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ABSTRACT 

CHARACTERIZING SPATIOTEMPORAL PATTERNS OF WHITE MOLD IN 

SOYBEAN ACROSS SOUTH DAKOTA USING REMOTE SENSING. 

CONFIANCE L. MFUKA 

2019 

Soybean is among the most important crops, cultivated primarily for beans, which 

are used for food, feed, and biofuel. According to FAO, the United States was the biggest 

soybeans producer in 2016. The main soybean producing regions in the United States are 

the Corn Belt and the lower Mississippi Valley. Despite its importance, soybean 

production is reduced by several diseases, among which Sclerotinia stem rot, also known 

as white mold, a fungal disease that is caused by the fungus Sclerotinia sclerotiorum is 

among the top 10 soybean diseases. The disease may attack several plants and 

considerably reduce yield. According to previous reports, environmental conditions 

corresponding to high yield potential are most conducive for white mold development. 

These conditions include cool temperature (12-24 °C), continued wet and moist 

conditions (70-120 h) generally resulting from rain, but the disease development requires 

the presence of a susceptible soybean variety. To better understand white mold 

development in the field, there is a need to investigate its spatiotemoral characteristics 

and provide accurate estimates of the damages that white mold may cause.   Current and 

accurate data about white mold are scarce, especially at county or larger scale. Studies 

that explored the characteristics of white mold were generally field oriented and local in 

scale, and when the spectral characteristics were investigated, the authors used 



xx 
 

spectroradiometers that are not accessible to farmers and to the general public and are 

mostly used for experimental modeling. This study employed free remote sensing 

Landsat 8 images to quantify white mold in South Dakota. Images acquired in May and 

July were used to map the land cover and extract the soybean mask, while an image 

acquired in August was used to map and quantify white mold using the random forest 

algorithm. The land cover map was produced with an overall accuracy of 95% while 

white mold was mapped with an overall accuracy of 99%. White mold area estimates 

were respectively 132 km2, 88 km2, and 190 km2, representing 31%, 22% and 29% of the 

total soybean area for Marshall, Codington and Day counties. This study also explored 

the spatial characteristics of white mold in soybean fields and its impact on yield. The 

yield distribution exhibited a significant positive spatial autocorrelation (Moran’s I = 

0.38, p-value < 0.001 for Moody field, Moran’s I = 0.45, p-value < 0.001, for Marshall 

field) as an evidence of clustering. Significant clusters could be observed in white mold 

areas (low-low clusters) or in healthy soybeans (high-high clusters). The yield loss 

caused by the worst white mold was estimated at 36% and 56% respectively for the 

Moody and the Marshall fields, with the most accurate loss estimation occurring between 

late August and early September. Finally, this study modeled the temporal evolution of 

white mold using a logistic regression analysis in which the white mold was modeled as a 

function of the NDVI. The model was successful, but further improved by the inclusion 

of the Day of the Year (DOY). The respective areas under the curves (AUC) were 0.95 

for NDVI and 0.99 for NDVI+DOY models. A comparison of the NDVI temporal change 

between different sites showed that white mold temporal development was affected by 

the site location, which could be influenced by many local parameters such as the soil 



xxi 
 

properties, the local elevation, management practices, or weather parameters. This study 

showed the importance of freely available remotely sensed satellite images in the 

estimation of crop disease areas and in the characterization of the spatial and temporal 

patterns of crop disease; this could help in timely disease damage assessment. 
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CHAPTER 1: LITTERATURE REVIEW  

1.1. SOYBEAN (GLYCINE MAX) GENERALITIES  

Soybean (Glycine max) is an important crop, primarily grown for beans, which can 

be processed into human food, animal feed, oil and other bioproducts. In the United 

States, the main soybean producing area is in the Corn Belt and the lower Mississippi 

Valley (USDA 2010). The usual planting dates are between May 8 and June 21, with the 

most active dates between May 15 and June 11, while the harvesting dates are reported 

between September 22 and November 3, with the most active dates between September 

28 and October 24. (USDA 2010).  

According to FAO, the world’s top five soybeans producers in 2016 are 

respectively USA, Brazil, Argentina, India, and China (Figure 1), with the USA 

producing about 36% of the total world’s production (117M tons). Brazil ranks second 

with 96M tons, Argentina third with 58M, India fourth with 14M and China Mainland 

fifth with about 11M tons. Masuda and Goldsmith (2009) estimated country-level 

production and projection through the year 2030, using the yield and the harvested area 

(Box-Jenkins model employing exponential smoothing with a damped trend) as 

components of production in their model. Their results suggest annual growth rates of 

2.5% from 2010 to 2020 and 1.8% from 2020 to 2030, reaching respectively 311.1 

million metric tons in 2020 and 371.3 million metric tons in 2030. These rates seem 

decreasing though crop production needs to double by 2050 to meet world’s population 

food demands. Projections suggest therefore, that the trends are insufficient (Ray et al. 

2013).  
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Figure 1. 1. World’s top five Soybeans producers. Source:FAOSTATS ( 

http://www.fao.org/faostat/en/#rankings/countries_by_commodity ) 

Lobell and Asner argued that the previously predicted trends have been 

overestimated because they analyzed the impact of climate change in the crop yields 

(especially corn and soybean), and observed a 17% yield decrease for each degree 

increase in growing season temperature (Lobell and Asner 2003). Further, climate 

impacts on yields have been studied and estimations showed a worldwide balance in 

which the USA exhibited a negative impact on yield (Lobell, Schlenker and Costa-

Roberts 2011).  

Beside the climate change influence, many other environmental or agricultural 

factors can affect soybean yields. Soil properties such as slope and texture (fine sandy 

soil), along with base saturation, pH, clay content, and elevation considerably explain 

soybean yield variability (Jiang and Thelen 2004). Kravchenko and Bullock (2000) found 
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similar results and  argued that these topographic influences on yield variabilities can 

differ from one site to another. Water table management contributes to 32-37% increase 

in soybeans yields, as compared to a free drainage, and the increase is exacerbated in 

drier years (Mejia, Madramootoo and Broughton 2000). In addition, while crop rotation 

is more favorable to increased yields than a monoculture (Peterson and Varvel 1989), a 

higher rotation sequence including three or more crops is even more suitable for 

increased soybeans yields (Crookston et al. 1991).  

1.2. SOYBEAN DISEASES AND IMPACTS ON YIELD 

Several diseases cause significant soybean yield losses annually (Allen et al. 2017). 

Among these, Sclerotinia stem rot also known as white mold has been consistently 

ranked among the top ten major soybean diseases across soybean growing states (Wrather 

et al. 2010, Allen et al. 2017). Many authors have studied soybean diseases, but few have 

focused on white mold of soybean. White mold is a fungal disease, caused by Sclerotinia 

sclerotiorum (Boland and Hall 1988). Most of the studies on white mold focused on 

factors influencing diseases development and effect on soybean yield. These factors 

include fungicide applications and difference in the timing of fungicide applications 

(Bradley 2008, Carmona et al. 2011), planting dates, inoculation stage (Danielson, 

Nelson and Helms 2004), and agricultural practices such as tillage or crops sequence 

(Kurle et al. 2001). Attention around white mold developed in the 1980s, when  the 

disease epidemiology was documented in Ontario by Boland and Hall (1988). According 

to their observations, the development of crop canopy between mid and late July was 

followed by apparition of apothecia. The study highlighted important events that favors 

the occurrence of white mold: crop canopy closure, flowering, apothecia appearance and 
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ascospores germination, and environmental conditions essentially corresponding to 

wetness lasting 40-112 after rain and air temperature between 12-24 C. These conditions 

are determined as suitable for high yield potential, but also are favorable to development 

of white mold.  

Fungicides and some herbicides have been used to manage white mold. The 

frequence and timing of the application, as well as inoculation stage influence the level of 

white mold development and the resulting yield. The effect of two treatments (2,6-

dichloroisonicotinic acid- INA and benzothiadiazole- BTH) on soybean yields and on 

disease severity caused by Sclerotinia sclerotiorum was examined by Dann et al. (1998). 

The authors found that the severity of white mold was reduced by 20-70% by three or 

four applications of INA as compared with the control, and by 20-60% by two or four 

applications of BTH. In both cases, the greatest reduction of disease severity was 

observed in susceptible cultivars and yield was negatively correlated with disease 

severity. Danielson et al. (2004) examined effects of white mold on soybeans yields 

inoculated at two different growth stages (R3 and R5); the authors measured seed weight, 

seed and pod numbers, seed protein, and oil content; they found that the disease resulted 

in significant seed weight loss, and the yield loss was estimated to an average of 136.6 

kg/ha per 10% disease increase. In some experiments, the disease resulted to a reduction 

in the number of seeds and pods per plant and seed oil content.  

The importance of cultivar selection has been hihglithed in several studies, as some 

cultivars might be more susceptible to certain diseases than other. Buzzell, Welacky and 

Anderson (1993) conducted a study in which they found that soybeans cultivars selection 

had a significant importance in the occurrence of white mold some cultivars produced 
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more sclerotia per diseased plant than others. They also noticed that white mold occurred 

less in cultivars that matured earlier than in late maturing crops, which justified partially 

the cultivar selection. Hoffman et al. (1998) examined yield and seed quality response of 

different soybean cultivars to white mold. They found that the disease incidence was a 

function of the choice of the soybean cultivar; also, the white mold incidence increase 

corresponded with yield reduction with significant difference among cultivars. They also 

noted that the disease incidence was positively correlated with the number of sclerotia for 

all the cultivars, and negatively correlated to seed weight and seed oil content. These 

results were confirmed by Yang, Lundeen and Uphoff (1999).  

Management practices are also an important factor that influences the development 

of white mold. The effects of tillage, and crop sequence on white mold incidence and 

yield in soybean have been investigated by Kurle et al. (2001). The authors found a 

simple linear relationship between white mold incidence and yield with a correlation 

coefficient of 35%, a significant effect of crop rotation (especially when soybean was 

planted after corn and oat) and tillage in the reduction of white mold, and the cultivar 

effect due to their susceptibility to white mold.  Similarly, Mueller, Hartman and 

Pedersen (2002) examined the effects of crop rotation and tillage on white mold by 

comparing moldboard plowing (MP), mulch tillage (MT) and no-till (NT) and 

investigating their effects on sclerotia and apothecia counts and distribution, and on yield. 

They found that white mold incidence was not significantly affected by crop rotation, 

while tillage affected both the number and distribution of sclerotia in the soil profile. MP 

was more effective than MT and NT, and lowered the number of sclerotia by burying 

them deeper than 10cm under soil; MP also delayed apothecia germination when 
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compared to NT and MT. Milas et al. (2003) modeled the prevalence of white mold using 

management practices (tillage, herbicide, manure and fertilizer application, and seed 

treatment with fungicide) and weather data (summer air temperature and precipitation) 

and established relationship between the two datasets and soybean yield, with a multiple 

linear regression coefficient of 0.27. The authors suggested that the occurrence of white 

mold was associated with environments of high potential yields. These environmental 

conditions were associated with variables of significance such as average air temperature 

during July and August, precipitation during July, tillage, seed treatment, liquid manure, 

fertilizer, and herbicide applications. 

The above reviewed  studies established a knowledge benchmark on several aspects 

of white mold; however, they focused on field observations and experiments that do not 

provide a large spatial picture of the disease. The field methods developped however 

reproducible, are laborious if replicated over large areas. Furthermore, local and regional 

differences can not easily be accounted for while analyzing sparse fields, which makes it 

hard to draw conclusions for a large spatial scale. With remote sensing, satellite images 

can be used to provide consistent observations on relatively larger areas in order to 

extract and interpret field differences. However, the use of remote sensging for 

interpreting a given phenomenon requires a strong knowledge of the modeled 

phenomenon, as well as an informed understanding in the choice of the data able to 

explain the phenomenon being modeled.   
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1.3. CROP DISEASE DETECTION AND MAPPING WITH REMOTE SENSING  

1.3.1. Disease detection with remote sensing 

Remote sensing has played a significant role in detecting and modeling vegetation 

stress, especially in crops. A milestone in the use of images for crop monitoring was the 

establishment of the relationship between the measured reflectance and a determined 

pigment (i.e. chlorophyll a, b, carotenoid) quantity. One of the first attempts to 

characterize plant disease with remote sensing analyzed the change in the spectral 

reflectance of field bean leaves (Vicia faba) infected by the Botrytis fabae (Malthus and 

Madeira 1993). The researchers observed an increase of the lesion area corresponding to 

the increase in the reflectance in the blue (470-500nm) and the red (590-700nm) regions 

of the visible, and a decrease of the reflectance in the green region (550nm); however, the 

highest correlations of reflectance with infection area were found in the near infrared 

region (>720nm). These changes also corresponded to the decrease of chlorophyll a, 

xanthophyll and carotenoids, and an increase of chlorophyll b. Other similar studies 

showed the decrease in chlorophyll content related to the change in reflection spectra, 

(Polischuk et al. 1997, Kobayashi et al. 2001). 

