
Fast Reliable Interrogation of Procedurally Defined Implicit Surfaces Using Extended

Revised Affine Arithmetic

Oleg Fryazinov, Alexander Pasko, Peter Comninos

The National Centre for Computer Animation, Bournemouth University, UK

Abstract

Techniques based on Interval and Affine Arithmetic and their modifications are shown to provide reliable function range evaluation

for the purposes of surface interrogation. In this paper we present a technique for the reliable interrogation of implicit surfaces using

a modification of Affine Arithmetic called Revised Affine Arithmetic. We extend the range of functions presented in Revised Affine

Arithmetic by introducing affine operations for arbitrary functions such as set-theoretic operations with R-functions, blending and

conditional operators. The obtained affine forms of arbitrary functions provide faster and tighter function range evaluation. Several

case studies for operations using affine forms are presented. The proposed techniques for surface interrogation are tested using ray-

surface intersection for ray-tracing and spatial cell enumeration for polygonization. These applications with our extensions provide

fast and reliable rendering of a wide range of arbitrary procedurally defined implicit surfaces (including polynomial surfaces,

constructive solids, pseudo-random objects, procedurally defined microstructures, and others). We compare the function range

evaluation technique based on Extended Revised Affine Arithmetic with other reliable techniques based on Interval and Affine

Arithmetic to show that our technique provides the fastest and tightest function range evaluation for fast and reliable interrogation

of procedurally defined implicit surfaces.

Keywords: Ray Tracing, Spatial Enumeration, Implicit Surfaces, Function Representation, Revised Affine Arithmetic, Affine

Forms

1. Introduction

In recent years, implicit surfaces (isosurfaces of trivariate

real functions) have proved to be a powerful and simple solution

to some complex problems in the area of modelling and anima-

tion. For example, implicit surfaces provide solutions for sur-

face reconstruction from scattered points and for fluid simula-

tion. Several operations, such as sweeping, metamorphosis and

offsetting can be implemented quite easily with implicit models

- unlike traditional boundary-representation models. However,

modelling with the whole range of implicit surfaces is still a

complex task because interactive rendering of arbitrary implicit

surfaces is still an open problem, which has recently become

of growing interest to researchers in the field [1][2][3]. Cur-

rently, there are two ways to render an implicit model: by the

generation of a polygonal mesh and by direct rendering using

ray-tracing or beam-tracing. Polygonization is a widely used

technique, but in many cases, when the model has sharp or thin

features, large numbers of small-sized disjoint elements or in-

ternal microstructures, the generation of an appropriate polyg-

onal mesh takes a long time and requires a large amount of

memory. Direct rendering of implicit surfaces using ray-casting

and ray-tracing is a more promising technique for high-quality

rendering and for rendering animated implicit surfaces. Addi-

tionally, instead of ray-tracing beam-tracing [4] can be used for

rendering implicit surfaces with features smaller than a pixel in

size. However, due to the large number of ray-surface intersec-

tion calls the main disadvantage of direct rendering is its slow

speed. With recent developments in hardware the problem of

speed becomes less critical, but not all together insignificant.

Thus, techniques for speeding up the rendering process remain

of great interest.

The other key point in high-quality rendering of implicit

surfaces is reliability, i.e.: it is essential that in the case of ray

tracing, no roots are missed in the ray-implicit-surface inter-

sections and in the case of polygonization, no surface features

are missed. Many techniques for rendering implicit surfaces

have been developed. However, the majority of these tech-

niques have disadvantages, either because they work with a

small range of implicit surfaces (for instance those defined only

by polynomials) or because they are unreliable. For example,

classical approximate techniques, such as ray marching [5] for

ray-tracing and marching cubes [6] for polygonization, are easy

to implement and fast, but can miss sharp features and small

components of the surfaces. Techniques based on interval anal-

ysis and other reliable numerical computations have recently

been applied to the ray-tracing and polygonization of implicit

surfaces. However, methods based on classical Interval Arith-

metic are slow because of the interval overestimation.

The problem considered in this paper is that of finding a

technique for the reliable interrogation of general implicit sur-

faces in ray-surface intersection in ray-tracing and for spatial

cell enumeration in the polygonization process. This technique

should have the following properties:

1. Its procedure should be reliable with no roots missed in

Preprint submitted to Computers & Graphics July 2, 2010

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Bournemouth University Research Online

https://core.ac.uk/display/4899122?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ray-tracing and no volumes including a surface missed in

spatial enumeration.

2. A wide range of implicit models should be supported –

meaning that the algorithm should be able to work with

procedurally defined as well as with algebraic models.

3. The procedure should be fast and suitable for a GPU im-

plementation for interactive rendering.

In this paper we propose to use Revised Affine Arithmetic

(RevAA) as a fast and reliable technique for calculating the

range of a function for a given interval and hence for the core

of the interrogation procedure. Also we extend Affine Arith-

metic by affine forms related to the procedural definition of the

model in order to decrease the number of computations while

evaluating the interval for the function and hence to decrease

the rendering time. The main contributions of this paper are as

follows.

1. The widening of the scope of reliable ray-tracing and spa-

tial enumeration algorithms for surfaces ranging from al-

gebraic surfaces (defined by polynomials) to general im-

plicit surfaces (defined by function evaluation procedures

involving both affine and non-affine operations based on

Revised Affine Arithmetic).

2. The introduction of a technique for representing procedu-

ral models using special affine forms (illustrated by case

studies of affine forms for set-theoretic operations in the

form of R-functions, blending operations and conditional

operations).

3. The detailed derivation of special affine forms for arbi-

trary operators.

2. Related Work

The rendering of implicit surfaces is a well-researched area.

A good sample of such techniques is presented in [7] and more

recently in [8]. Most of these techniques however are approxi-

mate and can miss small surface features, but on the other hand,

they are suitable for all types of implicit surfaces. Additionally,

several techniques were introduced for particular types of im-

plicit surfaces producing improvements not only in speed but

also in reliability. Thus, in [9] a distance property is needed for

the ray-tracing procedure, while in [10] blobs, metaballs and

convolution surfaces are the only types of implicit surfaces that

can be rendered fast.

Other ways of increasing the speed of ray-tracing include

the use of specialised hardware, for example graphical proces-

sors (GPUs). Ray-tracing of general implicit surfaces on the

GPU, using approximate methods, was performed in [11] and

in [1]. In [2] the GPU was used for fast polygonization of im-

plicit surfaces.

Reliable computational techniques based on Interval Arith-

metic have been known for a long time. However, most of

the literature relates to fields such as global optimisation rather

than computer graphics. Applications of Interval Arithmetic in

computer graphics were discussed in [12] and [13], and Affine

Arithmetic was used for ray-tracing of implicit surfaces in [14].

A good comparison of different interval techniques can be found

in [15], however in this paper the type of the implicit mod-

els examined is limited to those given in the polynomial form.

