in an experiment or case study is not sufficient to completely

achieve such a validation goal. Therefore, the approach suggests to define validation
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Validation

Goal Contribution Research Question

VG1 C1) DFD Syntax RQ1) modeling access control

RQ2) modeling information flow

RQ3) modeling primitives

VG2 C3) DFD Analyses RQ5) access control analyses

RQ6) information flow analyses

VG3 C2) DFD Semantics RQ4) analysis semantics for DFDs

VG4 C4) ADL Integration RQ7) integration control flow ADLs

RQ8) integration data flow ADLs

Table 8.1.: Relation between validation goals (VG), contributions (C) and research questions (RQ).

questions. An answer to such a question gives insights in whether a certain aspect of

the goal has been achieved. By summing up the answers to all questions, we can decide

whether a goal has been achieved. The answers to the questions are given in terms of

metrics and a guideline on how to interpret these metrics. For instance, a metric collecting

the duration of an execution is reasonable to rate the performance of an approach but it is

not sufficient to answer a question about appropriate performance without a guideline on

how to interpret such a duration. Such a guideline can be a maximum acceptable duration

or a reference duration from another approach. A metric does not necessarily have to be

based on a quantitative measurement but can also be a qualitative result as long as a clear

guideline on how to interpret the results is available.

The goals in our GQM plan are to validate that the contributions C1–C4 sufficiently

address the corresponding research questions RQ1–RQ8. Table 8.1 illustrates the relation

between the validation goals (VG), the contributions and the research questions. We derive

the validation questions to achieve the validation goals from the research questions and

corresponding motivations as well as explanations in Section 1.4. The resulting GQM plan

is illustrated in Figure 8.1 for the contributions C1, C2 and C3 as well as in Figure 8.2

for contribution C4. In the following paragraphs, we describe all parts of the plan and

show that the questions and metrics are reasonable and sufficient to achieve the validation

goals.

8.1.1. Validation Goal 1: Validate DFD Syntax

The validation goal about the DFD syntax is to show that the syntax sufficiently answers

the research questions RQ1, RQ2 and RQ3. RQ1 asks what information is necessary to

reason about access control. RQ2 asks the same for information flow control. In the DFD

syntax, we decided that properties of nodes and behaviors formulated as label propagation

functions are sufficient to reason about access control as well as information flow control.

Therefore, we have to validate that these elements of the modeling language sufficiently

describe systems in a way that reasoning about access control and information flow control
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is possible. To validate the capability of describing systems, we formulate the validation

questions VQ1 and VQ2, which we describe in the next paragraphs. The validation of

the analyses and semantics in VQ6 of VG3 will show that the modeled systems can be

used to reason about access control or information flow control. RQ3 asks what modeling

primitives, i.e. elements of the modeling language, are required. We have to validate that

every element of the modeling language is necessary to model systems containing access

control and information flow control. We formulate the validation question VQ3, which

we describe in the next paragraphs, to validate this. Having a set of required elements

of a modeling language is only helpful if an architect or security expert has the required

information to create models by using these elements. Therefore, we have to validate

that the required information to use the model elements is available while creating a

software architecture. To validate this, we formulate VQ4, which we describe in the next

paragraphs.

VQ1) Can the DFD syntax express access control and information flow control mecha-

nisms within systems?

The focus on expressing mechanisms in the context of a particular system is important

because architects are usually interested in analyzing a particular system under design.

We already demonstrated in Section 6.2 that the syntax can express access control and

information flow control mechanisms in general. However, this did not demonstrate that

the chosen way of expressing mechanisms fits the needs of particular systems. Assume we

have a set of systems 𝑆 , where each system 𝑠 ∈ 𝑆 uses a certain mechanism. A reasonable

metric to answer the validation question could be the ratio 𝑟 of the expressible systems

𝑆𝑒 ⊆ 𝑆 to the total amount of systems 𝑆 , i.e. 𝑟 =
|𝑆𝑒 |
|𝑆 | . A metric value of 1.0 means that the

DFD syntax can express all mechanismswithin systems. However, themetric is problematic

if there are multiple systems using the same mechanisms: Imagine that the DFD syntax

can express DAC very well but certain other mechanisms not. If the set of systems contains

many systems using DAC but only a few systems containing other mechanisms, the metric

value would hide the bad expressiveness regarding other mechanisms. To avoid this effect

of an unbalanced set of systems with respect to the used mechanism, we use a normalizing

metric, i.e. a weighted ratio metric. First, we define a set of mechanisms 𝑀 and extend

the ratio metric 𝑟 to only consider systems containing a certain mechanism𝑚 ∈ 𝑀 , i.e.

𝑟 (𝑚). Based on that, the weighted ratio metric 𝑟 is 𝑟 =
∑︁

𝑚∈𝑀
𝑟 (𝑚)
|𝑀 | . A metric value of 1.0

means that the DFD syntax can express all mechanisms within systems. Assuming that all

systems stem from the state of the art and have been published together with a modeling

approach, the expected value of the weighted ratio metric 𝑟 is also 1.0 because all of these

systems can be modeled by state-of-the-art approaches. To decide whether we sufficiently

addressed RQ1 and RQ2 individually, we define the following two dedicated metrics:

VM1.1) Weighted ratio 𝑟 of expressible systems using access control and the set of systems

using access control.

VM1.2) Weighted ratio 𝑟 of expressible systems using information flow control and the

set of systems using information flow control.
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8. Validation

The previous validation question aims at validating that the DFD syntax can express

systems using either access control or information flow control. However, combining

multiple confidentiality mechanisms can be beneficial. Therefore, the DFD syntax should

also support this as we already motivated while explaining the research questions in

Section 1.4.1. Therefore, we formulate the following validation question:

VQ2) Can the DFD syntax express combinations of access control and information flow

control mechanisms within the same system?

The validation question is about validating that the DFD syntax supports systems using

combinations of mechanisms. In theory, all possible combinations of mechanisms are

possible. The new set 𝑀𝑃 = 𝑃 (𝑀) \ (𝑀 ∪ ∅) with the power set 𝑃 (𝑀) of the set of

mechanisms 𝑀 describes these combinations. It is unrealistic to assume that there is at

least one system for each𝑚 ∈ 𝑀𝑃 because𝑀𝑃 contains too many elements. Therefore, we

only expect a subset𝑀𝑐 ⊆ 𝑀𝑃 to be available. We also cannot assume that there will be

the same number of systems for each𝑚 ∈ 𝑀𝑐 . Therefore, the weighted ratio metric 𝑟 as

already used in VQ1 is appropriate. We redefine the ratio metric 𝑟 (𝑚), which is used in 𝑟 ,

to only consider systems using a combination of mechanisms𝑚 ∈ 𝑀𝑐 . A metric value of

1.0 means that the DFD syntax can represent all investigated combinations of mechanisms.

Because modeling approaches in the state of the art often do not support combinations of

mechanisms, a metric value above 0.0 can already be considered a good result. This brings

us to the following metric.

VM2.1) Weighted ratio 𝑟 of expressible systems using any combination of access control

and information flow control mechanisms.

RQ3 asks for the necessary model elements in the DFD syntax in order to express systems

using access control and information flow control. The previous validation questions VQ1

and VQ2 already validate that the model elements are sufficient to express such systems.

However, the questions did not validate whether all model elements are actually necessary

or whether there are model elements, which are specific for certain confidentiality mecha-

nisms. One of the goals on the DFD syntax was to avoid such specific model elements as

explained in Section 1.4.1. Therefore, we formulate the following validation question:

VQ3) Are all elements of the DFD syntax commonly used when modeling systems

containing access control and information flow control?

A utilization metric for every model element, which can be used, i.e. instantiated, can

provide an answer to the validation question. We are, especially interested identifying

model elements, which are only used by one confidentiality mechanism and not necessarily

only by one system. It is likely that such elements are specific to a particular confidentiality

mechanism. To represent our interested in the utilization metric, we define the metric

as the usage of model elements per confidentiality mechanism. Assume a set 𝐹 of model

elements of the DFD syntax, which can be used, i.e. instantiated, and a set 𝑆 𝑓 ⊆ 𝑆 , which

contains all systems that use a particular model element 𝑓 ∈ 𝐹 . Assume further a set of

systems 𝑆𝑚 ⊆ 𝑆 , which use a certain confidentiality mechanism𝑚 ∈ 𝑀 . The function

𝑢 (𝑓 ,𝑚) returns 1 iff 𝑆 𝑓 ∩ 𝑆𝑚 ≠ ∅ holds, 0 otherwise. This means 𝑢 (𝑓 ,𝑚) returns 1 if there
is at least one system, which uses model element 𝑓 and the confidentiality mechanism
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8.1. Overview

𝑚. The utilization metric 𝑢 𝑓 is then defined as 𝑢 𝑓 =
∑︁

𝑚∈𝑀 𝑢 (𝑓 ,𝑚). The validation passes

if 𝑢 𝑓 is never less than 2 for all 𝑓 ∈ 𝐹 . This means, there are at least two systems using

different confidentiality mechanisms but the same model element 𝑓 . This brings us to the

following metric.

VM3.1) Utilization metric 𝑢 𝑓 of model element 𝑓 across confidentiality mechanisms.

The previous validation questions focused on validating that the model elements are

sufficient and necessary. Another important aspect to consider when validating that the

provided model elements can express systems is whether software architects and security

experts can instantiate these model elements while modeling the software architecture of

the system. In particular, the required information to instantiate the model elements has to

be available and accessible to the software architects and security experts. Otherwise, the

DFD syntax fails its pragmatics of describing a software architecture in order to analyze it

while creating the software architecture. Therefore, we formulate the following validation

question:

VQ4) Is the information to be expressed by the DFD syntax available and accessible to

its users?

Assuming we have a set of information 𝐼 , which is necessary to instantiate the model

elements of the DFD syntax, we can define a set 𝐼𝑘 ⊆ 𝐼 of information, which can be known.

A reasonable metric is to sum up all information, which is not known. The resulting sum

𝑠𝑘¯ = |𝐼 \ 𝐼𝑘 | has to be 0. A value greater 0 means that the DFD syntax requires unavailable

information. This would render the syntax unusable. This brings us to the following

metric.

VM4.1) Sum 𝑠𝑘¯ of information, which cannot be known by software architects and

security experts.

8.1.2. Validation Goal 2: Validate Analysis Definitions

The validation goal about the analysis definitions for access control and information

flow control is to show that the analysis definitions sufficiently answer the research

questions RQ5 and RQ6. The research questions ask how to define analyses using the

DFD syntax and semantics. We presented analysis definitions for common access control

and information flow control mechanisms in Section 6.2 and also demonstrated how to

integrate encryption in Section 6.3 as well as how to combine analyses in Section 6.4 to

make these analysis definitions more applicable. However, we did not demonstrate that

these analysis definitions are applicable to particular systems including their confidentiality

requirements. Here, applicable means that the analysis definitions provide the means to

express confidentiality requirements and that the resulting analyses provide correct results.

To do this validation, we formulate the validation question VQ5, which we describe in

the following, and reuse the validation question VQ6, which we will describe as part of

VG3.
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VQ5) Do the analysis definitions provide the means to express confidentiality require-

ments based on access control and information flow control mechanisms within

systems?

The focus on the application within systems is important because software architects

are usually interested in identifying violations in particular systems under design. We

already motivated that the analysis definitions can identify violations in Section 6.2 in

general but we did not show yet that the analysis definitions fit the needs of particular

systems, i.e. that we can express the confidentiality requirements of the system by using

the analysis definitions. In contrast to VQ1, VQ5 focuses on expressing confidentiality

requirements by analysis definitions and not on expressing confidentiality mechanisms

within systems. Nevertheless, we can reuse the ideas for finding an appropriate metric

from VQ1 to answer VQ5: To answer the validation question, we need to know how many

confidentiality requirements of systems can be expressed using the analysis definitions.

The ratio metric 𝑟 already defined for VQ1 is a good metric to summarize this data in order

to answer the validation question. For calculating the metric, we define a system to be part

of the set of expressible systems 𝑆𝑒 if we could express the confidentiality requirements

of the system. The remainder of the metric definition remains the same. The metric

normalize the effect of a set of systems, which is unbalanced with respect to the used

confidentiality mechanism. Without this normalization, a big amount of systems using the

same mechanism and therefore similar confidentiality requirements could make the metric

look more positive if only a single system is using a particular mechanism and therefore

specific confidentiality requirements. To decide whether we sufficiently addressed RQ5

and RQ6 individually as well as combinations of both mechanisms, we define the following

three dedicated metrics:

VM5.1) Weighted ratio 𝑟 of systems, for which the analysis definitions can express access

control requirements, and the set of systems using access control.

VM5.2) Weighted ratio 𝑟 of systems, for which the analysis definitions can express

information flow control requirements, and the set of systems using information

flow control.

VM5.3) Weighted ratio 𝑟 of systems, for which the analysis definitions can express

combined access control and information flow control requirements, and the set

of systems using combined mechanisms.

An analysis definition is only useful if it can be used to identify violations. Therefore, we

have to validate that analyses, which are expressed in terms of the analysis definition, can

identify systems, which violate the confidentiality requirements. VQ6, which we define as

part of VG3, essentially validates this, i.e. that analyses can identify systems containing

violations. Therefore, we use the results of that validation question to decide whether

the analysis definitions can identify violations. With respect to the defined metrics true
positive fraction (VM6.1) and true negative fraction (VM6.2), we aim for a value of 1.0,

which means no false negatives or false positives. This is possible because the analyses can

provide exact results and should do so. An explanation of why exact results are possible,

is part of the description of the validation question for VG3.
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8.1.3. Validation Goal 3: Validate DFD Semantics

The validation goal about the DFD semantics is to show that the semantics sufficiently

answer the research question RQ4. RQ4 asks what DFD semantics allow detecting vio-

lations of confidentiality requirements. In Section 5.2, we presented our semantics and

motivated why they support analyses. However, we did not show yet that the semantics

support automated analyses of confidentiality mechanisms used in systems. Therefore,

we have to validate that the semantics support analyses of systems, which yield correct

results, and that the semantics do not limit the automation of analyses. To do this valida-

tion, we formulate the validation questions VQ6 and VQ7, which we describe in the next

paragraphs.

VQ6) Can analyses based on the DFD semantics correctly identify systems containing

violations?

As motivated before, we focus on detecting violations in the context of particular systems

because software architects use the semantics for this purpose. The only purpose of

the DFD semantics is to enable analyses for identifying such violations. Therefore, it is

reasonable to focus on validating the support for particular analyses. We consider an

analysis to be supported if it provides correct results. A result is correct if it correctly

classifies a system as containing or not containing violations and it classifies it for the

right reason. An analysis classifies a system for the right reason if i) no violations are

reported for a system, which does not contain an issue, and if ii) all violations reported for

a system, which does contain an issue, are caused by the issue and at least one issue is

reported. Metz [Met78] suggests various metrics to rate the quality of analyses with only

two possible outcomes, i.e. binary classifiers. The suggested metrics can handle unbalanced

data sets such as a data set with many systems without an issue and only few systems

with issue. A metric, which solely focuses on the right output of the analysis, would rate

an analysis, which never reports a violation, good in such a setting. Although, the analysis

is not useful at all. One suggested combination of metrics, which addresses this issue,

is the true positive fraction (also called sensitivity) and the true negative fraction (also

called specificity). We define both metrics in the following. Assume there exists a set 𝑆𝑖 of

systems, which contain an issue, and a set 𝑆�̄� of systems, which do not contain an issue. The

set 𝑆′𝑖 ⊆ 𝑆𝑖 describes the set of systems, which the analysis correctly classified as containing

violations according to the definition given above. The set 𝑆′
�̄�
⊆ 𝑆�̄� describes the set of

systems, which the analysis correctly classified as not containing violations according to

the definition given above. The true positive fraction 𝑇𝑃𝐹 is defined as 𝑇𝑃𝐹 = |𝑆 ′𝑖 |/|𝑆𝑖 |. The
true negative fraction 𝑇𝑁𝐹 is defined as 𝑇𝑁𝐹 = |𝑆 ′𝑖 |/|𝑆𝑖 |. The DFD analyses are meant to

yield exact solutions, which is possible because DFDs are simple descriptions of software

systems that reduce the complexity of the analysis by focusing on the most important

aspects. The reduced complexity with respect to implemented software systems is no

disadvantage but it is necessary to keep the complexity of modeling and the required

information for modeling low enough to be applicable in the early phases of creating

software architectures. Because of that reduced complexity, it is possible to clearly classify

a result, i.e. add the system either to 𝑆′𝑖 or 𝑆
′
�̄�
. As a consequence, we can expect and demand
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𝑇𝑃𝐹 = 𝑇𝑁𝐹 = 1.0 because there are no heuristics involved. A single false positive or false

negative is already not acceptable. Both metrics provide the required insight to answer

VQ6, so we use these:

VM6.1) The ratio of systems, which have been correctly classified as violating confiden-

tiality requirements, compared to the total amount of systems, which actually

violate confidentiality requirements (𝑇𝑃𝐹 ).

VM6.2) The ratio of systems, which have been correctly classified as not violating confi-

dentiality requirements, compared to the total amount of systems, which actually

do not violate confidentiality requirements (𝑇𝑁𝐹 ).

One key benefit of specified semantics is giving a precise meaning to model elements of

the DFD syntax. A precise meaning is an enabler for automating reasoning steps, which

would require heuristics or human interpretation otherwise. The precise meaning has to

cover all model elements and has to be applicable in all reasoning steps in order to create

a fully automated analysis. Therefore, it is important to validate that the semantics do

not limit the automation of analyses by missing semantic specifications, weak typing of

information or by not covering important usage scenarios. We formulate the following

validation question:

VQ7) Do the DFD semantics limit the automation of analyses?

To answer the validation question, we have to identify the steps required to automate an

analysis of a system. Assuming we have a set 𝐴 of required analysis steps, we can define

a set 𝐴𝑎 ⊆ 𝐴 of analysis steps, which can be automated. The semantics do not limit the

automation of analyses if there are no analysis steps, which are not automated, i.e. 𝐴 = 𝐴𝑎 .

A metric to represent this relation is the number of not automated steps �̄� = |𝐴 \𝐴𝑎 |. If
the value is 0, the semantics do not limit the automation of analyses because there are no

steps, which are not automated. Therefore, we answer VQ7 by the following metric:

VM7.1) The number of analysis steps, which cannot be automated (�̄�).

8.1.4. Validation Goal 4: Validate ADL Integration Guidelines

The validation goal about the integration guidelines of DFD analyses in existing ADLs is

to show that the guidelines sufficiently answer the research questions RQ7 and RQ8. RQ7

asks how the DFD analyses can be integrated into existing ADLs using the control flow

paradigm. RQ8 asks the same for ADLs using the data flow paradigm. The integration

guidelines described in Chapter 7 answer these questions and the integration into the

Palladio ADL demonstrated the applicability of the integration guidelines. A dedicated

validation of the integration guidelines is not possible in an objective way because there are

too many human factors involved in executing the integration procedure resulting from the

integration guidelines. Instead, we validate the result of the integration procedure, i.e. the

extended ADLs, because we can analyze these artifacts in an objective way and can infer

whether the integration guidelines cover all important aspects. We did not show yet that

the resulting extended ADLs meet the functional and non-functional requirements, which
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we aim to achieve by executing the integration procedure as described in Section 1.4.3.

The implicit functional requirements, which are essential to provide a useful ADL, are

(FR1) expressiveness with respect to confidentiality mechanisms and confidentiality

requirements, (FR2) correctness of analysis results and (FR3) automation of analyses.

The mentioned non-functional requirements are (NFR1) reduced effort for integrating

confidentiality mechanisms into existing models, (NFR2) reduced effort for switching

confidentiality mechanisms and (NFR3) usage of architecture level information only.

To achieve the validation goal, we define a validation question for every functional or

non-functional requirement, which we describe in the following paragraphs. To decide

whether we sufficiently validated the contributions for RQ7 and RQ8 individually, we

always define dedicated metrics for the ADL integration for ADLs using control flows and

ADLs using data flows.

Validating that the extended ADLs provide good expressiveness with respect to confi-

dentiality mechanisms and requirements (FR1) is important because low expressiveness

means that architects cannot integrate the confidentiality mechanism, which fits best the

needs of the system, but have to choose the mechanism, which they can express. Limited

expressiveness with respect to confidentiality requirements implies the same disadvantage.

Because the analyses for violations operate on DFDs, the expressiveness of DFDs implies

an upper bound for the expressiveness of the extended ADLs. Therefore, it is reasonable to

validate that the expressiveness of the extended ADL is not worse than the expressiveness

of the DFDs. We formulate the following validation question:

VQ8) Is an extended ADL less expressive than an extended DFD with respect to confi-

dentiality mechanisms and requirements?

To answer VQ8, we have to compare the expressiveness of extended ADLs with the

expressiveness of DFDs. This covers the expressiveness of confidentiality mechanisms

within systems and the expressiveness regarding confidentiality requirements. We can

use the weighted ratio metric 𝑟 , which we already used to answer the related validation

questions VQ1 and VQ2 regarding the expressiveness of confidentiality mechanisms

within DFDs. The metrics VM8.1–VM8.6 must have the same values as the corresponding

metrics VM1.1, VM1.2 and VM2.1 because this means that the extended ADLs imply no

limited expressiveness compared to the DFDs. We do not have to explicitly validate the

expressiveness regarding confidentiality requirements because the requirements are still

formulated in terms of the analysis definitions, which means that the expressiveness does

not change compared to the already validated expressiveness in VQ5. This brings us to

the following metrics:

VM8.1) Weighted ratio 𝑟 of expressible systems using access control and the set of systems

using access control if a control flow ADL is used.

VM8.2) Weighted ratio 𝑟 of expressible systems using information flow control and the

set of systems using information flow control if a control flow ADL is used.

VM8.3) Weighted ratio 𝑟 of expressible systems using any combination of access control

and information flow control mechanisms and the set of systems using such a

combination if a control flow ADL is used.
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VM8.4) Weighted ratio 𝑟 of expressible systems using access control and the set of systems

using access control if a data flow ADL is used.

VM8.5) Weighted ratio 𝑟 of expressible systems using information flow control and the

set of systems using information flow control if a data flow ADL is used.

VM8.6) Weighted ratio 𝑟 of expressible systems using any combination of access control

and information flow control mechanisms and the set of systems using such a

combination if a data flow ADL is used.

The correctness of analysis results in the extended ADLs (FR2) is crucial because software

architects cannot rely on the results, otherwise. Unreliable results imply additional effort,

which degrades the benefits of using an automated analysis. Because analyses operate

on DFDs, the upper bound regarding the correctness is the correctness of corresponding

analysis results on a DFD. Therefore, it is reasonable to validate that the correctness of

analysis results for the extended ADL is not worse than the correctness of analysis results

for DFDs. We formulate the following validation question:

VQ9) Is the correctness of analysis results for an extended ADLworse than for DFD-based

analyses?

To answer VQ9, we have to compare the correctness of analysis results based on the

extended ADLs with analysis results based on DFDs. To rate the correctness of DFD-based

analysis results, we use the true positive fraction 𝑇𝑃𝐹 and true negative fraction 𝑇𝑁𝐹

as described for the metrics VM6.1 and VM6.2. We can also use these metrics for rating

the correctness of the ADL-based analysis results, which simplifies comparing the results

with the DFD results. This is reasonable because the DFD-based analyses set the upper

bound for the correctness of analysis results and the goal of VQ9 is to ensure that the

correctness is not worse compared to the DFD-based analyses. This brings us to the

following metrics:

VM9.1) The ratio (𝑇𝑃𝐹 ) of systems, which have been correctly classified as violating

confidentiality requirements, compared to the total amount of systems, which

actually violate confidentiality requirements, if a control flow ADL is used.

VM9.2) The ratio (𝑇𝑁𝐹 ) of systems, which have been correctly classified as not violating

confidentiality requirements, compared to the total amount of systems, which

actually do not violate confidentiality requirements, if a control flow ADL is

used.

VM9.3) The ratio (𝑇𝑃𝐹 ) of systems, which have been correctly classified as violating

confidentiality requirements, compared to the total amount of systems, which

actually violate confidentiality requirements, if a data flow ADL is used.

VM9.4) The ratio (𝑇𝑁𝐹 ) of systems, which have been correctly classified as not violating

confidentiality requirements, compared to the total amount of systems, which

actually do not violate confidentiality requirements, if a data flow ADL is used.
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Automating analyses can lead to lower manual effort, less human errors and reproducible

results. Therefore, we aim for supporting automated analyses in the extended ADLs (FR3).

The actual analysis operates on DFDs but the analysis of a software architecture given in

an extended ADL requires additional steps. Therefore, the degree of automation can be

limited compared to DFDs. We have to validate that the automation is not worse than for

DFDs. We formulate the following validation question:

VQ10) Is the degree of automation for ADL-based analyses lower compared to DFD-based

analyses?

We can answer VQ10 if we know the steps, which are not automated in analyses of software

architectures specified in the extended ADL, and if we know how these steps relate to the

analysis steps of DFD-based analyses. Assume we have a set 𝐴 of analysis steps required

to analyze DFDs and a set 𝐴𝑎 ⊆ 𝐴 of automated analysis steps for DFDs. Analogously, we

define a set 𝐴′ of analysis steps required to analyze architectures given in an extended

ADL and a set 𝐴′𝑎 ⊆ 𝐴′ of automated analysis steps for ADLs. Then, we define a set 𝑃 of

purposes, which an analysis step serves. Based on that, we define amapping𝑚 : 𝐴∪𝐴′ ↦→ 𝑃 ,

which maps every analysis step to a purpose. The automation of ADL-based analyses

is worse than the automation of DFD-based analyses if the ADL-based analyses do not

automate a purpose, which the DFD-based analyses automate. Counting automated steps

or automated purposes and comparing the numbers between DFD and ADL analyses

cannot answer VQ10 because this procedure neglects that new steps or purposes cannot be

simply compared. In contrast, identifying previously automated purposes that are now no

longer automated provides a clear measure for detecting degraded automation. Therefore,

the number of no longer automated purposes 𝑝�̄� with 𝑝�̄� = | ∪𝑎′∈𝐴′\𝐴′𝑎 𝑚(𝑎′) ∩ ∪𝑎∈𝐴𝑎
𝑚(𝑎) |

is a good metric for detecting degraded automation. The value has to be 0 to show that

the extended ADL does not impose limited automation compared to DFDs. This brings us

to the following metrics:

VM10.1) Number of no longer automated purposes 𝑝�̄� in control flow ADLs.

VM10.2) Number of no longer automated purposes 𝑝�̄� in data flow ADLs.

A non-functional requirement for the extended ADL is that introducing a confidentiality

mechanism requires less effort compared to the state of the art (NFR1). The scenario to

consider is that a software architect created a software architecture in an ADL. After ex-

tending the ADL, an architect can add a confidentiality mechanism to the already modeled

architecture. It is important to validate this aspect because it provides a major benefit

compared to the situation that an existing ADL, which does not support confidentiality

yet, has been used to model a software architecture and there is no extended ADL. In such

cases, the software architecture has to be modeled from scratch or a transformation into

the analysis model is required. Creating such a transformation is part of our integration

guidelines, so the validation does not demonstrate a benefit to this approach. Nevertheless,

the validation can show a benefit compared to remodeling a software architecture from

scratch, which can be reasonable if a software architect has not enough expertise to create

such a transformation or a tool developer having these competences is not available. We

formulate the following validation question:
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VQ11) Does an extended ADL require reduced modeling effort for adding confidentiality

mechanisms compared to the state of the art?

As described while motivating VQ11, we are interested in comparing the modeling effort

to the situation, in which a model has to be created from scratch. The experienced effort

highly depends on many human factors such as the amount of expertise. Therefore,

measuring effort in an objective way is hard. However, it is reasonable to assume that the

amount of required changes in a model correlates to the required effort for creating the

model. Heinrich et al. [Hei+18] demonstrate that it is reasonable to estimate effort by first

collecting changes in a model, asking experts to estimate the effort for so-called atomic

change operations in the model and eventually derive the total effort. It is important

to note that the effort implied by two arbitrary sets of model changes 𝑀 and 𝑁 is not

comparable without the assignment of effort to atomic change operations: Even if set

𝑀 only contains one model change and set 𝑁 several hundred model changes, it is still

possible that the change from 𝑀 requires more effort than all other changes from 𝑁 .

However, it is possible to compare the effort of a set of model changes𝑀 if either 𝑁 = ∅
or𝑀 ⊆ 𝑁 holds under the assumption that a model change always requires either no or

more than no effort. The baseline from the state of the art is that the software architect has

to recreate the whole model from scratch. For this baseline,𝑀 ⊆ 𝑁 holds because creating

a model from scratch implies a set of model changes 𝑁 , which contains all necessary

model changes. Consequently, applying the model changes𝑀 requires at most as much

effort as applying the model changes 𝑁 but it is more likely that it requires less effort. We

need a metric that detects the similarity of two models and that can indicate if there are

model parts, which have been reused. Reused parts imply no model changes. Changed

parts imply model changes. The coefficient of Jaccard [LW71] has already been used in

other publications [Hei20; Mon+21] to rate the similarity of models. To calculate the

coefficient, we interpret a model as a set of model elements. We assume that two models

𝑈 and 𝑉 exist and that equal model elements are identical with respect to set algebra, i.e.