Most of the subsequent studies employed the same principles and similar methods: 

they measured field disease severity that they related to reflectance data. However, the 

reflectance data were mostly collected from field measurements using hand-held 

spectrometers (Grisham, Johnson and Zimba 2010), spectro-radiometers (Muhammed 

2005), spectrographs (Moshou et al. 2005) over a wavelength range in regular intervals, 

or using digital cameras (Fitzgerald, Maas and Detar 2004). Results are complementary 

to each other as they pertain to different crops and diseases, and the different studies 
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highlight the importance of given wavelengths over others for different disease detection. 

Bravo et al. (2003) studied early yellow rust (Puccinia striiformis) detection in wheat 

fields, suggesting that the two best wavebands used to detect disease were at 750 and 

630nm, while in a study investigating the sugar cane Yellow Leaf Virus (YLV), the 

discrimination of YLV was important in several spectral regions including the ultraviolet 

(220–320nm), the violet and blue (400–500nm), the green and yellow (500–590nm), 

orange and red (590–650nm), and the near-infrared (740–850nm)(Grisham et al. 2010). 

Similarly, Naidu et al. (2009) investigated the change in leaf spectral reflectance between 

virus-infected and uninfected grapevine (Vitis vinifera L.) to detect grapevine leaf roll 

disease (GLD); differences between the diseased and healthy grapevines were observed 

at wavelengths 550nm (green), 900nm (near infrared), and 1600nm (mid-infrared) 

While the field reflectance measurements represent a viable data for modeling, it 

also has many limitations: (1) the reflectance can only be collected on a limited area; (2) 

the measurements need to be made in similar environmental conditions, which is very 

critical for data consistency; (3) collected data cannot be extrapolated over larger areas, 

limiting the data only for the explored fields; (4) measurement tools are expensive and 

generally not accessible to the public. These constraints reduce the usability of such 

reflectance field measurements. These limitations can be solved by the use of remotely 

sensed images, which can provide observations spanning big areas, can be calibrated 

based on sensor characteristics, can incorporate different fields in a single observation, 

and in some cases, can be free of charge. A pioneering use of Landsat TM (Thematic 

Mapper) images for disease detection was performed to study the infestation of take-all 

disease (caused by the fungus Gaeumannomyces graminis var tritici) in wheat (Chen et 
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al. 2007), in combination with field data collected using a spectrophotometer (with 3.5nm 

spectral resolution, ranging from 0.3 to 1.08µm). The authors computed Normalized 

Difference Vegetation Index (NDVI) for healthy and unhealthy wheat samples and 

noticed the vegetation index of the latter was lower due the reduction in the chlorophyll; 

they also found that Landsat band 5 played an important role in differentiating wheat 

health. Similarly, multispectral remote sensing images were used to detect rice sheath 

blight in Arkansas (Qin and Zhang 2005). The study employed broadband high spatial 

resolution Airborne Data Acquisition and Registration (ADAR) images and field 

observations consisting of disease severity.  

The technological development and the advances in sensors recently increased the 

use of high spatial resolution images for crop monitoring. While these images provide 

better details than free moderate-resolution images (i.e. Landsat), they also are expensive 

and not generally accessible to the general public. Franke and Menz (2007) employed 

high resolution QuickBird (2.4m spatial resolution) and hyper-spectral HyMap (4m 

spatial resolution at wavelengths ranging from 450nm to 2480nm) data to detect powdery 

mildew (Blumeria graminis) and leaf rust (Puccinia recondita) in winter wheat; their 

method employed the decision tree that used the spectral mixture analysis (SMA) and 

NDVI to classify different levels of disease severity. The validation included disease 

severity recorded in the field at different stages and spectroradiometer measurements. 

The results showed classification results matching the disease severity with respect to the 

dates of the image acquisition. The aggregated binary map (healthy versus unhealthy) 

were validated and produced an overall accuracy of 56.8%, 65.9%, and 88.6% 

respectively for the dates 04/22, 05/28, and 06/20. Nutter et al. (2002) therefore 
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suggested the combination of multisource remote sensing images such as ground 

reflectance measurements, aerial and satellites images for disease detection and 

monitoring.  

1.3.2. Landsat data fusion for crops time-series analyses   

Landsat has remained consistent over the four decades of its different missions, in 

terms of spatial and temporal resolutions. The spectral improvements of recent Landsat 

enhanced Thematic Mapper Plus (ETM+) and the Operational Land Imager (OLI) have 

provided Landsat with more capabilities in vegetation monitoring. However, the temporal 

resolution (16 days revisiting period) has remained a major limitation, especially when 

clouds further extend the delays in observations. Several techniques have been developed 

to overcome these long gaps in Landsat observations, relying on the fusion of high 

temporal resolution sensors such as the Moderate Resolution Imaging Spectroradiometer- 

MODIS (but with low spatial resolution) to produce consistent observations over a single 

growing season, or several years. Several authors have used data fusion techniques to 

overcome the low temporal resolution of Landsat. Many factors however, need to be 

considered while choosing the desired fusion algorithms. These factors include the nature 

of the study area (including the land cover change), the assumptions behind the chosen 

algorithm, the computation requirements, the quality of the inputs, and the objectives of 

the study.   

The nature of the area to be studied needs to be considered in the choice of the 

fusion algorithm to be used. The Spatial and Temporal Adaptive Reflectance Fusion 

Model (STARFM)  (Gao et al. 2006) for instance performs better in homogeneous 

regions such as forest areas, while it’s improved version, the Enhanced STARFM 
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algorithm (ESTARFM) (Zhu et al. 2010), performs better in heterogeneous regions. 

However, STARFM is an open source algorithm, and represents an important benchmark 

that could be explored and further improved. Examples include Spatiotemporal Adaptive 

Data Fusion Algorithm for Temperature mapping (SADFAT) algorithm (Weng, Fu and 

Gao 2014), that predicted Land Surface Temperature (LST), and the Spatial Temporal 

Adaptive Algorithm for mapping Reflectance Change (STAARCH), which was improved 

for detecting the land cover change, especially in the forested landscapes (Hilker et al. 

2009) because forest cover generally looks homogeneous. A comparison of both 

STARFM and ESTARFM to two other simple techniques (Linear Interpolation Model - 

LIM and Global Empirical Image Fusion Model-GEIFM), suggested that ESTARFM is 

more suitable when and where the land cover and the spectral bands exhibit high spatial 

variances, and STARFM when there is high temporal variance (Emelyanova et al. 2013). 

As land cover change represents an important factor in the choice of the fusion 

algorithm, several improvements have been made to account for this aspect. Methods 

such as the linear unmixing (Zurita-Milla, Clevers and Schaepman 2008, Amorós-López 

et al. 2013) and the unmixing-based data fusion (UBDF) (Zurita-Milla et al. 2009) 

approaches are not able to capture land cover change, and may not be suitable in studies 

and areas with high land cover dynamics. Both STARFM and ESTARFM can capture 

changes at a finer resolution if they are permanent (such as burns) and if they can be 

detected by MODIS. Yet, other algorithms addressed the land cover temporal change 

limitations in the fusion techniques by developing methods such as the Spatial Temporal 

Data Fusion Approach (STDFA) (Wu et al. 2012), which was further improved by the 

Improved Spatial Temporal Data Fusion Approach (ISTDFA)(Wu et al. 2016). These two 
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algorithms were able to capture the land cover change if these changes could be observed 

in the input MODIS images. This condition is similar to the requirements for change 

detection with STARFM and ESTARFM. Other advanced methods considering the land 

cover change include the Unmixing-based Spatio-Temporal Reflectance Fusion Model 

(U-STFM) (Huang and Zhang 2014), which takes into account the phenological and land 

cover changes, and the sparse representation-based spatiotemporal reflectance fusion 

model (SPSTFM) (Huang and Song 2012).   

The assumption behind the chosen algorithm is very important in the consideration 

of the fusion technique. A review of different fusion methods (Zhang et al. 2015) allowed 

their classification as contexture methods, temporal and spatial variance related fusion 

methods, and non-linear methods such as sparse representation-based spatiotemporal 

reflectance fusion model (SPSTFM). Contexture methods depend on existing maps, 

including land cover maps resulting from images classifications (ISODATA or K-means 

algorithms). This category includes unmixing methods (Zurita-Milla et al. 2008, Amorós-

López et al. 2013) algorithms such as UBDF (Zurita-Milla et al. 2009) or STRUM 

(Gevaert and García-Haro 2015). Temporal and spatial variance methods include 

algorithms such as STARFM, ESTARFM, STDFA, ISTDFA and U-STFM. Some of 

these methods assume that the temporal variation of land cover is constant (STDFA and 

ISTDFA), while others assume that the land cover change is linear (STARFM and 

ESTARFM). Advanced methods, instead include the notion of change-ratio (U-STFM 

and SPSTFM), which consider both phenological and land cover changes in the fusion.  

Computation (and automation) requirements can sometimes be a limiting factor, 

especially when fusion methods use image-pairs as inputs. STARFM has an advantage of 
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low computation because it can work with a single pair of inputs (Landsat and MODIS) 

while ESTARFM has a reduced automation (by manually setting the size of the search 

window and the number of classes), and an intense computation (because it requires at 

least two pairs of fine-coarse images for the same data). U-STFM requires significantly 

less time than ESTARFM or STARFM; however, it requires extra-steps in the pre-

processing including image segmentation and an unmixing step, which might be a 

disadvantage. The Spatial and Temporal Reflectance Unmixing Model (STRUM) 

(Gevaert and García-Haro 2015) has a reduced computational time and is less dependent 

on the number of fine resolution images as inputs which is an improvement if compared 

to STARFM. 

The quality of the inputs depends mostly on the types of the study, but data being 

fused need to be calibrated in order to be comparable. While some fusion techniques used 

individual bands, other used basic generated products such as LST or advanced generated 

products such as NDVI. In any case, the pre-processing steps should always include the 

geometric correction in order to ensure that analyzed pixels align correctly and to reduce 

the biases in the method, atmospheric and radiometric corrections in order to reduce 

bands reflectance variability. The temporal characteristics of the input images constitutes 

another important factor in several aspects: selecting images at key phenological phases 

(Greenup, maturity, or senescence) as inputs is more likely to capture the changes and 

accurately reconstitute the growing season; also, when the analyses are extended over 

several years, data collected by the same dates allow better comparisons and consistent 

data predictions.    
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While choosing the appropriate fusion algorithm, the objectives of the study are a 

non-negligible factor. While most of the methods have been developed to provide 

consistent time-series images for land cover monitoring, some methods might have very 

specific objectives. An example includes an algorithm that was primarily developed to 

overcome the Landsat ETM+ scan line corrector failure but can also be used to predict 

cloud and shadow pixels (Roy et al. 2008). This method developed an approach that uses 

the MODIS Bi-directional Reflectance Distribution Function (BRDF)/ Albedo and 

Landsat ETM+ to predict reflectance at an ETM+ scale for the same date and the dates 

before and after the observation. Other methods have been developed as improvements of 

existing algorithms in order to address specific limitations such as the land cover change 

(STDFA, U-STFM), or the computation requirements (STRUM). More recently, a 

Flexible Spatiotemporal Data Fusion (FSDAF), was developed based on spectral 

unmixing analysis and a thin plate spline interpolator (Zhu et al. 2016); the method aimed 

to provide a more accurate prediction of fine-resolution images in heterogeneous areas by 

capturing all land cover type changes (gradual and fast) while requiring minimal input 

data (only one fine resolution input image).  

Considering the aspects mentioned above and the fact that ESTARFM usually 

outperforms STARFM (Li et al. 2017), we selected ESTARFM as the fusion algorithm to 

fill the gap in the images to be analyzed over our study area. In fact, the scarcity of 

consistent Landsat observations prompted us to consider a fusion of the available Landsat 

8 images with the daily MODIS MDC43A4 Version 6 products. Resulting images are 

expected to inherit the 30m spatial resolution of Landsat at a daily frequency in order to 
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allow an accurate analysis of white mold by capturing its spatial and temporal 

characteristics.  

1.4. RESEARCH GOAL, OBJECTIVES AND HYPOTHESES 

The overall goal of this research is to improve our understanding of the white mold 

occurrence through the exploration of satellite images. This goal is pursued through the 

following three objectives:  

1) Quantify the occurrence of white mold in several counties of South Dakota 

through the use of three remotely sensed Landsat 8 images; 

2) Investigate the spatiotemporal characteristics of white mold by exploring its 

spatial distribution in soybean fields and its impact on yield; 

3) Investigate the temporal characteristics of white mold by modeling the white 

mold as a function of the vegetation index through time.  

To achieve these three goals in this research, the following three hypotheses have been 

developed and addressed:  

Hypothesis #1: Based on field knowledge and available Landsat images, the occurrence 

of white mold can be accurately mapped and quantified.  