Some of the interval techniques can be applied for general pro-

cedurally defined implicit models, such as Interval Arithmetic

in the Centred form [16], however, in this case the general form

should be used, such as the mean-value form that is less optimal

than the one used for polynomial implicit models. In [17] Re-

duced Affine Arithmetic was introduced for the purposes of ren-

dering stochastic implicit models. However, the applicability of

Reduced Affine Arithmetic to general implicit models cannot

currently be verified, as the authors of the aforementioned paper

did not provide sufficient information on operations other than

those of multiplication and affine operations. Interval Arith-

metic and Reduced Affine Arithmetic are used for fast render-

ing of implicit surfaces on the GPU in [3]. A more detailed

comparison of these techniques with the one proposed here can

be found in the ”Results” section of this paper. Interval Arith-

metic and Affine Arithmetic were also used for polygonization

purposes. Thus, in [18] Interval Arithmetic is used for implicit

surface meshing, and in [19] spatial enumeration using Affine

Arithmetic is discussed. Also, in [20] a technique derived from

Affine Arithmetic was used for faster spatial enumeration rather

than classical Affine Arithmetic.

In this paper, we use Revised Affine Arithmetic (RevAA)

[21], which was introduced recently for the purposes of con-

straint propagation.

3. Background

3.1. Procedurally defined implicit surfaces

A zero level set or an isosurface of a trivariate real function

f of a point with coordinates (x, y, z) is traditionally called an

implicit surface and is defined as f (x, y, z) = 0. An isosurface

can also be considered to be the boundary of a solid (three-

dimensional manifold) defined by the inequality f (x, y, z) ≥ 0.

There are many different ways to specify the function f (x, y, z).

The simplest form is that of an algebraic implicit surface de-

fined by a polynomial function. Most of the extant work on

reliable ray-tracing concentrates solely on algebraic surfaces.

More complex forms involve exponential, square root, trigono-

metric and other non-linear functions. Here we deal with the

most general form of procedurally defined implicit surfaces,

where the function f is evaluated by some procedure involv-

ing all kinds of non-linear functions as well as loops and con-

ditional operations. This allows us to cover skeleton-based im-

plicit surfaces [7], Constructive Solid Geometry (CSG) objects

defined by nested R-functions [22], solid noise [23][24] and

other complex objects.

3.2. Affine Arithmetic

Affine Arithmetic is a technique for performing computa-

tions on uncertain numerical values. The main idea of Affine

Arithmetic is the calculation of an uncertain value (function)

based on other uncertain values (arguments). Initially this model

was introduced for self-validated numerical computations as

2

an alternative to Interval Analysis – in some literature Affine

Arithmetic is still considered as a modification of general In-

terval Arithmetic – and currently it is used in many different

areas of computer science [25]. By keeping track of the errors

for each computed quantity, Affine Arithmetic provides gener-

ally much tighter bounds for computed quantities compared to

classical Interval Arithmetic, especially for complicated expres-

sions. Uncertain values in Affine Arithmetic are represented by

affine forms, i.e. polynomials of the form:

x̂ = x0 + x1ε1 + x2ε2 + ... + xnεn

where xi are known real coefficients and εi are noise symbols,

i.e. symbolic variables whose values are assumed to lie in the

interval εi ∈ [−1, 1].

In Affine Arithmetic, formula evaluation is performed by re-

placing operations on real quantities by their affine forms. Sim-

ilarly to Interval Arithmetic, the inclusion property is applied to

Affine Arithmetic, i.e. for any operation ⊗,

A ⊗ B ⊃ {a ⊗ b, a ∈ A, b ∈ B}

where a and b are real values and A and B are uncertain values

in affine form.

All operations on affine forms can be divided into affine (ex-

act) and non-affine (approximate) operations. An affine opera-

tion is a function that can be represented by the linear combi-

nation of the noise symbols of its arguments. Non-affine op-

erations can not be performed over the linear combination of

the noise symbols. In this case an approximate affine function

is used and a new noise symbol is added to the affine form to

represent the difference between the non-affine function and its

approximation. Additional details regarding the construction of

both affine and non-affine operations can be found in the litera-

ture related to Affine Arithmetic [25] [26].

3.3. Approximation techniques for affine forms

One of the useful properties of Affine Arithmetic is that any

non-affine operation can be represented in the same way. In the

general case any operation can be represented in an affine form:

x̂ ⊗ ŷ = αx̂ + βŷ + ζ ± δ

where the value of the new noise symbol is represented by δ.

Here and in subsequent formulations the symbols α, β and ζ

represent coefficients used in the literature on Affine Arithmetic

to describe the general affine form.

In [25], different approximation techniques are discussed

for the affine forms of several functions: Optimal (Chebyshev),

Min-range and Interval approximation. All these techniques

assume that the function is at least bounded on the argument

interval.

3.3.1. Optimal approximation

Optimal approximation of the functions in Affine Arithmetic

is based on the Chebyshev approximation theory. Given that a

function f is bounded and twice differentiable on some non-

empty interval I = [a, b] and given that its second derivative f ′′

(a) (b)

(c)

Figure 1: Approximation techniques for affine forms: a) Optimal (Chebyshev)

b) Min-range c) Interval

does not change sign inside I, the optimal approximation can

be obtained as follows:

• α = f (b)− f (a)

b−a

• ζ is obtained from the equation αu + ζ =
f (u)+r(u)

2
, where

u is a point inside I where f ′(u) = α and r(x) is the line

passing through the points (a, f (a)) and (b, f (b))

• δ = | f (u)−r(u)|
2

Thus, the optimal approximation can be found for any function

provided that the equation f ′(u) = α can be solved for an ar-

bitrary α in I. From the geometric point of view the optimal

approximation is a parallelogram with two vertical sides that

encloses the graph of the function f in the interval I and has the

minimal possible vertical extent (see Fig. 1a).

Unlike unary functions, optimal approximation can not be

easily obtained for functions with more than one arguments be-

cause of the problems of fitting a plane to boundary points and

of searching for interior points using partial derivatives.

3.3.2. Min-range approximation

The affine approximation can be constructed if we choose

the coefficients α and ζ in such a way that the joint range P of

the forms x̂ and ẑ = αx̂ + ζ ± δ has the same vertical extent as

the piece of the graph of f = f (x) on the interval [a, b] (see

Fig. 1b). A possible way to obtain such an approximation is

the following:

• α is the tangent to the graph in p, where p = a if f ′′(x) ≥
0 on [a, b] or p = b otherwise.

• ζ is obtained from the equation αu + ζ =
f (u)+r(u)

2
, where

u = b in case of p = a or u = a otherwise and r(x) =

α(x − p) + f (p)

3

• δ = | f (u)−r(u)|
2

.

This approximation has a wider vertical extent than the op-

timal approximation, however the calculation of this approxi-

mation is easier.

3.3.3. Interval approximation

For the case where we can obtain the interval (fmin, fmax)

of function f , the affine form can be constructed by using this

interval as follows:

• α = 0

• ζ = fmin+ fmax

2

• δ = fmax− fmin

2

Geometrically speaking, the interval approximation is the rect-

angle [a, b] × [fmin, fmax].

