481 research outputs found

    Mapping Crop Cycles in China Using MODIS-EVI Time Series

    Get PDF
    As the Earth’s population continues to grow and demand for food increases, the need for improved and timely information related to the properties and dynamics of global agricultural systems is becoming increasingly important. Global land cover maps derived from satellite data provide indispensable information regarding the geographic distribution and areal extent of global croplands. However, land use information, such as cropping intensity (defined here as the number of cropping cycles per year), is not routinely available over large areas because mapping this information from remote sensing is challenging. In this study, we present a simple but efficient algorithm for automated mapping of cropping intensity based on data from NASA’s (NASA: The National Aeronautics and Space Administration) MODerate Resolution Imaging Spectroradiometer (MODIS). The proposed algorithm first applies an adaptive Savitzky-Golay filter to smooth Enhanced Vegetation Index (EVI) time series derived from MODIS surface reflectance data. It then uses an iterative moving-window methodology to identify cropping cycles from the smoothed EVI time series. Comparison of results from our algorithm with national survey data at both the provincial and prefectural level in China show that the algorithm provides estimates of gross sown area that agree well with inventory data. Accuracy assessment comparing visually interpreted time series with algorithm results for a random sample of agricultural areas in China indicates an overall accuracy of 91.0% for three classes defined based on the number of cycles observed in EVI time series. The algorithm therefore appears to provide a straightforward and efficient method for mapping cropping intensity from MODIS time series data

    Multi-Season Phenology Mapping of Nile Delta Croplands Using Time Series of Sentinel-2 and Landsat 8 Green LAI

    Get PDF
    Space-based cropland phenology monitoring substantially assists agricultural managing practices and plays an important role in crop yield predictions. Multitemporal satellite observations allow analyzing vegetation seasonal dynamics over large areas by using vegetation indices or by deriving biophysical variables. The Nile Delta represents about half of all agricultural lands of Egypt. In this region, intensifying farming systems are predominant and multi-cropping rotations schemes are increasing, requiring a high temporal and spatial resolution monitoring for capturing successive crop growth cycles. This study presents a workflow for cropland phenology characterization and mapping based on time series of green Leaf Area Index (LAI) generated from NASA’s Harmonized Landsat 8 (L8) and Sentinel-2 (S2) surface reflectance dataset from 2016 to 2019. LAI time series were processed for each satellite dataset, which were used separately and combined to identify seasonal dynamics for a selection of crop types (wheat, clover, maize and rice). For the combination of L8 with S2 LAI products, we proposed two time series smoothing and fitting methods: (1) the Savitzky–Golay (SG) filter and (2) the Gaussian Processes Regression (GPR) fitting function. Single-sensor and L8-S2 combined LAI time series were used for the calculation of key crop Land Surface Phenology (LSP) metrics (start of season, end of season, length of season), whereby the detection of cropland growing seasons was based on two established threshold methods, i.e., a seasonal or a relative amplitude value. Overall, the developed phenology extraction scheme enabled identifying up to two successive crop cycles within a year, with a superior performance observed for the seasonal than for the relative threshold method, in terms of consistency and cropland season detection capability. Differences between the time series collections were analyzed by comparing the phenology metrics per crop type and year. Results suggest that L8-S2 combined LAI data streams with GPR led to a more precise detection of the start and end of growing seasons for most crop types, reaching an overall detection of 74% over the total planted crops versus 69% with S2 and 63% with L8 alone. Finally, the phenology mapping allowed us to evaluate the spatial and temporal evolution of the croplands over the agroecosystem in the Nile Delta.E.A. was supported by the predoctoral scholarship, grant number ACIF/2019/187, funded by the Generalitat Valenciana and co-funded by the European Social Fund. J.V. and S.B. were supported by the European Research Council (ERC) under the ERC-2017-STG SENTIFLEX project, grant number 755617. J.V. was additionally supported by a Ramón y Cajal Contract (Spanish Ministry of Science, Innovation and Universities). S.B. was additionally supported by the Generalitat Valenciana SEJIGENT program (SEJIGENT/2021/001) and European Union—NextGenerationEU (ZAMBRANO 21-04)

    Monitoring the Sustainable Intensification of Arable Agriculture:the Potential Role of Earth Observation