Hypothesis #2: Spatiotemporal characteristics of yield in white mold infected soybean 

fields can be modeled using NDVI computed from a fusion of Landsat and MODIS 

images, and the relationship can provide estimates of yield loss caused by white mold.  

Hypothesis #3: White mold temporal characteristics can be modeled as a function of the 

Normalized Difference Vegetation Index obtained by a fusion of Landsat and MODIS. 
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1.5. SIGNIFICANCE OF THE STUDY 

Despite the scientific attention given to white mold of soybean, there is still a need 

to investigate the contribution of satellite imagery in better understanding the spatial and 

temporal characteristics of the disease. Thanks to the technological advances, remote 

sensing can be used to collect large scale data that can be modeled to provide good 

insight on the crops conditions and a better understanding of the disease development. 

While remote sensing is advantageous in terms of labor and time involved, it also 

presents some limitations in terms of the quality of the input data, the timing of data 

acquisition, and sometimes the level of details needed to better interpret the investigated 

phenomena. Field scouting has proven to be an accurate disease identification method, 

but the labor does not allow timely and accurate identification of the disease over large 

areas.  

This study provides improvement in the understanding of the spatiotemporal 

characteristics of white mold and also sets a benchmark in using remote sensing images 

to understand other threats that might affect soybean production. First, the mapping and 

quantification of white mold using free remote sensing images provide accurate estimates 

of the impacts of the diseases when compared to the damage as reported by USDA. 

However, these results can still be improved by the use of higher spatial and temporal 

resolution images such as SENTINEL-2, in the optics of capturing subtle patches that 

might have not been observed in the medium Landsat images. Second, the assessment of 

spatiotemporal characteristics of white mold development over time using NDVI allows 

to understand the critical period for predicting yield and estimating yield loss, as well as 
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the spatial development of white mold in a field. This information is beneficial to farmers 

as it may allow them to take appropriate measures in the mid-season to prevent yield loss 

such as spraying fungicides based on previous white mold extent in their locations. The 

disease extent estimation method can be improved by incorporating timely and accurate 

images such as those provided by commercial drones, in case satellite images gaps are 

hard to fill. Finally, modeling the temporal evolution of white mold as a function of the 

Normalized Difference Vegetation Index (NDVI) allows to assess the importance of non-

destructive methods in analyzing the disease occurrence. This study highlights the 

importance of the time component expressed as the Day of the Year in modeling the 

temporal development of the white mold. Furthermore, the comparison of the NDVI 

temporal change between different sites show how the disease can be influenced by local 

parameters that are important to capture differences from one location to another. The 

models developed in this study, are limited in space and time, and might not necessarily 

apply to regions with different environmental characteristics; however, they constitute an 

important source of information for the development of future models in the regional and 

global scales, provided ground truth data are accessible.  

1.6. ORGANIZATION OF THE DISSERTATION 

This dissertation contains five chapters. Chapter 1 (Literature review) provides 

generalities on the soybeans, white mold, information on the use of Remote Sensing for 

crop monitoring and disease detection, information on the data fusion algorithms, and 

frames the “aim, objectives, and hypotheses” that this research pursued and addressed. 

Chapter 2 through Chapter 4 separately addresses three hypotheses enumerated above. 

Finally, Chapter 5 concludes the whole research. 
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Chapter 2 addresses hypothesis #1: The use of free available Landsat images to 

map and quantify the occurrence of white mold in three northeastern counties of South 

Dakota; it uses the random forest algorithm to map the Land Cover and white mold 

occurrence.   

Chapter 3 addresses hypothesis #2: Spatiotemporal characteristics of yield in white 

mold infected soybean fields can be modeled using NDVI computed from a fusion of 

Landsat and MODIS images. It also examines the spatial distribution of yield in a 

soybean field infected with white mold, and investigates the change in the relationship 

between yield and NDVI.  

Chapter 4 addresses hypothesis #3. White mold temporal characteristics can be 

modeled as a function of the Normalized Difference Vegetation Index obtained from 

fusion of Landsat and MODIS. It models the temporal evolution of soybean as a function 

of weather parameters, in order to investigate factors susceptible to explain white mold 

occurrence.   

Chapter 5 presents major conclusions of the study. It summarizes the key findings 

in the tests of the three hypotheses and relates them back to the aim and specific 

objectives. It also discusses future research directions and recommendations for 

improving the key findings. 
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CHAPTER 2: MAPPING AND QUANTIFYING WHITE MOLD IN SOYBEAN 

ACROSS SOUTH DAKOTA USING LANDSAT IMAGES  

 

Mfuka, C., Zhang, X. and Byamukama, E. (2019) Mapping and Quantifying White Mold 

in Soybean across South Dakota Using Landsat Images. Journal of Geographic 

Information System, 11, 331-346. https://doi.org/10.4236/jgis.2019.113020  

 

This chapter addresses Hypothesis #1: Based on field knowledge and available Landsat 

images, the occurrence of white mold can be accurately mapped and quantified.  

 

2.1. ABSTRACT  

White Mold of soybeans (Glycine Max), also known as Sclerotinia stem rot 

(Sclerotinia sclerotiorum), is among the most important fungal diseases that affect 

soybean yield and represents a recurring annual threat to soybean production in South 

Dakota. Accurate quantification of white mold in soybean would help understand white 

mold impact on production; however, this remains a challenge due to a lack of 

appropriate data at a county and state scales. This study used Landsat images in 

combination with field-based observations to detect and quantify white mold in the 

northeastern part of South Dakota. The Random Forest (RF) algorithm was used to 

classify the soybean and the occurrence of white mold from Landsat images. Results 

show an estimate of 132 km2, 88 km2, and 190 km2 of white mold extent, representing 

31%, 22% and 29% of the total soybean area for Marshall, Codington and Day counties, 

respectively, in 2017. Compared with ground observations, it was found that soybean and 
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white mold in soybean fields were respectively classified with an overall accuracy of 

95% and 99%. These results highlight the utility of freely available remotely sensed 

satellite images such as Landsat 8 images in estimating diseased crop extents, and suggest 

that further exploration of consistent high spatial resolution images such as Sentinel, and 

Rapid-Eye during the growing season will provide more details in the quantification of 

the diseased soybean.  

Keywords: Random Forest, Landsat, White Mold, Soybean 

 

 

2.2. INTRODUCTION   

White mold of soybeans (Glycine Max), also known as “Sclerotinia Stem Rot” 

(SSR), is among the most important fungal diseases affecting soybean yields and 

represents a recurring annual threat to soybean production in South Dakota. Initially 

reported in Poland in 1982 as a disease of local importance (Marcinkowska, Tomala-

Bednarek and Schollenberger 1982), white mold was, more than a decade later, ranked in 

the top ten diseases that suppress soybean yields (Wrather and Koenning 2009). The 

apothecia (fungal structures that produce inoculum of the pathogen) of white mold 

generally appear after the crop canopy develops, around mid to late July and the 

environmental conditions corresponding to the development of white mold are cool (air 

temperature around 12-24 °C), wet and moist (enough rain: 70-120 hours of continuous 

wetness) conditions (Boland and Hall 1988). These conditions are favorable for optimal 

yield. Therefore, incidence of white mold has been negatively correlated with yields 
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(Hoffman et al. 1998) because the disease is more likely to develop where there is high 

yield potential. Thus, mapping and quantifying the disease is crucial to understand its 

impact on yields, and two options can be used: field scouting represents an accurate 

assessment, but remains time-consuming and does not provide a global view of the 

variations in the field, while remote sensing represents the best solution because it 

provides a synoptic view and allows observations to span large areas in a short period 

(Lowe, Harrison and French 2017).  

The rationale behind the use of large scale imagery techniques is that they represent 

a fast, non-destructive method (Yeh et al. 2013), and rely on biophysical characteristics 

that depend on the wavelength used for crop status monitoring. Malthus and Madeira 

(1993) highlighted the interest of using image to detect crop diseases by examining 

the spectral leaf reflectance properties of field bean infected by the fungus Botrytis fabae. 

Later, Polischuk et al. (1997) studied the correlation between chlorophyll content and 

spectral reflectance in virus affected plants. In the 2000s, several authors explored diverse 

options for disease detection: Kobayashi et al. (2001) used multispectral radiometers and 

airborne multispectral scanner to identify the panicle blast rice. Qin and Zhang (2005) 

collected ADAR (Airborne Data Acquisition and Registration) remote sensing images to 

map rice sheath blight. Further, Huang and Apan (2006) used a portable 

spectroradiometer to collect hyperspectral data and detect Sclerotinia rot disease in 

celery. Naidu et al. (2009) later identified grapevines viral infections by using the leaf 

spectral reflectance collected with a portable spectrometer. The use of hyperspectral 

images is necessary to characterize plant stress (Behmann, Steinrucken and Plumer 2014, 

Vigier, Pattey and Strachan 2004) and spectral indices are crucial in detecting and 
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identifying plant diseases (Chappelle, Kim and Mcmurtrey 1992, Mahlein et al. 2013, 

Vigier et al. 2004) . However, most of these studies required the use of portable spectro-

radiometer or airborne remotely-sensed images, which represent costly resources and 

have a reduced accessibility to common users and farmers.  

While vegetation stress has received a lot of scientific attention, soybeans stress 

mapping has received little consideration, and when it has, these studies focused either on 

other diseases than white mold (Bajwa, Rupe and Mason 2017), or in water stress 

(Behmann et al. 2014, Thompson and Wehmanen 1980). Vigier et al. (2004) used 

hyperspectral reflectance to compute several vegetation indices to detect white mold, but 

the study focused on inoculated disease, rather than in-situ observation, and reflectance 

was collected using a field spectrometer. Recent studies have focused on mapping 

soybean at national scale (Song et al. 2017, King et al. 2017) , but these efforts have not 

addressed disease detection. In South Dakota which is one of the main soybean producing 

states in the US, no studies have been conducted for the quantification of soybean 

diseases, especially white mold using remote-sensing approaches.  

There is still a knowledge gap in the effectiveness of free of charge moderate-

resolution remotely sensed images such as Landsat in accurately mapping crop diseases, 

especially the occurrence and evolution of white mold in the Midwest. The current study 

employs free Landsat 8 images to map and quantify white mold in selected counties in 

South Dakota. Random forest (RF) classifiers (Breiman 2001) were used to extract 

spectral characteristics of soybean and white mold leading to mapping the spatial extent 

of the disease.  
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2.3. MATERIALS AND METHODS  

2.3.1. Study area   

The study was located in northeastern South Dakota and includes three counties: 

Marshall, Day and Codington. Soybeans are planted in South Dakota between May 8 and 

June 21, with the most active period between May 15- June 11 (USDA 2010). The 

harvest occurs between September 22 and November 3, with the most active period 

between September 28 and October 24. Field data consisted of scouting and reporting on 

the presence/absence of white mold during the months of July and August in the year 

2017. In the study area, a total of 11 fields were scouted, where white mold was reported 

and confirmed as shown in Figure 2.1.  
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Figure 2. 1. Study area showing the three counties (Marshall, Day, and Codington) in 

Northeastern South-Dakota. The background image is a Landsat false color combination 

of bands 6-5-4.  
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2.3.2. Data gathering 

We downloaded the 30-meter spatial resolution Landsat Analysis Ready Data 

(ARD) from Earth Explorer (https://earthexplorer.usgs.gov/) for the growing season of 

the year 2017, and covering the three counties in the northeastern South Dakota 

(Marshall, Day, and Codington counties) as shown in Figure 2.1. These Cloud-free 

images were respectively from May 11, July 14, and August 31 and were derived from 

Landsat Collection 1 Level-1 precision and terrain-corrected scenes consisting of Top-of-

Atmosphere (TOA) Reflectance, Surface Reflectance (SR), Brightness temperature (BT) 

and Quality Assessment (QA). In our study, the products of interest consisted of SR and 

the selected bands are summarized in Table 2.1. Yet, Landsat images were particularly 

hard to obtain during the growing season, due to persistent clouds that often extend the 

16-day revisiting period of Landsat. This situation allowed to collect only two Landsat 

images (May and July) for soybean classification and one image (August) for white mold 

mapping.  

The Crop Data Layer (CDL) is a land cover dataset developed by the National 

Agricultural Statistics Services (NASS) of the United States Department of Agriculture 

(USDA). This dataset can be used to extract soybean masks or other land cover of 

interest; however, the timing in the publication of CDL might not always match the needs 

to map the land cover within the growing season. The CDL is generally produced early in 

the year, for the land cover map of the previous year. We used CDL as a reference data in 

our study, guiding the trainings for land cover mapping. This data also served in the 

comparison with our land resulting cover map.  
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2.3.3. Random Forest classifiers for mapping soybean and white mold  

a)  The Random Forest (RF) algorithm  

Methods that produce classifiers and aggregate their results have recently found 

many interests in the machine learning field (Liaw and Wiener 2002). The underlying 

principle is the same: based on a set of trainings used to extract spectral characteristics of 

different defined classes, these classifiers build models that decide to which class to 

affect each observation. The methods are called non-parametric classifiers, meaning that 

they require no statistical assumptions such as the normal distribution of the input dataset. 