Compared with other affine approximations, the error δ is

maximal and therefore the overestimation for the interval ap-

proximation is wider (see Fig. 1c). However, in many cases

the interval approximation is computationally less expensive.

Thus in algorithms where speed is as important as the quality

of the approximation, the interval approximation technique can

be used.

3.4. Revised Affine Arithmetic

Generally pure AA is both computationally and memory

expensive, especially for complex expressions. Thus for al-

gorithms where the reduction of computational complexity is

equally important as the quality of the computational result, it

is better to use optimised forms of AA. In [27], several reduced

affine forms were introduced to reduce the number of computa-

tions in Affine Arithmetic by accumulating errors. The Affine

Form 1 (AF1) is the simplest one and represents the uncertain

quantity as:

x̂ = x0 +

n
∑

i=1

xiεi + xn+1εn+1

The noise symbols ε1, ..., εn represent the errors of the initial

arguments. The last noise symbol represents all the errors after

the non-affine operations.

Revised Affine Arithmetic is an extension of AF1 and was

introduced by Vu et al. [21] for the purposes of numerical con-

straint propagation. As for standard AA, RevAA has an inclu-

sion property. The revised affine form is similar to AF1:

x̂ = x0 +

n
∑

i=1

xiεi + ex[−1, 1], ex ≥ 0

The general binary affine operation is defined as:

f (x̂, ŷ) = (αx0+βy0+ζ)+
n
∑

i=1

(αxi + βyi)εi+(|α|ex+|β|ey)[−1, 1]

where α, β and ζ can be taken from the affine approximation

of the function f . The affine operation with one operand or

more than two operands can be defined in the same way.

RevAA uses a special tight form for the multiplication op-

eration:

x̂ ∗ ŷ = (x0y0 +
1
2

n
∑

i=1

xiyi) +
n
∑

i=1

(x0yi + xiy0)εi + exy[−1, 1], where

exy = exey+ ey(|x0|+u)+ ex(|y0|+ v)+uv− 1
2

n
∑

i=1

|xiyi|, u =
n
∑

i=1

|xi|,

v =
n
∑

i=1

|yi|.
Unlike pure AA, we do not need to store noise symbols that

are not depend on the input values, so they are accumulated in

the last noise symbol. Therefore the length of the revised affine

form n depends on the number of the uncertain input values or,

in other words, on the number of independent input variables.

In our technique we use n = 1 for ray-tracing purposes, as we

have only one uncertain parameter for the ray and n = 3 for

spatial enumeration in 3-dimensional space, as in this case we

have three independent uncertain input values (one for each co-

ordinate).

4. Extending Affine Arithmetic with affine operations for

arbitrary functions

The core of the interrogation methods for implicit surfaces

is the inclusion test for the surface on the given interval of its

arguments. For the inclusion test we use the inclusion property

of Revised Affine Arithmetic, in other words we should create

a revised affine form for the procedure defining the surface.

The basic revised affine form for the function is obtained

from the procedural definition of the function by replacing all

the operations on real numbers by operations on the revised

affine forms of the coordinate variables: x̂, ŷ and ẑ. The affine

form derived in this way can be called a natural affine exten-

sion. Non-arithmetic operations such as trigonometric, loga-

rithmic and reciprocal operations, can be calculated by using

the general affine form applied to RevAA. The formulation for

the coefficients of the general affine form and most of the basic

non-arithmetic operations can be found in [25].

We noted above that any non-affine operation can be pre-

sented by using the general affine form. This leads to the idea

that not only mathematical operations can be represented by

affine forms, but also combinations of mathematical operations.

By testing several different affine forms for procedurally de-

fined surfaces, we found that the affine form leads to better

speed and quality characteristics of the interrogation process

in the following cases:

• When some complex function is repeated several times

in the defining procedure; in other words when we have

some repeated operation inside an definition.

• When the defining function is bounded on a given argu-

ment interval, but the natural affine extension of the defin-

ing function has infinite bound(s) because of the discon-

tinuity of one of the functions included in the defining

function.

• When conditional or other operators not supported by

Affine Arithmetic are used.

4

4.1. Overview of the generation of the affine forms for opera-

tions

Although in the general case it is not possible to construct

the general affine form for an arbitrary operation, it is possible

to do so in many particular cases. Note that the performance

of the general affine form for each operation is not guaran-

teed to be better than its natural affine extension and should be

considered separately in each case. In this section we present

some general observations regarding the construction of general

affine forms for operations.

Consider an operation over n arguments as a function of the

form f (x1, x2, ..., xn). According to [25] the general affine form

on the argument interval I can be constructed in these cases:

1. The function is bounded and continuous in I. In this case

at least the interval approximation is possible.

2. The above condition is satisfied, the function is twice dif-

ferentiable and the sign of its second derivative does not

change in I. In this case at least the min-range approxi-

mation is possible.

3. The above condition is satisfied and there is a way to eas-

ily solve the equation f ′(u) = α, where α is some known

coefficient and u is an unknown point in I. In this case

the optimal approximation is possible.

In practice, even the first condition can not be satisfied for

complex expressions for an arbitrary I. In this case, the natural

affine extension should be used. Moreover, in the case where

some approximation is possible to construct for an operation,

this approximation can be less effective from the point of view

of the performance of the ray-tracing or enumeration subdivi-

sion algorithm. Therefore each function should be tested sepa-

rately and used only in the case where the performance can be

improved by using this approximation.

Below we present several case studies of deriving affine

forms for non-affine operators. First, we present a case study

for operations by deriving the affine form for CSG operations

using R-functions. For a function with an argument disconti-

nuity, we present the affine form for the displacement in the

blending operation and subsequently, as a case study for the

conditional operator, we present a simple conditional function

used in one of the test models.

4.2. Case study 1: CSG operations using R-functions

CSG operations are common in implicit surfaces converted

from CSG models or created in a constructive way. Here we

present the formulation for set-theoretic (CSG) operations us-

ing R-functions [22] as follows:

Runi(f1, f2) = f1 + f2 +

√

f 2
1
+ f 2

2

Rint(f1, f2) = f1 + f2 −
√

f 2
1
+ f 2

2

where Runi is the function for the set-theoretic union and Rint is

the function for the set-theoretic intersection. These functions

have C1 continuity on the whole domain except at the points

where both arguments are equal to zero.

(a)

(b)

(c)

Figure 2: Case studies considered in this paper: a) Construction of an affine

form for an intersection operation in a form of R-function, green denotes the

tangent plane to the base point, magenta denotes a plane parallel to the tangent

plane; b) 3D view of a displacement function in the blending operations us-

ing R-functions; c) Construction of an affine approximation for the conditional

function;

5

Optimal and min-range approximations can be obtained for

these functions, because all the requirements are satisfied, how-

ever the optimal approximation for these particular functions

is computationally expensive compared to the natural exten-

sion of these functions in RevAA. We propose to use the min-

range approximation for these functions. By analogy with the

construction of an approximation for the function of one vari-

able discussed above, we construct the approximation for the

R-function as follows:

• Construct the surface z = R(f1, f2) where R is an appro-

priate R-function.