𝑢 ≡ 𝑣 ⇒ 𝑢 = 𝑣 ∀𝑢 ∈ 𝑈 ∧ ∀𝑣 ∈ 𝑉 . In that case, the coefficient 𝑗 =
|𝑈∩𝑉 |
|𝑈∪𝑉 | calculates the

ratio between equal model elements and the combination of model elements from both

models𝑈 and 𝑉 . A value greater than 0 means that there are model elements, which are

equal. In our case, this means that there were model elements, which could be reused

while adding confidentiality mechanisms to the software architectures. The validation

successfully showed an improvement with respect to the state of the art, if all calculated

coefficients of Jaccard are greater than 0. This brings us to the following metrics:

VM11.1) The coefficient of Jaccard 𝑗 for the software architecture without confidentiality

mechanisms and the software architecture with confidentiality mechanisms,

both specified in a control flow ADL.

VM11.2) The coefficient of Jaccard 𝑗 for the software architecture without confidentiality

mechanisms and the software architecture with confidentiality mechanisms,

both specified in a data flow ADL.

Low effort for switching a confidentiality mechanism (NFR2) is important in case of evolu-

tionary changes of the software architecture. If the requirements on the confidentiality
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mechanism change, the software architect should not hesitate to switch to a new mecha-

nism in order to identify how well the new mechanism meets the new requirements. If

the effort for switching the confidentiality mechanism is high, an architect might decide

to work around the issue, which might lead to bad design decisions. In the state of the

art, modeling languages often do not support multiple confidentiality mechanisms, which

implies that software architects either have to remodel the whole software architecture

in another modeling language or have to create mappings between the two modeling

languages. In our approach, creating the mapping is not necessary because an extended

ADL already supports multiple confidentiality mechanisms. Therefore, our integration

approach implies a benefit compared to the mapping approach by design. Nevertheless, we

have to validate that the extended ADL reduces the effort compared to recreating a model

of a software architecture. Therefore, we formulate the following validation question:

VQ12) Does an extended ADL require less modeling effort for switching confidentiality

mechanisms compared to the state of the art?

As already discussed for VQ11, measuring effort in an objective way is hard because of

many human factors affecting the experienced effort. Instead, we measure the amount

of reused elements when switching a confidentiality mechanism in an existing model

of a software architecture. If at least one element is reused, the measurement indicates

an improvement compared to the state of the art, in which models usually have to be

recreated from scratch. We use the coefficient of Jaccard as introduced for VM11.1 and

VM11.2 because we have to measure the same type of information and the coefficient

provides the required insights into the degree of reuse. Again, a metric value greater than

0 implies a successful validation. This brings us to the following metrics:

VM12.1) The coefficient of Jaccard 𝑗 for two software architectures representing the same

system but containing different confidentiality mechanisms, both specified in a

control flow ADL.

VM12.2) The coefficient of Jaccard 𝑗 for two software architectures representing the same

system but containing different confidentiality mechanisms, both specified in a

data flow ADL.

As already discussed for VQ4, it is important to ensure that software architects and security

experts have access to the information required to model the software architecture (NFR3).

In case of the extended ADL, this means that all required information has to be available

while creating the software architecture. Without this information, modeling a software

architecture by using the extended ADL is not possible and the modeling language fails

its pragmatics of describing software architectures. Therefore, we formulate the following

validation question:

VQ13) Is the information to be expressed by an architecture using an extended ADL

available and accessible to its users?

The metrics to answer VQ13 are the same as for answering VQ4 because we need the

same type of information in order to answer the question. We use the sum of unknown

information 𝑠𝑘¯ as defined for VM4.1. The validation succeeds if the value is 0, which means
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that all required information is available to the users of the extended ADL. This brings us

to the following metrics:

VM13.1) Sum 𝑠𝑘¯ of information required to use an extended control flow ADL, which

cannot be known by software architects and security experts.

VM13.2) Sum 𝑠𝑘¯ of information required to use an extended data flow ADL, which cannot

be known by software architects and security experts.

8.2. Case Study Systems

Many validationmetrics and validation questions presented in Section 8.1 aim for validating

contributions in the context of particular systems. Case studies are an appropriate way of

collecting such information because they aim for getting insights into particular cases,

which usually implies particular systems. According to various surveys [Ngu+15; Ber+17],

case studies are commonly used to validate model-based security approaches, which

explicitly includes approaches for establishing confidentiality. We briefly explain the

rationale of using case studies for answering the validation questions when describing the

validation design within Sections 8.3 to 8.6.

The foundation of case studies are appropriate systems to apply an approach to. We

discuss the requirements, which make a system an appropriate system for our validation,

in Section 8.2.1. Afterwards, we introduce the systems in Section 8.2.2 and report on how

they match the previously defined requirements.

8.2.1. Requirements on Case Study Systems

There are three types of requirements regarding the case study systems. The Overall

Requirements (ORs) define requirements on the set of case study systems such as how

many systems of a certain type are required in order to calculate the validation metrics

and answer the validation questions, which we defined in Section 8.1. We describe the

Overall Requirements in Section 8.2.1.1.

The descriptions of the systems also have to meet Description Requirements (DRs) such as

that a system has to use a confidentiality mechanism. We cannot use system descriptions,

which do not meet these requirements, in a validation because they do not provide all

information to calculate the validation metrics. We describe the Description Requirements

in Section 8.2.1.2.

The last group are Source Requirements (SRs) and focus on the source of the system and

the system description. These are no must-requirements but meeting them reduces the

threats to validity. We describe the Source Requirements in Section 8.2.1.3.
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8.2.1.1. Overall Requirements (ORs)

The overall requirements are requirements on the set of systems and not on the systems

themselves. We derive these requirements from the validation metrics.

The set of systems has to contain systems using different, commonly used confidentiality

mechanisms. This is important to rate the expressiveness regarding different access control

mechanisms (VM1.1) and information flow control mechanisms (VM1.2) within systems as

well as for rating the expressiveness regarding confidentiality requirements in the context

of different access control mechanisms (VM5.1) and information flow control mechanisms

(VM5.2). The corresponding requirement is as follows:

OR1) The set of case study systems shall contain at least one system for each commonly

used confidentiality mechanism.

Besides having systems for every commonly used confidentiality mechanism, the set of

systems also has to contain at least one system, which uses a mix of at least one access

control and one information flow control mechanism. This is necessary to validate the

expressiveness of the syntax (VM2.1) and analyses (VM5.3) regarding such combinations.

The corresponding requirement is as follows:

OR2) The set of case study systems shall contain at least one system using a combination

of an access control and an information flow control mechanism.

To validate the correctness of analysis results, we have to be able to classify a system as

having or not having an issue, which leads to a violation of confidentiality requirements.

The metrics for capturing the true positive fraction (VM6.1) and true negative fraction

(VM6.2) need this classification as a foundation to classify the analysis results. To ensure

that the analyses do not yield correct results by accident, e.g. because there are only systems

without issues and the analysis always reports no violation without even analyzing a

system, it is reasonable to require a variant with issue and a variant without issue for

every system. The corresponding requirement is as follows:

OR3) The set of case study systems shall contain a variant with an issue and a variant

without an issue for every system.

To validate the modeling effort for switching the confidentiality mechanism (VM12.1

and VM12.2), it is necessary to have at least two variants of the same system, where the

variants use different confidentiality mechanisms. Only variants of the same system allow

to calculate the amount of required changes that a software architect would have to do.

The corresponding requirement is as follows:

OR4) The set of case study systems shall contain two variants of the same system, which

use different confidentiality mechanisms.
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8.2.1.2. Description Requirements (DRs)

The description requirements define requirements for the description of systems. The

descriptions exceed the pure description of usual architectural information about systems

but includes requirements on the type of system or includes information to build variants

of systems.

First of all, we aim for systems, which describe a solution to a problem in a certain

application domain. This explicitly excludes unit test models or toy examples. Without a

certain degree of complexity, the validations regarding expressiveness (VQ1, VQ2, VQ5 and

VQ8) is unlikely to reveal an issue. If the system describes a potentially working system

in an application domain, the complexity is at least as high as required in that domain.

Therefore, such systems are more representative than small, tailored systems. This brings

us to the first requirement:

DR1) The system description shall describe a solution for a problem in a certain problem

domain.

The system description itself has to cover various aspects. First of all, the commonly

used architectural information including the structure, behavior, deployment and usage

of the system has to be given. Otherwise, modeling the system is not possible with our

approach or with any other modeling approach for software architectures. In addition to

the software architecture, information about confidentiality is necessary. Especially, the

usage of the included confidentiality mechanism has to be available. Otherwise, we cannot

integrate the confidentiality mechanism, which is necessary to validate the expressiveness

(VQ1, VQ2, VQ5 and VQ8). The confidentiality requirements also have to be given in terms

of the used confidentiality mechanism. Otherwise, it is not possible to decide if the system

violates any confidentiality requirements, which makes validations using the analysis

results (VQ6 and VQ9) impossible. This brings us to the following requirements:

DR2) The system description shall describe the common architectural information includ-

ing structure, behavior, deployment and usage.

DR3) The system description shall describe how the system integrates the confidentiality

mechanism.

DR4) The system description shall describe the confidentiality requirements in terms of

the confidentiality mechanism.

The more features of a confidentiality mechanism a system uses in its confidentiality

requirements, the more likely it is to identify limitations regarding the expressiveness of

these requirements (VQ5). Therefore, the requirements should use as many features as

possible. This brings us to the following requirement:

DR5) The system description should use as much features of the confidentiality mechanism

as possible to formulate the confidentiality requirements.
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In order to build the variants of the systems with and without an issue, the system

description has to include information about a potential issue and the resulting violations.

If this information is missing, only one variant of the system is available. The variant either

contains an issue or does not contain an issue. Without both variants, we cannot eliminate

the chance that the correctness of the analysis results is rated to positively: The results of

an analysis that never finds a violation, e.g. because it reports this result independently

of the system to be analyzed, would be classified correct if the analysis is only validated

with systems without issues. This would be a threat to the validity, especially for the

validations regarding the correctness of analysis results (VQ6 and VQ9). This brings us to

the following requirement:

DR6) The system description shall describe an issue, which can be added to the system, as

well as resulting violations.

8.2.1.3. Source Requirements (SRs)

The source requirements specify quality criteria for the origin of a case study system.

These requirements are not mandatory but meeting them increases the validity of the

results.

A system, which originates from a third party, is less likely to be tailored to the approach,

which shall be validated, because the system has not been designed with the limitations or

capabilities of the approach in mind. Therefore, it is beneficial to use systems published

by other authors. The requirement is not mandatory because it is always possible to

create a system by ourselves. In that case, we have to discuss potential threats to validity

arising from creating the system by ourselves. If possible, it is beneficial to use systems,

which also have been implemented, because the corresponding software architectures and

confidentiality requirements are realistic. This means that such systems represent systems,

which software architects actually create. This brings us to the following requirements:

SR1) The system should have been defined by a third party, i.e. another author.

SR2) The system should also have been implemented.

Because system descriptions, which include confidentiality requirements, are often dis-

cussed in publications about security research, it is likely that these descriptions also

include a discussion of an existing or potential issue. This is beneficial because creating a

variant with and without an issue is much simpler if a realistic issue is already part of the

description. This requirement is not mandatory because it is usually possible to invent and

introduce an issue based on the confidentiality requirements. To decide if violations, which

our analysis reports, are correct, it is beneficial to have information about the violations,

which the issue implies. Obviously, this information is only available if the issue is also

already available. This requirement is not mandatory because the effect of an introduced

issue can usually be estimated. This brings us to the following requirements:

SR3) The system description should contain an issue, which leads to violations of confi-

dentiality requirements.
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SR4) The system description should contain violations of confidentiality requirements,

which an issue in the system implies.

8.2.2. Selected Case Study Systems

The previously introduced requirements on the case study systems and the requirements

on the set of selected systems provide guidelines on how to select case study systems

that support our validations. Source requirements are the most challenging to meet

because they solely depend on the availability of information from other publications.

Therefore, we define the selection procedure around the source requirements: First, we

identify closely related approaches and extract used case study systems from corresponding

publications. Focusing on closely related approaches is beneficial because there is a high

chance that the resulting systems are given as software architectures or high-level software

designs. We can use such systems without changing the level of abstraction, which has

the potential of introducing errors or simplifying the system too much. After we included

all systems of closely related approaches, we look for missed overall requirements on

the set of selected systems. For all missed requirements, we define case study systems

on our own and add them to the selected case study systems. Defining systems on our

own is reasonable because it is more important to meet the overall requirements than the

source requirements. Missed overall requirements mean that we cannot do a part of our

validation. Missed source requirements only introduce potential threats to validity, which

we have to consider.

The result of the selection procedure is a set of seventeen case study systems as illustrated

in Table 8.2. The approaches iFlow [Kat17] and SecDFD [TSB19] provide case study

systems (CS1–CS9), which use information flow control to protect the confidentiality of

data. The formulated confidentiality requirements are given in terms of non-interference

with and without encryption. Most of the corresponding lattices are linear but there is

also one case study system with an arbitrary lattice and encryption with key pairs as well

as one, which defines non-interference between tenants of a system. Because this set of

case study systems does not meet OR1, which requires at least one system per commonly

used confidentiality mechanism, we have to create and add at least five systems for the

commonly used access control mechanisms DAC, MAC (military and need-to-knowmodel),

ABAC and RBAC. The systems CS10–CS16 fill this gap. We defined multiple systems

using RBAC (CS10–CS12) to meet OR4, which requires at least two variants of the same

system using different confidentiality mechanisms. The resulting case study systems use

the same system as the case study systems CS1–CS3. This means, we got three pairs of

case study systems, which use the same system. To meet the last requirement about a

case study system using a combination of at least two confidentiality mechanisms (OR2),

we added CS17, which combines RBAC and a taint analysis, which is a simple form of

non-interference. We meet the last remaining requirement about having a variant with

and a variant without an issue for every case study system (OR3) either i) by using the

variant containing an issue from the original description if the source meets SR3, ii) by

defining a variant based on information from the original description if the source only
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ID System Conf. Mech./Req. SR1 SR2 SR3 SR4

CS1 TravelPlanner Non-Int. Linear

CS2 DistanceTracker Non-Int. Linear

CS3 ContactSMS Non-Int. Linear

CS4 PrivateTaxi Non-Int. Arb. Enc.

CS5 BankingApp Non-Int. Tenant

CS6 FriendMap Non-Int. Linear Enc.

CS7 Hospital Non-Int. Linear Enc.

CS8 JPMail Non-Int. Linear Enc.

CS9 WebRTC Non-Int. Linear Enc.

CS10 TravelPlanner RBAC

CS11 DistanceTracker RBAC

CS12 ContactSMS RBAC

CS13 ImageSharing DAC

CS14 FlightControl MAC Military Model

CS15 HealthRecord MAC Need-to-Know

CS16 BankBranches ABAC

CS17 TravelPlanner RBAC + Tainting

Table 8.2.: Overview on selected case study systems including the confidentiality mechanism used to

formulate requirements as well as report on not meeting ( ), partially meeting ( ) and fully meeting ( )

the Source Requirements (SRs).

partially meets SR3 or iii) by defining such a variant on our own if the case study system

does not originate from a third party, i.e. if it does not meet SR1.

The descriptions of the case study systems meet all Description Requirements (DRs),

which we explain in this paragraph as well as in the detailed descriptions of the case

study systems, which follow this paragraph. The systems are no toy examples (DR1)

and provide all required information to describe their software architecture (DR2). The

systems stemming at least partially from third parties (SR1) meet these requirements

because they already have been used to validate closely related approaches and have been

implemented often (SR2). For the remaining systems CS13–CS16, we demonstrate that

these requirements are met by the following descriptions of the systems. The requirements

about describing the integration of the confidentialitymechanism (DR3) and the description

of confidentiality requirements (DR4) are also met for case study systems originating

from third parties because these publications motivate the systems based on interesting

confidentiality requirements and the detection of circumvented confidentialitymechanisms.

For the systems created by ourselves (CS13–CS16) as well as for the system using combined

confidentiality mechanisms (CS17), we discuss the usage of confidentiality mechanisms and

the particular confidentiality requirements in the created descriptions. The requirement

about describing a potential issue and the corresponding violations (DR6) is often not

trivially met by the third party systems, as the considerable amount of only partially

met source requirements SR3 and SR4 shows. Nevertheless, we can derive potential

issues and violations from the existing descriptions of the third party systems because all
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descriptions cover how they protect confidential information. Consequently, a potential

issue is circumventing or disabling these protections. For the systems defined by ourselves,

we clearly describe issues and potential violations later. We discuss the usage of features

of the confidentiality mechanisms within the confidentiality requirements (DR5) in the

following descriptions.

8.2.2.1. CS1 TravelPlanner (Non-Interference Linear)

System Source. The system has been published as part of the iFlow project [Kat+13] and

a PhD thesis [Kat17]. According to the PhD thesis, the system has been implemented
1
.

System Description. The travel planner is a system consisting of three actors: A user

wants to book a flight using his/her travel planner app as well as the credit card center

app. A travel agency receives queries for flights from the travel planner app and returns

matching flights. An airline provides information about flights to the travel agency and

processes bookings for a given flight and credit card data.

Confidentiality Mechanism. The system uses information flow control to enforce non-

interference. Transmitted information has a classification level. Processing actors have a

clearance level. The levels are UserAirlineTravelAgency, UserAirline and User.

Confidentiality Requirements. The confidentiality requirement is that no node with a

clearance level 𝑎 receives data with a classification level 𝑏 such that 𝑎 < 𝑏. The order

relation < is given by the linear ordered lattice, where a level with a lower index is

considered lower than a level with a higher index. The order of the lattice is the same as

the order of the levels mentioned in the description of the confidentiality mechanism. The

requirement uses all features that information flow control enforcing non-interference

with a linear lattice provides.

Potential Issue. The original description of the system does not describe an issue but

describes the critical part for not violating the confidentiality requirements: The credit

card data is classified by the User level but has to be transmitted to the Airline, which

is only cleared for UserAirline. To allow transmission, a declassification operation asks

the user for permission and reclassifies the credit card data. A potential issue is that this

declassification is not done, e.g. because a software architect forgot that this is necessary.

The expected violation is that the airline accesses credit card data, to which it should not

have access to.

1 https://web.archive.org/web/20220103091007/https://kiv.isse.de/projects/iflow/TravelPlann

erSite/travelplanner.zip
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8.2.2.2. CS2 DistanceTracker (Non-Interference Linear)

System Source. The system has been published as part of the iFlow project [Ste+16] and a

PhD thesis [Kat17]. According to the PhD thesis, the system has not been implemented.

System Description. The distance tracker is a system consisting of three actors: A user

wants to track the distance, which he/she has run, and shares his/her location to enable

the calculation of the distance. A distance tracker records these periodically transmitted

locations and calculates a run distance based on these records. A tracking service records

the run distance.

Confidentiality Mechanism. The system uses information flow control to enforce non-

interference. Transmitted information has a classification level. Processing actors have a

clearance level. The levels are OnlyDistance, User,DistanceTracker and User.

Confidentiality Requirements. The confidentiality requirement is that no node with a

clearance level 𝑎 receives data with a classification level 𝑏 such that 𝑎 < 𝑏. The order

relation < is given by the linear ordered lattice, where a level with a lower index is

considered lower than a level with a higher index. The order of the lattice is the same as

the order of the levels mentioned in the description of the confidentiality mechanism. The

requirement uses all features that information flow control enforcing non-interference

with a linear lattice provides.

Potential Issue. The original description of the system does not describe an issue but

describes the critical part for not violating the confidentiality requirements: The location

data is classified by the User level but has to be transmitted to the distance tracker, which

is only cleared for User,DistanceTracker. To allow transmission, a declassification operation

asks the user for permission and reclassifies the location data. The resulting location data is

classified by User,DistanceTracker. The tracking service, which shall record the run distance,
is cleared for OnlyDistance. To avoid a violation of the non-interference requirements, the

distance tracker declassifies the locations by calculating the distance and reclassifying it

by OnlyDistance. A potential issue is that one of these declassifications is not done, e.g.

because a software architect forgot that this is necessary. The expected violation is either

that the distance tracker accesses the location data, to which it should not have access to

in case of circumventing the first declassification, or that the tracking service accesses the

distance data, to which it should not have access to in case of circumventing the second

declassification.

8.2.2.3. CS3 ContactSMS (Non-Interference Linear)

System Source. The system has been published as part of a PhD thesis [Kat17]. The PhD

thesis indicates that the system has at least partially been implemented.
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System Description. The contact SMS system consists of two actors: A user wants to

manage contacts and send a SMS to the contacts. A SMS manager receives the number of

a contact as well as the message and sends the SMS to the receiver.

Confidentiality Mechanism. The system uses information flow control to enforce non-

interference. Transmitted information has a classification level. Processing actors have a

clearance level. The levels are User,Receiver and User.

Confidentiality Requirements. The confidentiality requirement is that no node with a

clearance level 𝑎 receives data with a classification level 𝑏 such that 𝑎 < 𝑏. The order

relation < is given by the linear ordered lattice, where a level with a lower index is

considered lower than a level with a higher index. The order of the lattice is the same as

the order of the levels mentioned in the description of the confidentiality mechanism. The

requirement uses all features that information flow control enforcing non-interference

with a linear lattice provides.

Potential Issue. The original description of the system does not describe an issue but

describes the critical part for not violating the confidentiality requirements: The contact

data is classified by the User level but the SMS manager needs the phone number from the

contact data, which is only cleared for User,Receiver. To allow transmission, a declassifi-

cation operation extracts the number from the contact data and reclassifies the number

by the User,Receiver level. A potential issue is that this declassification is not done, e.g.

because a software architect forgot that this is necessary. The expected violation is that

the SMS manager accesses contact data, to which it should not have access to.

8.2.2.4. CS4 PrivateTaxi (Non-Interference Arbitrary with Encryption)

System Source. The system has been published as part of a PhD thesis [Kat17]. The PhD

thesis indicates that the system has at least partially been implemented.

System Description. The purpose of the private taxi system is to provide ride sharing.

The private taxi system consists of four actors: Drivers publish their route and accept riders

for ride sharing. Riders publish their route and select a driver for ride sharing. The private

taxi system receives the routes, receives the distance between two routes from the distance

calculation service, matches riders to drivers and mediates the communication between

drivers and riders. The distance calculation service receives two routes and calculates the

distance between them.
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Contact

Driver Rider

Route

CalcDistancePrivateTaxi

Data Classification

Node Clearance

Any

Figure 8.3.: Lattice used in the PrivateTaxi case study system.

Confidentiality Mechanism. The system uses information flow control to enforce non-

interference as well as encryption with key pairs. Transmitted information has a classifi-

cation level. The classification levels are Any, Contact and Route. Processing actors have a

clearance level. The clearance levels are Driver, Rider, PrivateTaxi and CalcDistance. Data
might be encrypted for a set of public keys, which reduces the classification of data to Any.
After decryption, the classification of data is the same as the classification level before the

encryption.

Confidentiality Requirements. The confidentiality requirement is that a node with a

clearance level 𝑎 must only receive data with a classification level 𝑏 if 𝑎 ≥ 𝑏. A level

𝑎 is greater or equal to a level 𝑏 if 𝑏 is transitively connected to 𝑎 in the lattice shown

in Figure 8.3. Informally speaking, the lattice does not allow the distance calculation

service to access contact data and does not allow the private taxi service to access routes.

The requirement uses an arbitrary lattice and all features that information flow control

enforcing non-interference with an arbitrary lattice provides.

Potential Issue. The original description of the system does not describe an issue but

describes the critical part for not violating the confidentiality requirements: The route data

is classified by the Route level and the private taxi service receives routes for forwarding it
to the distance calculation service. However, the private taxi service is not cleared for data

classified by the Route level. To allow transmission, drivers and riders encrypt their routes

with the public key of the distance calculation service, which reduces the classification of

the route data to Any. This is essentially a declassification operation. A potential issue is

that this declassification is not done, e.g. because a software architect forgot that this is

necessary. The expected violation is that the private taxi service accesses route data, to

which it should not have access to.

8.2.2.5. CS5 BankingApp (Non-Interference Tenant)

System Source. The system has been published as part of a PhD thesis [Kat17]. The PhD

thesis indicates that the system has at least partially been implemented.

System Description. The system consists of two actors: A user wants to interaction with

his/her bank account, i.e. depositing and withdrawing money as well as querying the

account balance, by using a banking app. A bank provides the services to interact with

the bank account.
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Confidentiality Mechanism. The system uses information flow control to enforce non-

interference. Transmitted information is always associated with a certain user. If data

of groups of users shall be isolated, these groups are often called tenants [Fac+13]. The

confidentiality mechanism ensures non-interference between these tenants.

Confidentiality Requirements. The confidentiality requirement is that tenants must not

access data of other tenants. Essentially, the system shall behave as if there was only one

tenant using the system. This is a common formulation of non-interference requirements

between tenants, so we consider the requirement to use the relevant features of such types

of requirements.

Potential Issue. The original description of the system describes an issue: Because of a

wrong software design, the authenticity of the transmitted user identifier is not validated

when accessing the account balance, which allows all users to access the balance of other

users by sending different user identifiers. This violates the confidentiality requirement

that only tenants are allowed to access their data. The violation is that other users, who

are not the owner of the data, access the balance.

8.2.2.6. CS6 FriendMap (Non-Interference Linear with Encryption)

System Source. The system has been used to validate the SecDFD approach [TSB19].

There is an implementation [Fab17] of the system.

System Description. The friend map system provides users of social networks with a

map of the geographical locations of their friends. The social network, the friend map and

the map provider work together to generate and visualize the map: The social network

provides the locations of friends and displays the generated map of friends. The map

provider takes the locations and renders themap. The friendmap orchestrates andmediates

the previously described two systems.

Confidentiality Mechanism. The system uses information flow control to enforce non-

interference as well as encryption without considering keys. Transmitted information

has a classification level. The levels are Low and High. Processing actors have a clearance

level. In the original publication, the clearance levels are AttackZone and TrustZone but to
improve comprehensibility, we use the clearance level Low instead of AttackZone and High
instead of TrustZone . This does not reduce the complexity of the system or mechanism.

Data might be encrypted, which reduces the classification of data to Low. After decryption,
the classification of data is the same as the classification level before the encryption.
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Confidentiality Requirements. The confidentiality requirement is that no node with a

clearance level 𝑎 receives data with a classification level 𝑏 such that 𝑎 < 𝑏. The order

relation < is given by the linear ordered lattice, where a level with a lower index is

considered lower than a level with a higher index. The order of the lattice is the same as

the order of the levels mentioned in the description of the confidentiality mechanism. The

requirement uses all features that information flow control enforcing non-interference

with a linear lattice provides.

Potential Issue. The map provider is considered to be in the attack zone, i.e. is cleared for

Low. The location of friends is considered confidential, i.e. is classified by High. To allow

passing the locations to the map provider, the locations are encrypted, which classifies

them by Low. In consequence, the locations can be transmitted to the map provider. The

original description of the system describes an issue: Because of a wrong software design,

the locations of the friends are no longer encrypted, which means that a node cleared for

Low receives data classified by High, which violates the confidentiality requirement. The

violation is that the map provider accesses location data.

8.2.2.7. CS7 Hospital (Non-Interference Linear with Encryption)

System Source. The system has been used to validate the SecDFD approach [TSB19].

There is an implementation [Fab16] of the system.

System Description. The hospital system provides employees with patient lists, which

are stored in a database. An employee can read and modify the patient list using his/her

hospital app. The changes a stored in a database. The system assumes that an attacker has

access to a system part, which reads the patient list from the database and passes the list

back to the hospital app.

Confidentiality Mechanism. The system uses information flow control to enforce non-

interference as well as encryption without considering keys. Transmitted information

has a classification level. The levels are Low and High. Processing actors have a clearance

level. In the original publication, the clearance levels are AttackZone and TrustZone but to
improve comprehensibility, we use the clearance level Low instead of AttackZone and High
instead of TrustZone . This does not reduce the complexity of the system or mechanism.

Data might be encrypted, which reduces the classification of data to Low. After decryption,
the classification of data is the same as the classification level before the encryption.

Confidentiality Requirements. The confidentiality requirement is that no node with a

clearance level 𝑎 receives data with a classification level 𝑏 such that 𝑎 < 𝑏. The order

relation < is given by the linear ordered lattice, where a level with a lower index is

considered lower than a level with a higher index. The order of the lattice is the same as
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the order of the levels mentioned in the description of the confidentiality mechanism. The

requirement uses all features that information flow control enforcing non-interference

with a linear lattice provides.

Potential Issue. The attacker is considered to be in the attack zone, i.e. is cleared for Low.
The patient list is considered confidential, i.e. is classified by High. To protect patient data,

the database encrypts the patient list before sending it to the reading part of the system,

to which an attacker has access. This reduces the classification level of the patient list to

Low. Therefore, the attacker only has access to data, which is classified Low. The original
description of the system describes an issue: Because of a wrong software design, the

patient list is no longer encrypted, which means that a node cleared for Low receives data

classified by High, which violates the confidentiality requirement. The violation is that

the attacker accesses the patient list.

8.2.2.8. CS8 JPMail (Non-Interference Linear with Encryption)

System Source. The system has been used to validate the SecDFD approach [TSB19].

There exists an implementation
2
[HAM06] of the system.

System Description. JPMail is a mail system consisting of mail clients, a SMTP server

and a POP3 servers. The user Alice encrypts her mail and passes it to the SMTP server.

The SMTP server sends the mail to the POP3 server. The POP3 server delivers the mail to

Bob, who decrypts the mail.