Among them are methods such as boosting, that use successive trees to assign extra 

weight to samples that have been incorrectly predicted by earlier predictors (Schapire et 

al. 1998), and bagging, in which successive trees are independent from earlier trees 

(Breiman 1996). In the end of the prediction process, a weighted vote is taken in the 

boosting while a simple majority vote is taken in the bagging (Liaw and Wiener 2002).  

The RF algorithm (Breiman 2001) is one of the learning methods that adds an 

additional layer of randomness to the bagging: each node is split using the best among a 

subset of predictors randomly chosen at that node, which is different from standard trees 

(i.e Decision Tree-DT), where each node is split using the best split among all variables 

(Liaw and Wiener 2002). In the remote sensing field, especially in image or land cover 

classification, RF has shown to perform equally to Support Vector Machine (SVM) (Pal 

2007) (Thanh Noi and Kappas 2017) or to outperform Decision Tree (DT) (Rodriguez-

Galiano et al. 2012). Other studies have shown that RF outperformed SVM in terms of 

robustness and stability (Rodriguez-Galiano et al. 2015) and in terms of accuracy (Adam 

et al. 2014). The RF is preferred in our study because it can deal with classification 
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problems of unbalanced, multiclass and small sample data (Liu et al. 2013). In fact, when 

collecting training data, some classes may require more training than other in order to 

capture the maximum variability in their spectral differences. This type of data collection 

can be dealt with by RF which does not require further processing.  

b) Soybean mapping and validation. 

To classify land cover, we collected a set of trainings (about 183,810 pixels) used to 

extract spectral characteristics of different classes in ArcMap. We particularly trained 

four classes namely: Water, Corn, Soybean and Other Land Cover (OtherLC). To guide 

the trainings, three types of information could be displayed to better interpret the land 

cover in digitizing the training polygons: (1) Landsat-8 composites, (2) Crop Data Layer 

(CDL) serving as a cross-reference, (3) and high resolution Google Earth images. The 

quality of the training samples was evaluated using the Jeffries-Matusita’s (JM) spectral 

separability index, which provides a good mean of estimating the difference between the 

classes (Bruzzone, Roli and and Serpico 1995, Ifarraguerri and Prairie 2004). This index 

is a measure of statistical separability for two-class cases based on distance, and can be 

extended in the separability of multiple classes. The JM distance between classes ωi and ωj 

is formulated as shown in Equation 1. In general, a JM of greater than 1.9 represents a 

good difference, while JM of less than 1 implies a combination of the classes (no 

difference); a JM between 1 and 1.8 generally suggests improvement of training classes. 

The JM index was computed in ENVI.  

𝐽𝑖𝑗 = ∫ {√𝑝(𝑥|𝜔𝑖) − √𝑝(𝑥|𝜔𝑗)}

2

𝑑𝑥  (1) 
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Where x is the feature vector of dimension k and 𝑝(𝑥|𝜔𝑖) and 𝑝(𝑥|𝜔𝑗) are class 

conditional probability distributions of x. 

The training polygons were imported in R, and seventy percent of the pixels 

(128,667) were used to build the model while thirty percent (55,143) were used for 

validation. The two early images (May and July) bands were stacked using ENVI 5.0, 

and the resulting stacked image was classified using the RF algorithm in R. The ten 

Landsat bands (Table 2.1) were used as independent variables, while the land cover (four 

classes) to predict represented the response variable. The soybean mask was extracted 

from the resulting land cover classification map. The set-apart thirty percent of the 

samples were used to assess the accuracy of the land cover map. A confusion matrix was 

built to assess the accuracy of each class as well as the overall accuracy, and to estimate 

the classification errors.  

Table 2. 1. Original Landsat 8 bands including the Shortwave Infrared (SWIR), the 

Near Infrared (NIR), the red (RED), the green (GREEN) and the blue (BLUE) bands, and 

their corresponding names used in the Random Forest (RF) classification, and in the 

stacked image. 

Image  Original Band RF Name Stacked Band 

Landsat-8 May 11, 

2017 

SWIR 1 B6_05 Band 1 

NIR B5_05 Band 2 

RED B4_05 Band 3 

GREEN B3_05 Band 4 

BLUE B2_05 Band 5 
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Landsat-8 July 14, 

2017 

SWIR 1 B6_07 Band 6 

NIR B5_07 Band 7 

RED B4_07 Band 8 

GREEN B3_07 Band 9 

BLUE B2_07 Band 10 

 

c) White mold mapping, validation, and areas estimates  

The August 31 Landsat image was used to evaluate soybeans health and to 

characterize white wold. Field locations of well-known white mold occurrence were used 

to extract the spectral characteristics of white mold using the computed Normalized 

Difference Vegetation Index -NDVI (Rouse et al. 1973) from the same image. NDVI is a 

measure of the vegetation health and greenness, computed as the ratio between the 

difference and the sum of the Near Infrared (NIR) band and the Red band, which 

respectively represent the regions of high chlorophyll absorption and reflectance 

(Equation 2). Locations presenting similar NDVI than the known fields were targeted to 

train the data for modeling; a total of 3981 pixels were collected in the trainings. Classes 

consisted of white mold (unhealthy) and other soybean (healthy), representing the 

response variables, while the explanatory variables consisted of the 5 individual Landsat 

bands and the NDVI. To maximize the accuracy of white mold detection and reduce the 

false positive, all pixels with low NDVI that do not correspond to white mold were 

excluded from the soybean mask. In fact, soybean disturbances occurring in July are not 

white mold because at this stage, there is not yet canopy closure. While healthy soybean 
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in mid-July has and expected NDVI around 0.5, all pixels with NDVI lower than 0.45 

within the soybean mask were excluded.   

The RF algorithm was run on the soybean mask extracted from the LC 

classification; as with the land cover, seventy percent (2787 pixels) of the total sample 

pixels were used to build the model while thirty percent (1194 pixels) were used for 

accuracy assessment. To assess the accuracy of the results, the set-apart thirty percent of 

the samples were used to produce the confusion matrix, estimate the individual classes 

errors and the overall map accuracy. The resulting mapped white mold pixels were used 

to estimate areas by using the pixel counts and pixel size as it pertains to Landsat 

(Equation 3).  

 

𝑵𝑫𝑽𝑰 =  
𝑵𝑰𝑹−𝑹𝒆𝒅

𝑵𝑰𝑹+𝑹𝒆𝒅
  (2) 

𝑻𝑨 = 𝑵 × 𝑨    (3). 

Where TA is the Total Area, N is the number of pixels, and A is the area of one 

pixel (30mx30m) 

2.4.  RESULTS AND DISCUSSION  

2.4.1. Land cover spectral separability 

The performance of the trainings was assessed using the computed Jeffries-Matusita 

index, which assesses the classes’ spectral separability. Overall, all the classes exhibited 

good spectral separability (JM > 1.9) while the pair soybean/corn exhibits the lowest 

index (1.86) and water showing the highest separability (JM = 2). Table 2.2. provides 
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different values of JM index between classes as trained for the Landsat bands in the 

northern part of the study area.  

Table 2. 2. Jeffries-Matusita (JM) spectral separability index showing the goodness of the 

trainings 

Classes Water Corn Soybean 

OtherLC 1.9998 1.9419 1.9681 

Water  2 2 

Corn   1.8335 

 

The original input Landsat bands were stacked in a color composite image 

combining both May and July bands. The corresponding output bands designations are 

listed in Table 2.1. Figure 2.2 provides a visual display of each band’s ability to 

discriminate individual classes. Both NIR and SWIR bands in May and July separated 

water successfully; corn tended to stand out particularly in July using the visible bands 

(Blue, Green, and Red), while soybean (areas where soybean will grow) was 

distinguished in the visible bands in May. In fact, soybean is not visible in the fields at 

this period, but their areas can be distinguished with corn. The “OtherLC” class looks 

particularly difficult to extract because of the high variability of the land covers included 

(grass, pasture, other crops).  
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Figure 2. 2. Class spectral separability: each plot shows the ability and the 

contribution of each band in separating land cover classes.  
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2.4.2. Land cover classification results  

The stacked May and July images were classified using the RF algorithm and the 

land cover map was generated using the R software. The four classes (Water, Corn, 

OtherLC and Soybean) were labeled and colored to match the Crop Data Layer (CDL) 

dataset. Figure 2.3 shows a comparison between the July False color (6-5-4) Landsat 

composite, the CDL and the classified images. Water (Upper-right) is in some cases 

classified as other land cover, especially when it corresponds to swamps as mapped by 

CDL. Overall, the classified image is close to the CDL but reflects more what is observed 

in the composite Landsat image, especially the field roads in-between soybean fields that 

are excluded from the classified map, thus excluding the false positive when mapping the 

disease. The rationale behind computing a land cover map instead of using existing 

datasets such as the CDL is the timing: The release date of the CDL for a given year 

occurs early the following year, while the estimate the disease extent may be needed 

earlier than that. However, extracting the mask of interest from CDL is a good alternative 

provided it is released on time. 
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 A 
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 C  

 

Figure 2. 3. A comparison between a July 14 false color 6-5-4 Landsat 8 image (A), the 

Crop Data Layer (CDL) map (B) and the resulting classification (C) of the stacked May 

and July images. showing similarities between the resulting classification and the CDL.  

2.4.3. Land cover map accuracy assessment 

The accuracy of the resulting classification map was assessed using the confusion 

matrix (Table 2.3), with the 30 % set-apart pixels that were not used in the RF 
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classification process. The classification results achieved an overall accuracy of 95%. 

The “Water” class performed the best (98% accuracy) while “Corn” performed the least 

(91% accuracy); OtherLC was classified with 97% accuracy while soybean achieved an 

accuracy of 94%. Table 2.3 reports the individual class accuracies as well as the errors. 

The commission and omission errors are reported in Table 2.3 as well. Soybean is 

accurately classified with a 94% producer’s (meaning that approximately 94% of the 

soybean ground truth pixels also appear as soybean pixels in the classified image) and 

93% user’s accuracy (meaning that 93% of the soybean pixels in the image actually 

represent soybean in the ground).  

Table 2. 3. Confusion matrix of the land cover map accuracy assessment 

 Ground Truth  

Classification Water Corn OtherLC Soybean Com. Err. Prod. Acc. 

Water 459 8 0 0 0.02 0.98 

OtherLC 5 1042 10 27 0.03 0.97 

Corn 1 23 356 13 0.09 0.91 

Soybean 0 24 8 524 0.06 0.94 

Om. Err. 0.01 0.05 0.05 0.07   

User’s Acc. 0.99 0.95 0.95 0.93   

The accuracy of the mapped land cover classes is reported, with the Commission Error 

(Com. Err.) and the corresponding Producer’s Accuracy (Prod. Acc.): Water has the 
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highest accuracy while corn has the lowest, with soybean being 94% accurate. The 

omission error (Om. Err.) and the corresponding User’s accuracy (User’s Acc) are 

reported as well, with water being the most accurate (99%) while soybean has a 93% 

accuracy.  

2.4.4. White mold mapping 

Figure 2.4 shows the computed NDVI (B) on the August Landsat image (A), and 

the resulting mapped soybean and white mold (C). In late August, the soybean crops are 

mature and therefore the vegetation index is high. The detected white mold NDVI ranges 

between 28%-78% while the healthy soybean exhibits a high NDVI of more than 79%.  

Some unhealthy areas can also be detected with very low NDVI values, 

corresponding to early soybean damages that are not white mold. However, these cases 

represent sparse and isolated pixels and were not included in the training. Despite the 

efforts to accurately detect white mold, some other disturbances can also present similar 

spectral index, especially since the white mold mapping is only using one image. 

Including several images in the white mold mapping would allow exclusion of 

disturbances that have the same index with white mold while representing something 

else. Information on the timing of white mold is crucial in excluding such disturbances in 

the presence of several images. Yet, unplanned disturbances such as drought or hail 

damages would not exhibit similar spatial patterns as white mold in the field, and can 

therefore be distinguished from the mapped disease.  
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Figure 2. 4. August Landsat composite (A), August Landsat NDVI with white mold range 

(B), and mapped soybean and white mold (C): White mold is accurately mapped from the 

soybean mask, using the appropriate NDVI signal.  