• Find the tangent plane for one of the corner points for the

patch of the surface on the given argument interval.

• Find the plane parallel to the tangent plane such that the

patch lies completely inside these two planes and the dis-

tance between these planes is minimal.

• Find the coefficients for the affine form from the equa-

tions of these planes.

In Fig. 2a we show a surface plot of the R-function for

the intersection operation with the tangent planes. It should

be apparent that the first partial derivatives for the R-functions

have the same sign on the whole domain except at the point

(0,0) where a C1 discontinuity is present. This property means

that on the argument interval [(f min
1
, f min

2
), (f max

1
, f max

2
)] the R-

function has a minimum at the point R(f min
1
, f min

2
) and a maxi-

mum at R(f max
1
, f max

2
).

Also if we compare the slope of the tangent plane at the

minimum and maximum points, it is apparent that the slope

of the tangent plane is smaller at the minimum point for the

union operation and at the maximum point for the intersection

operation. We call this point the base point. Note that the base

point can not be the point (0,0), in which case we have to select

the opposite point as the base point.

Thus, our approximation in the revised affine form is con-

structed according to the following rules:

• α = ∂R
∂ f1

, β = ∂R
∂ f2

, where partial derivatives are taken at

the base point. In the general case α = 1 +
2 f1

2
√

f 2
1
+ f 2

2

, β =

1+
2 f2

2
√

f 2
1
+ f 2

2

for the union operation, and α = 1− 2 f1

2
√

f 2
1
+ f 2

2

,

β = 1 − 2 f2

2
√

f 2
1
+ f 2

2

for the intersection operation.

• We calculate the distance to the other corner points of the

surface patch using the equation of the plane R(f1, f2) =

α f1 + β f2 + d. Note that for the base point d = 0, a

maximal distance dmax between the three points is taken.

• ζ and δ can be obtained from dmax. For the union opera-

tion ζ = d
2

and for the intersection operation ζ = − d
2

and

δ = d
2
.

4.3. Case study 2: Blending operations using R-functions

In implicit surface modelling, set-theoretic operations with

blending [28] can be defined as follows:

B(f1, f2) = R(f1, f2) +
a0

1 +
f 2
1

a2
1

+
f 2
2

a2
2

Where, R(f1, f2) is an R-function representing some set-theoretic

operation. Given that the summation is an affine operation and

given that we have an affine approximation for the set-theoretic

operations presented above, for blending operations we have to

construct an affine form for the following displacement func-

tion:

d(f1, f2) =
a0

1 +
f 2
1

a2
1

+
f 2
2

a2
2

A surface plot of this function can be seen in Fig. 2b. The natu-

ral affine extension of this function is not optimal because of the

division operation which can cause an infinite function interval,

in the case where the argument interval includes zero. From the

definition of the function d it is apparent that the denominator

should always be positive, however this does not apply in the

general case for Affine Arithmetic, because after the non-affine

multiplication, the interval for the denominator can include zero

because of the overestimation.

The function d does not satisfy the requirements for optimal

and min-range approximations on the whole range, because the

signs of the second order partial derivatives are changing. Thus,

the only approximation that we can use is the interval approxi-

mation. Given that a0 > 0, it should be apparent that the func-

tion d(f1, f2) has a global maximum at the point [0, 0] and a

local maximum at the lines [f1, 0] and [0, f2]. The affine ap-

proximation is constructed according to the following rules:

• dmin = in f (d) taken at the four corner points.

• dmax = d =



















|a0|, 0 ∈ f̂1and0 ∈ f̂2
suplocal(d), 0 ∈ f̂1or0 ∈ f̂2

supcorner(d), otherwise

• α = 0, ζ = dmin+dmax

2
, δ = dmax−dmin

2

Here suplocal denotes the supremum taken at the local maxi-

mum point and supcorner denotes the supremum taken at the

four corner points.

4.4. Case study 3: Conditional operators

As a simple example of a conditional operator consider the

following condition:

y =

{

x, x > 0

0, x ≤ 0

Replacing the real variables by the affine forms, we obtain the

third line in the condition:

ŷ =



















x̂, x > 0,∀x ∈ x̂

0, x ≤ 0,∀x ∈ x̂

αx̂ + ζ ± δ, otherwise

6

In other words, for affine forms that include zero in their inter-

val, we have to obtain an affine approximation for the condi-

tional function. It should be apparent that the function y = f (x)

is bounded on the whole domain and has a special point (0,0).

We construct the affine approximation in almost the same way

the optimal approximation was constructed (see Fig. 2c):

• α = f (xmax)− f (xmin

xmax−xmin

• ζ is obtained from the equation ζ =
r(u)

2
, where r(x) =

f (p) − αp, p can be either xmin or xmax. Note that this

equation is derived from the equation for the optimal ap-

proximation with u = 0, f (u) = 0.

• δ = | f (p)−αp|
2

This technique can not be applied to an arbitrary condition

because of the complexity of the construction of the affine ap-

proximation (in the case of a complex condition). For example,

the condition:

y =

{

f2, f1 > 0

f3, f1 ≤ 0

requires us to construct an affine approximation of a ternary

function (as long as f1, f2 and f3 are non-constant variables),

which is a very complex task. However, in the case of sim-

ple conditions, the affine approximation can be very useful for

functions with conditional operators.

5. Interrogation of implicit surfaces with Extended Revised

Affine Arithmetic

In this section we present algorithms for fast interrogation

of implicit surfaces in ray-surface intersection for ray-tracing

and for spatial enumeration for polygonization. The main part

of these algorithms is the function range computation for the

zero roots calculation (in the case of the ray-surface intersection

algorithm) and for testing a space block (cell) intersection with

the surface (in the case of the spatial enumeration). In both

examples we show how our extended RevAA can be used.

5.1. Ray-surface intersection for ray-tracing

Our algorithm is based on the ray-surface intersection tech-

nique for implicit surfaces that uses interval analysis, which

originally appeared in [12] and later in many papers related

to interval-based methods applied to the rendering of implicit

curves and surfaces. The ray-surface intersection procedure is

shown in Algorithm 1.

The basic idea of the algorithm is quite simple: we calculate

the range of the function for the given argument interval using

extended RevAA, we reject the interval if the range does not

include the zero value, otherwise we subdivide the interval into

two subintervals by using dichotomy and we repeat the proce-

dure for both subintervals. An example of the affine form of

the function after the dichotomy is shown in Fig. 3. Note that

in the case when only the first root is needed (for example, for

primary rays), we can exit from the procedure earlier if we have

Algorithm 1 Ray-surface intersection

Procedure: bool intersect(tmin, tmax)

Calculate the affine form F for the function on the interval

[tmin, tmax]

Get the range of the function from the affine form

if the range of the function does not include a 0 value then

return FALSE (no roots in this interval);

end if

Calculate the argument estimation from the affine form:

t′min, t
′
max

Find the pruned argument range:

tmin = max(tmin, t
′
min);

tmax = min(tmax, t
′
max);

if the length of the argument interval is less than some pre-

defined threshold then

Store the midpoint of the interval as the root;

return TRUE;

end if

Calculate the midpoint of the argument range:

tmid = (tmin + tmax)/2;

Repeat the procedure for the two subintervals:

bool b1 = intersect(tmin, tmid);

if b1 is TRUE and only the first root is needed then

return TRUE;

end if

bool b2 = intersect(tmid, tmax);

if b2 is TRUE then

return TRUE;

end if

return FALSE;

7

(a)

(b)

Figure 3: a) The revised affine form of the function on the interval [tmin , tmax]

b) The revised affine form of the function on the two subintervals after the

dichotomy.