Confidentiality Mechanism. The system uses information flow control to enforce non-

interference as well as encryption without considering keys. Transmitted information

has a classification level. The levels are Low and High. Processing actors have a clearance

level. In the original publication, the clearance levels are AttackZone and TrustZone but to
improve comprehensibility, we use the clearance level Low instead of AttackZone and High
instead of TrustZone . This does not reduce the complexity of the system or mechanism.

Data might be encrypted, which reduces the classification of data to Low. After decryption,
the classification of data is the same as the classification level before the encryption.

Confidentiality Requirements. The confidentiality requirement is that no node with a

clearance level 𝑎 receives data with a classification level 𝑏 such that 𝑎 < 𝑏. The order

relation < is given by the linear ordered lattice, where a level with a lower index is

considered lower than a level with a higher index. The order of the lattice is the same as

the order of the levels mentioned in the description of the confidentiality mechanism. The

2 https://web.archive.org/web/20130731052551/http://siis.cse.psu.edu/jpmail/downloads/jpma

il-full-latest.tgz
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requirement uses all features that information flow control enforcing non-interference

with a linear lattice provides.

Potential Issue. The original description of the system does not describe an issue but

describes the critical part for not violating the confidentiality requirement: The SMTP

server and the POP3 server are cleared for Low. The content of the mail is classified High.
Because the content of the mail is encrypted before sending the mail to the servers, the

confidentiality requirement is not violated. This is essentially a declassification operation.

A potential issue is that this declassification is not done, e.g. because a software architect

forgot that this is necessary. The expected violation is that the SMTP server and the POP3

server access the mail content, to which they should not have access to.

8.2.2.9. CS9 WebRTC (Non-Interference Linear with Encryption)

System Source. The system has been used to validate the SecDFD approach [TSB19].

There exists an implementation [Moz20] of the system.

System Description. WebRTC is a protocol for real-time communication including media

exchange between browsers. TheWebRTC system described in the following is a simplified

version. The system consists of the users Alice and Bob, their browsers, their identity

providers, STUN/TURN servers and a signaling server. Alice initiates a session through

three components (her browser, the signaling server and the browser of Bob) by sending

identity information from the identity provider. The ports to communicate are negotiated

via the STUN/TURN servers. The actual communication takes place via direct connections

between the browsers.

Confidentiality Mechanism. The system uses information flow control to enforce non-

interference as well as encryption without considering keys. Transmitted information

has a classification level. The levels are Low and High. Processing actors have a clearance

level. In the original publication, the clearance levels are AttackZone and TrustZone but to
improve comprehensibility, we use the clearance level Low instead of AttackZone and High
instead of TrustZone . This does not reduce the complexity of the system or mechanism.

Data might be encrypted, which reduces the classification of data to Low. After decryption,
the classification of data is the same as the classification level before the encryption.

Confidentiality Requirements. The confidentiality requirement is that no node with a

clearance level 𝑎 receives data with a classification level 𝑏 such that 𝑎 < 𝑏. The order

relation < is given by the linear ordered lattice, where a level with a lower index is

considered lower than a level with a higher index. The order of the lattice is the same as

the order of the levels mentioned in the description of the confidentiality mechanism. The

requirement uses all features that information flow control enforcing non-interference

with a linear lattice provides.
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Potential Issue. The original description of the system does not describe an issue but de-

scribes the critical part for not violating the confidentiality requirement: The STUN/TURN

servers and the signaling servers are external, potentially public systems. Therefore, these

systems are cleared for Low. The identities, session data and communication information

is classified High. Because the session data is encrypted before sending it to the signaling

server, the confidentiality requirement is not violated. This is essentially a declassification

operation. A potential issue is that this declassification is not done, e.g. because a software

architect forgot that this is necessary. The expected violation is that the signaling server

accesses the session data, to which it should not have access to.

8.2.2.10. CS10 TravelPlanner (RBAC)

System Source. The system has been published as part of the iFlow project [Kat+13] and

a PhD thesis [Kat17]. According to the PhD thesis, the system has been implemented
3
.

We adjusted the system to use RBAC instead of information flow control to ensure confi-

dentiality and published this adjusted system [SHR19]. We explain the adjustments when

describing the confidentiality mechanism and requirements.

System Description. The travel planner is a system consisting of three actors: A user

wants to book a flight using his/her travel planner app as well as the credit card center

app. A travel agency receives queries for flights from the travel planner app and returns

matching flights. An airline provides information about flights to the travel agency and

processes bookings for a given flight and credit card data.

Confidentiality Mechanism. The system uses RBAC. We introduce one role for each

actor in the system, which yields the roles TravelAgency, Airline and User. The actors
get assigned their corresponding roles. The exchanged data has a set of roles attached,

which describes the roles allowed to access the data. We map the classification levels

to sets of roles: The User classification becomes the set consisting of the User role. The
UserAirline classification becomes the set consisting of the User and Airline role. The
UserAirlineTravelAgency classification becomes the set of all roles. The mapping closely

matches the intention of the classification levels with respect to the actors that can access

the information.

Confidentiality Requirements. The confidentiality requirement is that the role of the

actor has to be in the set of roles, which have access to data, when the actor accesses data.

This requirement only covers RBAC Core but not Hierarchical RBAC or Constraint RBAC.

It would have been possible to introduce role hierarchies or constraints in an artificial way

but the original system described in Section 8.2.2.1 does not contain any information to

3 https://web.archive.org/web/20220103091007/https://kiv.isse.de/projects/iflow/TravelPlann

erSite/travelplanner.zip
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derive such hierarchies or constraints. To avoid creating an artificial system, we stick to

RBAC Core.

Potential Issue. The original description of the system does not describe an issue but

describes the critical part for not violating the confidentiality requirement: The credit

card data is only accessible to the User role but has to be transmitted to the Airline, which

has the Airline role. To allow transmission, a declassification operation asks the user for

permission and explicitly adds the Airline role to the set of roles, which have access to the

credit card data. A potential issue is that this declassification is not done, e.g. because a

software architect forgot that this is necessary. The expected violation is that the airline

accesses credit card data, to which it should not have access to.

8.2.2.11. CS11 DistanceTracker (RBAC)

System Source. The system has been published as part of the iFlow project [Ste+16] and

a PhD thesis [Kat17]. According to the PhD thesis, the system has not been implemented.

We adjusted the system to use RBAC instead of information flow control to ensure confi-

dentiality and published this adjusted system [SHR19]. We explain the adjustments when

describing the confidentiality mechanism and requirements.

System Description. The distance tracker is a system consisting of three actors: A user

wants to track the distance, which he/she has run, and shares his/her location to enable

the calculation of the distance. A distance tracker records these periodically transmitted

locations and calculates a run distance based on these records. A tracking service records

the run distance.

Confidentiality Mechanism. The system uses RBAC. We introduce one role for each

actor in the system, which yields the roles TrackingService, DistanceTracker and User.
The actors get assigned their corresponding roles. The exchanged data has a set of roles

attached, which describes the roles allowed to access the data. We map the classification

levels to sets of roles: The User classification becomes the set consisting of the User role.
The User,DistanceTracker classification becomes the set consisting of the User and the

DistanceTracker roles. The OnlyDistance classification becomes the set of all roles. The

mapping closely matches the intention of the classification levels with respect to the actors

that can access the information.

Confidentiality Requirements. The confidentiality requirement is that the role of the

actor has to be in the set of roles, which have access to data, when the actor accesses data.

This requirement only covers RBAC Core but not Hierarchical RBAC or Constraint RBAC.

It would have been possible to introduce role hierarchies or constraints in an artificial way

but the original system described in Section 8.2.2.1 does not contain any information to
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derive such hierarchies or constraints. To avoid creating an artificial system, we stick to

RBAC Core.

Potential Issue. The original description of the system does not describe an issue but

describes the critical part for not violating the confidentiality requirement: The location

data is only accessible to the User role but has to be transmitted to the distance tracker,

which has the role DistanceTracker. To allow transmission, a declassification operation asks

the user for permission and explicitly adds the DistanceTracker role to the location data.

The tracking service, which shall record the run distance has the role TrackingService. To
avoid a violation of the RBAC requirement, the distance tracker declassifies the locations

by calculating the distance and adding the role TrackingService. A potential issue is that

one of these declassifications is not done, e.g. because a software architect forgot that

this is necessary. The expected violation is either that the distance tracker accesses the

location data, to which it should not have access to in case of circumventing the first

declassification, or that the tracking service accesses the distance data, to which it should

not have access to in case of circumventing the second declassification.

8.2.2.12. CS12 ContactSMS (RBAC)

System Source. The system has been published as part of a PhD thesis [Kat17]. The

PhD thesis indicates that the system has at least partially been implemented. We adjusted

the system to use RBAC instead of information flow control to ensure confidentiality and

published this adjusted system [SHR19]. We explain the adjustments when describing the

confidentiality mechanism and requirements.

System Description. The contact SMS system consists of two actors: A user wants to

manage contacts and send a SMS to the contacts. A SMS manager receives the number of

a contact as well as the message and sends the SMS to the receiver.

Confidentiality Mechanism. The system uses RBAC. We introduce one role for each

actor in the system, which yields the roles Receiver and User. The actors get assigned their

corresponding roles. The exchanged data has a set of roles attached, which describes the

roles allowed to access the data. We map the classification levels to sets of roles: The User
classification becomes the set consisting of the User role. The User,Receiver classification
becomes the set of all roles. The mapping closely matches the intention of the classification

levels with respect to the actors that can access the information.

Confidentiality Requirements. The confidentiality requirement is that the role of the

actor has to be in the set of roles, which have access to data, when the actor accesses data.

This requirement only covers RBAC Core but not Hierarchical RBAC or Constraint RBAC.

It would have been possible to introduce role hierarchies or constraints in an artificial way
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but the original system described in Section 8.2.2.1 does not contain any information to

derive such hierarchies or constraints. To avoid creating an artificial system, we stick to

RBAC Core.

Potential Issue. The original description of the system does not describe an issue but

describes the critical part for not violating the confidentiality requirement: The contact

data is only accessible to theUser role but the SMSmanager, which needs the phone number

from the contact data, only has the Receiver role. To allow transmission, a declassification

operation extracts the number from the contact data and explicitly adds the Receiver role to
the set of accessible roles of the number data. A potential issue is that this declassification

is not done, e.g. because a software architect forgot that this is necessary. The expected

violation is that the SMS manager accesses contact data, to which it should not have access

to.

8.2.2.13. CS13 ImageSharing (DAC)

System Source. We created the system on our own because the related approaches

do not provide a system using DAC. We derive the domain and features of the system

from a common use case for DAC, which is access control in filesystems and filesharing

applications [Fur08, pp. 61]. We did not implement the system but published it [Sei+22].

System Description. The system supports sharing images between users. The users of

the system can read images from a store and write images into a store. The involved users

are a mother, a dad, an aunt and an indexing bot of a search engine. A visualization of the

system is available in Figure B.1 on page 263.

Confidentiality Mechanism. The system uses DAC with delegation of rights. Each user

has an identity, which is either Mother, Dad, Aunt or Indexing Bot. The data store holds a
list of identities, which are allowed to read images, a list of identities, which are allowed

to write images, and a list of identities, which are owners of the data store. Owners can

add identities to any of the three lists.

Confidentiality Requirements. The confidentiality requirements are that i) the identity

of an actor has to be in the list of allowed readers if the actor wants to read images and that

ii) the identity of an actor has to be in the list of allowed writers if the actor wants to add

images. Initially, only the mother is owner of the data store. The mother and the dad are in

the list of allowed readers. The mother is in the list of allowed writers. The requirements

use all features of DAC with delegation of rights except for the revocation of access rights.

We already recognized this limitation while describing the DAC analyses in Section 6.2.2.1

and discussed this limitation in Section 6.7. Integrating this feature in the requirements

would only demonstrate an already known limitation, so it would not provide further
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insights as part of the validation. Nevertheless, we will mention this limitation when

discussing the validation results.

Potential Issue. There are multiple potential issues. Because we focus on confidentiality,

we only focus on violations caused by illegal reading of images. We see two types of issues:

The first type of issue is caused by a missing static assignment of an identity to a list at

the data store. The second type of issue is caused by missing dynamic assignment of an

identity to a list at the data store by an owner. Because the second type of issue is more

complex, we choose this type of issue. The introduced issue is that the mother does not

add reading rights for the aunt anymore. The expected violation is that the aunt accesses

images, although she should not have access to the images.

8.2.2.14. CS14 FlightControl (MAC Military Model)

System Source. We created the system on our own because the related approaches do

not provide a system using MAC with the military security model. We derive the domain

and features of the system from a common use case for the military security model, which

is a military information system [FGL93]. We decided to model a system for flight control,

because such systems process information with varying levels of confidentiality and for

various purposes. We did not implement the system but published it [Sei+22].

System Description. The system supports the flight monitoring and control of civil as

well as military planes. The system has three users: A clerk collects information about the

weather, creates weather reports and stores them in a database. A civil flight controller

registers planes, looks them up and determines routes for the planes. He/she considers the

weather reports to reduce the risk of directing a plane into dangerous airspaces. The civil

planes are stored in a database. A military flight controller has the same tasks as the civil

flight controller but he/she determines routes for military planes. He/she considers the

weather reports as well as the positions of the civil planes in a new route. A visualization

of the system is available in Figure B.2 on page 264.

Confidentiality Mechanism. The system uses MAC with the military security model.

There are three levels: Unclassified, Classified and Secret. Weather data is classified Unclas-
sified and the clerk is cleared for data classified as Unclassified. Data about civil planes is
classified Classified and the civil flight controller is cleared for data classified as Classified.
Data about military planes is classified Secret and the military flight controller is cleared

for data classified as Secret.
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Confidentiality Requirements. The military security model in MAC is comparable to

non-interference using a linear lattice, so the confidentiality requirement is the same: The

confidentiality requirement is that no node with a clearance level 𝑎 receives data with a

classification level 𝑏 such that 𝑎 < 𝑏. The order relation < is given by the linear ordered

lattice, where a level with a lower index is considered lower than a level with a higher

index. The order of the lattice is the same as the order of the levels mentioned in the

description of the confidentiality mechanism. The requirement uses all confidentiality

features of MAC using the military security model.

Potential Issue. To violate the confidentiality requirement, a user must get access to

information, which is classified higher than his/her own clearance. A potential issue can be

that the civil flight controller also uses the positions of military planes to determine routes

for civil planes. The violation is that the civil flight controller gets to know information

about military planes, which are classified higher than his/her own clearance. This issue

is realistic because it is reasonable to assume that the calculation of routes requires

information about all planes in the airspace.

8.2.2.15. CS15 HealthRecord (MAC Need-to-Know)

System Source. We derived the system from an existing publication [AF08], which uses

a mix of access control mechanisms. We extract the part, which is about MAC using the

Need-to-Know model. We could not find an implementation of the system.

System Description. The system is a simple electronic health record application. The

system has three types of users: A physician creates a diagnosis based on the medical

record of the patient and prescribes treatments. He/she also creates a list of treatments for a

clerk. The clerk uses the list of treatments, treatment prices and the contact information of

the patient to create an invoice. The patient receives the invoice after he/she has provided

the patient history and the contact information.

Confidentiality Mechanism. The system uses MAC with the Need-to-Know model. Medi-

cal records are assigned the Medical compartment. Personal information about the patient

are assigned the Personal compartment. Financial information is assigned the Financial
compartment. A physician has a need to know for Medical information. A clerk has a

need to know for Personal and Financial information. A patient has a need to know for all

information.

Confidentiality Requirements. The confidentiality requirement is that a user of the

system must only get access to data, which has a set of compartments, which is a subset

of the needs to know of the user. Because this is the only confidentiality requirement

specified for the Need-to-Know model, the requirement uses all features of that particular

access control model.
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Potential Issue. To violate the confidentiality requirement, a user must get access to

information, which has at least one compartment that is not part of the needs to know

of a user. A simple way to violate this requirement in the present system is that the

physician, which prepares the list of treatments for the clerk, does no longer remove

medical details from these treatments. This way, the declassification effect of the list

creation gets lost, which means that the treatment list still has the Medical compartment.

Because the clerk does not have a need to know for Medical information, this violates the

confidentiality requirement. The expected violation is that the clerk accesses treatments

including medical details, to which he/she should not have access to. This issue is realistic

because it is reasonable to assume that the need to declassify this information is overseen

by the architect.

8.2.2.16. CS16 BankBranches (ABAC)

System Source. We created the system on our own because the related approaches do

not provide a system using ABAC. It would have been possible to derive a system from

the previously described systems using access control because ABAC can represent DAC,

MAC and RBAC [JKS12]. However, we would essentially just copy the previous systems,

which impedes getting new insights during the validation. Therefore, we define a new

system on our own. We did not implement the system but published it [Sei+22].

System Description. The system is a banking system for an international bank. Clerks

can register customers and determine a credit line for them. Managers can use the same

features but can use them for regular customers as well as celebrities. There are two

branches of the bank: One branch serves the United States of America (USA) and one

branch serves Asia. Managers can move customers between the branches. A clerk is

always assigned to a certain branch office. A visualization of the system is available in

Figure B.3 on page 265.

Confidentiality Mechanism. The system uses ABAC. The relevant attributes of subjects

are the Role, which can be either a clerk or a manager, and the Location, which can

be either USA or Asia. The relevant attributes of objects are the Origin, which can be

either USA or Asia, and the CustomerStatus, which can be either a regular customer or a

celebrity customer. Moving customer data to a new location changes the Origin attribute.

When combining two or more data items, the resulting data item receives the union of all

attributes of the incoming data items.

Confidentiality Requirements. There are two subject descriptors and two object de-

scriptors: The Clerk descriptor matches subjects, which have the Role attribute set to a

clerk. The Manager descriptor matches subjects, which have the Manager attribute set
to a manager. The Regular descriptor matches objects, which have the CustomerStatus
set to a regular customer. The All descriptor matches all objects regardless of particular
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attribute values. The confidentiality requirement is that a subject must only access objects

if there exists an authorization for this access. The authorizations are that i) a Manager is
allowed to access All objects and that ii) a Clerk is allowed to access Regular objects if the
Location of the subject is the same as the Origin of the object. This requirement and the

authorizations use all features but the hierarchical descriptors offered by ABAC. We will

discuss this limitation as part of the discussion of the threat to validity of the validation.

Potential Issue. There are many options to introduce an issue. The issue we introduce is

that a manager does not use the system feature for registering celebrity customers but

uses the feature for registering regular customers. This overrides the separation between

regular and celebrity customers. The expected violation is that clerks access information

about celebrities, which they are not allowed to. The issue is realistic for two reasons:

First, it is possible that managers use the wrong system feature by mistake. A software

architect has to be aware of such a potential problem and has to create specifications for

avoiding such mistakes (e.g. by using different designs or credentials for different features).

Second, it is possible that the software architect would like to save implementation effort

by not using two dedicated system parts for celebrities and regular customers without

considering the impact on confidentiality.

8.2.2.17. CS17 TravelPlanner (RBAC + Tainting)

System Source. We could not find a system combining access control and information

flow control in related approaches. Therefore, we defined a case base on CS10 (travel plan-

ner using RBAC) and integrated a taint analysis, which can be seen as a non-interference

using a simple linear lattice. The combination of access control and taint analysis has

already been done and also has been shown to be beneficial in the literature [Wan+09;

ZG02]. We did not implement the system.

System Description. The travel planner is a system consisting of three actors: A user

wants to book a flight using his/her travel planner app as well as the credit card center

app. A travel agency receives queries for flights from the travel planner app and returns

matching flights. An airline provides information about flights to the travel agency and

processes bookings for a given flight and credit card data.

Confidentiality Mechanism. The system uses a combination of RBAC and taint analy-

sis. The handling of roles has already been described in CS10. To extend the described

mechanism by taint analysis, we do the following: We introduce a validation property on

data. Initially data created by a user is NotValidated. Data created by the system is always

considered Validated. After a node in a system has validated data, it is Validated. Speaking
in terms of a taint analysis, the status NotValidated is equivalent to be tainted and the

status Validated is equivalent to not being tainted. Nodes in the system have a criticality

level, which can be Low, DMZ and High.
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Confidentiality Requirements. The confidentiality requirements specified for CS10 still

hold but in order to allow access of a node to data, an additional confidentiality requirement

always has to hold: No node with a clearance level 𝑎 receives data with a classification

level 𝑏 such that 𝑎 < 𝑏. The order relation < is given by the linear ordered lattice, where a

level with a lower index is considered lower than a level with a higher index. The ordered

lattice in ascending order is Validated, High, NotValidated, Low and DMZ. Simply said, data,

which has not been validated, must be validated before it might be processed by nodes

with high criticality. This requirement is comparable to the requirements formulated in

the literature [Wan+09; ZG02]. The requirements use all features of the taint analysis and

RBAC Core. As discussed for CS10, we only consider RBAC Core to stick closer to the

original travel planner system described in CS1.

Potential Issue. We could use the same issue as used in CS10 but this would not provide

more insights in the validation compared to only using CS10. Instead, we define an issue,

which can only be shown in the current system. A realistic issue, which could appear

because a software architect forgot to specify a validation for incoming data, is that the

criteria for looking for flights has not been validated before its processing within the

travel planner app. The expected violation is that the travel planner app processes the not

validated criteria data, which it must not process.

8.3. Validation of Extended Data Flow Diagrams

The validation of the extended DFD syntax, which we described in Section 5.1, is the first

validation goal (VG1). We describe the validation design for answering the validation

questions VQ1–VQ4 in Section 8.3.1. The results of executing the designed validation are

presented in Section 8.3.2 and discussed in Section 8.3.3. We discuss threats to the validity

of our results and conclusions in Section 8.3.4.

8.3.1. Validation Design

The validation design describes the procedure to provide answers to all four validation

questions, which support VG1. The first three validation questions VQ1, VQ2 and VQ3 ask

about the expressiveness of the DFD syntax and require particular systems for collecting

the data to answer the questions. A case study is appropriate to provide this information

because it aims for gaining insights into the application of the approach in particular cases,

which implies particular systems. We conduct the case study in six steps:

1) For each case study system mentioned in Section 8.2, we try to model the system

and its usage of the confidentiality mechanism in the DFD syntax.
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2) For each case study system, we classify the modeling result either as successfully

modeled or as not successfully modeled. The successfully modeled case study systems

are part of the set of expressible systems 𝑆𝑒 . A system is classified as successfully

modeled if the structure and deployment could be represented and if every behavior

and usage, which affects the confidentiality, could be represented.

3) We group the tuples of case study system and its classification by the confidentiality

mechanism mentioned in Table 8.2.

4) We calculate the weighted ratio metrics VM1.1, VM1.2 and VM2.1.

5) For each case study system, we collect the set of used model elements of the DFD

syntax. We consider a model element as used if it has been instantiated or if any of

its subclasses has been instantiated.

6) We calculate the utilization metric VM3.1.

We interpret the metric values as described in Section 8.1.1 and answer the validation

questions VQ1, VQ2 and VQ3.

The last validation question VQ4 asks whether all information to create a system model

is available to the users of the DFD syntax. To answer the question, we discuss the

required information to instantiate every element of the DFD syntax and build groups

of information. For instance, one group could be the structural information about the

architecture. This brings us to the set 𝐼 of necessary information. Afterwards, we discuss

whether this information is available in the required granularity when creating the software

architecture. We base our decision about availability by looking at the information, which

other, established ADLs require, and by collecting commonly required information to use

typical architectural viewpoints. This brings us to the set 𝐼𝑘 of necessary information. After

this discussion, we can classify each information as either known or unknown. The sum

of unknown information is the required metric VM4.1. We adhere to the interpretation

guidelines mentioned in Section 8.1.1 for answering the validation question based on

the metric. A discussion is a reasonable method for collecting the data to calculate the

metric because there is no formal definition of information, which is usable for answering

the validation question. A discussion can cover many different influencing factors and

provides valuable results as long as the line of argumentation is clear.

8.3.2. Validation Results

We could successfully express all but one case study system as illustrated in Table 8.3. The

table presents the ratio metric 𝑟 (𝑚) for a mechanism𝑚. The top part covers the systems

using access control, so it provides the data for calculating VM1.1. Because there are

five access control mechanisms, 𝑟 = 5

5
= 1.0. The middle part covers the systems using

information flow control, so it provides the data for calculating VM1.2. Because there

are four information flow control mechanisms, 𝑟 = 3

4
= 0.75. The bottom part covers the

systems using a combination of access control and information flow control, so it provides
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Confidentiality Mechanism𝑚 |𝑆 | |𝑆𝑒 | 𝑟 (𝑚)
DAC 1 1 1

MAC Military Model 1 1 1

MAC Need-to-Know 1 1 1

RBAC 3 3 1

ABAC 1 1 1

Non-Interference Linear 3 3 1

Non-Interference Linear with Encryption 4 4 1

Non-Interference Arbitrary with Encryption 1 1 1

Non-Interference Tenant 1 0 0

RBAC + Tainting 1 1 1

Table 8.3.: Overview on ratio 𝑟 (𝑚) of expressible systems |𝑆𝑒 | to total amount of systems |𝑆 | per used
confidentiality mechanism𝑚.

the data for calculating VM2.1. Because there is only one combination of mechanisms,

𝑟 = 1

1
= 1.0.

We calculated the utilization metrics 𝑢 𝑓 for all model elements 𝑓 ∈ 𝐹 . For the most model

elements, 𝑢 𝑓 was 9, where 9 is the maximum possible value because there are nine different

expressible confidentiality mechanisms. The model element True has a slightly lower

utilization of 8 and Or a value of 7. The three model elements ActorProcess, And and False
have a utilization of 6. The ContainerCharacteristicReference has a utilization of 3. The only

model element below the threshold of 2 is the model element Not with a utilization of 0.

In order to calculate VM4.1, we collected the required information to use the model

elements. Table 8.4 lists all model elements, the action to do with the model elements,

the corresponding user and the category of information, which the user needs to know

to perform the action. The triples of category, action and user build the elements of the

set of information 𝐼 . We can show for every triple 𝑖 ∈ 𝐼 that the required information

is available: Creating the structure of an architecture and defining its usage is covered

by common architectural viewpoints. According to Rozanski and Woods [RW05, p. 36],

the structure is covered by the functional viewpoint and the usage has to be covered by

the information viewpoint in order to describe the manipulation of data. Because data

flows represent the structure in terms of the wiring of components as well as the usage in

terms of used components by users, they fall in both categories. Creating model elements,

which describe the behavior, is the responsibility of the security expert. According to an

explanation of the threat modeling process [Tor05], security experts have to collect various

information during threat modeling, which maps to the information required to specify

the BehaviorDefinition: The information about entry points as well as inputs and outputs

matches the information required to create a Pin. The information on the behavior with

respect to inputs and outputs matches the information required to create an Assignment
including all remaining model elements used to create expressions for the assignments.

The information to bind the BehaviorDefinition to the architecture is also known to the

architect because he/she has to know the data processing of components as defined by
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Category Model Element Action User

Structure Process Create Architect

Store Create Architect

Usage ExternalActor Create Architect

ActorProcess Create Architect

Structure/Usage DataFlow Create Architect

Behavior BehaviorDefinition Create Sec. Exp.

Bind Architect

Pin Create Sec. Exp.

Assignment Create Sec. Exp.

And Create Sec. Exp.

Or Create Sec. Exp.

Not Create Sec. Exp.

True Create Sec. Exp.

False Create Sec. Exp.

ContainerCharacteristicReference Create Sec. Exp.

DataCharacteristicReference Create Sec. Exp.

Properties Enumeration Create Sec. Exp.

Literal Create Sec. Exp.

CharacteristicType Create Sec. Exp.

EnumCharacteristic Create Sec. Exp.

Bind Architect

Table 8.4.: Overview on categories of information required to use model elements.

the information viewpoint [RW05, p. 36]. The security expert knows the information

required to create properties because he/she also needs this information during threat

modeling. According to [Tor05], a security expert has to be aware of the assets to be

protected, deployment information as well as about trust levels of entry points. If the

security expert knows the assets to protect, he/she also knows the properties of the assets,

which allows to define CharacteristicTypes, Enumerations and Literals. If the security experts
knows the trust levels of entry points as well as deployment information, he/she knows at

last some properties of the components, which allows to define EnumCharacteristics. It is
reasonable to assume that the security expert also knows remaining important properties

if they are important for security analyses. In order to bind these properties to components,

the software architect has to know if the component actually has these properties. The

software architect certainly can bind the deployment information and all properties related

to the deployment because this information is part of the deployment viewpoint [RW05,

p. 36]. For the remaining properties, it is either reasonable to assume that the security

expert provides guidelines on how to interpret the properties or that the security expert is

still available to provide guidance on applying the properties. In both cases, the software

architect has the information to bind the properties.
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We can now calculate VM4.1. The set of information 𝐼 consists of every triple of category,

action and user from Table 8.4. As explained before, all information to create the corre-

sponding model elements is available to the software architect and the security expert.

Therefore, 𝐼 = 𝐼𝑘 holds. Consequently, 𝑠𝑘¯ = |𝐼 \ 𝐼𝑘 | = |∅| = 0 holds.

8.3.3. Result Discussion

We structure the discussion of the results by the corresponding validation questions.

Discussion of VQ1. The validation question aims to validate that the expressiveness of

the DFD syntax is not worse than the expressiveness of the state-of-the-art approaches.

As shown by the value 1.0 of VM1.1, the DFD syntax supports all commonly used access

control mechanisms. This means, we could not show worse expressiveness of access

control mechanisms with respect to the state of the art. However, VM1.2 only has a

value of 0.75, which means that the DFD syntax could not express all information flow

control mechanisms. The syntax could successfully represent all case study systems using

non-interference with linear or arbitrary lattices. Before discussing the case study system,

which the DFD syntax could not express, we give more details on why the syntax could

express the other systems.