2.4.5. White mold map accuracy assessment  

The accuracy of the resulting white mold map was assessed using the 30% set-apart 

samples that were used in the model building. The map achieved an overall accuracy of 

99%. Table 2.4 reports accuracy and the commission/omission errors of the resulting 

white mold map.  White mold is mapped with high accuracy (99%). These results can be 

explained by the quality of the independent variables that not only use individual bands, 

but also includes the NDVI in the modeling. Unfortunately, one limitation of the RF 

which is known as the black box, is that it cannot provide the contribution of each 

variable in the model. More importantly, we checked the known fields that were affected 

by white mold and all of them were correctly mapped. The resulting final white mold 

map is shown in Figure 2.5, as well as the classified Landsat images and the fields 

locations.  
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Table 2. 4. White mold accuracy assessment: Confusion matrix table comparing the 

mapped classes with ground truth.  

 Ground Truth 

Class Healthy Unhealthy Commission 

Error 

Producer’s 

Accuracy. 

Healthy 1834 22     0.01 0.99 

Unhealthy 1 643        0.01 0.99 

Omission  Error 0.01 0.03   

User’s Accuracy. 0.99 0.97   

2.4.6. Quantified soybean and white mold  

Using the Landsat pixel size (30mx30m), we estimated the total area of the 

classified soybean in the three counties based on the total number of pixels mapped. 

Table 2.5 reports the total soybean areas estimation from both the classification and the 

USDA report (USDA 2017), as well as the estimated white mold areas per county. The 

USDA estimated areas consist of the harvested statistics, but the values are very similar 

to those obtained by the classified Landsat images. The diseased soybean area estimates 

are respectively 132 km2, 88 km2, and 190 km2, and represent 31%, 22% and 29% of the 

total soybean area for Marshall, Codington and Day counties.    

Table 2. 5. Comparison between soybean area estimates from the United States 

Department of Agriculture (USDA) and the classified map in this study, as well as white 

mold extent estimated for each county, based on the calculations from the Landsat pixel 

size (30mx30m) and the total number of pixels.  
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County Name County Area 

(km2) 

Soybean 

(km2) 

Soybean 

(USDA- km2) 

White Mold 

(km2) 

Marshall 2294.16 426.592 427.348 131.9589 

Codington 1856.90 403.700 439.893 88.3692 

Day 2824.50 653.220 660.042 189.9252 

 

2.5.CONCLUSION  

This study demonstrated that free of charge remotely sensed images could be used 

to detect and quantify white mold. The RF algorithm used was efficient in mapping the 

land cover and detecting white mold as reflected in the accuracy assessment. To improve 

the accuracy in the disease detection, this study combined both Landsat individual bands 

and NDVI. Including NDVI in the model provides more information, especially since the 

index puts together the strengths of the NIR band and the Red band.    

A good knowledge of the investigated fields is necessary to complement images 

processing and ensure a proper validation. Constraints such as the images availability, or 

the timing of the disease should be addressed carefully in mapping the disease. To 

improve the classification results, more images can be obtained by the fusion of medium 

spatial resolution Landsat (30 m, 16 days) with high temporal resolution Moderate 

Imaging Spectroradiometer –MODIS (500 m, 1 day) for instance. Disease extents may be 

underestimated because of the Landsat pixel size that may not capture small patches of 

the disease. The use of satellite images with short revisiting period and a higher spatial 

resolution such as Sentinel-2 (10 m, 5 days revisiting period) or daily Rapid-eye may 
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provide a better way of quantifying the disease, but the extent or the coverage might 

require many scenes according to the size of the study area.  

The disease rating might also represent an important factor in mapping the 

occurrence of white mold, as according to the latitude and the difference in the planting 

dates for instance, some phenological differences might be observed in the signal of 

white mold. The disease severity can help accounts for these differences while mapping 

the crop stress, which may result to a better disease quantification. 
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Figure 2. 5.White mold in northeastern South Dakota: the map shows a classified image 

in background with the four important classes and the quantified white mold over the 

soybean mask.  The white circles indicate ground trothed white mold fields.  
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CHAPTER 3: SPATIOTEMPORAL CHARACTERISTICS OF WHITE MOLD AND 

IMPACTS ON YIELD IN SOYBEAN FIELDS IN SOUTH DAKOTA 

 

Mfuka, C., Byamukama, E. and Zhang, X. (2019) Spatiotemporal characteristics of white 

mold and impacts on yield in soybean fields in South Dakota. Geo-Spatial Information 

Science.  (Paper accepted and under revision).  

 

This chapter addresses Hypothesis #2: Spatiotemporal characteristics of soybean yield in 

white mold infected soybean fields can be modeled using NDVI computed from a fusion 

of Landsat and MODIS images, and the relationship can provide estimates of yield loss 

caused by white mold. 
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3.1. ABSTRACT 

White mold of soybeans is one of the most important fungal diseases that affect 

soybean production in South Dakota. However, there is a lack of information on the 

spatial characteristics of the disease and relationship with soybean yield. This relationship 

can be explored with the Normalized Difference Vegetation Index (NDVI) derived from 

Landsat 8 and a fusion of Landsat 8 and the Moderate Resolution Imaging 

Spectroradiometer (MODIS) images. This study investigated the patterns of yield in two 

soybean fields infected with white mold between 2016 and 2017, and estimated yield loss 

caused by white mold. Results show evidence of clustering in the spatial distribution of 

yield (Moran’s I= 0.38; p < 0.05 in 2016 and Moran’s I= 0.45; p < 0.05 in 2017) that can 

be explained by the spatial distribution of white mold in the observed fields. Yield loss 

caused by white mold was estimated at 36% in 2016 and 56% in 2017 for the worse 

disease pixels, with the most accurate period for estimating this loss in August 21st and 

September 8th for 2016 field and 2017 field, respectively. This study shows the potential 

of free remotely-sensed data in predicting yield and estimating yield loss caused by white 

mold.            

Keywords: Soybean, White Mold, Landsat, MODIS, Fusion, Kriging, NDVI, Time-series 

 

 

3.2. INTRODUCTION 

Soybean (Glycine Max) is among the most important crops in North America and in 

the world, grown for beans that are processed to provide oil and meal. However, soybean 
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production is affected by many diseases (Yang and Feng 2001), among which Sclerotinia 

stem rot (SSR), commonly known as white mold, is ranked among the top ten diseases 

suppressing soybean yield (Hoffman et al. 1998, Wrather et al. 2010, Allen et al. 2017).  

White mold is caused by a fungal pathogen, Sclerotinia sclerotiorum, which overwinters 

as sclerotia in the soil and soybean residue. The disease generally develops at canopy 

closure, under wet and cool conditions (Boland and Hall 1988) and is more likely to 

occur in areas of the field with high yield potential.  

Several aspects of white mold and its effect on soybean yield have been studied. 

Among these aspects are yield loss resulting from the effects of white mold inoculated at 

different growth stages (Danielson et al. 2004). Other aspects include tillage and crop 

sequence (Kurle et al. 2001) as well as cultivars and herbicide selection that reduce white 

mold (Nelson, Renner and Hammerschmidt 2002). Despite the importance of soybean 

white mold and its influence on yield, little is known on the spatial distribution of the 

disease at the field level and factors that might influence that distribution. Studies that 

employed remotely-sensed images to investigate soybean stress have either focused on 

diseases and stresses other than white mold (Bajwa et al. 2017, Behmann et al. 2014, 

Thompson and Wehmanen 1980), or employed expensive methods for collecting spatial 

data, such as hand-held spectrometers (Vigier et al. 2004), which are not freely 

accessible. Furthermore, recent studies that explored the spatial distribution of disease in 

soybean focused on other diseases and pests such as the analysis of spatial pattern of 

soybean cyst nematode(Avendaño et al. 2003), Japanese beetle (Sara, McCallen and 

Switzer 2013), or Megacopta cribraria (Seiter, Reay-Jones and Greene 2013). Hartman, 

Kull and Huang (1998) conducted a field survey in Illinois to determine the spatial 
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pattern of soybean yield. Their results suggested an aggregation of white mold in the 

surveyed fields, but the study involved traditional survey methods that remain costly in 

terms of time and labor. Rousseau, Rioux and Dostaler (2006) examined the spatial 

distribution of white mold apothecia, but they focused on the soil physico-chemical 

properties that are generally collected in plots and require intensive data collection.  

Current knowledge of spatial distribution of white mold in soybean fields is limited, 

and there is a need to investigate cost-effective alternative methods, including the use of 

free remotely sensed data to model the distribution of white mold and explain its impact 

on yield. This study examined the pattern of yield in white mold infected soybeans fields, 

and employed a simple linear regression model to examine the relationship between 

soybean yield and the Normalized Difference Vegetation Index -NDVI (Rouse et al. 

1973), which consists of a ratio between the difference and the sum of the reflectance for 

the near-infrared and the red bands. Subsequently, the study estimated yield loss caused 

by white mold and used time-series NDVI surface maps generated by the ordinary 

kriging (OK) to explore the spatio-temporal patterns of white mold and their influence on 

yield distribution.  

 

3.3. MATERIALS AND METHODS  

3.3.1. Study area  

The study area consisted of two soybean fields that were monitored and confirmed 

with white mold in two different years. The first field was monitored in 2016 and was 

located in Moody county SD, while the second field, was monitored in 2017, and was 
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located in Marshall county SD (Figure 3.1). The studied fields are located in the eastern 

and northeastern regions of South Dakota, which are characterized by a heterogeneous 

land cover dominated by cropland and pasture/grassland, as well as wetland, forestland 

and open water (USDA 2017). Major crops include corn, soybean, alfalfa, and spring 

wheat. 

 

Figure 3. 1. Location of the study area. The scouted fields were located in Marshall and 

Moody counties, in South Dakota. The background image is a Landsat false color bands 

6-5-4 combination from July 14, 2017 (Marshall) and July 20, 2016 (Moody).  
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3.3.2. Data collection and preparation 

a) Data collection 

Soybean yield data were collected by a combine  at one second intervals, resulting 

to a total of 29878 sample points in 2016 (Moody field) and 40216 sample points in 2017 

(Marshall field). The harvest in the two fields occurred respectively on October 10, 2016 

in Moody, and on October 18, 2017 in Marshall. These data collected at one second 

intervals resulted into a large point dataset; therefore, the yield data were aggregated to 

match Landsat pixels because using raw data would produce an unnecessary redundancy 

that would not improve the spatial relationships. The selected statistical summary of the 

yield aggregation is the average, which represents the equivalent of average yield 

collected over each pixel. To obtain a regular and consistent dataset, raw yield data were 

spatially preprocessed by superimposing a regular 30 m x 30 m grid on the fields, 

matching original Landsat pixels and on which the average yield was computed for each 

cell.  

Landsat Analysis-Ready Dataset (ARD) consisting of Surface Reflectance (SR) and 

Quality Assessment (QA) data were downloaded. These images are consistently 

processed using per pixel solar zenith angle corrections, gridded to a common 

cartographic (Albers Equal Area, D_WGS-84) projection 

(https://lta.cr.usgs.gov/USLSArdTile ). We downloaded from earth explorer 

(https://earthexplorer.usgs.gov/ ), six cloud-free Landsat ARD images for the year 2016 

covering the Moody field, and spanning the dates May 17, July 20, August 5 and 21, and 

September 14 and 30. Similarly, we downloaded 4 images for the year 2017 covering the 

Marshall field, and spanning the dates May 11, July 14, August 31, and September 08. 

https://lta.cr.usgs.gov/USLSArdTile
https://earthexplorer.usgs.gov/
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Daily Moderate Resolution Imaging Spectroradiometer -MODIS images 

(MDC43A4 Version 6 products) were downloaded from the period May 11 to September 

8 of the year 2017. These products consist of Terra and Aqua Nadir Bidirectional 

Reflectance Distribution Function -Adjusted Reflectance (NBAR) at 500 m spatial 

resolution in a sinusoidal projection containing 7 bands Albedo and 7 bands Nadir 

Reflectance. Detailed descriptions about MDC43A4 Version 6 products are provided by 

Schaaf and Wang (2015). Using the MODIS Reprojection Tool (MRT), selected bands 

(SWIR, NIR, and RED) from the MDC43A4 images were extracted while conserving 

their native sinusoidal projection. The extracted bands were stacked in the Environment 

for Visualizing Image (ENVI) software version 5.0 (Exelis 2012), and the resulting 

composite image was projected (with the Map Projection Tool in ENVI) using the 

projection parameters from the Landsat images (Albers Equal Area, D_WGS-84); the 

pixels were resampled from 500m to 30m using the nearest neighbor option in ENVI, to 

match the corresponding Landsat image and ease the fusion of the two datasets. 

b) Data fusion  

To obtain comparable datasets between the two years, we performed a data fusion 

for 2017 images; this process ensured that we obtain images for similar dates than those 

collected in the year 2016. High spatial resolution Landsat ARD (30m) do not have the 

required temporal resolution (16 days) for crop monitoring; meanwhile, high temporal 

resolution daily MODIS do not have the necessary spatial accuracy for local scale crop 

monitoring, thus the need to combine both datasets into consistent high spatial and 

temporal synthetic images for crop monitoring. Several blending techniques have been 

developed for time series analyses (Gao et al. 2006, Huang and Zhang 2014, Roy et al. 
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2008, Weng et al. 2014, Zurita-Milla et al. 2008). In this study, we used the Enhanced 

Spatial and Temporal Adaptive Reflectance Fusion Model -ESTARFM (Zhu et al. 2010) 

that requires two images pairs (fine and coarse) for the origin and the final dates, to 

estimate the reflectance at the prediction date within the two dates. ESTARFM was 

selected because of its advantages: it works better in heterogeneous regions such as the 

crop lands in our study area, it improves the prediction with the use of several bands 

(Table 3.1 shows the bands that were combined in the algorithm) in selecting similar 

pixels, and it uses spectral similarities correlation coefficients between Landsat and 

MODIS in the weight calculation of similar pixels. Furthermore, this algorithm has 

outperformed many others (Emelyanova et al. 2013, Li et al. 2017, Wu et al. 2016). 