Figure 4: Pruning of the interval [tmin, tmax] to the interval [t′min, t
′
max] after the

evaluation of the revised affine form for the function.

found a root in the first subinterval after the recursive procedure

call.

As noted above, the most convenient way to create the re-

vised affine form applicable to ray-tracing is to use n = 1. In

this case e1 denotes the error along the ray. The revised affine

form for the function is obtained from the procedural definition

of the function by replacing all the operations on real numbers

by operations on the revised affine forms of the coordinate vari-

ables:

x̂ = x0 + t̂ ∗ dx

ŷ = y0 + t̂ ∗ dy

ẑ = z0 + t̂ ∗ dz

where x0, y0, z0 are the coordinates for the ray origin and dx, dy, dz

are the components for the ray direction vector and are constant

for each ray, and t̂ = (tmin+tmax)/2+((tmax−tmin)/2)ε1 is an affine

form for the argument interval. Non-arithmetic operations, such

as trigonometric, logarithmic and reciprocal operations, can be

calculated by using the general affine form applied to RevAA.

The formulation for the coefficients of the general affine form

and most of the basic non-arithmetic operations can be found

in [25]. Other non-affine operations used in the procedural def-

inition can be extended by the special affine forms discussed

above.

After the affine form computations, we obtain the range of

the function from the affine form f̂ = f0 + f1ε1 ± e f :

fmin = f0 − | f1| − e f

fmax = f0 + | f1| + e f

One of the useful properties of the reduced affine forms, in-

cluding RevAA, is that of argument pruning (a term taken from

the literature of interval slope methods), which means narrow-

ing the argument range in case the root is contained in the inter-

val. In [14] an argument pruning formulation was suggested for

Affine Arithmetic that used condensation and in [17]argument

pruning was suggested for Reduced Affine Arithmetic. In the

latter paper the term interval optimisation was used instead of

8

argument pruning. As the geometric meaning of the revised

affine form is similar to that of the reduced affine form, an anal-

ogous formulation can be used as follows. Given the revised

affine form for the function f̂ = f0 + f1ε1 ± e f for the inter-

val t̂ = t0 + t1ε1, provided that t1 , 0, f1 , 0 and e f , 0,

the interval can be pruned by the points t′min = t0 − t1 f0
f1
± e f

t1
f1

and t′max = t0 − t1 f0
f1
± e f

t1
f1

if these points lie inside the interval

[tmin, tmax] (see Fig. 4).

5.2. Spatial enumeration

The spatial enumeration procedure allows us to find cells

where the surface potentially exist for further processing by

known polygonization algorithms such as the marching cubes

algorithm [7]. The basic algorithm presented here only finds

the cells intersecting with the surface by applying the recursive

subdivision to the given bounding box (argument interval) and

is based on the classical subdivision method described in [29].

Algorithm 2 Spatial enumeration

Procedure: bool isSurfaceExist(x̂, ŷ, ẑ)

Calculate the affine form F for the function with the argu-

ments [x̂, ŷ, ẑ]

Get the range of the function from the affine form

if the range of the function does not include a 0 value then

return FALSE (no surface in this space);

end if

if the size of the node defined by the intervals (x̂, ŷ, ẑ) is

smaller than some predefined threshold then

return TRUE (the surface may exists);

end if

Subdivide x̂, ŷ and ẑ using dichotomy into x̂1, x̂2, ŷ1, ŷ2, ẑ1,

ẑ2.

Construct 8 sub-nodes from all the possible combinations of

x̂1, x̂2, ŷ1, ŷ2, ẑ1, ẑ2.

Recursively call the procedure for each of the sub-nodes.

if all the recursion calls returns FALSE then

return FALSE;

end if

return TRUE;

The basic idea of the algorithm is that of the classical oc-

tree construction - we calculate the range of the function for

the given argument interval using the extended RevAA, reject

the node if the range does not include the zero value, otherwise

subdivide the node into eight sub-nodes and repeat the proce-

dure recursively for each of the sub-nodes while the size of the

sub-node is greater than a pre-defined threshold.

To perform dichotomy in RevAA, we can convert to the in-

tervals and back again. However, as the accumulation error for

coordinate affine variables is 0, the dichotomy of the coordinate

affine variable t̂ = t0 + t1 ∗ ε1 can be performed as:

t̂1 = t0 − t1 ∗ 0.5 + t1 ∗ 0.5 ∗ ε1

t̂1 = t0 + t1 ∗ 0.5 + t1 ∗ 0.5 ∗ ε1

Unlike in ray-tracing, the simplest Revised Affine Form for

this algorithm is the one where n = 3, with the first three noise

symbols in the affine form representing the errors in x, y and

z. As for ray-tracing, the revised affine form for the function

is obtained from its procedural definition by replacing all the

operations on real numbers by operations on the revised affine

forms and by using special affine forms if needed. The function

range can be obtained from the affine form in the same way.

6. Implementation

In this section we present several details of the implemen-

tation of the interrogation process for procedurally defined im-

plicit surfaces. The affine form representation and the repre-

sentation of the function in the revised affine form are also de-

scribed here.

6.1. Affine form representation

As we have stated above, the revised affine form is a poly-

nomial with three terms. Thus, the affine form in the software

implementation can be represented as a three-component vec-

tor, where the first component stands for x0, the second stands

for the noise symbol of the error along the ray and the third rep-

resents the half-length of the accumulating interval. The calcu-

lations in Affine Arithmetic can be performed on these vectors.