    Get PDF
    Sustainable intensification (SI) has been proposed as a possible solution to the conflicting problems of meeting projected increases in food demand and preserving environmental quality. SI would provide necessary production increases while simultaneously reducing or eliminating environmental degradation, without taking land from competing demands. An important component of achieving these aims is the development of suitable methods for assessing the temporal variability of both the intensification and sustainability of agriculture. Current assessments rely on traditional data collection methods that produce data of limited spatial and temporal resolution. Earth Observation (EO) provides a readily accessible, long-term dataset with global coverage at various spatial and temporal resolutions. In this paper we demonstrate how EO could significantly contribute to SI assessments, providing opportunities to quantify agricultural intensity and environmental sustainability. We review an extensive body of research on EO-based methods to assess multiple indicators of both agricultural intensity and environmental sustainability. To date these techniques have not been combined to assess SI; here we identify the opportunities and initial steps required to achieve this. In this context, we propose the development of a set of essential sustainable intensification variables (ESIVs) that could be derived from EO data

    The potential of satellite-observed crop phenology to enhance yield gap assessments in smallholder landscapes

    Get PDF
    Many of the undernourished people on the planet obtain their entitlements to food via agricultural-based livelihood strategies, often on underperforming croplands and smallholdings. In this context, expanding cropland extent is not a viable strategy for smallholders to meet their food needs. Therefore, attention must shift to increasing productivity on existing plots and ensuring yield gaps do not widen. Thus, supporting smallholder farmers to sustainably increase the productivity of their lands is one part of a complex solution to realizing universal food security. However, the information (e.g., location and causes of cropland underperformance) required to support measures to close yield gaps in smallholder landscapes are often not available. This paper reviews the potential of crop phenology, observed from satellites carrying remote sensing sensors, to fill this information gap. It is suggested that on a theoretical level phenological approaches can reveal greater intra-cropland thematic detail, and increase the accuracy of crop extent maps and crop yield estimates. However, on a practical level the spatial mismatch between the resolution at which crop phenology can be estimated from satellite remote sensing data and the scale of yield variability in smallholder croplands inhibits its use in this context. Similarly, the spatial coverage of remote sensing-derived phenology offers potential for integration with ancillary spatial datasets to identify causes of yield gaps. To reflect the complexity of smallholder cropping systems requires ancillary datasets at fine spatial resolutions which, often, are not available. This further precludes the use of crop phenology in attempts to unpick the causes of yield gaps. Research agendas should focus on generating fine spatial resolution crop phenology, either via data fusion or through new sensors (e.g., Sentinel-2) in smallholder croplands. This has potential to transform the applied use of remote sensing in this context

    Mapping of multitemporal rice (Oryza sativa L.) growth stages using remote sensing with multi-sensor and machine learning : a thesis dissertation presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Earth Science at Massey University, Manawatū, New Zealand