Details about the ESTARFM algorithm are provided by Zhu et al. (2010). 

Table 3. 1. Landsat Operational Land Imager (OLI) and the Moderate Resolution 

Imaging Spectroradiometer (MODIS) bands designation and wavelengths (µm) combined 

using ESTARFM.   

Band Designation  OLI (30 m) MODIS (500 m) 

 Wavelengths Band number Wavelengths Band number 

RED 0.630 – 0.680 4 0.620 – 0.670 1 

NIR 0.845 – 0.885 5 0.841 – 0.876 2 

SWIR 1.560 – 1.660 6 1.628 – 1.652 6 

RED is the Red band, NIR is the Near Infrared band and SWIR is the Shortwave Infrared 

band.   
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c) NDVI computation 

The original images for 2016 and the resulting fused synthetic images for 2017 

were used to compute the NDVI using the Red and the NIR bands (Equation 1).  NDVI 

has been successfully used to monitor crops in several studies (Fan et al. 2014, Gao et al. 

2017, Onojeghuo et al. 2018); it is a measure of healthy and green vegetation, combining 

the highest regions of chlorophyll absorption and reflectance. Its theoretical values range 

from -1 to +1, with the common vegetation values ranging from 0.2 to 0.8.  

The computed NDVI images had a 30 m spatial resolution, matching the originally 

downloaded ARD Landsat images. A regular 30 x 30 m grid was superimposed on the 

images, with each cell representing an individual Landsat pixel. For each grid cell, NDVI 

values were extracted from the original (2016) and the synthetic (2017) Landsat images 

for all the dates. 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
 Eq. 1 

Where: NIR is the Near Infrared Band and Red is the Red Band 

3.3.3. Analyses 

a) Testing yield distribution for spatial autocorrelation:  

The spatial distribution of yield was tested for randomness, using the Moran’s I 

autocorrelation test, which is a weighted correlation coefficient used to identify 

departures from spatial randomness. The purpose of this analysis is to test if yield 

distribution can be dictated by other factors, such as the white mold, or if there is no 

spatial pattern. Moran's I is used to determine whether neighboring areas are more similar 
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than would be expected under the null hypothesis; it considers yield locations and their 

respective attributes and integrates the attribute resemblance and location adjacency in 

the computed coefficient (Soltani and Askari 2017). Moran’s I coefficient is computed as 

shown in Equation 2 (Anselin 1995): 

 

𝐼 =  
𝑛

∑ (𝑦𝑗−𝑦̅)
2𝑛

𝑖=1

∑ ∑ 𝑤𝑖𝑗(𝑦𝑖−𝑦̅)𝑛
𝑗=1 (𝑦𝑗−𝑦̅)𝑛

𝑖=1

∑ ∑ 𝑤𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1

  Eq.2 

Where:  

wij: elements of a spatial binary contiguity matrix;  

yi / yj: variable values at specific locations i and j 

ȳ : average of the variable  

n: total number of locations  

The coefficient values range from -1 to 1, with a negative value meaning dispersion, 

positive value meaning clustering and 0 value meaning randomness (Soltani and Askari 

2017). The results are interpreted within the context of the null hypothesis, which states 

that yield attributes are randomly distributed across the space (Blazquez et al. 2018).  

The grid cells were first transformed to a neighborhood object based on the 

adjacency method, where all the 8 pixels around the central pixel are considered 

neighbors. The spatial neighborhood object was then converted to a weighted matrix, 

which elements (w) represent the connectivity relationship between location i and 

neighboring location j across the field, and on which the yield values distribution was 

tested for randomness. The significance of the resulting Moran’s I coefficient was tested 
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using a Monte-Carlo simulation using the null hypothesis that there is no spatial 

autocorrelation in the spatial distribution of yield (or the resulting Moran’s I is due by 

chance). The same method was employed by Milne et al. (2018), where the resulting 

Moran’s I index value was compared against 99 independent permutations of the data 

generated by Monte-Carlo simulations of Moran‘s I, and significance was established at p 

≤ 0.05. In our study, we increased the number of independent permutations to 999 to 

strengthen the Monte-Carlo simulation.  

b) Ordinary Kriging (OK) NDVI and yield surface maps  

The extracted NDVI and yield values for each grid cell were interpolated to create 

surface maps that could be compared and provide spatial trends. The interpolation was 

performed using the ordinary kriging (OK) method, which is an exact interpolator, 

meaning that the values of the input points do not change in the predicted model. OK is a 

geostatistical technique used to estimate values at unsampled areas, based on a limited 

number of observations; it has been used in many studies including the spatial 

distribution of disease in crops (Moral García 2006) or in modeling the spatial 

distribution of soil nutrients (Elbasiouny et al. 2014). Furthermore, OK has outperformed 

other geospatial methods in terms of accuracy (Bhunia, Shit and Maiti 2018). To perform 

the kriging interpolation on yield, data were first checked using the exploratory analysis 

tool of the Geostatistical Wizard module in ArcMap (ESRI 2016) to determine if they fit 

the basic conditions for a kriging interpolation (normal distribution, stationarity, and no 

trend). The best model was defined by the optimized semi-variogram, and a cross 

validation was performed to check the quality of the model.  
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c) Time-series NDVI and yield relationship  

A linear regression model was computed in R-Studio (RStudio 2016) to assess the 

relationship between yield and the NDVI. Correlation coefficients were computed for the 

time-series NDVI for all the available image dates of the growing season, to assess the 

change of the relationship between the two datasets. Non-white mold pixels (low NDVI 

resulting from diseases other than white mold, based on the time of onset and ground 

trothing scouting) were not included in the dataset. The purpose of this analysis is first, to 

compare how the relationship between NDVI and yield changed during the season, and 

second to examine the behavior of this relationship between the two years. This allowed 

to estimate the best period when yield can be predicted using NDVI, as explained by the 

strength of the relationship.  

d) Impacts of white mold on yield  

The impact of white mold on yield was examined by assessing the yield loss caused 

by the disease. The yield in white mold pixels was compared to the maximum (expected) 

yield (yield from pixels with no white mold). The difference between the expected yield 

and the yield in the white mold pixels gave an estimation of the yield loss. The yield loss 

was compared and expressed as a percentage of the maximum expected yield as shown in 

Equation 3. The yield map used quantiles distribution in the symbology, with the lowest 

category representing the worst white mold cases, and the highest category representing 

the maximum yield in the non-white mold soybeans. For each range, the average yield 

was computed for comparison with the maximum yield.  Furthermore, the relationship 

between white mold and yield was computed at different dates to assess the accuracy of 

each image in estimating yield loss at different crop stages.   
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𝑌𝐿 (%) =
(𝑌𝑚𝑎𝑥−𝑌𝑎𝑣𝑔)

𝑌𝑚𝑎𝑥
∗ 100   Eq. 3 

Where YL is the yield loss; Ymax is the maximum yield and Yavg is the average 

yield for each range (class).  

3.4. RESULTS AND DISCUSSION  

3.4.1. Data fusion 

A visual comparison between an original and a predicted image for DOY 163 is 

shown in Figure 3.2: the two images matched consistently, especially considering the 

heterogeneity character of the region. The computed NDVI from the predicted image and 

the original images for the same date (DOY 163) were compared using a reflectance 

scatter plot. This method used by Huang and Zhang (2014) and Zhu et al. (2010) allows a 

comparison of the distribution of reflectance values along the 1:1 line to assess the 

accuracy of the blended images. Figure 3.3 shows the relationship between the original 

and the predicted NDVI values.  

Zhu et al. (2010) and Huang and Zhang (2014) used the Average Absolute 

Difference (AAD) and the Average Difference (AD) to assess the accuracy of the 

blending techniques. These metrics however, are suitable to compare reflectance 

difference between bracketing input images and an original existing image in-between, 

and the two bracketing images and the predicted image. This requirement fits best for 

comparison with the STARFM method, which requires two image pairs as inputs. The 

comparison between the original and the predicted images reflectance for ESTARFM by 

Huang and Zhang (2014) provided a correlation coefficient of 0.88-0.941 and 0.843-

0.862 respectively for the phenological and the land cover change datasets. These 
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estimates are close to ours, however, our comparison was based on the NDVI instead of 

the individual bands. The computed correlation coefficient of 0.92 for the original and 

predicted NDVI shows how accurate the synthetic image is.  

 

 

 

 

 

 

 

 

 

    

A      B 

Figure 3. 2. An original Landsat image (A) and an ESTARFM predicted image (B) for 

the same date (DOY 163). The two images look very similar, a few differences in the 

brightness can be noticed due to the ENVI software enhancement for visualization. The 

two images are a false color composite using a combination of bands 6-5-4. 
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Figure 3. 3. Comparison of the actual and predicted band reflectance in a heterogeneous 

region. The upper-left and the lower-right quadrats show the Normalized Difference 

Vegetation Index (NDVI) respectively from the original Landsat and the Enhanced 

Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) image. The 

lower-left quadrat shows the NDVI distribution along the 1:1 line and the upper-right 

quadrat shows the correlation coefficient between the two images NDVI. 

3.4.2. Yield spatial distribution  

The results of the Moran’s I test show a significant positive spatial autocorrelation 

(Moran’s I = 0.38, p-value < 2.2e-16 for the Moody field and Moran’s I = 0.45, p-value < 

2.2e-16 for the Marshall field) as an evidence of clustering in the spatial distribution of 

yield. In other words, yield distribution was not random, and could be controlled by an 

underlying process. The Monte-Carlo simulation of Moran’s I provides statistically 
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significant results, indicating that the spatial autocorrelation result is not due by chance 

(Table 3.2).  

Table 3. 2. Monte-Carlo simulation of Moran I 

 2016 2017 

number of simulations + 1 1000 1000 

statistic 0.38 0.45 

observed rank 1000 1000 

p-value 0.01 0.01 

alternative hypothesis greater greater 

 

A Moran’s I scatter plot of yield for the year 2016 is shown in Figure 3.4 (left): an 

obvious cluster can be observed in the lower-left quadrat, denoting low-low values of 

yield that may explain a stress. Clusters of high yield values can be seen, but those values 

are mostly close to the mean. A few outliers can be observed in the upper-left and lower-

right quadrats, but they do not form any clusters. Similarly, in 2017, the Moran’s I yield 

scatter plot (Figure 3.4 – right) shows a significant clustering in the upper-right quadrat, 

denoting clusters of high values of yield, while the lower-left quadrat shows a more 

relaxed clustering of low values (low yield). However, some mixed values can be 

observed both in the upper-left and lower-right quadrats, but they are not as abundant as 

the clustered values. 
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Figure 3. 4. Moran’s I scatter plot showing evidence of clustering in both years: clusters 

are mostly located in the lower-left quadrat, which explains low yield (and probably crop 

stress) and in the upper-right quadrat which explains a high yield. Evidence of clustering 

is more pronounced in 2017 than in 2016.  

These results are consistent with the literature, as Hartman et al. (1998) found 

spatial aggregation in soybean white mold in Illinois. However, their study used the 

Lloyd’s patchiness index, instead of the Moran’s I spatial autocorrelation used in our 

study. A cluster analysis of yield distribution conducted by Jaynes et al. (2003) and 

Jaynes, Colvin and Kaspar (2005) provided similar findings to ours. Their study however 

analyzed multiyear yield data and grouped them into significant clusters that were 

examined using a Moran’s I analysis. Their greater Moran’s I statistics (0.61 p < 0.001 

and 0.74 p < 0.001, respectively) can be explained by the characteristics of the inputs. 

Consistent yield data over several (five and six) years allowed to clearly distinguish 

clusters of different yields. In our study, we used two different fields from two different 

years, but still could detect the spatial pattern. Other data included in these studies 

(precipitations, electrical conductivity, elevation, soil color …) allowed a better 
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investigation of factors susceptible to influence the detected pattern, while in our study 

field data limited our investigation to the presence/absence of white mold, especially 

since our objective was to reduce costs related to intensive field data collection. A similar 

study by Roel and Plant (2004) analyzed yield clusters and investigated factors able to 

influence the observed patterns. They found that even though the patterns are consistent, 

it is hard to precisely specify factors underlying these patterns, especially if the most 

important factors are not quantified or included in the analyses. Therefore, even though 

white mold presence can explain the yield distribution, there are other factors that were 

not quantified in our study, that may have a big influence on this pattern such as soil 

fertility, field elevation and others.  