Almost all of the arithmetic operations have to be overridden

as only summation in Revised Affine Arithmetic matches the

standard vector summation. For example, the subtraction and

multiplication operations can be implemented as follows:

vec3 ra_subtraction(vec3 x, vec3 y){

vec3 ret;
ret[0] = x[0] - y[0];

ret[1] = x[1] - y[1];
ret[2] = x[2] + y[2];

return ret;
}

vec3 ra_multiplication(vec3 x, vec3 y){
vec3 ret;

ret[0] = x[0]*y[0]+0.5* x[1]*y[1];
ret[1] = x[0]*y[1]+y[0]*x[1];
ret[2] = x[2]*y[2]+

y[2]*(fabs(x[0])+ fabs(x[1]))+
x[2]*(fabs(y[0])+ fabs(y[1])) +

0.5*fabs(x[1]*y[1]);
return ret;

}

Similarly, non-affine operations can be implemented as op-

erations on the three-component vectors. Note that for non-

affine operations we are most likely to use the affine constructor

described above. For example, the square root operation can be

implemented in this way using the optimal approximation de-

scribed in [25]:

vec3 ra_sqrt (vec3 x){

vec2 i = ra_getinterval(x);
if (i[1] < 0) return 0;

if (i[0] < 0) i[0] = 0;
double sq1 = sqrt(i[0]), sq2 = sqrt(i[1]);
// calculate arguments for the revised affine form

double alpha = 1/(sq1+sq2);
double dzeta = (sq1+sq2)/8.0+0.5*sq1*sq2/(sq1+sq2);

double delta = (sq2-sq1)*(sq2 -sq1)/(8.0*(sq1+sq2));
//create the revised affine form

vec3 ret;
ret[0] = alpha*x[0]+dzeta;

9

ret[1] = alpha*x[1];
ret[2] = alpha*x[2]+ delta;

return ret;
}

In the above examples and in our implementation we do

not use rounding control as the errors caused by using floating-

point arithmetic are generally lower than the overestimation for

all the tested models. However, in some cases rounding control

is needed, as for example when defining functions with a large

number of affine operations and relatively small number of non-

affine operations. In these cases, we need to use the versions of

non-affine operations adapted to rigorous computations. Note

that in the case of rigorous computations the speed of compu-

tation decreases because of the larger number of computations.

An example for rigorous version of multiplication and the gen-

eral non-affine operation in Revised Affine Arithmetic can be

found in [21].

6.2. Representation of the function

The ray-tracing algorithm works with objects defined by a

real-valued functions of real-valued arguments. In the same

way this function can be rewritten using the following rules:

• Each variable depending on the input arguments is re-

placed by a variable of the revised affine type, while each

variable not depending on the input arguments and con-

stants is left in the real form.

• If we have affine forms for functions or composition of

functions for the given procedural model, we replace the

code over the affine variables by these forms.

• We ensure that the implementations of the remaining op-

erations are overridden in RevAA.

The returned value of the rewritten function is the range of

the function in the affine form, which is used in the ray-surface

intersection procedure described earlier.

Here we would like to note that in some cases the defining

function needs to be optimised before constructing the affine

form in order to decrease the potential number of computations.

Such optimisation can include the usage of additional variables

for repeating blocks of code containing a large number of non-

affine operations, copy propagation, etc.

7. Results

In our tests we used a modified version of the POV-Ray

ray-tracing software for the ray-tracing tests and a stand-alone

spatial enumeration piece of software for the polygonization

tests. The results were generated on a PC with an Intel Pentium

4 3.20GHz processor and 1Gb of RAM. To compare Revised

Affine Arithmetic with other reliable techniques for uncertain

computations, we used the following libraries:

• For Interval Arithmetic, we used a slightly modified ver-

sion of the freely available C library libia by Jorge Stolfi.

• For Affine Arithmetic, we used the freely available C++

library libaffa.

(a) (b)

(c) (d)

Figure 5: Ray-tracing of algebraic surfaces: a) Bretzel b) Decocube; and non-

algebraic implicit surfaces: c) CSG with blending union and blending intersec-

tion d) Sphere with trimming

• Other libraries were written ab initio based on the above

two libraries.

7.1. Ray-tracing of procedurally defined implicit surfaces

We tested our ray-tracing algorithm on a wide range of pro-

cedurally defined implicit models (see Figs. 5, 6). First, we

compared our procedure with other reliable techniques based on

uncertain computations, the technique based on Interval Arith-

metic described in [3], the technique based on Interval Arith-

metic in the Centred form is based on that described in [15]

(where the mean value form [16] is used), the technique based

on pure Affine Arithmetic described in [14] and the technique

based on Reduced Affine Arithmetic described in [17]. The re-

sults can be found in Table 1.

The results show that other rendering algorithms based on

standard Interval and Affine Arithmetic are significantly slower

than our algorithm which is based on Revised Affine Arith-

metic. The reason for this is that with Interval Arithmetic al-

gorithms there is an overestimation and with Affine Arithmetic

algorithms there is an overestimation as well as a large number

of terms in the polynomial form and thus there is a large number

of arithmetic operations in the affine operation calculations. Re-

duced Affine Arithmetic, as presented in [17] and implemented

in [3], can only be used for algebraic models and proves to be

faster than the Interval and standard Affine Arithmetic for al-

gebraic models, however the overestimation of the function in

10

(a) (b)

(c)

Figure 6: Ray-tracing of procedural implicit surfaces with thin elements or

small disjoint components: a) Sphere with microstructure b) Sphere with pro-

cedural noise c) Procedural hair

Figure 7: Ray tracing of procedural scenes: Virtual Shikki

(a) (b)

Figure 8: Spatial enumeration of the procedural implicit surfaces, voxels inter-

secting the surface are shown for: a) Mitchell surface b) Sphere with trimming.

Reduced Affine Arithmetic is slightly wider than the overesti-

mation range for Revised Affine Arithmetic because of the non-

optimised multiplication operation. Therefore the range of a

function based on Revised Affine Arithmetic is tighter than the

range in all other techniques and hence the speed of the calcula-

tion of the ray-surface intersections is significantly better, espe-

cially for models with a large number of non-affine operations.

Also, we used the special affine forms for the set-theoretic op-

erations in the procedurally defined models. The results show

that the speed of our algorithm increases dramatically in this

case.

The reliability of Revised Affine Arithmetic allows us to test

our technique on several procedurally defined implicit models

with small features or thin surface features. For example, by

using the proposed ray-surface intersection calculation we can

reliably render models with internal microstructures (see Fig.

6a), stochastic procedural models with disjointed components

(see Fig. 6b) and even procedurally-defined hair (see Fig. 6c).

Our ray-tracing technique can be applied to complex scenes

with a number of procedurally defined implicit surfaces. For

example, we show how the functionally defined scene ”Virtual

Shikki” can be rendered using our technique (see Fig. 7). Note

that because of the thin features in the model of this scene ap-

proximate ray-marching techniques and polygonization do not

work well for this scene.

11

Resolution Number of operations IA IAC AA RAA RevAA RevAA*

(pixels) All / Non-affine /Multiplications

Mitchell 1280*1024 19 / 6 / 6 38 26 33 7 6 6

Bretzel 1280*1024 16 / 9 / 9 25 57 86 22 18 18

Decocube 1280*1024 30 / 17 / 17 17 98 226 19 13 13

CSG 640*480 96 / 40 / 32 126 269 129 n/a 18 11

Sphere with trimming 1024*768 142 / 54 / 37 837 2326 2566 n/a 285 83

Sphere with noise 800*600 36 / 11 / 5 17 82 51 n/a 9 9

CSG with blending 640*480 105 / 42 / 32 266 79 72 n/a 31 16

Hair 640*480 88 / 34 / 22 4004 2620 1935 n/a 658 23

Sphere with microstructure 640*480 65 / 33 / 22 1006 3683 1079 n/a 293 12

Virtual Shikki 320*240 822 / 306 / 213 29244 7169 50000+ n/a 390 32

Table 1: Comparison of the ray-tracing procedures for different computational models. IA stands for Interval Arithmetic, IAC for Interval Arithmetic in the Centred

form, AA for Affine Arithmetic, RAA for Reduced Affine Arithmetic, RevAA for Revised Affine Arithmetic and RevAA* for Revised Affine Arithmetic extended

by special non-affine operations. The timings for ray-tracing all the rays are shown in seconds.