    Get PDF
    Figure 2.1 is adapted and re-used under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.Rice (Oryza Sativa) plays a pivotal role in food security for Asian countries, especially in Indonesia. Due to the increasing pressure of environmental changes, such as land use and climate, rice cultivation areas need to be monitored regularly and spatially to ensure sustainable rice production. Moreover, timely information of rice growth stages (RGS) can lead to more efficient of inputs distribution from water, seed, fertilizer, and pesticide. One of the efficient solutions for regularly mapping the rice crop is using Earth observation satellites. Moreover, the increasing availability of open access satellite images such as Landsat-8, Sentinel-1, and Sentinel-2 provides ample opportunities to map continuous and high-resolution rice growth stages with greater accuracy. The majority of the literature has focused on mapping rice area, cropping patterns and relied mainly on the phenology of vegetation. However, the mapping process of RGS was difficult to assess the accuracy, time-consuming, and depended on only one sensor. In this work, we discuss the use of machine learning algorithms (MLA) for mapping paddy RGS with multiple remote sensing data in near-real-time. The study area was Java Island, which is the primary rice producer in Indonesia. This study has investigated: (1) the mapping of RGS using Landsat-8 imagery and different MLAs, and their rigorous performance was evaluated by conducting a multitemporal analysis; (2) the temporal consistency of predicting RGS using Sentinel-2, MOD13Q1, and Sentinel-1 data; (3) evaluating the correlation of local statistics data and paddy RGS using Sentinel-2, PROBA-V, and Sentinel-1 with MLAs. The ground truth datasets were collected from multi-year web camera data (2014-2016) and three months of the field campaign in different regions of Java (2018). The study considered the RGS in the analysis to be vegetative, reproductive, ripening, bare land, and flooding, and MLAs such as support vector machines (SVMs), random forest (RF), and artificial neural network (ANN) were used. The temporal consistency matrix was used to compare the classification maps within three sensor datasets (Landsat-8 OLI, Sentinel-2, and Sentinel-2, MOD13Q1, Sentinel-1) and in four periods (5, 10, 15, 16 days). Moreover, the result of the RGS map was also compared with monthly data from local statistics within each sub-district using cross-correlation analysis. The result from the analysis shows that SVM with a radial base function outperformed the RF and ANN and proved to be a robust method for small-size datasets (< 1,000 points). Compared to Sentinel-2, Landsat-8 OLI gives less accuracy due to the lack of a red-edge band and larger pixel size (30 x 30 m). Integration of Sentinel-2, MOD13Q1, and Sentinel-1 improved the classification performance and increased the temporal availability of cloud-free maps. The integration of PROBA-V and Sentinel-1 improved the classification accuracy from the Landsat-8 result, consistent with the monthly rice planting area statistics at the sub-district level. The western area of Java has the highest accuracy and consistency since the cropping pattern only relied on rice cultivation. In contrast, less accuracy was noticed in the eastern area because of upland rice cultivation due to limited irrigation facilities and mixed cropping. In addition, the cultivation of shallots to the north of Nganjuk Regency interferes with the model predictions because the cultivation of shallots resembles the vegetative phase due to the water banks. One future research idea is the auto-detection of the cropping index in the complex landscape to be able to use it for mapping RGS on a global scale. Detection of the rice area and RGS using Google Earth Engine (GEE) can be an action plan to disseminate the information quickly on a planetary scale. Our results show that the multitemporal Sentinel-1 combined with RF can detect rice areas with high accuracy (>91%). Similarly, accurate RGS maps can be detected by integrating multiple remote sensing (Sentinel-2, Landsat-8 OLI, and MOD13Q1) data with acceptable accuracy (76.4%), with high temporal frequency and lower cloud interference (every 16 days). Overall, this study shows that remote sensing combined with the machine learning methodology can deliver information on RGS in a timely fashion, which is easy to scale up and consistent both in time and space and matches the local statistics. This thesis is also in line with the existing rice monitoring projects such as Crop Monitor, Crop Watch, AMIS, and Sen4Agri to support disseminating information over a large area. To sum up, the proposed workflow and detailed map provide a more accurate method and information in near real-time for stakeholders, such as governmental agencies against the existing mapping method. This method can be introduced to provide accurate information to rice farmers promptly with sufficient inputs such as irrigation, seeds, and fertilisers for ensuring national food security from the shifting planting time due to climate change

    Reconstruction of Daily 30 m Data from HJ CCD, GF-1 WFV, Landsat, and MODIS Data for Crop Monitoring

    Get PDF
    With the recent launch of new satellites and the developments of spatiotemporal data fusion methods, we are entering an era of high spatiotemporal resolution remote-sensing analysis. This study proposed a method to reconstruct daily 30 m remote-sensing data for monitoring crop types and phenology in two study areas located in Xinjiang Province, China. First, the Spatial and Temporal Data Fusion Approach (STDFA) was used to reconstruct the time series high spatiotemporal resolution data from the Huanjing satellite charge coupled device (HJ CCD), Gaofen satellite no. 1 wide field-of-view camera (GF-1 WFV), Landsat, and Moderate Resolution Imaging Spectroradiometer (MODIS) data. Then, the reconstructed time series were applied to extract crop phenology using a Hybrid Piecewise Logistic Model (HPLM). In addition, the onset date of greenness increase (OGI) and greenness decrease (OGD) were also calculated using the simulated phenology. Finally, crop types were mapped using the phenology information. The results show that the reconstructed high spatiotemporal data had a high quality with a proportion of good observations (PGQ) higher than 0.95 and the HPLM approach can simulate time series Normalized Different Vegetation Index (NDVI) very well with R2 ranging from 0.635 to 0.952 in Luntai and 0.719 to 0.991 in Bole, respectively. The reconstructed high spatiotemporal data were able to extract crop phenology in single crop fields, which provided a very detailed pattern relative to that from time series MODIS data. Moreover, the crop types can be classified using the reconstructed time series high spatiotemporal data with overall accuracy equal to 0.91 in Luntai and 0.95 in Bole, which is 0.028 and 0.046 higher than those obtained by using multi-temporal Landsat NDVI data