For all case study systems, the characteristic types, characteristics and behaviors provided

in Section 6.2 and Section 6.3 were sufficient to model the systems. There are only

two differences to the provided behaviors: variants of the behaviors and an additional

synchronizing behavior. The variants affect the joining and forwarding behavior and

support more inputs and outputs. Creating these variants is simple because the behaviors

work essentially the same as the ones described by us: The forwarding behaviors still

forward all labels from an input to an output but there are now multiple pairs of input

and output. The joining behaviors still combine labels in the way described by us (such as

building an intersection or finding the highest label) but the expressions consider more

inputs. The synchronizing behavior is a forwarding behavior, which takes an additional

input. However, the additional input is not considered when determining the labels of the

output. Therefore, the synchronizing behavior just documents an additional input, which

a process receives. The synchronizing behavior could also be replaced by the forwarding

behavior from an analysis point of view.

As shown by Table 8.3, the not-supported confidentiality mechanism is non-interference

between tenants. Tenants are groups of legitimate users of the same system functions

[Fac+13]. This means that these individual tenants are represented by the same type

of user. The DFD syntax describes systems on such a type level, which means that it

cannot express individual users, i.e. tenants. Consequently, integrating a confidentiality

mechanism, which can distinguish between individual users, is not possible. The case

study system originates from the iFlow approach [Kat17, pp. 187], which can make use of

source code stubs for more detailed analyses. An approach to be used in the architectural

design phase cannot make use of such detailed implementation information because it is
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not available at that time. The part of iFlow [Kat17, pp. 81], which operates on models,

shares such a limitation and defines one tenant as the whole group of legitimate users and

another tenant as an external, illegitimate user. In consequence, the violations, which can

be detected, are limited compared to the analysis on source code. The DFD syntax could

also express such an attacking user. However, this representation of the system would

be incomplete with respect to the original definition of the confidentiality requirements –

just like the model part of the iFlow approach. Therefore, we cannot conclude that the

expressiveness of the DFD syntax is worse than the expressiveness of state-of-the-art

approaches as long as only the architecture- and design-time models are considered.

Discussion of VQ2. The validation question aims to validate that the DFD syntax can

represent combinations of access control and information flow control mechanisms within

the same system. As the value 1.0 of VM2.1 shows, the syntax could successfully represent

all case study systems using combinations of both types of confidentiality mechanisms.

The characteristic types, characteristics and behaviors provided by the descriptions of

the mechanisms in Section 6.2 were sufficient to express the systems. The only exception

are joining and forwarding behaviors with more inputs and outputs than we originally

described. However, this does not indicate a problem of the descriptions because extending

the behaviors by more inputs and outputs is simple as discussed for the previous validation

question. A combination of access control and information flow control within the same

system is an improvement compared to the state of the art.

Discussion of VQ3. The validation question aims to validate that the DFD syntax does not

contain highly specific elements for certain confidentiality mechanisms. The validation

revealed that only the Not element is used in less than two systems. In fact, the Not element

has never been used in any case study system. This means that the element could be

removed without affecting the expressiveness of the DFD syntax with respect to the case

study systems. However, the element has been added to gain functional completeness

[End01, p. 49], i.e. all truth tables, which can be constructed based on boolean parameters,

can be expressed. The DFD syntax intentionally does not only provide a minimal set of

boolean connectives (negation and either logical disjunction or logical conjunction would

be sufficient) but all commonly used three logical connectives to simplify specifications. To

improve VM3.1, we could remove either the logical conjunction or the logical disjunction

and transform every expression into the logical equivalent. Because Not has not been
added to support a specific confidentiality mechanism and it can be replaced by other

existing model elements, we can answer VQ3 by stating that there are no model elements,

which are tailored to specific confidentiality mechanisms.

Discussion of VQ4. The validation question aims to validate that users of the DFD syntax

have access to the information required to use it. As discussed in Section 8.3.2, the value of

VM4.1 is 0, which means that all required information is available to the software architect

and the security expert while creating the architecture.
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8.3.4. Threats to Validity

Because themajority of the validation took place as a case study, we structure the discussion

of threats to validity according to the guidelines of Runeson and Höst [RH09, pp. 153] for

discussing the validity of a case study.

Internal Validity is concerned with how well a taken measure supports a cause-effect

relationship and especially whether there are alternative explanations for the effect. In

the context of VG1, we expect the DFD syntax to be the cause of an effect. The effects are

expressiveness, good metamodel utilization and availability of required information. We

discuss potential alternative explanations of these effects, i.e. other possible influencing

factors, in the following.

The expressiveness (VM1.1, VM1.2 and VM2.1) is certainly affected by the DFD syntax

because it provides the means to express systems. We measure the amount of systems,

which we could express in the DFD syntax, to determine expressiveness. Besides the DFD

syntax, there are other potential influencing factors: The selection of case study systems

influences the expressiveness measure. For instance, removing CS5 from the set of case

study systems would influence the expressiveness metric positively. We cannot rule out

this factor completely but we mitigated overly positive results by sticking to the system

selection procedure described in Section 8.2.2. The set of case study systems covers all

commonly used confidentiality mechanisms and avoids cherry-picking by always selecting

all case study systems from closely related approaches. The aspects of confidentiality

mechanisms, which the case study systems do not cover, focus either on the confidentiality

requirements (hierarchies in RBAC and ABAC) or require stateful modeling (revocation

of rights in DAC). The confidentiality requirements only affect VG2 and VG3. The stateful

modeling is an intentional limitation of our approach, which we already discussed in

Section 6.7. The skill of the software architect and security expert, which create the

DFDs, is another influencing factor. Because we are interested in the upper bound of

expressiveness, this factor is only important if the skill is too low and thereby lowers

the measured upper bound. We can exclude this factor because the person, who created

the DFDs, is the author of the DFD syntax, which makes low skill in using the syntax

unlikely. Another influencing factor is the chosen abstraction of the system. By choosing

a very high level of abstraction, a complex system can become expressible even if it misses

important details. We mitigated this factor in two ways: First, we pick case study systems

from closely related approaches, which use a comparable level of abstraction. Second, we

reuse issues from existing case study systems or create issues based on critical aspects

of the system. If an aspect of a system is important for reasoning about confidentiality,

it is unlikely that we can successfully create a system variant containing an issue when

omitting this aspect. For the systems, which we created on our own, we stuck to common

application scenarios and issues.

The metamodel utilization (VM3.1) is certainly affected by the DFD syntax because it

provides the elements of the metamodel to be used. For every element, we count the

confidentiality mechanisms, for which at least one system exists, which uses the element.
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We report elements, which are used at most once. Besides the DFD syntax, there are

other potential influencing factors: The selection of case study systems directly influences

the metamodel usage. For instance, a set of systems, which do not require a storage,

makes the utilization of the Storage element 0. As explained for the expressiveness, we

carefully selected the case study systems according to the selection procedure described

in Section 8.2.2 to avoid biased selections or small toy examples, which would lead to an

unrepresentative set of systems. Another influencing factor are the choices done while

modeling the system. With respect to the structure of the system, we do not expect many

choices to be available because of the small amount of model elements in the DFD syntax

and missing alternatives. With respect to the behavior definitions, there are often multiple

ways of formulating expressions. For instance, ¬𝑎 ∨ 𝑏 is the same as ¬(𝑎 ∧ ¬𝑏). In the

first case, negation and logical disjunction is used. In the second case, negation and logical

conjunction is used. Therefore, the metamodel usage would be different. This means, the

metric is susceptible to modeling choices. Therefore, it is not sufficient to answer the

validation question solely by the metric value but to discuss, whether the model element

is only not used because of design choices. We did this discussion for the only model

element, which has been used never.

The information availability (VM4.1) depends on the DFD syntax because the syntax pre-

scribes, which information shall be expressed. For every model element, we determine the

information, which is required to create and use the model element and discuss the infor-

mation availability. Besides the DFD syntax, there is another potential influencing factor:

The classification of the availability of information directly influences the metric. If the clas-

sification is wrong, the metric is also wrong. To avoid a wrong classification, we discussed

the availability of every information and justified the classification by literature.

External Validity is concerned with the generalization of case study results to other

contexts. Because a case study does not use a representative sample but a limited set of

cases, results cannot be generalized to arbitrary other contexts. However, the results can be

generalized to other cases with comparable characteristics. We discuss these characteristics

in the following.

The result of the expressiveness validation (VM1.1, VM1.2 and VM2.1) is that the DFD syntax

can express systems using the mentioned confidentiality mechanisms. This finding can be

generalized to systems using data flows and using one of the mentioned confidentiality

mechanisms. The restriction on data flows is important because a DFD cannot represent

pure control flows, which means that confidentiality mechanisms represented by the

DFD syntax always work on exchanged data. A system, in which activities cannot be

represented appropriately by data flows and data processing, cannot be represented in a

DFD. This is a general limitation of DFDs. However, this limitation is not too restrictive

because many different systems have been initially designed using DFDs.

The result of the metamodel utilization validation (VM3.1) is that there are no elements

specifically tailored to a particular confidentiality mechanism in the DFD syntax. Because

the validation already covered all model elements of the DFD syntax and we could show
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that every element is at least used by three types of confidentiality mechanisms or only has

a low usage because of arbitrary design decisions while modeling, we could disprove the

hypothesis of the existence of specifically tailored model elements. When executing the

same validation with a different set of systems, the results could be different. Therefore,

the results, i.e. the usage values, can only be generalized if the set of systems is comparable

with respect to the amount of systems, system sizes and used confidentiality mechanisms.

However, the finding, i.e. that there are no specifically tailored model elements, is general-

izable without restrictions because giving examples is sufficient to disprove the mentioned

hypothesis.

The result of the information availability validation (VM4.1) is that all information required

to express a system in the DFD syntax is available to the software architect and the security

expert. Because the corresponding validation is not based on a case study but a general

discussion, the results are generalizable to any other system that is expressible.

Construct Validity is concerned with the appropriateness of taken measures to make

statements about the research objective.

The weighted ratio metrics of the expressiveness validation (VM1.1, VM1.2 and VM2.1)

measure the ratio between expressible systems and the total amount of systems normalized

by the amount of systems using the same confidentiality mechanism. The statement to

be made based on the metric value is that the DFD syntax can express the same amount

of confidentiality mechanisms within systems as state-of-the-art approaches. The metric

is appropriate to provide the information for the statement because a value smaller than

1 means that not all confidentiality mechanisms could be expressed within all systems,

which is worse than state of the art. Apart from this threshold-based interpretation of the

metric, the metric also gives an idea of how bad the expressiveness is, which is valuable

for a discussion. It is reasonable to not use a simple ratio metric of expressible systems

compared to the total amount of systems because the amount of systems using a certain

confidentiality mechanism varies and we are especially interested in how well the DFD

syntax can express confidentiality mechanisms within systems. Therefore, not supporting

two systems with two different confidentiality mechanism is worse than not supporting

two systems with the same confidentiality mechanism. The metric respects this and

handles unbalanced sets of systems with respect to the confidentiality mechanism.

The utilization metric of the metamodel utilization validation (VM3.1) measures for every

element the confidentiality mechanisms, for which at least one system exists, which uses

the element. The statement to be made is that there are no elements only used by systems

using one particular mechanism. The metric is appropriate to provide the information

for this statement: The metric correctly handles unbalanced sets of systems with respect

to the used confidentiality mechanism. For instance, if only two systems using the same

confidentiality mechanism make use of a model element, its utilization metric value is

still only 1. We cannot use a simple sum of systems using an element because a large

amount of systems using the same confidentiality mechanism would yield a high usage

value, which does no longer provide the information required to support our statement.
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The unknown information metric of the information availability validation (VM4.1) mea-

sures the sum of required information, which cannot be known by software architects and

security experts. The statement to be made is that all required information can be known

by software architects and security experts. The metric provides the required information

because it gives the sum of unknown information, which can be compared to the expected

value 0.

Reliability is concerned with the dependency between the collected data and the conduct-

ing researcher. Best reliability is achieved if the collected data as well as the conclusions

are completely independent of the conducting researcher.

The data collected in the expressiveness validation (VM1.1, VM1.2 and VM2.1) certainly

depends on the skills of the modeler because two different modelers will most probably

not create the very same model. However, this is not necessary because the validation

is about finding an upper bound of expressiveness. Therefore, it is only necessary that

other researchers can understand the decision of whether a system has been successfully

expressed or not. We provide all created models as part of a data set [Sei22], so other

researchers can decide whether the classification of a system as expressible was correct.

The corresponding metrics can be calculated objectively, which we also did as part of the

validation application in our data set [Sei22].

The data collected in the metamodel utilization validation (VM3.1) does not depend on

a particular researcher because checking for the usage of a model element can be done

objectively. We have fully automated this step as part of the validation application in our

data set [Sei22].

The data collected in the information availability validation (VM4.1) depends on the

discussion of the availability of information. As part of this discussion, we explain, why

information is available and provide references to literature, which supports our statements.

Other researchers can reproduce the results by consulting the references.

8.4. Validation of DFD Analyses

The validation of the DFD analyses, which we described in Section 6.2, is the second vali-

dation goal (VG2). We describe the validation design for answering the validation question

VQ5 in Section 8.4.1. The results of executing the designed validation are presented in

Section 8.4.2 and discussed in Section 8.4.3. We discuss threats to the validity of our results

and conclusions in Section 8.4.4. Because VQ6 belongs to VG2 as well as to VG3 and uses

the DFD analyses as well as the DFD semantics, we describe the aforementioned aspects

for this validation question only in one place, which is in Section 8.5.
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8.4.1. Validation Design

The validation design describes the procedure to provide answers to VQ5. The validation

question asks about the expressiveness of the DFD analyses and requires defining the

confidentiality requirements of particular systems. A case study is appropriate to provide

this information because it aims for gaining insights into the application of the approach

in particular cases, which implies particular systems.

In the case study, we reuse the systems, which have already been modeled to answer VQ1

and VQ2. We use these systems instead of all systems mentioned in Table 8.2 because to

formulate confidentiality requirements for a system, the system has to use a confidentiality

mechanism, which can actually meet these requirements. For instance, requiring non-

interference for a system, which uses DAC or no confidentiality mechanism at all, is

not reasonable because the system can only meet this requirement by accident and the

system description does not provide the necessary information to reason about non-

interference. In contrast, the systems modeled to answer VQ1 and VQ2 use the appropriate

confidentiality mechanisms and provide the necessary information to reason about non-

interference.

We conduct the case study as follows: For every system resulting from VQ1 and VQ2,

we formulate the confidentiality requirements, which have been described in the case

study system descriptions in Section 8.2.2, as a Prolog query. We use the queries from

Section 6.2 and Section 6.3 and replace names of characteristic types and literals if the

names do not already match. If expected by the analysis definitions, we create the addi-

tional Prolog clauses for covering all confidentiality requirements of the system. For CS17,

which combines access control and information flow control, we apply the combination

procedure described in Section 6.4. Afterwards, we classify the created confidentiality

requirements in either successfully expressed or not expressed. We classify the confi-

dentiality requirements as successfully expressed i) if the query is the same as the one

presented in the corresponding analysis definition when ignoring differences in names

and ii) if the additional clauses follow the structure described in the analysis definition.

Afterwards, we calculate the metrics VM5.1, VM5.2 and VM5.3.

8.4.2. Validation Results

We could successfully represent all confidentiality requirements of the case study systems

CS10–CS16, which covers requirements for systems using the confidentiality mecha-

nisms DAC, MAC Military Model, MAC Need-to-Know, RBAC and ABAC. Therefore, the

weighted ratio for VM5.1 is 𝑟 = 5

5
= 1.0.

We could successfully represent all confidentiality requirements of the case study systems

CS1–CS4 as well as CS6-CS9, which covers requirements for systems using the confi-

dentiality mechanisms non-interference with linear lattice, arbitrary lattice including

encryption, and linear lattice including encryption. As explained in the validation design,
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CS5 is not part of the considered case study systems for this validation. The weighted

ratio for VM5.2 is 𝑟 = 3

3
= 1.0.

We could successfully represent the confidentiality requirement of the case study system

CS17, which covers the requirements for a system using a combination of RBAC and a

taint analysis. Therefore, the weighted ratio for VM5.3 is 𝑟 = 1

1
= 1.0.

8.4.3. Result Discussion

Validation question VQ5 aims to validate that the analysis definitions for DFDs are expres-

sive enough to cover confidentiality requirements of particular systems. As the metric

values for VM5.1, VM5.2 and VM5.3 show, the DFD analyses provide the necessary means

to express the confidentiality requirements of the case study systems. The only necessary

adjustment to be made to the Prolog queries was changing the names of characteristic

types. However, this does not indicate a weakness of the analysis definitions. Security

experts can always decide to use different names for characteristic types if they think,

these names fit the particular system better. The analysis definitions provide the primitives

to model systems and execute analyses. The names used in the analysis definitions do not

influence the results of analyses and are, therefore, interchangeable.

8.4.4. Threats to Validity

Because the validation took place as a case study, we structure the discussion of threats to

validity according to the guidelines of Runeson and Höst [RH09, pp. 153] for discussing

the validity of a case study.

Internal Validity is concerned with how well a taken measure supports a cause-effect

relationship and especially whether there are alternative explanations for the effect. In

the context of VG2, we expect the analysis definitions for DFDs to be the cause of an

effect. The expected effect of these analysis definitions is expressiveness with respect to

confidentiality requirements of systems. We discuss potential alternative explanations of

this effect, i.e. other possible influencing factors, in the following.

The expressiveness (VM5.1, VM5.2 and VM5.3) is certainly affected by the analysis defini-

tions because they provide the primitives to formulate the requirements. We measure the

amount of systems, for which we could express the confidentiality requirements using the

analysis definitions, to determine expressiveness. Besides the analysis definitions, there

are other potential influencing factors: The selection of case study systems also has an

influence on the measured expressiveness because every system having confidentiality

requirements, which cannot be expressed, lowers the measured expressiveness. As already

discussed in Section 8.3.4, we cannot completely eliminate this influencing factor but

minimize its effect by a careful selection procedure for case study systems, which covers

systems using the most common information flow control and access control mechanisms
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as well as corresponding confidentiality requirements. In addition, the systems have a

considerable size and describe solutions for common problems in various application

domains. Therefore, we consider the results to be representative. However, we did not

cover role hierarchies in RBAC and selector hierarchies in ABAC. Therefore, we cannot

draw conclusions for these particular features. Excluding CS5 is a logical consequence of

a lack of expressiveness regarding this system, which we already showed and discussed in

Section 8.3: If we cannot express a system, we cannot express confidentiality requirements

for that system. Another potential influencing factor is the expertise of interpreting confi-

dentiality requirements and mapping them to common confidentiality mechanisms. For

instance, the case study systems originating from the SecDFD approach [TSB19] distin-

guish the classification and the zone of nodes by having different sets of values. However,

when also using the classification values for describing the clearance of nodes, the analysis

can detect the same violations and matches the definition of a non-interference analysis

using a linear lattice. Recognizing this, requires some expertise. A lack of expertise can

have a negative impact on the measured expressiveness. Because we are interested in

the upper bound of expressiveness and we could not find confidentiality requirements,

which we could not express, this factor had no effect. Another potential influencing factor

is that the formulated confidentiality requirements do not represent the confidentiality

requirements of the case study system. We mitigate this factor by VQ6, which validates

that an analysis based on the requirements detects violations for the issue contained in the

case study system. This does not fully mitigate the threat but weakens it by showing that

the formulated requirements at least cover the critical aspect of the requirements. Because

the issues contained in the case study system usually demonstrate the most important

aspects of the confidentiality mechanism and requirements used by the systems, we think

that the treat of formulating too simple requirements is negligible.

External Validity is concerned with the generalization of case study results to other

contexts. Because a case study does not use a representative sample but a limited set of

cases, results cannot be generalized to arbitrary other contexts. However, the results can be

generalized to other cases with comparable characteristics. We discuss these characteristics

in the following.

The result of the expressiveness validation (VM5.1, VM5.2 and VM5.3) is that the analysis

definitions can express the requirements of systems. This finding can be generalized

to systems using data flows, using one of the mentioned confidentiality mechanisms

and specifying confidentiality requirements in terms of data. The restriction on data

flows is important because a DFD cannot represent pure control flows, which means that

confidentialitymechanisms represented by theDFD syntax alwayswork on exchanged data.

A system, in which activities cannot be represented appropriately by data flows and data

processing, cannot be represented in a DFD. Consequently, confidentiality requirements

also have to be specified in terms of data. This is a general limitation of analyses based

on DFDs. However, this limitation is not too restrictive because many different systems

have been initially designed using DFDs and threat modeling, which is one of the most

prominent approaches to identify security issues, also uses requirements based on data.
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We can explicitly not generalize the conclusions to confidentiality mechanisms, which

use role hierarchies in RBAC or use selector hierarchies in ABAC because no case study

system covered these aspects.

Construct Validity is concerned with the appropriateness of taken measures to make

statements about the research objective.

The weighted ratio metrics of the expressiveness validation (VM5.1, VM5.2 and VM5.3)

measure the ratio between systems, of whichwe could express confidentiality requirements,

and the total amount of systems. The statement to be made based on the metric value is that

the analysis definitions for DFDs can express commonly used confidentiality requirements

in the context of particular systems. The metric is appropriate to provide the information

for the statement because non-expressible requirements lower themetric value and indicate

a problem. The threshold for considering the validation to succeed is 1, which means that

all confidentiality requirements have to be expressible. Apart from this threshold-based

interpretation of the metric, the metric also gives an idea of how bad the expressiveness is,

which is valuable for a discussion. It is reasonable to not use a simple ratio metric of system,

for which we could express all confidentiality requirements, compared to the total amount

of systems because the amount of systems using a certain confidentiality mechanism and

thereby having the same type of confidentiality requirements varies and we are especially

interested in how well the analysis definitions can express confidentiality requirements

for different confidentiality mechanisms within systems. Therefore, not supporting the

confidentiality requirements of two systems with two different confidentiality mechanism

is worse than not supporting the requirements of two systems with the same confidentiality

mechanism. The metric respects this and handles unbalanced sets of systems with respect

to the confidentiality mechanism.

Reliability is concerned with the dependency between the collected data and the conduct-

ing researcher. Best reliability is achieved if the collected data as well as the conclusions

are completely independent of the conducting researcher.

The data collected in the expressiveness validation (VM5.1, VM5.2 and VM5.3) certainly

depends on the expertise in interpreting and modeling confidentiality requirements. A

person with less expertise might not be able to express the same amount of requirements

as we did. We already mentioned this problem while discussing the internal validity.

However, it is not necessary that another person produces the exactly same results because

the validation is about finding an upper bound of expressiveness. Therefore, it is only

necessary that other researchers can understand the decision of whether confidentiality

requirements have been successfully expressed or not. We provide all created requirements

as part of a data set [Sei22], so other researchers can decide whether the classification of

the requirements as expressible was correct. The corresponding metrics can be calculated

objectively, which we also did as part of the validation application in our data set [Sei22].
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8.5. Validation of DFD Semantics

The validation of the DFD semantics, which we described in Section 5.2, is the third

validation goal (VG3). We describe the validation design for answering the validation

questions VQ6 and VQ7 in Section 8.5.1. The results of executing the designed validation

are presented in Section 8.5.2 and discussed in Section 8.5.3. We discuss threats to the

validity of our results and conclusions in Section 8.5.4.

8.5.1. Validation Design

The validation design describes the procedure to provide answers to both validation

questions, which support VG3.

The first validation question VQ6 asks whether analyses, which are built upon the DFD

semantics, can correctly identify systems, which violate confidentiality requirements. A

case study is appropriate to provide this information because it aims for getting insights

into the application of the approach in particular cases, which implies particular systems.

We reuse the systems, which have already been modeled as part of the syntax validation

(VQ1 and VQ2), as well as the confidentiality requirements created as part of the analysis

validation (VQ5). In the validation, we run the analysis for every variant of every case

study system, for which we have a modeled DFD and the corresponding confidentiality

requirements. All case study systems CS1–CS17 except for CS5 meet these requirements.

It is reasonable to exclude CS5 because it is not possible to run an analysis on a model,

which does not exist. For every of these case study systems, we have two variants: one

variant containing no issue and one variant containing an issue. Running an analysis for a

variant means running the automated analysis steps described in Section 6.1. This covers

the mapping of the system, i.e. the DFD, to a logic program and the execution of the label

comparison, i.e. running the query in the logic program. The automated analysis steps

yield a list of violations.

To calculate the true positive fraction (VM6.1) and the true negative fraction (VM6.2), we

classify the reported violations. All violations reported for the variants without issue are

wrong because there cannot be violations without an underlying issue in our case study

systems. The violations reported for the variant with issue have to be rated individually.

For every such reported violation, we check if the violationmatches the expected violations,

which we described for every case study system in Section 8.2. If a violation does not

match the expected violations, we consider it wrong.

We consider every system variant, for which at least one wrong violation has been reported,

as having wrong results. To calculate the true positive fraction, we collect all variants

containing an issue in a set 𝑆𝑖 and all of these variants, which do not have wrong results,

in a set 𝑆′𝑖 ⊆ 𝑆𝑖 . The true positive fraction is then 𝑇𝑃𝐹 = |𝑆 ′𝑖 |/|𝑆𝑖 |. To calculate the true

negative fraction, we collect all variants not containing an issue in a set 𝑆�̄� and all of these

variants, which do not have wrong results in a set 𝑆′
�̄�
⊆ 𝑆�̄� . The true negative fraction is

then 𝑇𝑁𝐹 = |𝑆 ′𝑖 |/|𝑆𝑖 |.
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The second validation question VQ7 asks whether the DFD semantics limit the automation

of analyses. To answer this question, we have to know the set of analysis steps 𝐴 and

the set of automated analysis steps 𝐴𝑎 ⊆ 𝐴. We define the analysis steps 𝐴 as part of

a discussion. Afterwards, we derive the set of automated analysis steps 𝐴𝑎 from our

prototypical implementation by comparing the set of analysis steps with features of our

implementation. After having both sets, we can identify the amount of not automated

steps �̄� = |𝐴 \𝐴𝑎 |, which is also the required metric VM7.1.

8.5.2. Validation Results

The analyses based on DFD semantics could successfully identify correct violations for

systems containing an issue, which means that the𝑇𝑃𝐹 (VM6.1) is 1.0. The analyses based

on DFD semantics could also successfully identify that there are no violations in systems

not containing an issue, which means that the 𝑇𝑁𝐹 (VM6.2) is 1.0.

In order to calculate VM7.1, we collected the steps to be done during and analysis and

checked whether our prototypical implementation automates these steps. The input of the

analysis is the system to analyze, i.e. the DFD including applied confidentiality mechanisms,

and the confidentiality requirements, i.e. the query for unwanted combinations of labels.

The output of the analysis is a set of violations. Everything between receiving the inputs

and producing the outputs is part of the analysis. The required steps are:

A1 Transforming the DFD into a logic program

A2 Propagating the data including its labels through the system

A3 Comparing the labels of data with labels of nodes

A4 Reporting identified violations

All of the previously mentioned steps are automated within our prototype. We described

the mapping of a DFD to a logic program (A1) in Section 5.2.2. The mapping does not

require human interpretation or heuristics. Therefore, we could implement the mapping

as a model transformation in our prototype. The propagation of labels (A2) is the core of

the semantics. The semantics require clear specifications of the propagation functions in

the analysis definitions. Because the propagation functions are limited to logic operations,

constants and references to other labels, the propagation functions can be executed in a

fully automated way. The logic to identify paths through the DFD, on which labels can

be propagated, is also specified in form of a clear algorithm. Both parts do not require

human interaction. The propagation of labels is automated within the logic program.

The comparison of labels (A3) uses the propagated labels, which can be determined

automatically, and a comparison function. Because the comparison function is given as a

query to a logic program, it can be executed fully automatically. The violations are also

automatically reported (A4) by the Prolog execution environment, which finds solutions

to the label comparison function.
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Based on that discussion, we can calculate the sum of not automated analysis steps (VM7.1).

Because the set of analysis steps𝐴 and the set of automated analysis steps𝐴𝑎 are the same,

i.e. 𝐴 = 𝐴𝑎 , the amount of not automated steps �̄� = |𝐴 \𝐴𝑎 | is 0.

8.5.3. Result Discussion

We structure the discussion of the results by the corresponding validation questions.

Discussion of VQ6. The validation question aims to validate that analyses based on the

DFD semantics can correctly identify systems containing violations. As the true positive

fraction𝑇𝑃𝐹 = 1.0 shows, the analyses could successfully identify all variants of case study

systems, which contain an issue, as containing violations. Because we request that all

reported violations for each individual system are correct in order to consider the results

for a system variant as true positive, we can also state that the analyses did not report

a wrong violation. As the true negative fraction 𝑇𝑁𝐹 = 1.0 shows, the analyses could

successfully identify that all variants not containing an issue do not contain violations.

Both metric values are also the required values for answering the validation question

positively. The results support both, the validation goal about the DFD analyses (VG2) and

the DFD semantics (VG3): The results show that the DFD semantics are a good foundation

for realizing confidentiality analyses, which yield correct results. It would be unlikely that

weak semantics together with the high degree of automation of the analyses always yield

correct results. Therefore, the results support VG3. The results also show that the DFD

analyses can correctly detect violations within systems. Too simple analysis definitions

or wrongly specified analysis definitions would, most probably, not always yield correct

results. Therefore, the results support VG2.

