7,443 research outputs found

    Control of MTDC Transmission Systems under Local Information

    Full text link
    High-voltage direct current (HVDC) is a commonly used technology for long-distance electric power transmission, mainly due to its low resistive losses. In this paper a distributed controller for multi-terminal high-voltage direct current (MTDC) transmission systems is considered. Sufficient conditions for when the proposed controller renders the closed-loop system asymptotically stable are provided. Provided that the closed loop system is asymptotically stable, it is shown that in steady-state a weighted average of the deviations from the nominal voltages is zero. Furthermore, a quadratic cost of the current injections is minimized asymptotically

    Review of high voltage direct current cables

    No full text
    Increased renewable energy integration and international power trades have led to the construction and development of new HVDC transmission systems. HVDC cables, in particular, play an important role in undersea power transmission and offshore renewable energy integration having lower losses and higher reliability. In this paper, the current commercial feasibility of HVDC cables and the development of different types of HVDC cables and accessories are reviewed. The non-uniform electric field distribution caused by the applied voltage, temperature dependent conductivity, and space charge accumulation is briefly discussed. Current research in HVDC cable for higher operation voltage level and larger power capacity is also reviewed with specific focus on the methodologies of space charge suppression for XLPE extruded cable

    Pulsed high-voltage dc RF sputtering

    Get PDF
    Sputtering technique uses pulsed high voltage direct current to the object to be plated and a radio frequency sputtered film source. Resultant film has excellent adhesion, and objects can be plated uniformly on all sides

    Distributed Voltage and Current Control of Multi-Terminal High-Voltage Direct Current Transmission Systems

    Full text link
    High-voltage direct current (HVDC) is a commonly used technology for long-distance power transmission, due to its low resistive losses and low costs. In this paper, a novel distributed controller for multi-terminal HVDC (MTDC) systems is proposed. Under certain conditions on the controller gains, it is shown to stabilize the MTDC system. The controller is shown to always keep the voltages close to the nominal voltage, while assuring that the injected power is shared fairly among the converters. The theoretical results are validated by simulations, where the affect of communication time-delays is also studied

    Method and apparatus for sputtering utilizing an apertured electrode and a pulsed substrate bias

    Get PDF
    The method and equipment used for sputtering by use of an apertured electrode and a pulsed substrate bias are discussed. The technique combines the advantages of ion plating with the versatility of a radio frequency sputtered source. Electroplating is accomplished by passing a pulsed high voltage direct current to the article being plated during radio frequency sputtering

    High-voltage (270 V) dc power-generating system for fighter aircraft

    Get PDF
    The advantages of using high voltage, direct current advanced power generating systems in fighter aircraft are discussed. Weight reduction is achieved. Efficiency is increased 85 to 90 percent by eliminating the constant speed drive. Power interruptions are eliminated. There are no speed restrictions and no powerline constraints. Personal safety is increased by eliminating the hold on frequency, present in ac systems, which causes muscle contractions

    Modeling and Control of High-Voltage Direct-Current Transmission Systems: From Theory to Practice and Back

    Full text link
    The problem of modeling and control of multi-terminal high-voltage direct-current transmission systems is addressed in this paper, which contains five main contributions. First, to propose a unified, physically motivated, modeling framework - based on port-Hamiltonian representations - of the various network topologies used in this application. Second, to prove that the system can be globally asymptotically stabilized with a decentralized PI control, that exploits its passivity properties. Close connections between the proposed PI and the popular Akagi's PQ instantaneous power method are also established. Third, to reveal the transient performance limitations of the proposed controller that, interestingly, is shown to be intrinsic to PI passivity-based control. Fourth, motivated by the latter, an outer-loop that overcomes the aforementioned limitations is proposed. The performance limitation of the PI, and its drastic improvement using outer-loop controls, are verified via simulations on a three-terminals benchmark example. A final contribution is a novel formulation of the power flow equations for the centralized references calculation

    DC/DC converters for high voltage direct current transmission

    Get PDF
    High Voltage Direct Current (HVDC) transmission has to date mostly been used for point-to-point projects, with only a few select projects being designed from the outset to incorporate multiple terminals. Any future HVDC network is therefore likely to evolve out of this pool of HVDC connections. As technology improves, the voltage rating, at the point of commission, of the these connections increases. Interconnection therefore requires the DC equivalent of the transformer, to bridge the voltage levels and create a multi-terminal network. This thesis investigates new potential DC/DC converter topologies, which may be used for a range of HVDC applications. Simple interconnections of new and legacy HVDC links is unlikely to require a large voltage-step, but will be required to transfer a large amount of power. As the HVDC network develops it may become feasible for wind-farms and load-centres to directly connect to the DC network, rather than requiring new and dedicated links. Such a connection is called an HVDC tap and is typically rated at only a small fraction of the link's peak capacity (around 10\%). Such taps would connect a distribution voltage level to the HVDC network. DC/DC converters suitable for large-step ratios (>5:1) may find their application here. In this work DC/DC converters for both small and large step-ratios are investigated. Two approaches are taken to design such converters: first, an approach utilising existing converter topologies is investigated. As each project comes with a huge price-tag, their reliability is paramount. Naturally, technology that has already proven itself in the field can be modified more readily and quickly for deployment. Using two modular multilevel converters in a front-to-front arrangement has been found to work efficiently for large power transfers and low step-ratios. Such a system can be operated at higher than 50 Hz frequencies to reduce the volume of a number of passive components, making the set-up suitable for compact off-shore applications. This does however incur a significant penalty in losses reducing the overall converter efficiency. In the second approach DC/DC converter designs are presented, that are more experimental and would require significantly more development work before deployment. Such designs do not look to adapt existing converter topologies but rather are designed from scratch, purely for DC/DC applications. An evolution of the front-to-front arrangement is investigated in further detail. This circuit utilises medium frequency (>50 Hz) square current and voltage waveforms. The DC/DC step-ratio is achieved through a combination of the stacks of cells and a transformer. This split approach allows for high-step ratios to be achieved at similar system efficiencies as for the front-to-front arrangement. The topology has been found to be much more suitable for higher than 50 Hz operation from a losses perspective, allowing for a compact and efficient design.Open Acces

    HVDC (High Voltage Direct Current) Transmission System:A Review Paper

    Get PDF

    High Voltage Direct Current transmission

    Get PDF
    This thesis is focused on the application and development of HVDC transmission technology based on thyristor without turn-off capability. Compared with other macroelectronics in the power field, thyristor without turn-off capability has successful operation experience to ensure reliability and high power ratings to transfer bulk energy. This thesis covers converter station design and equipments, reactive power compensation and voltage stability, AC/DC filters design, control strategy and function, fault analysis, overvoltage and insulation co-ordination, overhead line and cable transmission, transmission line environmental effects, earth electrode design and development. With the development of new concepts and techniques, the cost of HVDC transmission will be reduced substantially, thereby extending the area of application
    corecore