3.4.3. The yield ordinary kriging model 

The optimized model (Model: 0*Nugget+61.733*Stable (330.36,0.57617)) 

parameters are shown in the Figure 3.5. The nugget is zero, meaning that there is no 

difference in the values of points that have the same location (distance = 0 m). The major 

range (330 m) represents the distance beyond which there is little or no autocorrelation 

among variables; it represents the x value at which the curve starts flattening out. In our 

case, the Landsat pixel size is 30 m, meaning that eleven pixels aligned in the same 

directions have a decreasing similarity and this similarity may not exist from the eleventh 

pixel. The sill (61.7) is the maximum y value at which there is little or no autocorrelation. 

A cross validation method was used to assess the quality of the model: each observation 

is removed and is estimated from the remaining points. The fitted model achieved a root 

mean standardized error of 0.92, which is very high, as the aim is to get a value that is 

closest to 1. The same process was completed for 2017 as well.  



60 
 

 

 

Figure 3. 5. Semivariogram of the 2016 yield Ordinary Kriging (OK) model. The blue 

crosses depict the computed predicted values, while the model is indicated by the blue 

line.  

The optimized modeled variogram is data-dependent, meaning that it can vary 

considerably from one crop to another (Vieira and Gonzalez 2003), and from one year to 

another. A study by Jaynes and Colvin (1997) modeled spatiotemporal variability of 

yield. They used 6 years yield data and developed yield variogram that could not exhibit 

consistent trends in their model parameters (sill and range). The main reasons advanced 

are that yield spatial distribution is mostly controlled by soil properties; also, weather 

parameters can influence these properties form one year to another. For example, nitrate 

availability may limit yield in a year with adequate rainfall while in a dry year, soil water 

capacity can be the most important factor. Further, the influence of rainfall on yield 

spatiotemporal variability was highlighted by Bakhsh et al. (2000) and Kumhálová et al. 

(2011) who suggested  that yield was reduced in wet years as compared to dry years, 

according to their data. The choice of the best variogram depends largely on the data 
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being analyzed: Jaynes and Colvin (1997) opted for the spherical variogram while 

Kumhálová et al. (2011) chose an exponential variogram. In our study, the choice of the 

variable variogram was dictated by the comparison with other models as they best fitted 

our dataset.  

3.4.4. Seasonal changes of the relationship between yield and NDVI 

The correlation coefficients between yield and NDVI are different between the two 

years: in 2016, they are respectively 0.28, 0.65 and 0.33 while in 2017, they are 0.68, 

0.71 and 0.77 respectively for DOY 217, 233 and 255. Yet, the source of the difference in 

the strength of the coefficients between the two years is unknown. Several factors such as 

the rainfall regime, the field management practices or field physico-chemical properties 

may explain that difference, but further investigation is needed and more data should be 

explored to better understand this difference. In 2016, the peak of the correlation 

coefficient is reached around August 21st (R = 0.65), according to the available images, 

and the relationship decreases later in the season, while for the same date, the correlation 

coefficient stayed steady for a while in 2017. However, in 2017, a subsequent image on 

September 08 showed a better relationship with yield (R = 0.77). A reasonable 

explanation of the difference in the behavior of the trend between the two years after 

August 21 could be attributed to the respective field management. One aspect that might 

explain this is the planting date: in fact, the 8 days’ difference in the harvest date might 

reveal a similar trend in the planting dates as well, while the difference in the NDVI 

signal in the early season might be small, the same difference can be seen at the maturity 

stage.  
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Another possible explanation may be the shift in the growing season; however, this 

hypothesis is not strong enough as the two fields are located just one degree apart (North-

South); even if the growing season might start a few days earlier in Moody county 

(South), the question in this case remains the comparison in the magnitude in this 

difference; in other words, if the 8 days’ interval corresponds to the one-degree latitude 

shift in the growing season. This aspect requires further investigations with more accurate 

and consistent inputs including high spatial and temporal resolutions images and field 

data for interpretation.  

An alternative possibility could be the difference between the soybean maturity 

groups. In this case, the field in 2016 might have matured early and therefore reached 

senescence sooner. The soybean maturity can also be influenced by weather. Different 

soybean maturity groups can behave differently in different temperatures and soil 

conditions, and this may result to the difference in the seed quality (Dardanelli et al. 

2006). Temperature decrease can have an influence on nitrogen uptake by decreasing the 

root growth and this can influence the maturation (George, Singleton and Ben 1988). 

Inversely, temperature increase can also influence the soybeans yield quality by 

increasing seed oil quality and protein content (Piper and Boote 1999). The difference in 

the average temperature between the two years during the period June-July-August was 2 

°F for air temperature and 4 °F for soil temperature. Indeed, the average air and soil 

temperatures were 68 °F and 71 °F in Marshall, and 70 °F and 75 °F in Moody, 

respectively (Mesonet 2018). Furthermore, the rainfall difference can explain the yield 

difference between the two fields: Marshall had a total of 7.16 inches while Moody had a 

total of 12.05 inches (Mesonet 2018), which may explain why yield is generally higher in 
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Marshall than in Moody. In any case, the strength of the correlation between NDVI and 

yield is at its best between late August and early September.  

3.4.5. Estimating yield loss caused by white mold 

In 2016, the best relationship between yield and NDVI was found on August 21st, 

while in 2017, the best relationship was found on September 8th. The scouted white mold 

pixels and their corresponding yield are shown in Figure 3.6 in 2016 and Figure 3.7 in 

2017. In general, both the NDVI and yield map exhibit some similarities, especially while 

identifying the worst white mold pixels (lowest NDVI). The strength of the relationships 

may be affected by the quality of the inputs: detailed information is lost by the 

aggregation of yield data at pixel levels, while the selected resolution is likely to miss 

small patches of diseases. Nevertheless, the observed relationships remain strong enough 

for the moderate 30 m spatial resolution of Landsat.   
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Figure 3. 6. Normalized Difference Vegetation Index (NDVI) classes (left) compared 

with the corresponding yield (right) for each class for the soybean field in Moody 

County, 2016. White mold pixels correspond to the three lowest NDVI classes.  

The overall relationship between NDVI and yield was 65% on August 21st ,2016 

and 77 % on September 8th 2017. The difference in the strength of this relationship 

between the two years, especially in common dates (August 21) may be due to many 

factors such as the rainfall regime, the local field managements or other factors that need 

to be investigated. However, the general trend in the impact of white mold on yield is 

similar for the two fields: white mold impact is weak in early August (disease on-set 

stage), increases and reaches the peak towards late August/early September, and starts 

decreasing mid-September (maturity to senescence stages). The decreasing trend of this 

relationship (NDVI and yield) after the peak dates means that yield loss estimation is 

more accurate on these dates than later in the season where low NDVI may be due to 

natural senescing. The estimated yield loss for each NDVI class (from the worst white 

mold pixels to the healthiest soybeans) computed using Equation 3, is summarized in 

tables 3.3 and 3.4. Hoffman et al. (1998) examined yield loss across different soybeans 

maturity groups and noticed that group effect in the yield loss difference as a function of 

the disease intensity. This can be explained by the susceptibility to different cultivars to 

the disease.  



65 
 

 

 

Figure 3. 7. Normalized Difference Vegetation Index of a soybean field that had white 

mold (top) compared with the corresponding yield (bottom) in Marshall County in 2017.  

Table 3. 3. Yield loss estimates (%) for soybean infected with white mold for each 

Normalized Difference Vegetation Index (NDVI) class in the Moody field (2016). Yield 

loss was computed from the difference between maximum yield (high yield pixels) and 

each NDVI class.   

Class range 

(Bu/ac) 

Yield average 

(Bu/ac) 

NDVI (08/21) Yield loss (%) 

36-54  45 0.86-0.915 36 

55-57 56 0.916-0.924 21 

58-59 58.5 0.925-0.928 17 

60-62 61 0.929-0.931 13 
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63-64 63.5 0.932-0.933 10 

65-76  70.5 0.934-0.939 0 

 

Table 3. 4. Yield loss estimates (%) for soybean infected with white mold for each 

Normalized Difference Vegetation Index (NDVI) class in the Marshall field (2017). 

Yield loss was computed from the difference between maximum yield (high yield pixels) 

and each NDVI class.   

Class range 

(Bu/ac) 

Yield average 

(Bu/ac) 

NDVI (09/08)  Yield loss (%) 

14 – 39 26.8 0.62-0.76 56 

39 – 45 42.1 0.76-0.77 30 

45 – 49 46.9 0.78-0.79 22 

49 – 52 50.4 0.8001-0.8009 16 

52 – 55 53.3 0.81-0.819 12 

55 – 66 60.3 0.82-0.85 0 

 

The relationship between yield loss and the corresponding average NDVI for each 

class is shown in Figure 3.8. The relationship is linear and negative, and has a correlation 

coefficient of 89% and 99% respectively in 2016 and 2017. This means that the higher 

the NDVI, the lower the yield loss. The strength of this relationship is affected by the 

time of the year the estimation is being made. This explains why the estimation on 

August 21st in 2016 provides a lower correlation coefficient than the estimation made on 

September 8th 2017. The developed models provide good estimations of yield loss with 

the use of remotely sensed images; however, these models depend on the quality of the 

inputs image at the peak of the relationship between yield and NDVI. One limitation of 
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such models is that they cannot be extrapolated to big areas because they represent 

specific field situations and can change from one field to another. An ideal yield loss 

model based on satellites images should include varieties that may be due to phenological 

differences between field locations, differences due to different crop maturity groups, and 

also differences due to local environmental factors such as soil temperatures and other 

physico-chemical characteristics.  

 

 

Figure 3. 8. Yield loss as a result of the Normalized Difference Vegetation Index (NDVI) 

change.  

3.5. CONCLUSION  

The results show that the yield distribution in the explored fields is not random and 

might be dictated by other parameters. Crop diseases such as white mold can exhibit 

spots of low yields that can explain the clustering in the distribution of yield. This study 

shows that the spatial distribution of yield can be predicted using the NDVI computed 

from freely available images; the strongest relationship between yield and NDVI can be 

observed on late August or early September. Yet, NDVI computed close to the harvest 
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date are not always the best yield predictor, because in this period, plants have reached 

senescence and do not have high photosynthetic activity. Further investigation is needed 

to explore the inter-annual difference in the relationship between yield and NDVI, and 

also possible location (such as latitudinal) effects.  

The yield loss caused by white mold is estimated between 36% to 56% for the worst 

white mold pixels, and the most accurate estimations of this loss is between late August 

and early September. The pattern analysis can be improved by the use of high spatial 

resolution images such as Sentinel-2 or Planet images. However, we suggest that detailed 

field data such as disease severity throughout the growing season, as well as soil physical 

properties, even though expensive, be included in future analyses. This information could 

be useful in explaining some patterns that cannot be inferred directly and only with 

satellites images.     
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CHAPTER 4: MODELING TEMPORAL PATTERNS OF WHITE MOLD IN SOUTH 

DAKOTA USING FUSION OF LANDSAT AND MODIS DATA  

 

Mfuka, C. and Byamukama, E. Modeling Temporal Patterns of white mold in South 

Dakota using Fusion of Landsat and MODIS Data. Manuscript in preparation.  

 

This chapter addresses Hypothesis #3: White mold temporal characteristics can be 

modeled as a function of the Normalized Difference Vegetation Index obtained by a 

fusion of Landsat and MODIS. 
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4.1. ABSTRACT 

Soybean production in South Dakota is affected by many diseases, among which an 

important fungal disease, Sclerotinia Stem Rot (SSR), also known as white mold. 

Currently, information on the temporal characteristics of the disease is scanty. Several 

healthy and white mold infected fields were scouted in Marshall, Day and Codington 

counties, from which spectral characteristics were extracted. This study used the 

Normalized Difference Vegetation Index (NDVI) derived from a fusion of free remotely-

sensed images (Landsat 8 and MODIS) to model the temporal progress of white mold 

using a logistic regression analysis. White mold could be predicted using the NDVI; 

however, the model was improved by the inclusion of the temporal component expressed 

as the Day of the Year (DOY). The change in the temporal development, expressed as the 

difference in the NDVI between the healthy soybeans and white mold, was statistically 

different (p < 0.0001) between sites, especially in five of the six paired sites comparison. 

This study shows the potential of free remotely-sensed data in monitoring and predicting 

crop health. 