Discussion of VQ7. The validation question aims to validate that the semantics do not

limit the automation of analyses. As the number of not automated steps �̄� = 0 shows, we

could automate all steps of the analysis assuming that the required inputs (DFDs, analysis

definitions and confidentiality requirements) are available. In the discussion about the

automation, we clearly stated that the analysis does not rely on human intervention or

heuristics. Because all steps could be automated, the semantics cannot have limited the

automation of analyses.

8.5.4. Threats to Validity

Because one part of the validation took place as a case study, we structure the discussion

of threats to validity according to the guidelines of Runeson and Höst [RH09, pp. 153] for

discussing the validity of a case study. The categories to be discussed are also suitable for

other types of validation designs, such as the discussion of automation.
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Internal Validity is concerned with how well a taken measure supports a cause-effect

relationship and especially whether there are alternative explanations for the effect.

In the context of the correctness of analyses (VQ6), we expect the DFD semantics and the

analysis definitions for DFDs to be the causes of an effect. The expected effect of both

are correct analysis results. We discuss potential alternative explanations of this effect,

i.e. other possible influencing factors, in the following. The DFDs to be analyzed can

have an effect on the correctness of the analysis results. We distinguish two cases: If the

modeled DFD shall contain an issue but actually does not, we would classify the result as

wrong, which would lower the 𝑇𝑃𝐹 metric. The same holds if the DFD contains an issue

but the issue is not the expected issue, i.e. the resulting violations are not expected. The

described case did not occur in our case study, which can be seen from the 𝑇𝑃𝐹 , which is

1.0. The second case occurs if the modeled DFD shall not contain an issue but actually

does contain an issue. In this case, we would classify the result as wrong, which would

lower the 𝑇𝑁𝐹 metric. The described case did not occur in our case study, which can be

seen from the 𝑇𝑁𝐹 , which is 1.0. Besides the classification guidelines for systems, the

classification guidelines for violations also influence the result. If the guidelines accept

violations as correct even if the violations are actually wrong, the𝑇𝑃𝐹 looks more positive

than it actually is. We mitigated this problem by specifying the expected violations as

part of the case study system descriptions in Section 8.2. These descriptions provide clear

guidelines on how to classify violations.

In the context of the automation of analyses (VQ7), we expect the DFD semantics to be the

causes of an effect. The expected effect of the DFD semantics is the capability to automate

all analysis steps. We discuss potential alternative explanations of this effect, i.e. other

possible influencing factors, in the following. The scope of the analysis is one potential

influencing factor. We defined the scope of the analysis as reporting violations based on

a given DFD and confidentiality requirements. Another definition could be to provide

assistance while creating the DFD by reporting potential violations. The latter definition

would most probably not allow full automation because incomplete DFDs and confiden-

tiality requirements require additional human input or intervention. However, even in the

real-time analysis, there is one analysis part, which analyzes the DFD and confidentiality

requirements as they are, to identify the need for human input. Therefore, the discussion

of automation is still applicable to these scenarios. The confidentiality requirements are

another influencing factor. If the requirements are not given in a formal specification,

automation becomes impossible. However, analyses always require inputs to be given in a

particular formalization. We already validated that expressing the confidentiality require-

ments of the case study systems is possible in VQ5 and created the requirements in the

expected format. Therefore, a lack of formalization of the requirements is no influencing

factor here.

External Validity is concerned with the generalization of case study results to other

contexts. Because a case study does not use a representative sample but a limited set of

cases, results cannot be generalized to arbitrary other contexts. However, the results can be

211



8. Validation

generalized to other cases with comparable characteristics. We discuss these characteristics

in the following.

The result of the correctness validation (VM6.1 and VM6.2) is that the DFD analyses based

on the DFD semantics can correctly identify systems containing violations. This finding

can be generalized to systems, which are given in the DFD syntax and which use the

confidentiality mechanisms and features of the confidentiality mechanisms, which were

considered in the validation. The confidentiality requirements have to be given in terms

of a query to the logic program and optional additional facts. We cannot draw conclusions

for other confidentiality mechanisms.

The result of the automation validation (VM7.1) is that the DFD semantics do not limit the

automation of analyses. Because this insight is based on a general applicable discussion, it

is not limited to particular cases but is generally applicable.

Construct Validity is concerned with the appropriateness of taken measures to make

statements about the research objective.

In the correctness validation, we use the true positive fraction 𝑇𝑃𝐹 (VM6.1) and the true

negative fraction 𝑇𝑁𝐹 (VM6.2). The statement to be made is that the analyses using the

DFD semantics can correctly identify systems containing violations. The true positive

fraction provides the necessary information to make this statement: Every correctly

identified system containing violations is counted and the ratio between the correctly

identified systems and the systems containing violations is calculated. A value of 1.0 means

that all systems, which should have been identified, have been identified. However, the true

positive fraction does not cover falsely reported systems. This means, an analysis, which

always reports a system to contain a violation without even analyzing the system, still has

a true positive fraction of 1.0. Therefore, it is necessary to also calculate the true negative

fraction, which builds the ratio between systems, which have been correctly not identified

as containing violations, and the total amount of systems, which actually do not contain

violations. If the true negative fraction is also 1.0, it means that also systems containing

no violations are correctly classified by the analysis. This means that the analysis actually

analyzes the system. As already discussed by Metz [Met78], the combination of both

metrics is good to rate the quality of binary classifiers, which is essentially what the

validation question is about.

In the validation of the degree of automation, we use the sum of analysis steps, which

are not automated. The statement to be made is that the DFD semantics do not limit the

automation of analyses. The metric is simple and provides all information to support

the statement. As long as the sum of non-automated analysis steps is 0, the statement is

supported.

Reliability is concerned with the dependency between the collected data and the conduct-

ing researcher. Best reliability is achieved if the collected data as well as the conclusions

are completely independent of the conducting researcher.
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The data collected in the correctness validation (VM6.1 and VM6.2) depends on the con-

ducting researcher when it comes to classifying the reported violations. Classifying the

violations is necessary because a wrongly reported violation lowers the metric values and

therefore influences the conclusions to be drawn from the data. To classify the violations,

a researcher has to understand the issue introduced in the case study systems as well

as the implications of this issue. To improve the reliability, we described each issue as

well as its implications, i.e. the expected violations, as part of the descriptions of the case

study systems in Section 8.2. In addition, we added the classification of violations to the

application for reproducing the validation results in our data set [Sei22]. For every case

study system, we clearly encode the classification guidelines in Java, so other researchers

can check our classifications. When using the same classification guidelines, the resulting

data is the same because the remaining parts of the validation design are fully automated

by the application for reproducing the validation. Based on the data, the same conclusions

can be drawn.

The data collected in the validation of the automation (VM7.1) depends on the identified

analysis steps as well as on the discussion about automating them. The analysis steps can

be identified based on the provided discussion and based on the explanation of the analysis

procedure in Section 6.1, so other researchers can identify the same analysis steps. In the

discussion about the automation of analysis steps, we often refer to the implementation of

our prototype, which shows that an analysis step can be automated. Other researchers

can check these statements based on the source code and by executing the application to

reproduce the validation results, which we both provide in our data set [Sei22].

8.6. Validation of ADL Integration Guidelines

The validation of the integration guidelines for existing ADLs, which we described in

Chapter 7, is the fourth validation goal (VG4). The validation of the guidelines takes

place by a validation of integrations, i.e. extended ADLs, which result from applying the

integration guidelines to existing ADLs. We describe the validation design for answering

the validation questions VQ8–VQ13 in Section 8.6.1. The results of executing the designed

validation are presented in Section 8.6.2 and discussed in Section 8.6.3. We discuss threats

to the validity of our results and conclusions in Section 8.6.4.

8.6.1. Validation Design

The validation design describes the procedure to provide answers to all six validation ques-

tions, which support VG4. The integration guidelines support ADLs using control flows

and ADLs using data flows. Because these types of ADLs have fundamental differences,

we have to ensure that the validation results are valid for both types of ADLs. Thereto, all

metrics to answer the validation questions belonging to VG4 distinguish two scenarios: In

one scenario, metrics for an ADL focusing on control flows shall be calculated. In the other

scenario, metrics for an ADL focusing on data flows shall be calculated. The extended

213



8. Validation

Palladio ADL presented in Section 7.2 supports both scenarios. In the first scenario, we

limit the use of the Palladio ADL to the subset, which focuses on control flows. We treat

this subset like an individual ADL in the following descriptions. In the second scenario,

we use the communication via data flows as often as possible. We cannot solely use data

flows because Palladio does not support communication based on data flows between the

users and the system as described in Section 7.2.2. We also treat this usage of the ADL as

an individual ADL in the following descriptions. Based on these definitions, we describe

the design for answering the questions in the following.

Case Study for VQ8. The first validation question asks whether the expressiveness of the

extended ADL syntax and semantics (VQ8) is lower than the expressiveness of DFDs. The

expressiveness of the DFD syntax and the semantics has been validated by a case study

using particular systems. In order to allow a comparison of expressiveness, it is reasonable

to also conduct a case study using the same case study systems and the same metrics. We

conduct the case study in three steps:

1) For each case study system described in the overview on case study systems in

Section 8.2, we try to model the system and its usage of the confidentiality mechanism

in the extended Palladio ADL twice: one time using the Palladio ADL focusing on

control flows and one time using the Palladio ADL focusing on data flows. Because

modeling a DFD is not directly possible in Palladio using control flows or data flows,

we adapt the structure of the system as well as its usage if necessary. The adapted

systems still have to represent the same functionality as specified in the description

of the case study system. In addition, the critical aspects for analyzing confidentiality

still have to be represented. For instance, data still has to be joined or declassified.

2) For each tuple of case study system and used ADL subset (control flow or data flow),

we classify the modeling result either as successfully modeled or as not successfully

modeled. A system is classified as successfully modeled if the structure, deployment

and confidentiality requirements could be represented and if every behavior and

usage, which affects the confidentiality, could be represented.

3) We calculate the metrics to answer VQ8.

3.1) We only consider systems modeled in the control flow ADL when calculating

the weighted ratio metrics VM8.1–VM8.3 because the metrics focus on the

expressiveness of the control flowADL. For calculating VM8.1, we only consider

systems using access control mechanisms. For calculating VM8.2, we only

consider systems using information flow control mechanisms. For calculating

VM8.3, we only consider systems using a mix of access control and information

flow control mechanisms. The weighted ratio metric normalizes the weight

of a modeling result based on the used confidentiality mechanism. Therefore,

we group the systems, which are considered for calculating the metrics, by the

particular confidentiality mechanism (e.g. RBAC). The information to do so is

available in the overview on the case study systems in Section 8.2. Each group

has the same weight in the final metrics.
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3.2) We only consider systems modeled in the data flow ADL when calculating

the weighted ratio metrics VM8.4–VM8.6 because the metrics focus on the

expressiveness of the data flow ADL. For calculating VM8.4, we only consider

systems using access control mechanisms. For calculating VM8.5, we only

consider systems using information flow control mechanisms. For calculating

VM8.6, we only consider systems using a mix of access control and information

flow control mechanisms. The weighted ratio metric normalizes the weight

of a modeling result based on the used confidentiality mechanism. Therefore,

we group the systems, which are considered for calculating the metrics, by the

particular confidentiality mechanism (e.g. RBAC). The information to do so is

available in the overview on the case study systems in Section 8.2. Each group

has the same weight in the final metrics.

Case Study for VQ9. The second validation question asks whether the correctness of

the analysis results (VQ9) is worse compared to the results of DFD-based analyses. We

rated the correctness of DFD-based analyses by running them on particular systems in

a case study. Therefore, we have to do the same in order to get comparable results. The

DFD-based case study used the same case study systems as the systems considered by the

validation of the expressiveness (VQ8). Therefore, we can run the analyses on the systems,

which already have been modeled for answering VQ8. If we cannot express a system in

VQ8, we exclude it from the case study for VQ9. This is reasonable because an analysis

always requires an input and if that input is not available, the analysis cannot produce

results. Considering a system, which cannot be expressed, does not provide any insights

beyond that our analyses require a system as an input. For every expressible system, there

are two variants. One variant contains an issue, which leads to violations of confidentiality

requirements. The other variant contains no issue and does not violate confidentiality

requirements. The introduced issues are available in the descriptions of the case study

systems in Section 8.2.2. We use both variants in the case study, which we conduct by

executing the following three steps:

1) We run the analysis for violations of confidentiality requirements on all four models

of a case study system: Every system has been modeled using the control flow ADL

and the data flow ADL. For both system models, there are two variants (one with

issue and one without issue), which results in a total of four system models. Running

an analysis means that the automated tooling takes the modeled system as well as

the label comparison function and reports detected violations.

2) We classify all reported violations as correct or wrong. A reported violation for a

system variant without issue is always wrong because there are no issues that could

lead to a violation. In order to be correct, a reported violation for a system variant

with issue has to be within the expected violations, which we explain in Section 8.2.2

for every system. A violation is within the expected violations if it occurs in the

expected locations, which are described in in Section 8.2.2. Otherwise, the reported

violation is wrong.
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3) We calculate the metrics to answer the validation question. We always classify whole

system variants based on the classifications of the reported violations.

3.1) The true positive fraction 𝑇𝑃𝐹 (VM9.1) considers system variants with issues

modeled in a control flow ADL. A system variant is classified as true positive if

at least one violation is reported and all reported violations are correct.

3.2) The true negative fraction 𝑇𝑁𝐹 (VM9.2) considers system variants without

issues modeled in a control flow ADL. A system variant is classified as true

negative if no violations have been reported.

3.3) The true positive fraction 𝑇𝑃𝐹 (VM9.3) considers system variants with issues

modeled in a data flow ADL. A system variant is classified as true positive if at

least one violation is reported and all reported violations are correct.

3.4) The true negative fraction 𝑇𝑁𝐹 (VM9.4) considers system variants without

issues modeled in a data flow ADL. A system variant is classified as true

negative if no violations have been reported.

Discussion of VQ10 VQ10 asks whether the degree of automation of ADL-based analyses

is lower compared to DFD-based analyses. We already rated the degree of automation

for DFD-based analyses by a discussion of analysis steps and their automation for VQ7.

In order to compare the degree of automation, we use the same validation approach: We

collect all analysis steps for an ADL and classify an analysis step as automated if the

prototype for the Palladio ADL automates this step. Because the analysis steps might differ

between DFD-based analyses and ADL-based analyses, we assign every analysis step a

purpose. After that, we can collect purposes, which are not automated for DFD-based

analyses, and we can collect purposes, which are not automated for ADL-based analyses.

A purpose is classified as not automated if there is at least one not automated analysis step

that serves this purpose. By identifying the purposes, which are no longer automated for

ADLs, we can calculate the metrics. We do the previously described steps for the analysis

procedure of control flow ADLs to calculate VM10.1 and for the analysis procedure of data

flow ADLs to calculate VM10.2.

Case Study for VQ11 VQ11 asks whether the extended ADL lowers the modeling effort

for adding confidentiality mechanisms to software architectures compared to the state of

the art. As discussed in Section 8.1.4, we can show reduced modeling effort by showing

that software architects do not have to remodel the software architecture from scratch

for adding a confidentiality mechanism. Therefore, it is sufficient to validate that at least

one model element can be reused. Because the integration into Palladio reuses many ADL

elements to describe the structure, behavior, deployment and usage of the system, it is

reasonable to assume that software architects can reuse a considerable amount of already

modeled software architectures, which lowers the overall modeling effort. This means

software architects should always be able to reuse parts of existing software architectures

because of the way we constructed the ADL integration. However, we would also like to
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show the validity of this statement for particular systems and give some numbers on how

much can actually be reused. A case study is appropriate to provide the answer to the

validation question because it focuses on gaining insights into particular applications of

an approach, which is necessary because the amount of reuse can vary depending on the

particular systems. We conduct the case study by executing the following three steps:

1) We create variants of case study systems, which do not contain confidentiality

mechanisms. These variants represent software architectures, which the software

architect already modeled without integrating confidentiality. We create the variants

by modifying the software architectures, which we already modeled for answering

VQ8: We remove or replace all model elements, which belong to the ADL extension.

We replace operational data stores with regular components. We remove all applied

stereotypes, i.e. characteristics of nodes and behaviors of data channels, and all

variable characterizations describing confidentiality. Because the removed elements

are no mandatory elements of the Palladio ADL and the elements do not replace

other mandatory elements of the Palladio ADL, the resulting software architecture is

still a valid software architecture. We create these variants for the case study systems

CS1, CS2 and CS3 based on the modeled software architectures using control flows

as well as data flows. Using these three systems is beneficial because each of these

systems shares the represented system with at least one other case study system.

For instance, CS1 represents the TravelPlanner system just like CS10 and CS17. This

allows us to not only compare the variant without a confidentiality mechanism with

the case study system, from which we derived the variant, but also with other case

study systems. This is useful because the validation would only show that we did

not replace or remove all model elements while creating the variant, otherwise.

2) We calculate the Jaccard Coefficients. To identify equal elements, we use the com-

parison approach of EMF Compare [BP08] consisting of two phases: First, we match

elements of two models, which shall be equal. We match elements based on their

unique identifiers. This works in our case because we created models of case study

systems, which represent the same system, by copying an existing model and adjust-

ing it to use another confidentiality mechanism. Second, we compare the matched

elements to classify them as equal or not equal. Two elements are equal if all at-

tributes and references of the elements are equal. Attributes are equal if the values

are equal. References are equal if the target of the reference in the first model and

the target of the reference in the second model have been matched to each other.

2.1) We compare the variant of CS1 with the modeled case study systems for CS1,

CS10 and CS17.

2.2) We compare the variant of CS2 with the modeled case study systems for CS2

and CS11.

2.3) We compare the variant of CS3 with the modeled case study systems for CS3

and CS12.

2.4) We do the comparisons separately for the models using control flows and the

models using data flows.
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3) We compare the Jaccard Coefficient with the threshold in order to answer the vali-

dation question regarding the state of the art. For this comparison, we assume that

many approaches from the state of the art require the software architect to remodel

the whole system, which brings us to a threshold of 0, i.e. we consider a Jaccard

Coefficient greater than 0 as good.

Case Study for VQ12 VQ12 asks whether the extended ADL lowers the modeling effort

for switching between confidentiality mechanisms in software architectures compared to

the state of the art. We use the amount of models elements, which have to be changed,

to reason about the modeling effort. If not all model elements have to be changed, the

modeling effort can be considered lower than for state-of-the-art approaches, which require

remodeling the whole system. Because the amount of required changes depends on the

particular system and the involved confidentiality mechanisms, we conduct a case study.

A case study is a good approach because it aims for gaining insights into the application

of an approach in particular contexts. With respect to this validation, different contexts

mean different software architectures, i.e. case study systems. We conduct the case study

by executing the following three steps:

1) We identify all possible pairs of case study systems, which represent the same system.

For instance, CS2 and CS11 both use the TravelPlanner system. We use the system

models, which we created for answering VQ8. We do not mix models using control

flows and data flows in pairs but create dedicated pairs.

2) We calculate the Jaccard Coefficients (VM12.1 and VM12.2) for each pair of models.

We use the comparison procedure already described for VQ11 to identify equal model

elements.

3) We compare the Jaccard Coefficient with the threshold in order to answer the vali-

dation question regarding the state of the art. For this comparison, we assume that

many approaches from the state of the art require the software architect to remodel

the whole system when switching confidentiality mechanisms. This brings us to a

threshold of 0, i.e. we consider a Jaccard Coefficient greater than 0 as good.

Discussion of VQ13 VQ13 asks whether all information required to model a software

architecture using the extended ADL is available to the software architect and security

expert. To answer the question, we discuss the required information to instantiate every

newly introduced element of the extended ADL syntax and build groups of information. It

is not necessary to consider elements of the non-extended ADL in the validation because

we can assume that an existing ADL is usable by software architects and the required

information to create software architectures using the ADL is available. For instance,

one group could be the information about the behavior of the architecture. We use the

groups, which we identified in the validation of VQ4 in Table 8.4 on page 197 whenever

possible because VQ4 essentially asks the same question as VQ13 but with respect to

DFDs. This brings us to the set 𝐼 of necessary information. Afterwards, we discuss

whether this information is available in the required granularity when creating the software
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architecture. We base our decision about availability by looking at the information, which

other, established ADLs require, and by collecting commonly required information to use

typical architectural viewpoints. This brings us to the set 𝐼𝑘 of necessary information.

After this discussion, we can classify each information as either known or unknown. We

build the sum of unknown information for model elements used in the control flow ADL as

metric VM13.1. The sum of unknown information for model elements used in the data flow

ADL is metric VM13.2. A metric value greater than 0 means that information is necessary

but unknown by the users, which means a failed validation. A discussion is a reasonable

method for collecting the data to calculate the metric because there is no formal definition

of information, which is usable for answering the validation question. A discussion can

cover many different influencing factors and provides valuable results as long as the line

of argumentation is clear.

8.6.2. Validation Results

We structure the presentation of the validation results by the validation questions.

Expressiveness of ADL (VQ8). We tried to model all case study systems mentioned in

Section 8.2 in Palladio using control flows as well as in Palladio using data flows. We could

successfully model all systems using access control mechanisms in Palladio using control

flows, which means that the weighted ratio metric (VM8.1) is 𝑟 = 1.0. We could model

all systems using information flow control mechanisms in Palladio using control flows

except for the BankingApp system. This brings us to a weighted ratio metric (VM8.2) of

𝑟 = 0.75. We could model all systems using mixed access control and information flow

control mechanisms in Palladio using control flows, which means that the weighted ratio

metric (VM8.3) is 𝑟 = 1.0. The results for Palladio using data flows are the same: We could

successfully model all systems using access control as well as all systems using combined

access control and information flow control mechanisms. This means the weighted ratio

metrics VM8.4 and VM8.6 are both 𝑟 = 1.0. We could model all systems using information

flow control mechanisms except for the BankingApp system. This brings us to a weighted

ratio metric (VM8.5) of 𝑟 = 0.75.

Correctness of Analysis Results (VQ9). We executed the automated analyses on all systems

resulting from VQ8. We classified the reported analysis results, which brings us to the

following metric values. The true positive fraction of the analysis results stemming from

models using control flows is𝑇𝑃𝐹 = 1.0 (VM9.1). The true negative fraction of the analysis

results stemming from models using control flows is𝑇𝑁𝐹 = 1.0 (VM9.2). The true positive

fraction of the analysis results stemming from models using data flows is 𝑇𝑃𝐹 = 1.0

(VM9.3). The true negative fraction of the analysis results stemming from models using

data flows is 𝑇𝑁𝐹 = 1.0 (VM9.4).
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Automation of Analyses (VQ10). To reason about the automation of analyses, we first

collect the activities to be done in ADL-based analyses. The activities are visualized in

Figure 7.2 on page 116. We do not consider creating inputs for the analysis as an activity of

the analysis itself but as necessary preparations. Addressing the violations by identifying

the underlying issue and changing the system design is also not part of the analysis itself

but a follow-up activity. Because the analysis procedure for ADL-based analyses is built

upon the analysis procedure for DFD-based analyses, the analysis activities overlap. In

Section 8.5.2, we list the following four activities:

A1 Transforming the DFD into a logic program

A2 Propagating the data including its labels through the system

A3 Comparing the labels of data with labels of nodes

A4 Reporting identified violations

All of these activities are still valid and part of the analysis procedure for ADLs. In order to

reuse these activities, the analysis procedure for ADLs introduces one additional activity,

which has to be done before the other activities:

A0 Transforming the ADL model into a DFD

By transforming the ADL to a DFD, we can reuse the analysis procedure for DFDs. This

means, there are five activities for ADL-based analyses (A0–A4) and four activities for

DFD-based analyses (A1–A4). The purposes of these activities are as follows:

P1 Prepare analysis execution

P2 Conduct the analysis for violations

P3 Present the analysis result

The mapping of the analysis activities to the purposes is as follows. The mappings of the

ADL model to a logic program (A0 and A1) as well as the mapping of the DFD to a logic

program (A1) serve purpose P1 because these activities do not yet look for violations but

only map the models into an artifact, which the tooling can analyze. The activities of

propagating labels and comparing labels for ADLs (A2 and A3) as well as for DFDs (A2

and A3) serve purpose P2 because they actually look for violations by considering the

system behavior. The activities of reporting the identified violations for ADLs (A4) as well

as for DFDs (A4) serve purpose P3 because they make the analysis results accessible to

the software architect.

We already discussed that the analysis activities for DFD-based analyses are completely

automated in Section 8.5.2. Because the ADL-based analyses simply reuse these activities,

these activities are also automated for ADL-based analyses. The mapping of the ADL

model into a DFD (A0) is also automated in the prototypical implementation of the Palladio

integration. This is possible because the mapping does not require heuristics or human

interaction and it provides rules for all relevant parts of the architecture. This means

that there are no activities, which have not been automated in the ADL-based analyses.

Consequently, there is no non-automated purpose, i.e. 𝑝�̄� = 0.
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Metric CS1 CS2 CS3 CS10 CS11 CS12 CS17

VM11.1 0.49 0.59 0.52 0.52 0.60 0.53 0.33

VM11.2 0.47 0.44 0.54 0.50 0.44 0.56 0.40

Table 8.5.:Overview on the Jaccard Coefficients for adding confidentiality mechanisms to case study systems

(CS) using control flows (VM11.1) and data flows (VM11.2).

Metric CS1/CS10 CS1/CS17 CS10/CS17 CS2/CS11 CS3/CS12

VM12.1 0.81 0.50 0.54 0.86 0.75

VM12.2 0.88 0.66 0.71 0.86 0.88

Table 8.6.: Overview on the Jaccard Coefficients for switching confidentiality mechanisms between case

study systems (CS) using control flows (VM12.1) and data flows (VM12.2).

Effort for Introducing Confidentiality Mechanisms (VQ11) We compared the case study

systems with their corresponding variant without integrated confidentiality mechanisms

and calculated the Jaccard Coefficient. The results are shown in Table 8.5. We discuss the

results in Section 8.6.3.

Effort for Switching Confidentiality Mechanisms (VQ12) We compared all case study sys-

tems with each other that represent the same system and calculated the Jaccard Coefficient.

The results are shown in Table 8.6. We discuss the results in Section 8.6.3.

Availability of Information (VQ13) In order to calculate the metric values of VM13.1

and VM13.2, we collected the required information to use the newly introduced model

elements. Table 8.7 lists all model elements, the action to do with the model elements,

the corresponding user and the category of information, which the user needs to know

to perform the action. The triples of category, action and user build the elements of the

set of information 𝐼 . We can show for every triple 𝑖 ∈ 𝐼 that the required information is

available: The knowledge required to create data stores is available to software architects

because storing files or data is a common activity of software systems, which has to be

considered when creating the software architecture. Palladio extensions for analyzing

storage performance [Bus+15] or performance of database transactions [MS14] also assume

knowledge about such a storage. The information required to create the model elements

describing the behavior is available to the security expert as we already discussed in

Section 8.6.3. We only discuss the relation from the ADL elements to DFD elements

here and refer to the discussion of available information for the DFD elements. All DFD

elements mentioned in the following can be created by the security expert as discussed in

Section 8.6.3. The Confidentiality Variable Characterization is the counterpart of an Assignment
in DFDs. The model elements representing terms are the same as for DFDs. Because the

extended ADL does not use pins but names to refer to data, the Named Enum Characteristic
Reference and Lhs Enum Characteristic Reference is the counterpart of the Data Characteristic
Reference in DFDs. The Data Channel Behavior and the Reusable Behavior are the counterpart
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Category Model Element Action User

Structure Operational Data Store Component Create Architect

Behavior Confidentiality Variable Charact. Create Sec. Exp.

And Create Sec. Exp.

Or Create Sec. Exp.

Not Create Sec. Exp.

True Create Sec. Exp.

False Create Sec. Exp.

Container Characteristic Reference Create Sec. Exp.

Named Enum Characteristic Reference Create Sec. Exp.

Lhs Enum Characteristic Reference Create Sec. Exp.

Data Channel Behavior Create Sec. Exp.

Data Channel Behavior Bind Architect

Confidentiality Behavior Apply Architect

Reusable Behavior Create Sec. Exp.

Behavior Reuse Create Architect

Variable Binding Create Architect

Properties Characterizable Apply Architect

Characteristic Create Sec. Exp.

Characteristic Bind Architect

Table 8.7.: Overview on categories of information required to use model elements of the extended ADL.

of Behavior Definitions in DFDs. None of the mentioned ADL elements, which describe the

behavior, require more information to be created than their counterparts used in DFDs.

Because a security expert has the necessary knowledge to create the DFD elements, he/she

also has the knowledge to create the corresponding ADL elements. The information to bind

the Data Channel Behavior to the architecture by applying the Confidentiality Behavior and
referring to the Data Channel Behavior is also known to the architect because he/she has to

know the data processing of components as defined by the information viewpoint [RW05,

p. 36], which is a common viewpoint required to create software architectures. Because

the knowledge of the structure of the software architecture as well as the knowledge

for selecting a behavior is available to the architect, he/she can also reuse behaviors by

creating Behavior Reuse elements and Variable Binding elements to bind variable names to

the reused behaviors. Because creating and binding characteristics works the same way

as in DFDs and the procedure requires the same knowledge in ADLs as well as in DFDs,

we can also assume that the security expert can create the characteristics and that the

software architect can bind them to the structural elements of the software architecture.

