271 research outputs found

    A study of real-time computer graphic display technology for aeronautical applications

    Get PDF
    Hardware, algorithms and software for real-time raster graphics were designed and implemented

    Discontinuity Edge Overdraw

    Get PDF
    Aliasing is an important problem when rendering triangle meshes. Efficient antialiasing techniques such as mipmapping greatly improve the filtering of textures defined over a mesh. A major component of the remaining aliasing occurs along discontinuity edges such as silhouettes, creases, and material boundaries. Framebuffer supersampling is a simple remedy, but 2x2 supersampling leaves behind significant temporal artifacts, while greater supersampling demands even more fill-rate and memory. We present an alternative that focuses effort on discontinuity edges by overdrawing such edges as antialiased lines. Although the idea is simple, several subtleties arise. Visible silhouette edges must be detected efficiently. Discontinuity edges need consistent orientations. They must be blended as they approach the silhouette to avoid popping. Unfortunately, edge blending results in blurriness. Our technique balances these two competing objectives of temporal smoothness and spatial sharpness. Finally, the best results are obtained when discontinuity edges are sorted by depth. Our approach proves surprisingly effective at reducing temporal artifacts commonly referred to as "crawling jaggies," with little added cost.Engineering and Applied Science

    Hardware-accelerated interactive data visualization for neuroscience in Python.

    Get PDF
    Large datasets are becoming more and more common in science, particularly in neuroscience where experimental techniques are rapidly evolving. Obtaining interpretable results from raw data can sometimes be done automatically; however, there are numerous situations where there is a need, at all processing stages, to visualize the data in an interactive way. This enables the scientist to gain intuition, discover unexpected patterns, and find guidance about subsequent analysis steps. Existing visualization tools mostly focus on static publication-quality figures and do not support interactive visualization of large datasets. While working on Python software for visualization of neurophysiological data, we developed techniques to leverage the computational power of modern graphics cards for high-performance interactive data visualization. We were able to achieve very high performance despite the interpreted and dynamic nature of Python, by using state-of-the-art, fast libraries such as NumPy, PyOpenGL, and PyTables. We present applications of these methods to visualization of neurophysiological data. We believe our tools will be useful in a broad range of domains, in neuroscience and beyond, where there is an increasing need for scalable and fast interactive visualization

    Optimization techniques for computationally expensive rendering algorithms

    Get PDF
    Realistic rendering in computer graphics simulates the interactions of light and surfaces. While many accurate models for surface reflection and lighting, including solid surfaces and participating media have been described; most of them rely on intensive computation. Common practices such as adding constraints and assumptions can increase performance. However, they may compromise the quality of the resulting images or the variety of phenomena that can be accurately represented. In this thesis, we will focus on rendering methods that require high amounts of computational resources. Our intention is to consider several conceptually different approaches capable of reducing these requirements with only limited implications in the quality of the results. The first part of this work will study rendering of time-­¿varying participating media. Examples of this type of matter are smoke, optically thick gases and any material that, unlike the vacuum, scatters and absorbs the light that travels through it. We will focus on a subset of algorithms that approximate realistic illumination using images of real world scenes. Starting from the traditional ray marching algorithm, we will suggest and implement different optimizations that will allow performing the computation at interactive frame rates. This thesis will also analyze two different aspects of the generation of anti-­¿aliased images. One targeted to the rendering of screen-­¿space anti-­¿aliased images and the reduction of the artifacts generated in rasterized lines and edges. We expect to describe an implementation that, working as a post process, it is efficient enough to be added to existing rendering pipelines with reduced performance impact. A third method will take advantage of the limitations of the human visual system (HVS) to reduce the resources required to render temporally antialiased images. While film and digital cameras naturally produce motion blur, rendering pipelines need to explicitly simulate it. This process is known to be one of the most important burdens for every rendering pipeline. Motivated by this, we plan to run a series of psychophysical experiments targeted at identifying groups of motion-­¿blurred images that are perceptually equivalent. A possible outcome is the proposal of criteria that may lead to reductions of the rendering budgets

    Progressive refinement rendering of implicit surfaces

    Get PDF
    The visualisation of implicit surfaces can be an inefficient task when such surfaces are complex and highly detailed. Visualising a surface by first converting it to a polygon mesh may lead to an excessive polygon count. Visualising a surface by direct ray casting is often a slow procedure. In this paper we present a progressive refinement renderer for implicit surfaces that are Lipschitz continuous. The renderer first displays a low resolution estimate of what the final image is going to be and, as the computation progresses, increases the quality of this estimate at an interactive frame rate. This renderer provides a quick previewing facility that significantly reduces the design cycle of a new and complex implicit surface. The renderer is also capable of completing an image faster than a conventional implicit surface rendering algorithm based on ray casting