    Global Cropland Area Database (GCAD) derived from Remote Sensing in Support of Food Security in the Twenty-first Century: Current Achievements and Future Possibilities

    Get PDF
    The precise estimation of the global agricultural cropland- extents, areas, geographic locations, crop types, cropping intensities, and their watering methods (irrigated or rainfed; type of irrigation) provides a critical scientific basis for the development of water and food security policies (Thenkabail et al., 2012, 2011, 2010). By year 2100, the global human population is expected to grow to 10.4 billion under median fertility variants or higher under constant or higher fertility variants (Table 1) with over three quarters living in developing countries, in regions that already lack the capacity to produce enough food. With current agricultural practices, the increased demand for food and nutrition would require in about 2 billion hectares of additional cropland, about twice the equivalent to the land area of the United States, and lead to significant increases in greenhouse gas productions (Tillman et al., 2011). For example, during 1960-2010 world population more than doubled from 3 billion to 7 billion. The nutritional demand of the population also grew swiftly during this period from an average of about 2000 calories per day per person in 1960 to nearly 3000 calories per day per person in 2010..

    Spatiotemporal analysis of gapfilled high spatial resolution time series for crop monitoring.

    Full text link
    [ES] La obtención de mapas fiables de clasificación de cultivos es importante para muchas aplicaciones agrícolas, como el monitoreo de los campos y la seguridad alimentaria. Hoy en día existen distintas bases de datos de cobertura terrestre con diferentes escalas espaciales y temporales cubriendo diferentes regiones terrestres (por ejemplo, Corine Land cover (CORINE) en Europa o Cropland Data Layer (CDL) en Estados Unidos (EE.UU.)). Sin embargo, estas bases de datos son mapas históricos y por lo tanto no reflejan los estados fenológicos actuales de los cultivos. Normalmente estos mapas requieren un tiempo específico (anual) para generarse basándose en las diferentes fenologías de cada cultivo. Los objetivos de este trabajo son dos: 1- analizar la distribución espacial de los cultivos a diferentes regiones espaciales para identificar las áreas más representativas. 2- analizar el rango temporal utilizado para acelerar la generación de mapas de clasificación. El análisis se realiza sobre el contiguo de Estados Unidos (CONUS, de sus siglas en inglés) en 2019. Para abordar estos objetivos, se utilizan diferentes fuentes de datos. La capa CDL, una base de datos robusta y completa de mapas de cultivo en el CONUS, que proporciona datos anuales de cobertura terrestre rasterizados y georeferenciados. Así como, datos multiespectrales a 30 metros de resolución espacial, preprocesados para rellenar los posibles huecos debido a la presencia de nubes y aerosoles en los datos. Este conjunto de datos ha sido generado por la fusión de sensores Landsat y Moderate Resolution Imaging Spectroradiometer (MODIS). Para procesar tal elevada cantidad de datos se utilizará Google Earth Engine (GEE), que es una aplicación que procesa la información en la nube y está especializada en el procesamiento geoespacial. GEE se puede utilizar para obtener mapas de cultivos a nivel mundial, pero requiere algoritmos eficientes. En este estudio se analizarán diferentes algoritmos de aprendizaje de máquina (machine learning) para analizar la posible aceleración de la obtención de los mapas de clasificación de cultivo. En GEE hay diferentes tipos de algoritmos de clasificación disponibles, desde simples árboles de decisión (decision trees) hasta algoritmos más complejos como máquinas de vectores soporte (SVM) o redes neuronales (neural networks). Este estudio presentará los primeros resultados para la generación de mapas de clasificación de cultivos utilizando la menor cantidad posible de información, a nivel temporal, con una resolución espacial de 30 metros.[EN] Reliable crop classification maps are important for many agricultural applications, such as field monitoring and food security. Nowadays there are already several crop cover databases at different scales and temporal resolutions for different parts of the world (e. g. Corine Land cover in Europe (CORINE) or Cropland Data Layer (CDL) in the United States (US)). However, these databases are historical crop cover maps and hence do not reflect the actual crops on the ground. Usually, these maps require a specific time (annually) to be generated based on the diversity of the different crop phenologies. The aims of this work are two: 1- analyzing the multi-scale spatial crop distribution to identify the most representative areas. 2- analyzing the temporal range used to generate crop cover maps to build maps promptly. The analysis is done over the contiguous US (CONUS) in 2019. To address these objectives, different types of data are used. The CDL, a robust and complete cropland mapping in the CONUS, which provides annual land cover data raster geo-referenced. And, multispectral high-resolution gap-filled data at 30 meter spatial resolution used to avoid the presence of clouds and aerosols in the data. This dataset has been generated by the fusion of Landsat and Moderate Resolution Imaging Spectroradiometer (MODIS). To process this large amount of data will be used Google Earth Engine (GEE) which is a cloud-based application specialized in geospatial processing. GEE can be used to map crops globally, but it requires efficient algorithms. In this study, different machine learning algorithms will be analyzed to generate the promptest classification crop maps. Several options are available in GEE from simple decision trees to more complex algorithms like support vector machines or neural networks. This study will present the first results and the potential to generate crop classification maps using as less possible temporal range information at 30 meters spatial resolution.Rajadel Lambistos, C. (2020). Análisis espaciotemporal de series temporales sin huecos de alta resolución espacial. Universitat Politècnica de València. http://hdl.handle.net/10251/155879TFG