We refer to the discussion for DFDs in Section 8.3.3 for a detailed explanation on why the

knowledge is available. Because we could not identify knowledge, which is not available

but required to create the model elements, we can conclude that the set 𝐼 of required

information is equal to the set 𝐼𝑘 of known information, i.e. 𝐼 = 𝐼𝑘 holds. This means that

the sum of unknown information for control flow ADLs (VM13.1) is 0 and that the sum of

unknown information for data flow ADLs (VM13.2) is 0.
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Access Control Information Flow Mixed

Syntax Analyses Syntax Analyses Syntax Analyses

DFD 1.0 1.0 0.75 1.0 1.0 1.0

ADL CF 1.0 1.0 0.75 1.0 1.0 1.0

ADL DF 1.0 1.0 0.75 1.0 1.0 1.0

Table 8.8.: Overview on values of weighted ratio metrics for expressiveness of DFDs and ADLs using control

flows (CF) or data flows (DF).

8.6.3. Result Discussion

We structure the discussion of the results by the corresponding validation questions.

Expressiveness of ADL (VQ8). The goal of the validation question is to show that the

ADL, on which the integration guidelines have been applied, is not less expressive than

the DFDs with respect to describing systems for conducting analysis for violations of

confidentiality requirements. We can show this by comparing the expressiveness met-

rics for the ADL (VM8.1–VM8.6) with the expressiveness metrics for the DFD syntax

(VM1.1, VM1.2, VM2.1) and DFD-based analyses (VM5.1–VM5.3). Table 8.8 summarizes

the corresponding metric values. As can be seen from the table, the extended ADL does

not have lower expressiveness compared to DFDs for any confidentiality mechanism

or communication paradigm (control flow or data flow). The extended ADL shares the

limitation of the DFDs regarding expressing tenants in systems, which lowers the metric

value of the expressiveness of the ADL syntax to 0.75. However, this does not affect the

validation results negatively because the metric value of the expressiveness of the DFD

syntax is also only 0.75. Therefore, we can conclude that the expressiveness of the ADL is

not lower compared to DFDs with respect to the syntax for expressing systems as well as

for covering confidentiality requirements.

Correctness of Analysis Results (VQ9). The goal of the validation question is to show

that the analysis results of the analysis framework of the ADL, on which the integration

guidelines have been applied, are not less correct than the analysis results of analyses

conducted in the DFDs semantics. Less correct means that there are systems, which have

not been correctly classified as containing or not containing violations of confidentiality

requirements. We can answer the validation question by comparing the presented values

for the metrics VM9.1–VM9.4 with the corresponding metric values for DFDs (VM6.1 and

VM6.2). The true positive fraction𝑇𝑃𝐹 is 1.0 for the DFD-based analysis results (VM6.1) as

well as for the analysis results in ADLs using control flows (VM9.1) or data flows (VM9.3).

The true negative fraction 𝑇𝑁𝐹 is also 1.0 for the DFD-based analysis results (VM6.2)

as well as for the analysis results in ADLs using control flows (VM9.2) or data flows

(VM9.4). Because the metric values are identical, we could not show that the correctness

of the ADL-based analysis results is lower than the correctness of the DFD-based analysis

results.
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Automation of Analyses (VQ10). The goal of the validation question was to show that the

degree of automation is not lower for ADL-based analyses compared to DFD-based analy-

ses. Because there are no purposes of analysis activities, which are no longer automated

for ADL-based analyses, we can conclude that the degree of automation is not lower than

for DFD-based analyses. In fact, all activities to be done in an analysis are automated for

DFDs as well as ADLs.

Effort for Introducing Confidentiality Mechanisms (VQ11) All coefficients shown in Ta-

ble 8.5 are greater than 0, which means that it was never necessary to recreate the whole

model from scratch for introducing a confidentiality mechanism to an existing software

architecture. This is a benefit compared to state-of-the-art approaches, which do not

provide an integration into existing ADLs. The coefficients of the case study systems,

which represent the same system and use the same type of communication, are close

to each other. For instance, the coefficients of the pair CS1 and CS10, the pair CS2 and

CS11 as well as the pair CS3 and CS12 only differ by 0.03 at most. This indicates that

introducing information flow control using hierarchical lattices and introducing RBAC

requires roughly the same amount of new model elements. The coefficient of CS17 has a

greater differences to the coefficients of CS1 and CS10 (up to 0.19 for systems using control

flows and up to 0.10 for systems using data flows) because we had to introduce explicit

validation activities in the software architecture to support the taint analyses required

by CS17. This means, we also had to adjust the structure of the system, which means

additional new model elements compared to the other case study systems. We cannot

quantify, how much additional modeling effort is required in this case based on the metric

value because the modeling effort for creating two different types of model elements can

be completely different. However, the goal of the validation was not to quantify the mod-

eling effort but to show that software architects can reuse parts of the modeled software

architectures. Because creating model elements usually requires more than no effort, we

could show that our approach saves modeling effort compared to approaches that require

remodeling the whole software architecture because of missing ADL integrations.

Effort for Switching Confidentiality Mechanisms (VQ12) Every coefficient shown in Ta-

ble 8.6 is greater than 0, which means that it was never necessary to recreate the whole

model for switching confidentiality mechanisms in a modeled software architecture. This

is a benefit compared to state-of-the-art approaches, which only support one particular

confidentiality mechanism and require the software architect to remodel the software

architecture in another modeling language in order to use another confidentiality mech-

anism. The coefficients show that the reuse of existing models works particularly well

when switching between information flow control using hierarchical lattices and RBAC.

All corresponding coefficients are equal or greater than 0.75, which indicates a high degree

of reuse. When switching to the combination of RBAC and taint analyses (CS17), the

coefficients drop to a range from 0.50 up to 0.71. This is comprehensible because this new

mechanism requires structural changes such as for introducing explicit validation of input

data, which increases the amount of new model elements. The coefficients for case study
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systems using data flows (VM11.2) are higher than the coefficients for case study systems

using control flows (VM12.1). This is also comprehensible because case study systems

using data flows require roughly one hundred model elements more than the case study

systems using control flows. The ratio of newly introduced model elements compared to

the existing model elements is lower for systems using data flows than for systems using

control flows. Therefore, the influence of the newly introduced model elements is lower

for systems using data flows. We cannot quantify the modeling effort based on the metric

value because the modeling effort for creating two different types of model elements can

be completely different. However, the goal of the validation was not to quantify the mod-

eling effort but to show that software architects can reuse parts of the modeled software

architectures. Because creating model elements usually requires more than no effort, we

could show that our approach saves modeling effort compared to approaches that require

remodeling the whole software architecture when switching confidentiality mechanisms

because of missing support of the new confidentiality mechanisms.

Availability of Information (VQ13) The validation question aims to validate that users of

the ADL have access to the information required to use it. As discussed in Section 8.6.2, the

values of VM13.1 as well as of VM13.2 are 0, which means that all required information is

available to the software architect and the security expert while creating the architecture.

This is true for ADLs using control flows as well as ADLs using data flows.

8.6.4. Threats to Validity

Because the major part of the validation took place as a case study, we structure the

discussion of threats to validity according to the guidelines of Runeson and Höst [RH09,

pp. 153] for discussing the validity of a case study. The categories to be discussed are

also suitable for other types of validation designs, such as the discussion of the degree of

automation or the availability of knowledge.

Internal Validity is concerned with how well a taken measure supports a cause-effect

relationship and especially whether there are alternative explanations for the effect. In

the context of VG4, we expect various parts of the ADL integration to be the cause of an

effect. The effects are prohibiting degraded expressiveness, correctness and automation,

reduced modeling effort for adding and switching confidentiality mechanisms as well as

availability of information. We discuss potential alternative explanations of these effects,

i.e. other possible influencing factors, in the following.

In the validation of the expressiveness (VM8.1–VM8.6), we expect the ADL syntax to be the

cause of an effect. The expected effect is that the expressiveness is not degraded compared

to the DFD syntax. We measure the amount of systems, which we could express in the

extended ADL syntax, to determine expressiveness and compare it with the expressiveness

of DFDs. However, there are other potential explanations of this effect, i.e. other possible

influencing factors: The selection of case study systems and the analysis definitions for
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the systems influence the expressiveness because the more systems or analysis definitions,

which cannot be expressed, are added to the selection, the worse the expressiveness gets.

Because we focus on a comparison with the expressiveness of DFDs and their analysis

definitions, we reuse the selection of systems and analysis definitions from the DFD

validations (VQ1, VQ2 and VQ5). Therefore, the influence of the selection of systems and

analysis definitions has the same effect on the expressiveness of the ADL as for DFDs,

which means the effect can be ignored for the comparison and for answering the validation

question. The skill in using the ADL is another influencing factor because missing skills

can impede expressing systems, which leads to low expressiveness. We can exclude this

factor because the person, who modeled the software architecture, is a maintainer of the

Palladio ADL and also the author of the ADL extension. The skill of the developer of

the ADL extension in using the ADL extension is most probably higher than the skill of

an average software architect or security expert. However, this does not invalidate the

results because we are interested in the upper bound of expressiveness. The chosen level of

abstraction is another influencing factor on the expressiveness. If the level of abstraction

is too high, a complex system can become expressible even if it misses important details.

We can neglect this factor because the analysis results based on the modeled software

architectures were correct as can be seen from the metric values VM9.1–VM9.4 and it

is unlikely that the results are correct if the system omits important aspects, which are

relevant for reasoning about confidentiality. Therefore, we expect the system models to

represent all important aspects in enough detail.

In the validation of correctness (VM9.1–VM9.4), we expect the DFD mapping to be the

cause of an effect. The expected effect is that the correctness of analysis results is not

degraded compared to DFD-based analyses. We measure the true positive fraction of case

study systems, which contain an issue and for which only valid violations are reported, as

well as the true negative fraction of case study systems, which do not contain an issue and

for which no violations are reported. However, there are other potential explanations of

this effect, i.e. other possible influencing factors: The analysis framework for DFD-based

analyses affects the analysis results because we use this framework after applying the

mapping from a software architecture given in the ADL to aDFD. Therefore, the framework

can also affect the correctness of the analysis results. However, we are only interested in

comparing the correctness of analysis results between ADL-based analyses and DFD-based

analyses. If the analysis framework for DFD-based analyses would yield incorrect results,

the analysis results for the ADL-based analyses as well as for the DFD-based analyses would

be affected in the same way. Therefore, we can exclude the analysis framework for DFDs

as alternative explanation of the effect. The modeled software architectures are another

potential influencing factor because they are the input of the mapping and therefore also

a transitive input of the DFD-based analyses. We use the software architectures, which

we modeled for answering VQ8. These software architectures are not fully equivalent to

the DFDs because modeling them in Palladio requires adjustments. Differences between

DFDs and software architectures given in an ADL potentially affect the analysis results.

We cannot completely mitigate this factor but we do not expect a significant impact

on the analysis results because we ensure that every reported violation is within the

expected violations. If the modeled software architectures would omit an aspect, which
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is important to reason about confidentiality, the results would certainly be affected but

it would be unlikely that all reported violations are still within the expected violations.

Because all reported violations were within the expected violations, we assume that the

software architectures cover all important aspects and do not influence the correctness by

significant simplifications. The classification guidelines are another potential influencing

factor because they decide whether the results for a case study system are classified as true

positive or true negative. If the classification guidelines are wrong or not correctly applied,

the metric values will be wrong. As discussed in Section 8.5.4, the classification guidelines

are based on expected violations, which we motivated in Section 8.2.2. We apply the same

classification guidelines as for DFDs. Even in presence of faulty classification guidelines,

the results would still be comparable because the classification error happens on both

types of results. Therefore, the classification guidelines are no alternative explanation of

the validation results.

In the validation of the automation (VM10.1 and VM10.2), we expect the DFD mapping

to be the cause of an effect. The expected effect is that the degree of automation of an

analysis is not degraded compared to DFD-based analyses. We measure the purposes

of analysis steps, which are no longer automated compared to DFD-based analyses. We

already discussed factors, which influence the automation for DFDs in the discussion of

threats to validity of VG3 in Section 8.5.4. The mitigation strategies also apply to automated

analyses for ADLs. Even if one of these factors would not have been mitigated sufficiently,

the factor would affect the DFD-based analyses and the ADL-based analyses in the same

way. Therefore, the effect on the automated steps and the automated purposes would be

the same, so a comparison would still be valid.

In the validations of the modeling effort (VM11.1–VM12.2), we expect the ADL syntax to

be the cause of an effect. The expected effect is that the modeling effort is lower compared

to state-of-the-art approaches, for which we assume that recreating software architectures

from scratch is necessary. We measure the amount of model elements, which can be reused

when adding (VM11.1 and VM11.2) or switching (VM12.1 and VM12.2) confidentiality

mechanisms. However, there are other potential explanations of this effect, i.e. other

possible influencing factors: The amount of model elements to be created depends on the

person as well as the skill of the person, who models the software architecture. The amount

of model elements varies because different persons may use different levels of abstraction,

interpret the case study systems differently or express the same things in different ways.

However, the validation neither expects nor requires that a model contains as less elements

as possible because the validation only requires that at least one model element can be

reused, i.e. that the metric value is greater than 0. It is unlikely that a person cannot

use any single element just because of his/her skills in modeling systems. Therefore, the

person, who models the software architecture, influences the metric values but not the

conclusions drawn from the metric values. The method for creating the baseline models

for VQ11 also affects the number of model elements, which have to be added, because

the less elements are part of the baseline model, the more elements have to be added

later. We consider keeping the model elements, which are commonly used in software

architectures using Palladio, as realistic. The resulting software architectures are still valid

Palladio architectures but without any information for predicting quality properties or
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violations of confidentiality requirements. In addition, the validation does not demand

exact numbers because the validation only requires that at least one model element can be

reused, i.e. that the metric value is greater than 0. Therefore, the creation of the baseline

model influences the metric values but not the conclusions drawn from the metric values.

The comparison procedure for two modeled software architectures also affects the number

of changed model elements because every model element, which is found to be different,

is added to the changed model elements. We use the established comparison procedure

of EMF Compare [BP08] to avoid wrong comparison results. The matching of elements

by identifiers is a common procedure and reasonable in the validation scenarios because

the software architectures of the case study systems have been modeled by copying and

adjusting existing models, which represent the same system. Therefore, the models, which

we compare, really share identifiers. Nevertheless, the matching is not necessarily perfect

because we cannot be completely sure that the adjustments of existing models have been

done by a minimal number of changes. However, we already discussed that the validation

does not depend on exact numbers, so a non-perfect comparison does not invalidate the

conclusions drawn from the metrics.

In the validation of the information availability (VM13.1 and VM13.2), we expect the ADL

syntax to be the cause of an effect. The expected effect is that all information required

to create a software architecture including a confidentiality mechanism is available to

the users of the ADL syntax. We discuss the required information and measure the

amount of unknown information. However, there are other potential explanations of this

effect, i.e. other possible influencing factors: The set of required information is essential

for identifying missing information. If information is missing from the set of required

information, the metric value can look more positive, i.e. lower, than it actually is. We avoid

forgetting information by systematically collecting the required information to create or

use for every single newly introduced type of model element in the ADL. Therefore, we

can consider this potential threat as mitigated. The classification of required information as

known or unknown also affects the metric value. To avoid a biased decision, we discuss the

availability of every information and motivate its availability by references from literature

or by demonstrating that there is a corresponding model element in DFDs, for which we

already showed its availability as part of answering VQ4. Therefore, we do not expect the

classification to be invalid.

External Validity is concerned with the generalization of results to other contexts. We

used case studies and discussions to answer the validation questions of VG4. The results of

discussions can be generalized to other contexts as we will discuss later. The results of case

studies cannot be generalize to arbitrary other contexts because a case study does not use

a representative sample but a limited set of cases. However, the results can be generalized

to other contexts with comparable characteristics. We discuss these characteristics in the

following.

The result of the expressiveness validation (VM8.1–VM8.6) is that the extended ADL does

not limit the expressiveness compared to the expressiveness of DFDs. This finding is

valid in other contexts if the following conditions hold in these contexts: First of all, the
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systems to be expressed have to use the same confidentiality mechanisms and the same

features of the confidentiality mechanisms as the case study systems in the case study.

We cannot draw conclusions for other mechanisms and features because we do not know

whether the syntax can express the relevant parts of the system structure or behavior and

we do not know whether the analysis definition can describe the relevant properties or

whether it can express violations in terms of a label comparison function. We do not see

the restriction of the confidentiality mechanisms and features as too limiting because we

covered a broad range of commonly used confidentiality mechanisms in our case study.

Second, the systems to be expressed either have to exchange data via parameters and

return values in control flows or have to exchange data via data flows. If data flows are

used, the order of the data flows has to be given by data dependencies and not by additional

control flow instructions like suggested by Ward and Mellor [WM85] for designing and

analyzing real-time systems. The restrictions of the data exchange is necessary because

the ADL cannot express other types of data exchange. This is problematic if the part,

which is not expressible, is relevant for reasoning about confidentiality. Third, the usage

of the system has to be given by calls to the system, which exchange parameters and

return values. The ADL does not support communication based on data flows between the

user and the system. This is problematic if the part, which is not expressible, is relevant

for reasoning about confidentiality. The restrictions of the data exchange inside systems

and between systems and users is not too limiting because many ADLs use calls, which

transmit parameters and receive return values, to specify the software architecture.

The result of the correctness validation (VM9.1–VM9.4) is that the ADL-based analyses

do not yield results with lower correctness than the results of DFD-based analyses. This

finding is valid in other contexts if the following conditions hold in these contexts: First

of all, the software architecture has to be expressible in the ADL and the confidentiality

requirements have to be expressible in a Prolog query. Otherwise, the inputs for an

analysis are not available. Second, the same confidentiality mechanisms and features of

the confidentiality mechanisms have to be used. We cannot draw conclusions for other

mechanisms and features because we did not consider them in the case study. However,

we do not see the restriction of the confidentiality mechanisms and features as too limiting

because we covered a broad range of commonly used confidentiality mechanisms in our

case study.

The result of the validation of modeling effort (VM11.1–VM12.2) is that the modeling effort

is reduced compared to state-of-the-art approaches, which require full remodeling of the

software architecture when adding or switching confidentiality mechanisms. We already

discussed that the extended ADL reuses many parts for describing the structure, deploy-

ment, usage and behavior of a software architecture from the underlying, non-extended

ADL. Therefore, a reuse is usually given by design. In addition, we demonstrated that

reuse was possible for particular systems. These findings are applicable to other contexts

as long as the software architectures can be expressed using the extended ADL and as

long as the used confidentiality mechanisms are the same as used in the case study. We

expect a reduced modeling effort for other confidentiality mechanisms as well but there

might be confidentiality mechanisms, which require to restructure the whole system. For

instance, the taint analysis used in CS17 requires structural changes because the software
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architecture has to integrate validation of incoming data, which requires additional ac-

tions or components. It is possible that other confidentiality mechanisms require many

changes, which effectively forces a software architect to completely restructure the soft-

ware architecture. However, we consider such a scenario unlikely for non-trivial software

architectures because such a confidentiality mechanism would be hard to integrate and

would most probably suffer from low acceptance in practice.

The result of the automation validation (VM10.1 and VM10.2) is that analyses based on the

extended ADL are not less automated than DFD-based analyses. Because the validation

took place by a general applicable discussion and the results do not depend on particular

systems or application contexts, the results can be generalized to any application context

of the extended ADL.

The result of the information availability validation (VM13.1 and VM13.2) is that software

architects have all required information to use the extended ADL while creating and

analyzing software architectures. Because the validation took place by a general applicable

discussion and the results do not depend on particular systems or application contexts,

the results can be generalized to any application context of the extended ADL.

Construct Validity is concerned with the appropriateness of taken measures to make

statements about the research objective.

The validation questions VQ8 and VQ9 aim for comparing the expressiveness of the ex-

tended ADL and the correctness of the ADL-based analysis results with their counterparts

for DFDs. The statements to be made are that the expressiveness and correctness are not

worse than for DFDs. Because the validation questions are about comparisons with other

validation results, it is necessary to use the same metrics as for rating expressiveness and

correctness for DFDs. Therefore, we use the weighted ratio metric for the DFD metrics

VM1.1–VM2.1 and VM5.1–VM5.3 as well as for the ADL metrics VM8.1–VM8.6. These

metrics are appropriate to validate expressiveness as we already discussed in Section 8.3.4

and Section 8.4.4.

The validation question VQ10 aims for comparing the degree of automation of ADL-based

analyses with the degree of automation of DFD-based analyses. The statement to be made

is that the degree of automation of ADL-based analyses is not worse than the degree of

automation of DFD-based analyses. We use the sum of no longer automated purposes

(VM10.1 and VM10.2) for comparing the degree of automation. The metric is different to

the metric used for rating the degree of automation of DFDs because simply comparing

the number of not automated analysis activities is not appropriate to answer the validation

question: For instance, the new analysis procedure might split analysis activities without

introducing more work to be done to better fit the existing process for creating a software

architecture. Just comparing the number of analysis steps would falsely report a lower

degree of automation. In contrast, comparing purposes is more adequate because it allows

matching activities between DFD-based analyses and ADL-based analyses. This matching

allows identifying purposes, which are automated for DFD-based analyses but no longer

for ADL-based analyses, which is what the validation question is actually about. The
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metric reports exactly these purposes. Therefore, the metric is appropriate to answer the

validation question.

The validation questions VQ11 and VQ12 aim for rating modeling effort. The statement to

be made is that adding or switching a confidentiality mechanism requires less modeling

effort than doing the same for a state-of-the-art approach, which requires remodeling

the whole software architecture. The Jaccard Coefficient is the metric used to capture

the amount of model elements, which can be reused, i.e. which do not have to be created

or changed. The metric is a commonly used metric for rating the similarity of two sets.

Because we can interpret a model as a set of model elements, using the metric is valid. We

explain this interpretation in the descriptions of the validation questions in Section 8.1.4.

The amount of model elements to be created or changed can be used to reason about the

modeling effort because creating a model element requires either no or more than no effort.

However, it is more likely that creating a model element requires at least some effort. We

discuss the relation between model elements and effort in Section 8.6.1 in more detail.

Because the baseline for the metric is 0, i.e. the model has to be recreated from scratch,

any value above 0 supports the validation statement mentioned above. Therefore, the

particular effort implied by a model element is not important for answering the validation

question. To conclude, the Jaccard Coefficient is appropriate to answer the validation

question.

The validation question VQ13 aims for identifying information, which is required to create

a software architecture using the extended ADL but which is not available. The statement

to be made is that all information is available. The unknown information metric measures

the sum of required information, which cannot be known by software architects and

security experts. The metric provides the information to answer the validation question

because it gives the sum of unknown information, which can be compared to the expected

value 0.

Reliability is concerned with the dependency between the collected data and the conduct-

ing researcher. Best reliability is achieved if the collected data as well as the conclusions

are completely independent of the conducting researcher.

We already discussed the reliability for most of the validation design and the metrics in

previous validations. Therefore, we only briefly recap the most important aspects and

refer to the previous explanations.

In the expressiveness validation (VQ8), it is not crucial that other researchers produce the

same models of software architectures as we did because we aim for an upper bound of

expressiveness. However, we provide all models in our data set [Sei22], so other researchers

can check whether we really expressed the case study systems. Based on the provided

data, other researchers can come to the same metric values. A more detailed explanation

is available in the reliability discussion for the metrics VM1.1–VM2.1 in Section 8.3.4.

The results of the correctness validation (VQ9) are completely reproducible. We automated

the execution of analyses as well as the classification of the reported violations. Other
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researchers can reproduce the results and check the classification criteria in the source

code of our data set [Sei22]. A more detailed explanation is available in the reliability

discussion for the metrics VM6.2 and VM6.1 in Section 8.5.4.

The results of the information availability validation (VQ13) are completely reproducible.

We provide references to literature or provide the counterparts of ADL elements in DFDs,

for which we already have shown that the required information is available. Other

researchers can check our explanations and can then come to the same metric values. A

more detailed explanation is available in the reliability discussion for the metric VM4.1 in

Section 8.3.4.

The results of the automation validation (VQ10) are completely reproducible. We describe

all analysis activities and provide the source code, which automates these activities in

our data set [Sei22]. Therefore, other researchers can come to the same empty list of not

automated analysis activities. Even if other researchers find other purposes, to which they

can map the analysis activities, the final metric value of no longer automated purposes will

still be the same because we automated all analysis activities. A more detailed explanation

regarding the reliability of the identification of automated analysis activities is available

in the reliability discussion for the metric VM7.1 in Section 8.5.4.

The results of themodeling effort validations (VQ11 and VQ12) are reproducible. We provide

all models, which we use in the comparisons for calculating the Jaccard Coefficient, in our

data set [Sei22]. Therefore, researchers can check that the used models correctly express

the case study systems and that the baseline models for VQ11 are reasonable. For the

validation, it is not important that other researchers produce the exactly same baseline

models because we aim for an upper bound of modeling effort, which can be reduced. This

means, other researchers only have to be able to check and understand the used models.

The comparison of models as well as the calculation of the Jaccard Coefficient is fully

automated by the validation application in our data set [Sei22].

8.7. Summary

In this chapter, we presented the validation of our contributions according to the GQM

plan described in Section 8.1. A major part of our validation took place in case studies to

get insights into the application of our contributions in particular contexts. Such a context

always includes particular systems, i.e. software architectures. To sufficiently answer the

validation questions in our case studies, we formulated requirements on the selection of

case study systems and presented the selected systems in Section 8.2. In the following,

we summarize the results of our validations. We structure the summary by the validation

goals.
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8.7.1. Validation Goal 1: Validate DFD Syntax

The validation of the DFD syntax aims to ensure that the syntax sufficiently answers the

research questions, which it shall address. RQ1 and RQ2 ask for the necessary information

in order to reason about information flow control and access control requirements in DFDs.

Besides the information, which can already be represented in DFDs, we found properties

of nodes and data as well as label propagation functions to be necessary. RQ3 asks what

modeling primitives, i.e. syntax, is capable of expressing this required information. The

DFD syntax provides the means to express the necessary information.

The validation to answer VQ1 as well as VQ2 demonstrated that the expressiveness of

the DFD syntax is sufficient to model all seventeen case study systems except for one

system. The case study systems stem from related approaches or at least represent common

application scenarios for the used confidentiality mechanisms. The system, which the

syntax could not express, requires modeling behaviors of individual users. However,

considering individual users is out of scope of ADLs because it is at least questionable

whether software architects have such detailed information about users while creating

a software architecture. In addition, the related approach, which provides this system,

uses analyses based on source code to identify violations. Therefore, we do not consider

this case study system as a representative example of a software architecture, which

shall be modeled and analyzed in the architectural design time. As already said, the

syntax could represent all other case study systems. Because this remaining set of case

study systems covers existing systems as well as the most commonly used confidentiality

mechanisms, we conclude that the syntax is sufficient to express systems using commonly

used confidentiality mechanisms.

The validation to answer VQ3 demonstrated that the elements of the DFD syntax are

commonly used to model the case study systems. This means that the elements of the

syntax are not only sufficient to express systems but also necessary. The only exception

that we found stems from an intended degree of freedom in formulating expressions: We

do not only provide the minimal functional complete set of logical operations, so it is

possible to formulate equivalent expressions and avoid a logical operation completely.

This does not indicate a useless concept because it is always possible to formulate the

expression in a different way in order to use the previously unused operation.

The validation to answer VQ4 demonstrated that the information required to use the DFD

syntax is available while creating the software architecture. We discussed the availability

of information for every element of the syntax and supported the discussion by literature.

The availability of information shows that the level of abstraction is not too low, i.e.

there are not too many details required to use the syntax. On the other side, the level of

abstraction is not too high because the syntax could express all case study systems, which

are appropriate software architectures.
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8.7.2. Validation Goal 2: Validate Analysis Definitions

The validation of the analysis definitions aims to ensure that the definitions sufficiently

answer the research questions RQ5 and RQ6, which they shall address. RQ5 and RQ6 ask

for ways to formalize access control and information flow control analyses based on the

DFD syntax and semantics. We presented label comparison functions based on Prolog

queries and optional additional clauses to represent specific confidentiality requirements

as solution. We provided analysis definitions for commonly used confidentiality mech-

anisms, which consist of characteristic types, behaviors of nodes, the label comparison

function given as Prolog query and optional additional Prolog clauses to cover specific

confidentiality requirements.

The validation to answer VQ5 demonstrated that the analysis definitions can express all

confidentiality requirements of all case study systems, which we can express using the

DFD syntax. The analysis definitions were often sufficient without modifications. The only

modifications, which were necessary, are changes of the number of inputs and outputs

for behaviors and the creation of additional Prolog clauses. Changing the number of

inputs and outputs does not imply limitations of the analysis definitions because the label

propagation logic remains the same. For instance, finding the highest label of all inputs

essentially works the same for any number of inputs. The additional Prolog clauses always

followed the suggested structure in the analysis definitions. Because these clauses cover

specific confidentiality requirements and this is intended by the analysis definition, this

also does not imply a limitation. We conclude that the analysis definitions are expressive

enough to cover the confidentiality requirements of the modeled case study systems.

The validation to answer VQ6 demonstrated that the analysis definitions can correctly

identify systems, which violate the given confidentiality requirements. We executed

analyses using the analysis definitions on variants of the case study systems, which

do not contain an issue, and on variants, which contain an issue. The analyses could

successfully identify all variants, which contain an issue, and did not report violations for

variants, which do not contain an issue. We conclude that the analysis definitions provide

a formalization, which is sufficient for automated analyses and is sufficient for correctly

identifying violations.