7.2. Spatial enumeration

We tested our spatial enumeration algorithm on the same set

of procedurally defined models (see Fig. 8). We compared our

procedure with the spatial enumeration technique based on In-

terval Arithmetic, described in [30], and the technique based

of Affine Arithmetic, described in [19]. The results can be

found in Table 2. It is apparent that for simple polynomial

models spatial enumeration using Revised Affine Arithmetic is

comparable in speed to the enumeration using standard Affine

Arithmetic. This is because of the longer interval length of the

Revised Affine Form compared with that for ray-casting and

the nature of polynomial models. This leads us to the conclu-

sion that computations using Revised Affine Arithmetic become

similar to the computations using Affine Arithmetic. However

for complex expressions, containing a number of non-affine op-

erations, the results show that the spatial enumeration with Re-

vised Affine Arithmetic using special affine forms is faster than

other reliable techniques.

8. Conclusion

In this paper we have presented techniques for the interroga-

tion of general procedurally defined implicit models based on

RevAA. By using the inclusion property of RevAA, we were

able to obtain reliable ray-surface intersections for ray-tracing

and a reliable cell-surface intersection test for the spatial enu-

meration in polygonization. At the same time, RevAA proved

to be the fastest compared with other interval techniques.

Also in this paper we have shown how speed can be dra-

matically improved by using special affine forms for arbitrary

operators. We derived the affine forms for the set-theoretic op-

erations based on R-functions and for blending operations, and

have shown that the speed and the quality of rendering can be

dramatically improved using these.

However, not all functions can be rewritten in the affine

form, either because they do not meet the requirements for the

affine approximation or because they have a large number of

arguments. Moreover, currently there is no general criterion for

the derivation of these forms for arbitrary implicit surface mod-

els. Further research needs to be conducted in this area. Also

currently the set of procedurally defined implicit models does

not include models with complex conditional operators. We

have shown how the conditional functions can be represented

by special affine forms, however this technique can not be ap-

plied for general conditions. For instance, it would be hard to

represent a conditional operators such as

f =

{

g, condition(y) == true

h, condition(y) == f alse

by a special affine form, as doing so requires the construction of

an affine function with three arguments which is a quite com-

plex task. Some research on conditional operators was done

using Interval Arithmetic [31], however further research using

Affine Arithmetic and especially RevAA is also needed.

9. Bibliography

[1] J. M. Singh, P. J. Narayanan, Real-time ray tracing of implicit surfaces

on the gpu, IEEE Transactions on Visualization and Computer Graphics

16 (2) (2010) 261–272.

[2] C. Dyken, G. Ziegler, C. Theobalt, H.-P. Seidel, High-speed marching

cubes using histopyramids, Computer Graphics Forum 27 (December

2008) 2028–2039(12).

[3] A. Knoll, Y. Hijazi, A. Kensler, M. Schott, C. D. Hansen, H. Hagen, Fast

ray tracing of arbitrary implicit surfaces with interval and affine arith-

metic, Computer Graphics Forum 28 (1) (2009) 26–40.

[4] M. Gavriliu, Towards more efficient interval analysis: corner forms and

a remainder interval newton method, Ph.D. thesis, Pasadena, CA, USA,

adviser-Barr, Alan H. (2005).

[5] H. K. Tuy, L. t Tuy, Direct 2-d display of 3-d objects, IEEE Computer

Graphics and Applications 4 (10) (1984) 29–33.

[6] W. E. Lorensen, H. E. Cline, Marching cubes: A high resolution 3d sur-

face construction algorithm, SIGGRAPH Comput. Graph. 21 (4) (1987)

163–169.

[7] J. Bloomenthal et al. (Ed.), Introduction to Implicit Surfaces, Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 1997.

[8] A. Gomes, I. Voiculescu, J. Jorge, B. Wyvill, C. Galbraith, Implicit

Curves and Surfaces: Mathematics, Data Structures and Algorithms,

Springer Verlag, 2009.

[9] J. C. Hart, Sphere tracing: A geometric method for the antialiased ray

tracing of implicit surfaces, The Visual Computer 12 (1994) 527–545.

[10] A. Sherstyuk, Fast ray tracing of implicit surfaces, Computer Graphics

Forum 18 (2) (1999) 139–147.

12

IA AA RevAA RevAA*

Mitchell 13.685 1.674 1.654 1.654

Bretzel 1.325 0.387 0.548 0.548

Decocube 2.923 3.647 1.322 1.322

CSG 140.14 17.650 9.601 5.064

Sphere with trimming 1650.390 82.846 81.083 12.872

Sphere with noise 29.451 17.611 9.740 9.457

CSG with blending 425.047 17.760 13.384 7.696

Sphere with microstructure 1847.248 183.155 342.276 8.765

Table 2: Comparison of the spatial enumeration procedures for different computational models. IA stands for Interval Arithmetic, AA for Affine Arithmetic,

RevAA for Revised Affine Arithmetic and RevAA* for Revised Affine Arithmetic extended by special non-affine operations. The grid resolution for all models is

128*128*128. The timings for spatial enumeration are shown in seconds.

[11] O. Fryazinov, A. Pasko, Interactive ray shading of FRep objects, in:

WSCG’ 2008, Communications Papers proceedings, 2008, pp. 145–152.

[12] D. P. Mitchell, Three applications of interval analysis in computer graph-

ics, in: Frontiers in Rendering course notes, 1991, pp. 1–13.

[13] J. M. Snyder, Interval analysis for computer graphics, in: Computer

Graphics, 1992, pp. 121–130.

[14] A. de Cusatis Jr., L. H. Figueiredo, M. Gattass, Interval methods for ray

casting surfaces with affine arithmetic, in: Proceedings of SIBGRAPI’99

- the 12th Brazilian Symposium on Computer Graphics and Image Pro-

cessing, 1999, pp. 65–71.

[15] R. Martin, H. Shou, I. Voiculescu, G. Wang, A comparison of Bernstein

hull and affine arithmetic methods for algebraic curve drawing, in: Proc.

Uncertainty in Geometric Computations, Kluwer Academic Publishers,

2001, pp. 143–154.

[16] H. Ratschek, J. Rokne, Computer Methods for the Range of Functions,

Halsted Press, Wiley, New York, 1984.

[17] M. N. Gamito, S. C. Maddock, Ray casting implicit fractal surfaces with

reduced affine arithmetic, The Visual Computer 23 (3) (2007) 155–165.