    Characterizing Spatiotemporal Patterns of White Mold in Soybean across South Dakota Using Remote Sensing

    Get PDF
    Soybean is among the most important crops, cultivated primarily for beans, which are used for food, feed, and biofuel. According to FAO, the United States was the biggest soybeans producer in 2016. The main soybean producing regions in the United States are the Corn Belt and the lower Mississippi Valley. Despite its importance, soybean production is reduced by several diseases, among which Sclerotinia stem rot, also known as white mold, a fungal disease that is caused by the fungus Sclerotinia sclerotiorum is among the top 10 soybean diseases. The disease may attack several plants and considerably reduce yield. According to previous reports, environmental conditions corresponding to high yield potential are most conducive for white mold development. These conditions include cool temperature (12-24 °C), continued wet and moist conditions (70-120 h) generally resulting from rain, but the disease development requires the presence of a susceptible soybean variety. To better understand white mold development in the field, there is a need to investigate its spatiotemoral characteristics and provide accurate estimates of the damages that white mold may cause. Current and accurate data about white mold are scarce, especially at county or larger scale. Studies that explored the characteristics of white mold were generally field oriented and local in scale, and when the spectral characteristics were investigated, the authors used spectroradiometers that are not accessible to farmers and to the general public and are mostly used for experimental modeling. This study employed free remote sensing Landsat 8 images to quantify white mold in South Dakota. Images acquired in May and July were used to map the land cover and extract the soybean mask, while an image acquired in August was used to map and quantify white mold using the random forest algorithm. The land cover map was produced with an overall accuracy of 95% while white mold was mapped with an overall accuracy of 99%. White mold area estimates were respectively 132 km2, 88 km2, and 190 km2, representing 31%, 22% and 29% of the total soybean area for Marshall, Codington and Day counties. This study also explored the spatial characteristics of white mold in soybean fields and its impact on yield. The yield distribution exhibited a significant positive spatial autocorrelation (Moran’s I = 0.38, p-value \u3c 0.001 for Moody field, Moran’s I = 0.45, p-value \u3c 0.001, for Marshall field) as an evidence of clustering. Significant clusters could be observed in white mold areas (low-low clusters) or in healthy soybeans (high-high clusters). The yield loss caused by the worst white mold was estimated at 36% and 56% respectively for the Moody and the Marshall fields, with the most accurate loss estimation occurring between late August and early September. Finally, this study modeled the temporal evolution of white mold using a logistic regression analysis in which the white mold was modeled as a function of the NDVI. The model was successful, but further improved by the inclusion of the Day of the Year (DOY). The respective areas under the curves (AUC) were 0.95 for NDVI and 0.99 for NDVI+DOY models. A comparison of the NDVI temporal change between different sites showed that white mold temporal development was affected by the site location, which could be influenced by many local parameters such as the soil properties, the local elevation, management practices, or weather parameters. This study showed the importance of freely available remotely sensed satellite images in the estimation of crop disease areas and in the characterization of the spatial and temporal patterns of crop disease; this could help in timely disease damage assessment
    corecore