8.7.3. Validation Goal 3: Validate DFD Semantics

The validation of the DFD semantics aims to ensure that the semantics are sufficient to

answer the research question RQ4, which they shall address. RQ4 asks for semantics of the

DFD syntax, which allow detecting violations of confidentiality requirements. We defined

semantics, which describe the meaning of the DFD syntax in terms of a label propagation

network.

The validation to answer VQ6 demonstrated that the semantics support analyses, which

correctly identify systems that violate the given confidentiality requirements. We executed

the analyses for all expressible case study systems and could correctly classify each variant
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of a case study system as either violating or not violating confidentiality requirements.

We conclude that defining properties of nodes and data as labels and propagating these

labels are good semantics to identify violations.

The validation to answer VQ7 demonstrated that the semantics are sufficient for driving

automated analyses. We discussed the automation of every activity in an analysis and

showed that the activities can be automated in our prototypical implementation. For the

semantics, this means that they provide unambiguous definitions, which do not require

human intervention. We conclude that the semantics do not limit the automation of

analyses.

8.7.4. Validation Goal 4: Validate ADL Integration Guidelines

The validation of the ADL integration guidelines aims to ensure that the guidelines are

sufficient to answer the research questions, which they shall address. RQ7 asks how to

integration the DFD-based analyses in ADLs focusing on control flows. RQ7 asks the

same for ADLs focusing on data flows. We provided guidelines on how to integrate the

DFD-based analyses for both types of ADLs.

We validated particular applications of the integration guidelines instead of the guidelines

themselves because validating guidelines involves many human factors, which impede

objective validations. Instead, we applied the guidelines to the existing Palladio ADL, vali-

dated the quality of the integration into the Palladio ADL and showed that the guidelines

can produce usable integrations. This is no verification of the quality of the integration

guidelines but a failed attempt to falsify the hypothesis that the integration guidelines

do not produce a usable integration. In the following, we summarize the validations

of the integration results, i.e. the integrations into Palladio. We refer to the integration

into the part of Palladio, which focuses on control flows, as a dedicated integration and

to the integration into the part of Palladio, which focuses on data flows, as a dedicated

integration.

The validation to answer VQ8 demonstrated that the integrations are as expressive as

DFDs. We attempted to model all seventeen case study systems including the used con-

fidentiality mechanisms in both integrations. We could successfully model all but one

case study system in the integrations. We failed to model the same case study system in

the integrations as we already failed in DFDs for the same reasons. We conclude that the

integrations do not limit the expressiveness compared to DFDs.

The validation to answer VQ9 demonstrated that the analyses within the integrations

deliver results as correctly as DFD-based analyses. We executed the same analyses as

for DFDs on two variants for every expressible case study system: one variant contains

an issue and the other variant contains no issue. The analyses correctly reported all

variants, which contain violations of confidentiality requirements, and correctly classified

all variants, which do not contain violations, as not containing violations. The analysis

results were as correct as the results of the DFD-based analyses. We conclude that the

integrations do not limit the correctness of results compared to DFDs.
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The validation to answer VQ10 demonstrated that the integrations support fully automated

analyses. We collected all analysis activities and showed that they can be automated by a

prototypical implementation of the integrations. We conclude that the integrations do not

limit the automation of analyses compared to DFDs.

The validation to answer VQ11 demonstrated that adding a confidentiality mechanism

to an existing software architecture is possible without remodeling the whole software

architecture. For all systems, which are represented by multiple case study systems, we

selected all corresponding case study systems and built a variant, which does not contain

a confidentiality mechanism. We then compared the case study systems with their variant

to identify the amount of model elements, which are shared, i.e. which have been reused.

For all case study systems, a considerable amount of model elements could be reused.

In contrast, dedicated analysis approaches, which are not integrated into existing ADLs,

require remodeling the whole architecture in a new approach. Because creating a model

element usually requires at least some effort, we conclude that the integrations save

modeling effort when adding confidentiality mechanisms to existing architectures.

The validation to answer VQ12 demonstrated that switching to another confidentiality

mechanism in an existing architecture is possible without remodeling the whole software

architecture. For all systems, which are represented by multiple case study systems, we

selected all corresponding case study systems and compared these systems pairwise. Every

comparison detected a considerable amount of shared model elements, which means these

model elements can be reused. In contrast, analysis approaches or ADLs, which only

support a single confidentiality mechanism, require remodeling the whole architecture

when switching the confidentiality mechanism. Because creating a model element usually

requires at least some effort, we conclude that the integrations save modeling effort when

switching confidentiality mechanisms in existing architectures.

The validation to answer VQ13 demonstrated that the information required to use the

integrations is available while creating the software architecture. We discussed the avail-

ability of information for every element of the integrated syntax by either referring to

literature or demonstrating the equivalence to DFD elements, for which we already have

shown the availability of information. The availability of information shows that the level

of abstraction is not too low, i.e. there are not too many details required to use the syntax.

On the other side, the level of abstraction is not too high because the syntax is expressive

as shown in VQ8.
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Developing secure software is a broad topic because security has to be considered in every

development phase [McG06, p. 110], which means many different development activities

influence the security of a software system. There is a lot of research to improve certain

or all development phases by processes, analyses, mechanisms, and so on. In addition,

multiple security objectives such as confidentiality or integrity have to be achieved to

secure a software system and such objectives require different measures to be taken.

Consequently, giving a complete overview on the topic is unfeasible.

We focus on research on achieving confidentiality in software architectures or software

designs because the approach presented in this thesis also aims for confidentiality and it

belongs to these phases. Despite our focus on confidentiality, we use to the more general

term security in the following if using confidentiality would be uncommon. For instance,

we refer to security patterns instead of confidentiality patterns in the following because

the former term is widely known and accepted. However, we still focus on how the

approaches can improve confidentiality instead of discussing the effect on further security

objectives.

The most prominent directions of related research are integrating confidentiality and

rating confidentiality. Integrating confidentiality describes approaches to represent confi-

dentiality mechanisms in software architectures or software designs but also approaches

to use such information to support the integration of confidentiality in following phases.

These approaches are related to our approach because they often use confidentiality anal-

yses like ours to rate the effectiveness of integrated confidentiality measures. We discuss

approaches for integrating confidentiality in Section 9.1.

Rating confidentiality means that approaches analyze software architectures or software

designs for threats or violation of requirements and report on the results. The results

provide software architects with the information to decide about necessary changes and

the implications of these changes. We discuss approaches for analyzing confidentiality in

Section 9.2.

In addition to the discussion of full-fledged approaches for improving the confidentiality

in software architectures or software designs, we also discuss related work for individual

parts of our approach. There have been various attempts to define DFD semantics in order

to address shortcomings or to make DFDs applicable to new problem domains or analyses.

We discuss such previous attempts and relate them to the DFD semantics presented in this

thesis in Section 9.3.
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Besides dedicated analysis approaches, there is related work that integrates confidentiality

analyses into existing ADLs. Because we also provide an ADL integration, we discuss such

approaches and compare their integration approach with ours in Section 9.4.

9.1. Approaches to Integrate Confidentiality

In this thesis, we focus on identifying violations of confidentiality requirements by the

structure, behavior, deployment or usage of a specified software architecture. For instance,

our approach shall detect that a software architecture requires users to transmit confidential

data to non-trustworthy system parts in order to provide certain functionality. This means,

the software architecture violates confidentiality requirements by its intended usage.

Based on this knowledge, software architects can adjust the software architecture to

provide the functionality but also meet the confidentiality requirements. In contrast,

approaches to integrate confidentiality into software architectures focus on the integration

of enforcement mechanisms for confidentiality requirements or countermeasures for

attacks against confidentiality. However, the approaches for analyzing confidentiality do

not completely ignore the part of enforcing confidentiality and vice versa. The approaches

for integrating confidentiality usually also analyze the effectiveness of the integrated

mechanisms and the approaches for analyzing confidentiality usually consider the effect

of integrated confidentiality mechanisms in their analysis results. In the following, we

discuss the relations of approaches to enforce confidentiality to our analysis approach.

The most prominent approaches to consider the enforcement of confidentiality in software

architectures are security patterns, which we briefly discuss in Section 9.1.1, and code

generation, which we briefly discuss in Section 9.1.2.

9.1.1. Security Patterns

Security patterns provide generic solutions for recurring security problems in certain

contexts according to Schumacher et al. [Sch+06, p. 31]. For instance, Secure Channels
[Sch+06, p. 79] is a security pattern, which protects the confidentiality of information,

which is transmitted over public networks, by encrypting the information. The security

patterns are meant to help software architects with and without security expertise to avoid

common security problems. Many research in security patterns is about building catalogs

of these patterns and to improve their quality [Lav+06].

Our approach does not aim for providing such patterns or for general applicable solutions

of integrating security in general or confidentiality in particular into software architectures.

However, our approach considers the effect of integrated security patterns on meeting

the confidentiality requirements. For instance, encryption can lower the classification of

exchanged data and can avoid a node getting data classified higher than its own clearance.

Ignoring such effects would lead to falsely reported violations.
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Besides the research on patterns, there is also research on ensuring that patterns are

correctly applied and effective. Taspolatoglu and Heinrich [TH16] suggest to formalize the

prerequisites for applying a pattern, to link these prerequisites to the software architecture

and to check whether all prerequisites are met. Heyman, Scandariato, and Joosen [HSJ12]

verify that the patterns work as expected by verifying that defined preconditions and

postconditions hold. It is, especially, useful to verify the effectiveness of patterns in the

context of software evolution because prerequisites might no longer be met because of

changes in the architecture or the context of the architecture. SecVolution [Bür+18]

provides an approach to systematically capture such changes, identify implications on the

security and address them by adaptions in the software architecture.

The previously described approaches all use analyses to identify degraded effectiveness

of the integrated mechanisms. Our approach can be used as one of these analyses: For

instance, an analysis of violated confidentiality requirements can reveal an issue in applying

a security pattern for improving confidentiality. Such a combination is, especially, useful to

complement coarse-grained analyses such as the analysis suggested by Taspolatoglu and

Heinrich [TH16] because their analysis only identifies if the pattern is applied correctly

but not if it effectively protects confidentiality.

9.1.2. Generation of Development Artifacts

The generation of development artifacts such as code or configuration files based on

models of software architectures or software designs is frequently used. In model-driven

software development, code generation is actually essential according to Stahl and Völter

[SV06, Sec. 2.3]. Generating code has many benefits but the most important benefits in

the context of enforcing confidentiality are that the generated code matches the software

architecture [SB12] and it can contain additional information for introspection [SV06, Sec.

9.1]. Matching the architecture is beneficial because the considerations for protecting

confidentiality, which have been made in the software architecture, could be invalid in

the implementation, otherwise. The information for introspection is beneficial because

information, which is only available in the software architecture but which is also important

for protecting confidentiality, can become part of the implementation. In the following, we

give examples on approaches, which use code generation, and how they use the benefits of

code generation for protecting confidentiality. We also discuss the relation to the approach

presented in this thesis.

SecureUML [LBD02] provides a UML profile to annotate roles and access rights specified

in RBAC requirements to software designs given in UML models. The major purpose of

the annotations is to generate a RBAC policy, i.e. enforceable RBAC requirements, and an

enforcement platform for the policy. The expected benefits are increased productivity and

quality of systems but also better consistency between the modeled policy and the actually

used policy. In contrast to our approach, SecureUML does not analyze the software design

and can, therefore, not identify violations of RBAC requirements in the UML model.
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Hoisl, Sobernig, and Strembeck [HSS14] also provide a UML profile to annotate exist-

ing UML models but focus on information flow in UML activity diagrams. The objects

transferred via object flows can be annotated as sensitive and the nodes can be marked as

preserving confidentiality. An analysis propagates the objects through object flows and

ensures that no sensitive object traverses a node not marked as preserving confidentiality.

The code generation produces security configurations for web services specified in the

Web Services Description Language (WSDL). In contrast to our approach, Hoisl, Sobernig,

and Strembeck prescribe the behaviors of node types, which is sufficient for taint analyses

but is not capable of describing more complex behavior such as the declassifications in

our running example. Consequently, the approach only supports information flow control

using a linear ordered lattice containing two levels.

The Component Information Flow (CIF) toolkit [Abd+11] allows to annotate connectors

and attributes of components in a software architecture with classification levels. The

confidentiality requirements are given in terms of non-interference, which means that

information with a certain classification level must only flow to a connector or attribute

with at least this classification level. CIF ensures that the requirement is not violated

by wrong connectors in the software architecture. CIF generates Java code based on

the software architecture, which includes code to perform information flow control, i.e.

enforce the confidentiality requirements. In contrast to our approach, CIF requires source

code to identify violations caused by the data processing within components and only

focuses on information flow control.

iFlow [Kat+13] aims for generating deployable source code for apps and web services,

which adhere to information flow requirements. They specify the software architecture

by UML models and the operations by a DSL. Annotated UML models represent the

information flow requirements, which are given as non-transitive non-interference, which

essentially is non-interference using declassifications to allow certain information flows.

Analyses of the UML models propagate data and can detect violations of the information

flow requirements. In addition, verification of the generated source code is possible. In

contrast to our approach, iFlow relies on communication based on call and return and

focuses only on information flow control. In addition, it operates on a different level

of abstraction because operation specifications in the DSL have a considerable higher

complexity than our specifications of the label propagation. Consequently, it is at least

questionable whether such detailed information is available while creating a software

architecture.

To summarize, there are various approaches, which generate policies, source code stubs

or complete applications. Most of these approaches perform analyses on the used input

models to identify potential confidentiality violations before generating artifacts. Because

these analyses often are only available to support the code generation, they are limited

with respect to the supported confidentiality mechanisms and the complexity of confiden-

tiality requirements. In contrast, our approach does not focus on code generation but on

analyzing the modeled software architectures. Therefore, we support more confidentiality

mechanisms and more complex confidentiality requirements.
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9.2. Approaches to Analyze Confidentiality

There is a wide range of approaches to analyze the confidentiality of software architectures

or software designs. We see three groups of approaches, which are related to the approach

presented in this thesis. Each group has a different focus and purpose.

The first group focuses on identifying threats, i.e. a vulnerability and an attacker, who

exploits the vulnerability. The goal of approaches in this group is to identify threats,

estimate the impact of the threat and decide how to mitigate the threat. We discuss this

first group in Section 9.2.1.

The second group focuses on identifying violations in the software architecture. This group

is different to the first group because it does not require an active attacker but aims to reveal

problems in the software architecture itself. For instance, if the architecture prescribes

sending sensitive data to a non-trustworthy node in order to provide functionality, this is

an issue of the software architecture independent of any attackers. We discuss this second

group in Section 9.2.2.

The third group focuses on quantifying confidentiality by metrics, which are called security
metrics. This group often aggregates results from the previous two groups and combines

them in a metric. A metric is useful in trade-off decisions to quantify a benefit for confi-

dentiality and relate this benefit compared to other factors such as required investments.

We discuss this third group in Section 9.2.3.

9.2.1. Identification of Threats

The identification of threats is a common security-related activity on software designs and

software architectures. Threat Modeling [Sho14] is a commonly used term summarizing

many different approaches to identify and potentially also mitigate threats. According to

Bedi et al. [Bed+13], “threat modeling provides a structured way to secure software design

by allowing security designers to accurately estimate the attacker’s capabilities in respect

of known threats”. In a survey, Xiong and Lagerström [XL19] found that many activities

of threat modeling are still done manually. Contributions such as STRIDE by Microsoft

[Her+06] support this manual work by guidelines on how to identify threats but there are

also approaches (partially) automating the threat modeling process.

The focus of threat modeling approaches is different compared to our approach: Threat

modeling aims to identify threats and to harden the system in order to mitigate attacks.

Instead, our approach focuses on revealing design issues, which lead to violations of confi-

dentiality requirements by the system or usage of the system itself, i.e. not by a malicious

user or attacker. Nevertheless, such identified violations can indicate vulnerabilities that

attackers can use to compromise the system. This means, our approach provides one piece

of information to identify threats.

In the following, we give an overview on threat modeling approaches and relate these

approaches to the approach presented in this thesis.
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Manual Analysis of DFDs Threat modeling does not prescribe a certain way of identifying

potential threats nor does it prescribe particular types of models to be used. However,

DFDs are commonly used because they are intuitive and recognizing threats in data flows

is often better than in control flows [Sho14, pp. 43]. Inspecting such a DFD manually

allows to flexibly incorporate additional knowledge from other sources or allows to address

missing information by reasonable assumptions. In contrast to our approach, the results

of manual threat modeling on non-extended DFDs heavily depend on the expertise of a

threat modeler as well as on the availability of additional information, which is not part of

the DFDs.

Manual Analysis of Extended DFDs The disadvantage of the simple DFD syntax is that

much information has to be stored outside of DFDs because it is not expressible within

DFDs. Many threat modeling approaches extend the syntax of DFDs to cover additional

information. Yampolskiy et al. [Yam+12] extended DFDs to fit the need of threat modeling

for cyber-physical systems. The extensions include distinctions between physical and

virtual elements as well as elements to specify details of the physical and logical com-

munication. Deng et al. [Den+11] also extend DFDs but focus on capturing threats and

mitigations regarding privacy. Both extended DFDs do not come with automated analyses

in contrast to our approach.

Automated Analysis of Extended DFDs DFD extensions not only allow representing addi-

tional information but also enable automated threat analyses. Berger, Sohr, and Koschke

[BSK16] introduce data channels, trust areas and typed data flows. They can identify

threats stemming from the databases Common Weaknesses Enumeration (CWE)
1
or Com-

mon Attack Pattern Enumeration and Classification (CAPEC)
2
by an automated analysis.

Abi-Antoun, Wang, and Torr [AWT07] also extend DFDs and provide an automated analy-

sis but focusing on threats according to STRIDE [Her+06]. SPARTA [Sio+18a; Sio+18b]

extends DFDs by means to make integrated security or privacy solutions explicit. The

provided automated analyses identify threats and calculate risks. Frydman et al. [Fry+14]

extend the DFDs by attributes such as the asset value and use a catalog of attack patterns

to identify threats in an automated analysis. In addition, they calculate risk values. All

mentioned automated analyses on the extended DFDs do not consider the behavior of sys-

tem parts to derive properties of exchanged data. In consequence, modelers have to define

the properties for all exchanged data manually. This means, the automated analyses are

restricted to pattern matching. In contrast, our approach propagates such data properties,

which lowers the amount of required specifications of data properties significantly.

1 https://web.archive.org/web/20220217013953/https://cwe.mitre.org/
2 https://web.archive.org/web/20220217013947/https://capec.mitre.org/
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9.2.2. Identification of Violated Confidentiality Requirements

Confidentiality requirements specify who is allowed to know which information. This

includes users of a system as well as the parts of the system itself. During the implementa-

tion and runtime of a system, confidentiality mechanisms like access control enforce such

requirements by allowing or denying access at enforcement points such as the interface

to a system. This is necessary because there can be many different types of users, which

also includes users, which have not been foreseen when designing the system. While

creating the software architecture or software design, the situation is different. Software

architects specify how the system provides its services and how users use these services.

Therefore, the software architecture only contains allowed access requests to information.

Software architects have to avoid violations of confidentiality requirements by the struc-

ture, behavior, deployment or usage of the software architecture because the underlying

issues would be implemented in later stages. Consequently, identifying confidentiality

violations in a software architecture means identifying violations caused by issues in the

software architecture. In contrast to threat modeling, this does not require an explicit

attacker model.

Various approaches [Ngu+15] to identify violated confidentiality requirements in software

architectures or software designs are available. Because of the sheer amount of available

approaches, we only consider closely related approaches, which support propagating

properties of exchanged data, in the following. We distinguish approaches analyzing

control flows and approaches analyzing data flows.

9.2.2.1. Control Flow Analyses

Control flow analyses analyze software architectures using call-and-return communication.

Such approaches require representations of software architectures, which are more detailed

than DFDs. Instead of just describing the required data and its processing, call-and-return

communication requires software architects to specify execution orders of activities. The

execution order and control flow specifications enable the detection of implicit information

flows at the cost of additional complexity. Our approach aims for lower complexity as

well as simple, data-oriented specifications of confidentiality requirements. Besides this

fundamental difference, there are additional differences to the analysis approaches using

control flows, which we describe in the following.

iFlow [Kat+13] is an approach to verify UML models and generate application code based

on the models. An UML profile allows to annotate components, which describe the

structure of the system, as well as elements of sequence diagrams, which describe the

communication between components. The behavior of components is specified in a DSL.

The confidentiality requirements are given by a lattice. iFlow can identify violations of

non-interference requirements, i.e. the lattice, by transforming the UML models into input

for the theorem prover KIV. To identify violations, the analysis determines the classification

level of exchanged information based on the processing in the components. Our approach

also propagates classification levels through the system but uses behavior descriptions
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given by assignments, which have lower complexity than the DSL used in iFlow, to derive

the effect of processing. In addition, our approach also supports access control besides

information flow control.

Gerking and Schubert [GS19] present an approach to verify that models given in Mecha-

tronicUML [SW10], which is a UML profile for representing mechatronic systems, do not

violate information flow requirements given in terms of non-interference. The approach

provides refinement relations between components, i.e. how to break down a big compo-

nent into smaller components, in order to support modular verification of the components.

Software architects specify the behavior of components as timed automata. By simulating

the behavior, the approach can verify that publicly visible behavior does not change when

private behavior changes. This simulation also involves propagating data through the

system and keeping track of its classification. In contrast to our approach, the behavior

specifications are more complex because they are stateful and consider time. Specifying

behavior in this detail is at least challenging while creating a software architecture because

it requires a deep understanding of the behavior of a component. In addition, our approach

supports analyzing access control, which the approach of Gerking and Schubert does

not.

UMLSec [Jür05] is one of the most commonly known approaches for analyzing software

designs for security issues. UMLSec extends UML by a profile that introduces properties,

such as the criticality of system parts and calls, for reasoning about security in general but

also confidentiality in particular. The approach is capable of identifying violations of non-

interference requirements using a high/low lattice as well as violations of requirements

given in terms of RBAC. The analyses take place in UML Machines, which are transition

systemswith states using algebraic structures. Using CARiSMA [Ahm+17], users can define

own analyses and extend the existing capabilities. In contrast to our approach, UMLSec

has not been shown to support a range of access control mechanisms, which is as wide as

the supported access control mechanisms of our approach. In addition, UMLSec defines the

RBAC requirements based on actions instead of data, which intertwines requirements with

the system design and, therefore, makes changing the system design more complex. In

contrast, our approach supports specifying the confidentiality requirements independently

of the system design and only requires the assignment of roles to users or groups of

components.

Hoisl, Sobernig, and Strembeck [HSS14] describe an approach to systematically consider

confidentiality in Service-Oriented Architectures (SOAs). The starting point is a UML

model extended by a UML profile. The profile allows marking object flows in activity

diagrams as containing sensitive data and nodes in such a diagram as preserving confi-

dentiality. The behavior of the involved actions is predefined and essentially follows the

logic of a taint analysis. Nodes affecting the control flow, such as decisions or forks, are an

essential part of the analysis. A node marks an outgoing object flow as containing sensi-

tive data if one of the incoming object flows contains sensitive data. The corresponding

analysis is specified in OCL and reports a violation if a node, which does not preserve

confidentiality, receives an object flow containing sensitive data. This means, the analysis
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supports non-interference requirements given by a lattice consisting of two levels. In con-

trast, our approach supports more sophisticated lattices and uses customizable definitions

of node behaviors to support more complex analyses of non-interference as well as access

control.

9.2.2.2. Data Flow Analyses

Data flow analyses detect violations of confidentiality requirements in software architec-

tures based on exchanged data. The analyses use networks of processing steps, which each

have inputs and outputs as well as a behavior. The propagation and comparison of data

properties is a core element of these analyses. The approaches providing such analyses

are closely related to our approach. In the following, we describe the most important

approaches and describe the differences to our approach.

AuthUML [AW03] and FlowUML [AFW06] originate from the same authors. Because both

approaches share many aspects, they can be considered as one approach. The approaches

aim to report violations of confidentiality requirements given in terms of access control

as well as in information flow control for software designs given in UML. In a first step,

the approach extracts activities of users from use case diagrams and data flows between

actors or system parts from sequence diagrams. This information is formalized in a logic

program given in Prolog. The user of the approach has to specify sensitive information

and the confidentiality policy, which is added to the logic program in order to identify

violations. The approaches report on supporting access control using DAC, MAC and

RBAC as well as information flow control. The approaches have many similarities with

our approach such as the use of logic programming to identify violations or the use of

annotated software models as inputs. However, neither AuthUML nor FlowUML report

on a validation, which shows that any of the approaches supports systems other than the

small running examples. An implementation is not available. In addition, the support

of access control mechanisms is only described vaguely: For MAC, only the military

access model is considered. For DAC, the delegation of rights is missing. The handling of

declassification, which is essential to support realistic systems according to Zdancewic

[Zda04], is not mentioned. Because of the missing validation and the shortcomings in

representing the confidentiality mechanisms, we do not consider the approaches to have

shown a successful combination of access control and information flow control.

SecDFD [TSB19] uses extended DFDs to identify violations of non-interference require-

ments. The extensions of the DFDs are an additional property to indicate if a node is

within a trusted zone or an attack zone as well as a predefined set of nodes including

a behavior. The behavior is given in terms of a label propagation function that takes

incoming labels and maps them to outgoing labels. Apart from the fixed node types,

the approach follows the same analysis logic as our approach. Both approaches [TSB19;

SHR19] have been developed independently and have been published at the same venue

in 2019. The major difference is the support of confidentiality requirements. SecDFD

supports non-interference with a high/low lattice and can consider keyless encryption.
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In addition, our approach supports non-interference using arbitrary lattices, encryption

using key pairs and various access control mechanisms.

Berghe et al. [Ber+17] represent systems by a network of predefined processing operations,

which propagate data and its properties, in order to identify illegal access to data. A

processing operation receives data, calculates attributes of outgoing data based on the

attributes of incoming data and sends the data. Essentially, this is label propagation.

The behavior is specified in the language of the theorem prover Coq. Consequently, the

detection of violations also is done in Coq. The formalization is more powerful than

the formalization presented in this thesis because it supports stateful modeling and uses

linear-time temporal logic. While this increases the expressiveness, it also increases the

complexity of the specification. It is at least questionable if the detailed information

for creating such detailed specifications is actually available while creating the software

architecture. As already discussed in Section 8.3.3, we favor simple specifications over

expressiveness of all possible cases. The approach of Berghe et al. demonstrates the

support for a simple form of non-interference, which is comparable with a taint analysis.

In contrast, our approach supports non-interference using sophisticated lattices as well as

various access control mechanisms.

9.2.3. Calculation of Security Metrics

There is a high demand for security metrics, which quantify the security of software

systems [Fla18]. These metrics shall help answering trade-off questions such as trade-offs

between gained security and budget to be spent [PC10]. In our approach, we do not aim

for quantifying security because creating a reliable metric that satisfies the expectations

on these metrics is a different field of research. However, our approach can provide one of

many possible inputs for calculating security metrics.

In the following, we give examples of how our approach could provide inputs for two

approaches providing security metrics for software architectures. For a more exhaustive

list of security metrics, we refer to surveys on security metrics [MFP10; Pen+16].

Busch, Strittmatter, and Koziolek [BSK15] suggest the mean time to security failure as a
metric for trade-off decisions in software architectures. The metric considers factors like

the skills of an attacker, the time spent in securing a component or security interferences

between components. The approach is probabilistic and requires estimations of factors

and probabilities. To improve these estimations, the results of the approach presented

in this thesis could be used. For instance, our approach can provide information about

security interferences between components by tracing, which information is transitively

exchanged between components.

Almorsy, Grundy, and Ibrahim [AGI13] provide an extensible framework to calculate

security metrics. They use system descriptions and corresponding security specifications

as input. Success conditions of various attacks are given in OCL. Metric calculations can

include arbitrary information but also the results of testing the success conditions by

building weighted sums. There are examples of metrics such as the attack surface or the
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compartmentalization but the authors themselves stress that these are not complete and

have to be extended. Because of the high flexibility in calculating metrics and considering

inputs, it is possible to consider our analysis results in the metric calculations. The analysis

results of our approach indicate structural problems of the software architecture, which

can be considered in the attack surface, for instance.

9.3. DFD Semantics

The major benefit of DFDs is their simplicity. A DFD only consists of three types of

nodes (external actors, processes and stores) and one type of edge (data flow). DeMarco

[DeM79] describes the semantics of these syntactical elements in an intuitive way. This

simple description of semantics is not really problematic for discussing diagrams with

stakeholders. However, weak semantics impede automated processing of DFDs, which

usually relies on clear meanings for every syntactical element as well as combinations

of these elements. The semantics are a commonly identified weakness of DFDs. As a

survey [Jil+08] on formal semantics for DFDs shows, there are many different approaches

to address the shortcomings of the DFD semantics. These approaches often do not only

extend or redefine the semantics but also extend the DFD syntax. This is reasonable

because additional information can be necessary to solve ambiguities in the semantics and

this additional information has to be expressed in the DFD syntax. The semantics are not

particularly tailored to confidentiality or security but still point out and address important

shortcomings, which affect many domains including confidentiality. In the following, we

report on the four most commonly mentioned shortcomings, motivate their importance on

the running example, discuss suggested solutions and relate these solutions to the solution,

which we used for defining our DFD semantics. The explanations are based on one of our

previous publications [Sei+22].

Node Properties DeMarco [DeM79] sees the importance of additional properties and

suggests adding them to a data dictionary. However, he does not prescribe a specific format

or typing for these properties, so automated processing of the properties is challenging.