[18] S. Plantinga, G. Vegter, Isotopic approximation of implicit curves and

surfaces, in: SGP ’04: Proceedings of the 2004 Eurographics/ACM SIG-

GRAPH symposium on Geometry processing, ACM, New York, NY,

USA, 2004, pp. 245–254.

[19] L. H. D. Figueiredo, J. Stolfi, Adaptive enumeration of implicit surfaces

with affine arithmetic, Computer Graphics Forum 15 (1996) 287–296.

[20] K. Bühler, Implicit linear interval estimations, in: SCCG ’02: Proceed-

ings of the 18th spring conference on Computer graphics, ACM, New

York, NY, USA, 2002, pp. 123–132.

[21] X.-H. Vu, D. Sam-Haroud, B. Faltings, Combining multiple inclusion

representations in numerical constraint propagation, in: ICTAI, 2004, pp.

458–467.

[22] V. Shapiro, Semi-analytic geometry with R-functions, Acta Numerica 16

(2007) 239–303.

[23] K. Perlin, E. M. Hoffert, Hypertexture, SIGGRAPH Comput. Graph.

23 (3) (1989) 253–262.

[24] G. Y. Gardner, Simulation of natural scenes using textured quadric sur-

faces, SIGGRAPH Comput. Graph. 18 (3) (1984) 11–20.

[25] L. H. de Figueiredo, J. Stolfi, Self-Validated Numerical Methods and

Applications, Brazilian Mathematics Colloquium monographs, IMPA/C-

NPq, Rio de Janeiro, Brazil, 1997.

[26] L. H. D. Figueiredo, J. Stolfi, Affine arithmetic: Concepts and applica-

tions, Numerical Algorithms 37 (2004) 147–158.

[27] F. Messine, Extensions of affine arithmetic: Application to unconstrained

global optimization, Journal of Universal Computer Science 8 (11) (2002)

992–1015.

[28] A. Pasko, V. Adzhiev, A. Sourin, V. Savchenko, Function representation

in geometric modeling: concepts, implementation and applications., The

Visual Computer 11 (8) (1995) 429–446.

[29] D. Kalra, A. H. Barr, Guaranteed ray intersections with implicit surfaces,

in: SIGGRAPH ’89: Proceedings of the 16th annual conference on Com-

puter graphics and interactive techniques, ACM, New York, NY, USA,

1989, pp. 297–306.

[30] N. Stolte, A. Kaufman, Parallel spatial enumeration of implicit surfaces

using interval arithmetic for octree generation and its direct visualisation,

in: Implicit Surfaces’98, 1998, pp. 81–88.

[31] J. F. Diaz, Improvements in the ray tracing of implicit surfaces based on

interval arithmetic, Ph.D. thesis, Departament d’Electronica, Informatica

i Automatica, Universitat de Girona, Girona, Spain (Nov. 2008).

Appendix A. Formulae for surfaces used in the paper

Mitchell:

f = 20∗ (x2+y2+ z2)−4∗ (x4 + (y2+ z2)2)−17x2 ∗ (y2+ z2)−17

Bretzel:

f = 2 − 60 ∗ z2 − (x2 ∗ (1.21 − x2)2 ∗ (3.8 − x2)3 − 10 ∗ y2)2

Decocube:

f = 0.02 − ((x2 + y2 − 0.82)2 + (z2 − 1)2) ∗ ((y2 + z2 − 0.82)2 +

(x2 − 1)2) ∗ ((x2 + z2 − 0.82)2 + (y2 − 1)2)

CSG:

f = b|(s&((c1 \ c2)|(c3 \ c4)) \ c5, where b = (0.36− x2)&(0.36−
y2)&(0.36 − z2), s = 0.7056− x2 − y2 − z2, c1 = 0.09 − y2 − z2,

c2 = 0.04 − y2 − z2, c3 = 0.09 − x2 − z2, c4 = 0.04 − x2 − z2,

c5 = 0.25 − x2 − y2

Sphere with noise:

f = 81−x2−y2−z2+(3.8∗sin(1.5∗x)+sin(1.111∗x+1.1∗sin(1.5∗
x))∗1.624)∗(3.8∗ sin(1.5∗y)+ sin(1.111∗ x+1.1∗ sin(1.5∗ x))∗
1.299)∗(3.8∗sin(1.5∗y)+sin(1.111∗x+1.1∗sin(1.5∗x))∗2.598)

Sphere with microstructure:

f = (((1 − x2 − y2 − z2)&((sin(20 ∗ y) − 0.9)&(sin(20 ∗ z) −
0.9))|((sin(20 ∗ x) − 0.9)&(sin(20 ∗ z) − 0.9))|((sin(20 ∗ x) −
0.9)&(sin(20 ∗ y) − 0.9)))|((1− x2 − y2 − z2) \ (0.75− x2 − y2 −
z2)))&(−z)

CSG with blending:

f = (((c1∨bc2)∧bs)∨bb)∧b(−c3), where b = (0.36−x2)&(0.36−
y2)&(0.36 − z2), s = 0.7056− x2 − y2 − z2, c1 = 0.09 − y2 − z2,

c2 = 0.09 − x2 − z2, c3 = 0.25 − x2 − y2, ∨b denotes blending

intersection: f1∨b f2 = f1 + f2−
√

f 2
1
+ f 2

2
+ 0.5

1+ f 2
1
+ f 2

2

, ∧b denotes

blending union: f1∧b f2 = f1 + f2 +

√

f 2
1
+ f 2

2
+ 0.5

1+ f 2
1
+ f 2

2

Hair:

f = o|(((1.8 ∗ sin(1.8 ∗ x ∗ 9√
x2+y2+z2

) + sx) ∗ (1.8 ∗ sin(1.8 ∗ y ∗
9√

x2+y2+z2
)+ sy) ∗ (1.8 ∗ sin(1.8 ∗ z ∗ 9√

x2+y2+z2
)+ sz)− 10)&(o+

2)&y), where o = (1− x2

16
− y2

36
− z2

16
)|(1− x2

1.6129
− (y+2.5)2

2.25
− (z−3)2

1.6129
),

sx = 1.538∗sin(1.33∗x∗ 9√
x2+y2+z2

+1.4∗sin(1.8∗x∗ 9√
x2+y2+z2

)),

13

sy = 1.538∗sin(1.33∗y∗ 9√
x2+y2+z2

+1.4∗sin(1.8∗y∗ 9√
x2+y2+z2

)),

sz = 1.538∗ sin(1.33∗z∗ 9√
x2+y2+z2

+1.4∗ sin(1.8∗z∗ 9√
x2+y2+z2

))

The sphere with trimming model is described in the paper

”Trimming implicit surfaces”:

http://hyperfun.org/wiki/doku.php?id=frep:trimming

The Virtual Shikki description files in HyperFun format can

be found at:

http://www.hyperfun.org/App/shi/Shikki.html

In the above formulae & denotes set-theoretic intersection

with R-functions, | denotes set-theoretic union with R-functions

and \ denotes set-theoretic subtraction with R-functions.

14