    Vector Graphics for Real-time 3D Rendering

    Get PDF
    Algorithms are presented that enable the use of vector graphics representations of images in texture maps for 3D real time rendering. Vector graphics images are resolution independent and can be zoomed arbitrarily without losing detail or crispness. Many important types of images, including text and other symbolic information, are best represented in vector form. Vector graphics textures can also be used as transparency mattes to augment geometric detail in models via trim curves. Spline curves are used to represent boundaries around regions in standard vector graphics representations, such as PDF and SVG. Antialiased rendering of such content can be obtained by thresholding implicit representations of these curves. The distance function is an especially useful implicit representation. Accurate distance function computations would also allow the implementation of special effects such as embossing. Unfortunately, computing the true distance to higher order spline curves is too expensive for real time rendering. Therefore, normally either the distance is approximated by normalizing some other implicit representation or the spline curves are approximated with simpler primitives. In this thesis, three methods for rendering vector graphics textures in real time are introduced, based on various approximations of the distance computation. The first and simplest approach to the distance computation approximates curves with line segments. Unfortunately, approximation with line segments gives only C0 continuity. In order to improve smoothness, spline curves can also be approximated with circular arcs. This approximation has C1 continuity and computing the distance to a circular arc is only slightly more expensive than computing the distance to a line segment. Finally an iterative algorithm is discussed that has good performance in practice and can compute the distance to any parametrically differentiable curve (including polynomial splines of any order) robustly. This algorithm is demonstrated in the context of a system capable of real-time rendering of SVG content in a texture map on a GPU. Data structures and acceleration algorithms in the context of massively parallel GPU architectures are also discussed. These data structures and acceleration structures allow arbitrary vector content (with space-variant complexity, and overlapping regions) to be represented in a random-access texture

    Pixelating Vector Art

    Get PDF
    Pixel art is a popular style of digital art often found in video games. It is typically characterized by its low resolution and use of limited colour palettes. Pixel art is created manually with little automation because it requires attention to pixel-level details. Working with individual pixels is a challenging and abstract task, whereas manipulating higher-level objects in vector graphics is much more intuitive. However, it is difficult to bridge this gap because although many rasterization algorithms exist, they are not well-suited for the particular needs of pixel artists, particularly at low resolutions. In this thesis, we introduce a class of rasterization algorithms called pixelation that is tailored to pixel art needs. We describe how our algorithm suppresses artifacts when pixelating vector paths and preserves shape-level features when pixelating geometric primitives. We also developed methods inspired by pixel art for drawing lines and angles more effectively at low resolutions. We compared our results to rasterization algorithms, rasterizers used in commercial software, and human subjects---both amateurs and pixel artists. Through formal analyses of our user study studies and a close collaboration with professional pixel artists, we showed that, in general, our pixelation algorithms produce more visually appealing results than na\"{i}ve rasterization algorithms do

    Fast reliable interrogation of procedurally defined implicit surfaces using extended revised affine arithmetic.

    Get PDF
    Techniques based on interval and previous termaffine arithmetic next term and their modifications are shown to provide previous term reliable next term function range evaluation for the purposes of previous termsurface interrogation.next term In this paper we present a technique for the previous termreliable interrogation of implicit surfacesnext term using a modification of previous termaffine arithmeticnext term called previous term revised affine arithmetic.next term We extend the range of functions presented in previous termrevised affine arithmeticnext term by introducing previous termaffinenext term operations for arbitrary functions such as set-theoretic operations with R-functions, blending and conditional operators. The obtained previous termaffinenext term forms of arbitrary functions provide previous termfasternext term and tighter function range evaluation. Several case studies for operations using previous termaffinenext term forms are presented. The proposed techniques for previous termsurface interrogationnext term are tested using ray-previous termsurfacenext term intersection for ray-tracing and spatial cell enumeration for polygonisation. These applications with our extensions provide previous termfast and reliablenext term rendering of a wide range of arbitrary previous termprocedurally defined implicit surfacesnext term (including polynomial previous termsurfaces,next term constructive solids, pseudo-random objects, previous termprocedurally definednext term microstructures, and others). We compare the function range evaluation technique based on previous termextended revised affine arithmeticnext term with other previous termreliablenext term techniques based on interval and previous termaffine arithmeticnext term to show that our technique provides the previous termfastestnext term and tightest function range evaluation for previous termfast and reliable interrogation of procedurally defined implicit surfaces.next term Research Highlights The main contributions of this paper are as follows. ► The widening of the scope of previous termreliablenext term ray-tracing and spatial enumeration algorithms for previous termsurfacesnext term ranging from algebraic previous termsurfaces (definednext term by polynomials) to general previous termimplicit surfaces (definednext term by function evaluation procedures involving both previous termaffinenext term and non-previous termaffinenext term operations based on previous termrevised affine arithmetic)next term. ► The introduction of a technique for representing procedural models using special previous termaffinenext term forms (illustrated by case studies of previous termaffinenext term forms for set-theoretic operations in the form of R-functions, blending operations and conditional operations). ► The detailed derivation of special previous termaffinenext term forms for arbitrary operators
    corecore