Representing properties of nodes is important in our running example in order to capture

the clearance levels of processes, stores and actors. The clearance level is necessary to

identify violations of the non-interference requirement that nodes can only access data if

their clearance level is at least the classification level of the data. Some execution semantics

[Fra92] [Pet+94], i.e. semantics that specify the execution order of processes, describe

properties of nodes as part of a global execution state. Consequently, the properties of nodes

can change dynamically over time. Instead of these dynamically changing node properties,

we use statically assigned node properties to represent information required to detect

violations of confidentiality requirements. We favor these static properties over dynamic

properties because dynamic properties need a definition of state transitions and this

introduces additional complexity to the modeling process. However, we have demonstrated
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that dynamic properties are not necessary to express the information required to identify

violations of commonly used confidentiality requirements.

Multiple Inputs DeMarco [DeM79] is aware of potential different meanings of multiple

incoming data flows but either refers to an intuitive understanding based on the name

of a process or suggests describing the process in a data dictionary. However, he does

not prescribe a specific format for this description, which makes automated processing is

challenging. Our running example also includes situations, in which multiple incoming

data flows have different meanings: The meaning of the two inputs into the book flight
process in Figure 3.2 on page 23 is that both inputs are required for the booking. The

meaning of the two inputs ccd and declassifiedCcd to the user is that either of the two

is required, i.e. the inputs are alternative flows. It is important to distinguish these

meanings because the DFD shown in Figure 3.2 would always violate the non-interference

requirements by always picking both inputs of the credit card data instead of only violating

it when selecting the wrong input. Tracing back the issue becomes harder if the violation

is reported in more situations than necessary. Related semantics address this shortcoming

differently. A simple approach is to always assume that all incoming data flows to a

node are mandatory. The benefit of such semantics [Fen+93; LPT94; Pet+94; Xio+17]

is that they do not require extensions of the DFD syntax. However, such semantics

do not allow expressing our running example. Other semantics [Fra92; LT91; PKP91;

WBL93; Lea+96; LWB99] provide a more flexible approach by supporting definitions of

valid combinations of incoming data flows via preconditions or sets. Such semantics can

express our running example. However, the specification via preconditions or sets implies

considerable complexity if an additional, mandatory incoming data flow shall be added.

Adding such a mandatory data flow is not unlikely because it is comparable with adding

an additional parameter to an operation signature, which occurs quite frequently when

designing systems or writing source code. Instead, we aim to simplify such definitions

by the notion of pins. Pins are already known from UML [Obj17, p. 444], in which they

define inputs and outputs of nodes. The pins define mandatory input data, which means

that there has to be an incoming data flow to every input pin. If multiple incoming data

flows are available, these data flows are alternatives but at least one of these alternatives

always has to be used. Adding another mandatory input only requires adding a new input

pin and does not require to change other pins or data flows.

Behavior of Nodes DeMarco [DeM79] sees the need to describe the behavior of nodes

and uses entries in a data dictionary to cover this information. However, he does not

prescribe a structure or specific typing of the information, so processing this information

automatically is hard. The behavior of nodes is necessary to reason about data processing

and its effect. Knowing the effect of data processing is not only important for our running

example but it is essential for the propagation of data properties. Without knowing the

processing effect, we would have to manually classify every exchanged data flow in the

running example to know the classification of arriving data and to compare it with the

clearance of nodes. Semantics [KBB86; BW89; Pet+94; Xio+17], which do not require the
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propagation of properties or only use very simple properties, do not describe the behavior

of nodes but use the semantics for handling multiple inputs to derive necessary properties.

This approach is not capable of expressing the propagation of the classification level in our

running example. Semantics [PKP91; Fra92; Fen+93; LPT94] mainly focusing on execution

semantics support defining trigger conditions. These conditions can evaluate properties of

incoming data such as how many data items are available and decide to run a process or

wait for more or other incoming data. However, these semantics cannot describe the effect

of data processing on data properties such as that the classification level of outgoing data is

the highest classification level of all incoming data. In contrast, semantics [LT91; WBL93;

Lea+96; LWB99] that support describing the values of outputs based on inputs support the

propagation of data properties. These semantics use general purpose languages to describe

the calculation of the output values. General purpose languages allow to describe much

more than just the propagation of properties, so they introduce a considerable amount of

complexity. Therefore, we favor the use of a DSL instead of a general purpose language

to describe the behavior of nodes. The DSL only provides a limited set of operations to

derive properties of outgoing data based on incoming properties of data. We expect the

complexity of using the DSL to be lower compared to a general purpose language.

Behavior of Actors DeMarco [DeM79] does not consider the behavior of external actors

because he wants to focus on the system and external actors are, per definition, not part

of the system. However, reducing actors to providing input to the system and consuming

outputs from the system is too restrictive. In our running example, it is important to

know that the actor uses the credit card details, which he/she has received from the

declassification operation, for booking a flight in the system. This does not violate the non-

interference requirements. In contrast, if the user uses the credit card details received from

the credit card center, a violation of the non-interference requirement occurs because the

data has not been declassified before sending it to the airline. By making the behavior of the

user explicit, we can avoid wrongly reported violations. There are basically two approaches

used by existing semantics: One set of approaches [KBB86; LT91; BW89; Fen+93] ignores

the behavior of users because it is not necessary to serve the corresponding purpose of

the semantics. The other set of approaches [PKP91; Fra92; LPT94; Lea+96; LWB99] simply

uses the same means to describe the behavior of actors as already used for describing

the behavior of other nodes. We also see the benefit of using the same means because

this provides a streamlined solution. Therefore, we use the same means to describe the

behavior of actors as for describing the behavior of other nodes.

9.4. ADL Integrations

The integration of confidentiality analyses into existing ADLs is beneficial to lower the

initial learning effort for software architects and to make use of existing software ar-

chitectures represented in the ADL. An integration usually consists of two parts: An

extension of the ADL syntax and an integration of an analysis, which uses inputs given in
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the extended ADL. We briefly discuss both parts and explain the reason for choosing a

particular integration approach in this thesis.

Extension of ADL Syntax. Analyses usually need additional information, which is not

present in the software architecture yet. ADLs are used to represent software architectures.

The ADL is often specified by a metamodel and the software architecture is a model, i.e.

an instance of that metamodel. To represent the additional information, this metamodel

has to be extended. Heinrich, Strittmatter, and Reussner [HSR21] distinguish intrusive

and non-intrusive extensions. Intrusive extensions change the metamodel, which means

that it becomes cluttered in case of many extensions and that existing models, i.e. in-

stances of that metamodel, potentially become incompatible depending on the particular

change. In contrast, non-intrusive extensions do not break existing models. If a meta-

model already provides means for extensions, these extensions should be used. Therefore,

many previously presented approaches [Jür05; LBD02; HSS14; Kat+13], which use UML to

represent the software architecture, use UML profiles to extend the UML by additional

information. If the metamodel does not provide means for extensions, it is still possible

to use annotation models, which point to the software architecture. Almorsy, Grundy,

and Ibrahim [AGI13] make use of such an annotation model. Using inheritance as part

of additional metamodels is another option, which Heinrich, Strittmatter, and Reussner

[HSR21] mention and which we also use. In general, such additional metamodels can be

seen as a fork of the original metamodel. In case of EMF, which Palladio uses to specify its

metamodel, the subtypes specified in the additional metamodels are integrated into the

existing metamodel by the tooling
3
. Therefore, the use of inheritance is non-invasive in

our approach. In fact, we make use of all three mentioned non-intrusive ADL extension

approaches. Using inheritance is often the most comprehensible solution because the

concept of inheritance is known from object-oriented programming. However, using

inheritance is not always possible because of the structure of the metamodel. Therefore,

we also use profiles in combination with annotation models. The annotation models

contain the additional information and the profiles link the information to the software

architecture.

Integration of Analysis. There are usually two options to integrate analyses in ADLs:

model queries and transformations. Model queries require formulating the analysis as a

query to the model of the software architecture. This works well for matching patterns

in the software architecture or for checking well-formedness rules. The approaches for

identifying threats mentioned in Section 9.2.1 use this approach. Transformations map

a software architecture given in an ADL to another representation tailored for analyses.

AuthUML and FlowUML [AW03; AFW06], iFlow [Kat+13], SecDFD [TSB19], UMLSec

[Jür05] and the approach of Gerking and Schubert [GS19] use this integration approach.

The analyses take place on the dedicated analysis artifact and the results are reported

3 https://web.archive.org/web/20211108130758/https://ed-merks.blogspot.com/2008/01/creating

-children-you-didnt-know.html
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back to the software architect. The benefit of the transformation approach is that software

architects can make use of existing, powerful analysis tools, which allows for more sophis-

ticated analyses. We also use the transformation approach to provide such sophisticated

analyses.
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We conclude this thesis in this chapter. We summarize the contributions, their validation

as well as the differences to state-of-the-art approaches in Section 10.1. The benefits of

the contributions for various stakeholders is part of Section 10.2. We recap the most

important assumptions and limitations in Section 10.3. Eventually, we discuss future work

in Section 10.4.

10.1. Summary

In this thesis, we presented a data-oriented approach to identify violations of confidentiality

requirements in software architectures. We presented four validated contributions, which

answer the research questions described in Section 1.4. In the following, we summarize the

contributions (C), the corresponding research questions (RQ) and the validation covered

by the corresponding validation questions (VQ).

DFD Syntax (C1) The extended DFD syntax captures additional information, which is

required to identify violations of confidentiality requirements as well as to avoid ambi-

guities implied by the original DFD syntax and semantics of DeMarco. The additional

information is structured in three viewpoints. The functional viewpoint introduces actor

processes, which are necessary to represent non-trivial activities of external actors, and

pins, which are necessary to solve ambiguities caused by multiple incoming data flows.

The confidentiality primitives viewpoint introduces characteristic types and characteris-

tics, which represent relevant properties for reasoning about confidentiality violations,

as well as behaviors, which represent the effect of data processing on properties. The

confidentiality viewpoint relates the behaviors and properties to nodes in the DFD. The

benefit of the separation into viewpoints is that the responsibility of involved roles are

clear: A security expert creates potentially reusable confidentiality primitives and assists

the software architect in using them. A software architect represents the system as well as

its usage and binds the security primitives to the actual architecture.

The representation of this additional information in an extended DFD metamodel answers

the research question about sufficient modeling primitives for reasoning about confiden-

tiality (RQ3). In a validation (VQ1 and VQ2) based on a case study involving seventeen

systems, which define confidentiality requirements in terms of various access control

and information flow control mechanisms, we demonstrated the expressiveness of the

extended DFD syntax. In contrast to the state of the art, the extended DFD syntax is
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capable of expressing access control and information flow control individually as well as

combinations of these mechanisms within the same syntax.

We found that the additional information in the DFD syntax is necessary in order to

identify violations of confidentiality requirements given in terms of access control (RQ1)

as well as information flow control (RQ2). The validation of the usage frequency of the

syntax elements (VQ3) for modeling the case study systems supports this statement by

showing that the elements of the DFD syntax are frequently used. In contrast to many

state-of-the-art approaches, the syntax does not include special elements, which are only

useful for reasoning about certain confidentiality mechanisms.

DFD Semantics (C2) The semantics for the extended DFD syntax define the meaning of

DFD elements in terms of label propagation. All nodes become nodes in a label propagation

network. The data flows become connections between the nodes. Characteristics become

labels. Behaviors of nodes become the propagation logic of a node. A mapping from the

extended DFD syntax to clauses of first-order logic given in Prolog assigns the previously

described meaning. The Prolog program resulting from the mapping of a particular DFD

identifies all labels at all places in the DFD. Analyses compare these labels with expected

labels to identify violations of confidentiality requirements.

The validation of the correctness of detected violations (VQ6) on sixteen case study

systems shows that the semantics can correctly identify violations in systems. Therefore,

the semantics provide a sufficient answer to RQ4, which asks for appropriate semantics for

identifying violations. In contrast to many state-of-the-art approaches, the semantics are

sufficient to analyze the propagation of data through the system. Many other approaches

are limited to well-formedness constraints or pattern matching. In addition, the semantics

are flexible enough to cover a wide range of different confidentiality requirements. Many

other approaches are limited to one particular type of analysis.

DFD-based Analyses (C3) The analysis definitions for DFDs provided in this thesis cover

information flow control with non-interference requirements as well as the four most

commonly used access control mechanisms DAC, MAC, RBAC and ABAC. In addition, a

partial analysis definition for encryption is available, which can be combined with the

previously mentioned analysis definitions. An analysis definition always consists of a set of

characteristic types, characteristics, behaviors and a label comparison function. The label

comparison function is given as a Prolog query, which compares the propagated labels on

data with expected labels to identify a violation. For specific confidentiality requirements,

we provide templates for Prolog clauses, which cover the additional requirements. A

security expert creates the analysis definitions because creating them requires security

expertise. Software architects can reuse these definitions in multiple systems or define

custom analyses using a DSL for creating a label comparison function.

The set of analysis definitions, which considers information flow control, answers research

question RQ5, which asks how an information flow analysis can be formalized using the

extended DFD syntax and the corresponding semantics. The set of analysis definitions,
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which considers access control, answers research question RQ6, which asks about the

formalization of access control analyses. The validation of the expressiveness of the

analysis definitions (VQ5) shows that the confidentiality requirements of sixteen case

study systems can be expressed in terms of the analysis definitions. The set of systems

contains systems using information flow control as well as systems using access control. In

contrast to many other state-of-the-art approaches, there are multiple analysis definitions,

which software architects can use within the same architecture. Many state-of-the-art

approaches only provide one particular type of analysis and do not provide means to

specify additional analyses. In contrast, software architects can use the DSL provided in

this thesis to formulate custom analyses. The validation of the correctness of detected

violations (VQ6) shows that confidentiality requirements are not only expressible but that

the analyses based on the analysis definitions can correctly identify violations.

ADL Integration Guidelines (C4) The guidelines for integrating the analysis capabilities

of extended DFDs into existing ADLs support ADLs focusing on control flows as well as

ADLs focusing on data flows. The core idea of the integration guidelines is to extend the

syntax of the ADL by necessary but missing means to express information relevant for con-

fidentiality and then to map this extended ADL to an extended DFD. Afterwards, software

architects can use the existing DFD-based analyses to identify violations of confidential-

ity requirements. To show the applicability of the guidelines, we apply the integration

guidelines to the Palladio ADL, which supports control flows as well as data flows. This

results in two integrations: one integration into the Palladio subset that uses control flows

and one integration into the Palladio subset that uses data flows. Because applying the

integration guidelines worked for Palladio, we can see the integration guidelines as answer

to RQ7 and RQ8, which ask for a way of using the DFD-based analyses in ADLs using

control flows as well as data flows. In contrast to the state of the art, the software architect

can still use the existing ADL and only has to learn the newly introduced elements of the

syntax. The state of the art either requires dedicated analysis models or prescribes the

ADL, which is often the UML.

The Palladio integrations are as expressive as the extended DFDs and the analysis results

are also correct. In a validation of the expressiveness (VQ8) based on seventeen case study

systems for each integration, we could show that we could express the same case study

systems by the integrations as by DFDs. In a validation of the correctness of the analysis

results (VQ9) based on the expressed case study systems, we could show that all reported

violations were correct.

A major benefit of the ADL integration is that already modeled software architectures can

usually be extended by the necessary information to detect violations of confidentiality

requirements. In a validation of the amount of model elements to be changed when

adding such information to an existing software architecture (VQ11), we could show that a

considerable part of the software architecture does not have to be changed. state-of-the-art

approaches, which do not provide ADL integrations, require the software architect to

remodel the whole software architecture in a new ADL. Because our ADL integrations

support various confidentiality mechanisms, switching the confidentiality mechanism
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also does not require remodeling the whole software architecture. In a validation of the

amount of model elements to be changed when switching confidentiality mechanisms, we

could show that a considerable amount of model elements can be reused. state-of-the-art

approaches, which only support one particular confidentiality mechanism, require the

software architect to remodel the whole software architecture in another analysis model

or ADL.

10.2. Benefits

With the contributions presented in this thesis, confidentiality requirements can be con-

sidered systematically while defining software architectures. In the following, we discuss

how tool engineers, security experts, software architects and organizations benefit from

these contributions.

Tool Engineers are responsible for creating and maintaining the tools to specify software

architectures. By using the extended DFD syntax, its semantics as well as the ADL inte-

gration guidelines, tool engineers can build new tools or integrate the analysis capabilities

presented in this thesis into existing tools. Because the engineers do not have to define

and validate the propagation logic on their own, they can provide tools faster than by

implementing the tools from scratch. They can also use the analysis definitions to provide

a broad range of analyses right from the beginning, which means the tools provide many

features without the need to spend time on implementing these features.

Security Experts are responsible for supporting the software architect in meeting the

confidentiality requirements. By defining analysis definitions, the security expert provides

the building blocks to represent confidentiality in software architectures. Because these

analysis definitions are often reusable for multiple systems, the security expert does not

have to assist the software architect for every system, which gives him/her time for other

tasks. When considering a situation without analysis capabilities, which the software

architect can use on his/her own, the security expert would even have to do the analysis

of the software architecture, which implies considerable effort.

Software Architects are responsible for defining the software architecture in a way that

it meets the requirements on the software system. By using the ADL integration, software

architects can systematically consider confidentiality requirements while defining the

software architecture. Because the analysis capabilities are built into the ADLs, which the

software architects already use, they only have to learn the new elements of the extended

ADL. This lowers the initial learning and training effort. Because the existing ADL is

only extended and not replaced, the software architects can add information to consider

confidentiality requirements to the existing software architectures instead of recreating the

software architectures from scratch in a dedicated analysis tool. This lowers the modeling
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effort. Because the reusable analysis definitions provided by the security expert already

specify the important aspects for analyzing the confidentiality requirements, the software

architect can use these analysis definitions without the need of having high security

expertise. Instead, a short introduction by the security expert should be sufficient.

Organizations hire employees for creating software systems, which can be sold for profit.

The previously mentioned benefits, especially the benefits for the security expert and the

software architect, contribute to the overall goal of reducing the cost for creating a software

system. Security experts as well as software architects are highly qualified people, who

usually receive high compensations. Reducing the effort spent by these people to create a

software system reduces the overall cost because less people are required to create the

software system. As explained before, the security expert does not have to be involved in

the analysis of every system anymore, which reduces his/her effort for a particular software

system heavily. The software architects have some initial effort for getting their head

around the extended ADL and the analysis definitions. However, this one-time effort pays

off because the effort spent in modeling and reasoning about confidentiality requirements

is reduced for every system. By systematically considering confidentiality in the software

architecture, the probability of detecting confidentiality violations already in the software

architecture increases and the probability that the underlying issue becomes implemented

decreases. Because it requires less effort to fix an issue early, this also reduces the total cost

of creating a software system. Because extensive changes of the implementation caused

by undetected issues in the software architecture are reduced, there is a good chance that

the software system can be sold earlier.

10.3. Assumptions and Limitations

We already discussed the assumptions and limitations of our contributions together with

the contributions. The assumptions and limitations regarding the DFD syntax and seman-

tics are discussed in Section 5.3. Section 6.7 does the same for the DFD-based analyses

and Section 7.4 covers the assumptions and limitations regarding the ADL integration

guidelines. In the following, we recap the most important assumptions and limitations and

justify why the assumptions are reasonable and the limitations are not too restrictive.

Properties as Discrete Values. The DFD syntax as well as the semantics limit the value

range of properties to sets of discrete values. This means a property of a node or data

cannot be an arbitrary numerical value or arbitrary string, for instance. We do not see

this limitation as too restrictive because properties, which are relevant for confidentiality,

are often discrete values. As we demonstrated by the analysis definitions and their vali-

dation, we can express the aspects, which are relevant in commonly used confidentiality

mechanisms. Out of the most commonly used confidentiality mechanisms, only ABAC

potentially requires the representation of continuous values. However, we still argue that

the limitation to sets of discrete values is not too limiting here because usually a particular
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value in a continuous range of values only has a meaning because it is within a certain

interval. Representing the available intervals as discrete values is possible and, therefore,

the limitation does not impede analyses here.

Explicit Flows. The DFD semantics only consider explicit information flows, i.e. data

flows, in analyses. This means, an analysis only detects a violation of a confidentiality

requirement if the violation occurs because of an explicit information flow. We do not

consider implicit information flows, which are caused by timing-dependencies, for instance.

This limitation is the result of a trade-off decision: Detecting implicit information flows

requires detailed descriptions of the execution order or even timing information. The

necessary information might not be available while creating the software architecture and

would certainly complicate the representation of the software architecture. We decided to

focus on explicit flows because we can assume the information about explicit flows to be

available. Consequently, the ADL integration neither does consider such implicit flows.

No Information About State, Time and Instances. TheDFD-based analyses do not consider

state, time or instance-level information. No information about time means that the

analyses do not consider whether a data processing happens before another as long as

there is no data dependency. State cannot be supported without a notion of time, so there

is no information about the state of a system. No information about instances means

that the analyses do not consider individual users but only types of users. We do not

consider any of these limitations as inappropriate for analyses of software architectures

as we explain in the following. To represent information about state and time, software

architects have to specify the structure and behavior in a high level of detail. This increases

expressiveness but also complicates the specification of software architectures and requires

detailed specifications, which restrict the freedom in finding appropriate solutions for the

architectural specifications in later phases. To avoid increasing the effort for specifying a

software architecture significantly, we decided to not consider state and time. We decided

to not consider instance information such as individual users of a system because there is

not enough information about individual users while creating the software architecture.

Instead, we only represent types of users.

ADL Elements Without Effect. In the ADL integrations of Palladio, we did not explicitly

specify a meaning for every element of the Palladio syntax but implicitly specified that all

elements without explicitly specified meaning have no meaning for identifying violations

of confidentiality requirements. We consider the assumption that not all ADL elements

affect confidentiality reasonable because Palladio is an ADL, which supports various

types of quality predictions. Existing analyses realized in Palladio also do not consider

every element. For instance, the resource demand of a certain action in the system is not

important for reasoning about confidentiality.
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10.4. Future Work

We identified five topics of future work, which we describe in the following.

Further Security Objectives. In this thesis, we focused on the security objective con-
fidentiality. However, only meeting one security objective is usually not sufficient to

secure a software system. Therefore, we would like to investigate whether the DFD syntax

and the semantics can also represent the required information to identify violations of

other security objectives. Especially, researching the representation of aspects relevant

for integrity and formulating analyses to detect violations of integrity are of high interest

because information flow control as well as access control are also mechanisms to protect

the integrity of information.

Consideration of Uncertainty. The most fundamental assumption of model-based anal-

yses is that the model correctly represents the subject under investigation. In case of a

software architecture, this means that developers realize the software architecture correctly

and that the execution context of the system matches the execution context specified in

the software architecture. However, there might be aspects in the software architecture,

which the software architect cannot know yet or which might change dynamically during

runtime. For instance, a component might not be deployed on the expected node but on

another because of a disruption at a cloud provider. This means, the software architect is

uncertain about aspects of the software architecture. The topic of the ongoing research

project FluidTrust
1
is to capture this uncertainty and identify the influence of uncertainty

on confidentiality. There is already initial work on considering uncertainty in the con-

text [BWH20] and within the structure and behavior [Hah21] of a software architecture

within the approach described in this thesis. However, the work is limited with respect to

the architectural elements affected by uncertainty and the validation. Therefore, further

research is necessary.

Usage of catalogs. We already discussed, which parts of the analysis definitions depend

on particular systems and which parts software architects can reuse for specifying other

systems. In the context of security, catalogs are frequently used to provide reusable

artifacts. However, we see the need for further research on how an entry of such a catalog

has to look like and how software architects can make use of such a catalog. For instance,

we have to define mechanisms to override parts of an analysis definition or provide partial

analysis definitions if the definition cannot be reused as a whole. A formalized approach

to combine such partial analysis definitions could also help security experts to integrate

encryption into other analysis definitions, for instance.

1 https://web.archive.org/web/20200808112444/https://fluidtrust.ipd.kit.edu/home/
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10. Conclusions

Validation of Analysis DSL. We presented a DSL for formulating custom analyses in this

thesis. The DSL is meant to be used by software architects, so they can formulate label

comparison functions without expertise in logic programming. We provided a concrete

syntax for illustration purposes only. However, we think that software architects can also

use this concrete syntax because we designed it according to common best practices. In

another work [Hah+21], we already validated the DSL according to objective criteria. But

to support the statement about usability, we have to conduct a user study together with

potential users. We would like to validate the usability and compare it to the usability of

Prolog queries.

Extended Validation of ADL Integration. In this thesis, we applied the integration guide-

lines to the Palladio ADL to show their applicability and to perform further validations on

the resulting integrations for the communication paradigms call-and-return as well as for

data flows. It would be interesting to apply the integration guidelines to further ADLs,

which use different communication paradigms, in order to validate the applicability of the

guidelines.
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A. Predicate exactCharacteristicValues/5

The predicate exactCharacteristicValues/5 tests if the available labels of a certain char-

acteristic type are exactly the requested labels. The predicate defined in line 1 of Listing A.1

takes a node identifier N, a pin PIN, a characteristic type CT, a list of values VALS and a

flow tree S. The predicate succeeds if the values, which belong to the given characteristic

type and which are available at the given pin at the given node for the given flow tree,

are exactly the given values. To answer a query to this predicate, it is necessary to collect

all values, which are available at the pin, for the given characteristic type and test the

resulting set for equality with the given set of values.

The allCharacteristicValues/5 predicate finds all available values for a given charac-

teristic type. The rule in line 5 first finds a flow tree for the given node and pin because

the flow tree is necessary to determine labels. The rule then queries the allCharacteris-

ticValues/6 predicate, which has the same signature except for an additional argument

for remembering already considered values of a characteristic type. Two rules realize the

Listing A.1: Clauses providing the exactCharacteristicValues/5 predicate.

1 exactCharacteristicValues(N, PIN, CT, VALS, S) :-

2 allCharacteristicValues(N, PIN, CT, V, S),

3 sort(VALS, V).

4

5 allCharacteristicValues(N, PIN, CT, VALS, S) :-

6 flowTree(N, PIN, S),

7 allCharacteristicValues(N, PIN, CT, S, [], VALS).

8

9 allCharacteristicValues(N, PIN, CT, S, VISITED, RESULT) :-

10 characteristic(N, PIN, CT, V, S),

11 intersection(VISITED, [V], []),

12 (

13 VISITED = [];

14 nth0(0, VISITED, FIRSTV),

15 V @< FIRSTV

16 ),

17 allCharacteristicValues(N, PIN, CT, S, [V | VISITED], RESULT).

18

19 allCharacteristicValues(N, PIN, CT, S, RESULT, RESULT) :-

20 \+ (

21 characteristic(N, PIN, CT, V, S),

22 intersection(RESULT, [V], [])

23 ).
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A. Predicate exactCharacteristicValues/5

allCharacteristicValues/6 predicate. The rule shown in line 9 identifies a characteristic

value V, which is available at the given pin and tests if the value has already been visited

by ensuring that the intersection of the visited values and the set consisting of the new

value is empty. Afterwards, the rule ensures that the found value is smaller than the first

element of the already visited values according to the natural ordering relation. This

ensures that the list of visited values is sorted. Afterwards, the rule adds the new value at

the beginning of the list of visited values and recurses. The rule in line 19 provides the

stop condition for this recursion. The rule succeeds if there are no more characteristic

values are available, which have not been visited before. In this case, the list of visited

values becomes the result.
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B. DFDs of Self-Created Case Study
Systems

In the following, we provide the DFDs for the case study systems, which we created

completely from scratch. The DFD for CS13 is given in Figure B.1. The DFD for CS14 is

given in Figure B.2. The DFD for CS16 is given in Figure B.3. We omit the pins in the

visualization to enable a more compact representation. To indicate data flows to the same

pin, we let the data flows overlap in the illustration. All visualizations are based on existing

visualizations from one of our previous publications [Sei+22].

We do not provide the DFDs for the other case study systems because the respective

sources mentioned in Section 8.2.2 already provide enough information about the cases

Dad

Mother

Aunt

picture

picture

picture
picture

Indexing 
Bot

Family 
Pictures

add pictures

IM

ID

IA picture

picture

II

RM | RD |  
WM | OM 

picture

F

Node Identity Labels: 

Store Write Labels: 

Store Read Labels: 

Mother (IM) | Dad (ID) | Aunt (IA) | Index Bot (II)
Mother (RM) | Dad (RD) | Aunt (RA) | Index Bot (RI)
Mother (WM) | Dad (WD) | Aunt (WA) | Index Bot (WI)

Behaviors:  Forward (F) 

Data Add Owner Labels:  Mother (OM) | Dad (OD) | Aunt (OA) | Index Bot (OI)
Data Add Read Labels:  Mother (RM) | Dad (RD) | Aunt (RA) | Index Bot (RI)
Data Add Write Labels:  Mother (WM) | Dad (WD) | Aunt (WA) | Index Bot (WI)

add write
F

add read
F

add owner
Fdad

owner

writer

readeraunt

dad

read pictures
F

RA

OD

WD

Figure B.1.: DFD of ImageSharing case study system (CS13) based on visualization in previous publication

[Sei+22]. Removing the crossed data flow introduces an issue.
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Figure B.2.: DFD of FlightControl case study system (CS14) as visualized in previous publication [Sei+22].

Adding the dashed data flow introduces an issue.

and their complexity. In addition, the data set of one of our previous publications [Sei+22]

provides further explanations and visualizations of the cases.
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