Keywords: White mold, soybean, temporal progress, Landsat, MODIS, Fusion, 

NDVI, logistic Regression 
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4.2. INTRODUCTION 

Sclerotinia stem rot (SSR), also known as white mold, is among the top diseases 

that affect soybean (Glycine Max) production in North America. White mold is ranked 

among the top 10 soybean diseases between 2010 and 2014 (Allen et al. 2017). The 

disease develops in the lower portion of the soybean stem and leads to the entire plant 

wilting. Yield loss due to white mold has been as high as 50% depending on the time of 

infection and the susceptibility of the cultivar planted. Although a number of studies on 

white mold have been done, most of the studies focused either on the epidemiology of the 

disease (Boland and Hall 1988), or in studying specific field aspects suspected of 

influencing yield (Hoffman et al. 1998). Danielson et al. (2004) studied the effects of 

white mold on yield of soybean inoculated at different growth stages. The effects of 

herbicides or time of fungicides application on white mold have been studied by Nelson 

et al. (2002) and Milas et al. (2003). Other factors, including row spacing (Buzzell et al. 

1993), tillage, crop sequence, and cultivar have also been studied (Kurle et al. 2001, 

Mueller et al. 2002).  

Recent studies that modelled the temporal occurrence of white mold either were 

limited to the observation of a few factors or employed experimental field settings and 

intensive data collection. Fall et al. (2018) examined the temporal occurrence of 

apothecia, but the study only focused on two factors: canopy closure and air temperature. 

Willbur et al. (2018) modelled the risk of occurrence of apothecia, but their methodology 

required intensive field data collection. There is still a need to investigate the disease 

development on a large scale and during the extended growing season by using cost-
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effective and non-destructive methods such as available remotely sensed images, to better 

understand the white mold development.   

This study employed the Normalized Difference Vegetation Index -NDVI (Rouse et 

al. 1973) computed from the fusion of two freely available remotely sensed satellite data 

(Landsat and MODIS) to investigate the temporal development of white mold in selected 

counties in South Dakota.  

4.3. MATERIALS AND METHODS  

4.3.1. Study area  

The study area was in northeastern South Dakota and included Marshall, Day and 

Codington counties. The region is characterized by a heterogeneous land cover 

dominated by cropland and pasture/grassland, as well as wetland, forestland and open 

water (USDA 2017). Major crops include corn, soybean, alfalfa, and spring wheat. A 

total of 67 fields were analyzed in this study, including 11 fields that were scouted for the 

presence of white mold, and 56 fields that were mapped in the Chapter 2 of this 

dissertation, all in the same year 2017. These 67 fields consisted of 37 healthy fields and 

35 white mold infected fields, which were each associated to the closest of the four 

weather stations (Britton, Groton, Webster, and South Shore) in terms of geographical 

location. Figure 4.1 shows the location of the study area and the fields that were analyzed 

in this research.  
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Figure 4. 1. Location of the study area showing different scouted fields with their 

respective weather station names. The background image is a July 14, 2017 false color 

composite of Landsat 8 using bands 6-5-4.  
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4.3.2. Data collection and preparation 

Landsat Analysis-Ready Dataset (ARD) consisting of Surface Reflectance (SR) 

and Quality Assessment (QA) data were downloaded. These images are consistently 

processed using per pixel solar zenith angle corrections, gridded to a common 

cartographic (Albers Equal Area, D_WGS-84) projection 

(https://lta.cr.usgs.gov/USLSArdTile ). We downloaded 3 cloud-free (on our study area) 

Landsat 8 ARD in the 2017 growing season from earth explorer 

(https://earthexplorer.usgs.gov/ ), covering the dates May 11, July 14, and August 31.  

Daily MODIS images (MDC43A4 Version 6 products) were downloaded from 

the period May 11 to September 8 of the year 2017, and included Nadir Bidirectional 

Reflectance Distribution Function -Adjusted Reflectance (NBAR) at 500 m spatial 

resolution in a sinusoidal projection containing 7 bands Albedo and 7 bands Nadir 

Reflectance. Detailed descriptions about MDC43A4 Version 6 products are provided by 

(Schaaf and Wang 2015). Using the MODIS Reprojection Tool (MRT), selected bands 

(SWIR, NIR, and RED) from the MDC43A4 images were extracted and stacked in 

ENVI, and the resulting composite image was projected (With the Map Projection Tool 

in ENVI) using the projection parameters from the Landsat images (Albers Equal Area, 

D_WGS-84); the pixels were resampled from 500m to 30m using the nearest neighbor 

algorithm in ENVI, to match the corresponding Landsat image and ease the fusion of the 

two datasets.  

4.3.3. Data fusion  

The data fusion process was used to combine the strengths of both Landsat and 

MODIS images into a daily high spatial resolution (30 m) synthetic dataset. The 

https://lta.cr.usgs.gov/USLSArdTile
https://earthexplorer.usgs.gov/
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algorithm employed was ESTARFM (Zhu et al. 2010); the details about the resulting 

images and their quality assessment were provided in the Chapter 3 of this dissertation. 

The same dataset was used in this chapter to analyze the temporal occurrence of white 

mold in selected fields.  

4.3.4. NDVI computation 

The resulting fused synthetic images were used to compute the NDVI using the 

Red and the NIR bands (Equation 1).  NDVI is a measure of healthy and green 

vegetation, combining the highest regions of chlorophyll absorption and reflectance. Its 

theoretical values range from -1 to +1, with the common vegetation values ranging from 

0.2 to 0.8. The computed NDVI images had a 30 m spatial resolution, matching the 

originally downloaded ARD Landsat images. For each healthy and white mold infected 

field, a NDVI of the healthy/infected pixel was extracted throughout the growing season.  

For each weather station, an average NDVI was computed for both the healthy and the 

white mold pixel categories.  

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
 (1) 

Where: NIR is the Near Infrared Band and Red is the Red Band 

 

4.4. ANALYSES  

The spectral characteristics of healthy soybeans and white mold pixels were 

extracted using the NDVI for each individual field. For each weather station, a mean 

NDVI was computed for both healthy soybeans and white mold pixels. The resulting 

NDVI was plotted against time (Day of the year –DOY) to examine the temporal 
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difference between healthy soybeans and white mold. The difference between healthy 

soybeans and white mold NDVI was further computed. The change in the NDVI 

difference was assessed and examined between sites. An analysis of variance (ANOVA) 

was conducted to examine statistical differences between sites. While the ANOVA tells 

us only if there is difference or not, a Tukey Honest Significant Differences test was 

computed to identify the sources of these differences. It compares groups pairs (weather 

station) between them to detect which ones are statistically different from others.  

A logistic regression model was computed to model the soybean status (healthy 

and white mold) as a function of the NDVI (Press and Wilson 1978). The logistic 

regression can be considered as a special case of linear regression, where the outcome 

variable is categorical, generally binary and in which the probability of occurrence of an 

event is predicted by fitting data to a logit function. In our study, the outcome variables 

included healthy soybeans and white mold. An empirical formula for the logistic function 

is shown in Equation 2 (Battilani et al. 2008). NDVI from the four sites were analyzed 

with the GLM (General Linear Model) function in RStudio (RStudio 2016). The initially 

developed model (NDVI model) was compared with another model that included NDVI 

and DOY as independent variables in terms of the difference between the Null deviance 

and the Residual Deviance, and the Akaike Information Criterion (AIC). Moreover, the 

Receiver Operating Characteristic (ROC) was used to assess the Area Under the Curve. 

An ANOVA of the two models was computed to assess the significance of the respective 

variables.  

𝑃𝑟𝑜𝑏(𝑤ℎ𝑖𝑡𝑒 𝑚𝑜𝑙𝑑) =
1

1+𝑒−𝑧  (2) 
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With e: the base of the natural logarithms and Z is the linear combination defined 

as 

𝑍 = 𝐵0 + 𝐵1𝑋1 + ⋯ +  𝐵𝑝𝑋𝑝  (3) 

With 𝐵0, 𝐵1, 𝐵𝑝 the coefficient estimates of the independent variables 𝑋1, 𝑋𝑝 

(NDVI, DOY).  

 

4.5.RESULTS AND DISCUSSION 

4.5.1. Time-series NDVI for healthy soybeans and white mold  

For each site, an average NDVI was computed for both healthy soybeans and 

white mold affected areas. Figure 4.2 shows the distribution of the average NDVI for 

each weather station. NDVI values present similar distribution with the mean around 0.8 

(or less); there is no observable outlier candidates and the values are comparable.  

 

Figure 4. 2. Average Normalized Difference Vegetation Index (NDVI) values computed 

for each weather station. Values distribution is similar with no outliers. Brit=Britton, 

Grot=Groton, Web=Webster, SS= South Shore.  
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A scatter plot of the NDVI frequency distribution for each site (Figure 4.3) shows 

that there are many overlaps (especially in South Shore), which makes it hard to model 

white mold based on the NDVI alone using simple modeling techniques such as linear 

regression. An important part of the healthy observations (blue) are located on NDVI 

values above 0.8 while the white mold observations (pink) are mostly located around 

lower values. This data distribution makes it hard to model soybean health.  

 

Figure 4. 3. Scatter plot of the frequency distribution (y axis) of the Normalized 

Difference Vegetation Index (NDVI, x axis) for healthy soybeans (blue) and white mold 

(pink).  

The temporal trend in the NDVI values between the healthy soybeans and white 

mold pixels are shown in Figure 4.4. In all the sites, there is a clear difference between 

healthy soybean and white mold, where the first has a greater NDVI value than the latter. 
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In all sites, the healthy soybeans exhibit a similar trend to white mold, but the difference 

resides in the magnitude of the observed NDVI. However, maximum NDVI can occur at 

difference times as a function of the difference in the soybeans maturity groups 

(Dardanelli et al. 2006), or the management practices including the planting dates 

(Hershman et al. 1990). In healthy soybeans, maximum NDVI is the highest in Britton 

and occurs earlier than in other sites, around DOY 221, while this maximum NDVI 

occurs around DOY 228 in Groton and Webster, and around DOY 233 in South Shore. 

The observed maximum NDVI follows the same trend in white mold fields.  
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Figure 4. 4. Seasonal Normalized Difference Vegetation Index (NDVI) of healthy 

soybean as compared to white mold for each site. White mold starts declining earlier than 

healthy soybean and has lower NDVI after Day of the Year (DOYS) 207.  

4.5.2. Temporal change in the NDVI difference between healthy soybeans and 

white mold  

For each site, we computed the NDVI difference between healthy soybeans and 

white mold.  The NDVI difference allows to assess the magnitude of the NDVI variation 

from one site to another. The boxplot shown in Figure 4.5 shows values distribution, 

highlighting some differences between sites. Some potential outliers can be observed in 

Groton and similarities can be observed in the means between Britton and Webster, while 

other sites exhibit dissimilar NDVI differences.   

 

Figure 4. 5. Box plots of Normalized Difference Vegetation Index (NDVI) difference by 

site.  
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An analysis of variance (ANOVA) was conducted to investigate the variances in 

the difference between healthy soybeans and white mold NDVI as observed in different 

sites. The computed p-value is 8.77e-15, which is significant at level 0.0001, meaning 

that at least two sites are statistically different. The site location is a significant factor in 

the temporal NDVI difference, however, we need to investigate the source of the 

differences by testing sites pairs. The Tukey Honest Significant Differences (Tukey 

HSD) test was used to compare site-pairs and assess the differences. Results (Table 4.1) 

show that all the pairs but Webster-Briton are statistically different, meaning that the 

temporal change in the white mold signal in comparison to healthy soybean can be 

different from one location to another. While these observations are made at county 

scales, similar trends are expected to be observed at larger scales, especially if 

environmental factors such as temperature or rainfall exhibit important differences.  

 

Table 4. 1. Tukey Honest Significant Differences test for detecting similarities in the 

NDVI difference temporal change between sites, showing the 95% lower and upper limit 

values.   

 NDVI Difference Lower limit  Upper limit p-adj 

Grot-Brit -0.033276573 -0.042437089 -0.024116057 0.0000000 

SS-Brit    -0.017863014 -0.027023530 -0.008702498 0.0000162 

Web-Brit    -0.001679337 -0.010839853 0.007481179 0.9624744 

SS-Grot     0.015413559 0.006253043   0.024574075 0.0002100 

Web-Grot    0.031597236 0.022436720 0.040757752 0.0000000 

Web-SS      0.016183677 0.007023161 0.025344193 0.0000955 



82 
 

 

 

4.5.3. Temporal modeling of white mold  

A logistic regression was computed to model the white mold as a function of 

NDVI progression. However, as shown in Figure 4.3, it is hard to model white mold 

based on NDVI alone, since the NDVI values overlap between healthy soybeans and 

white mold. A subsequent model was developed, that included the DOY as an additional 

input. The two models are summarized in tables 4.2 for NDVI only, and table 4.3 for 

NDVI+DOY respectively. Both models show that the independent variables are highly 

significant at p < 0.0001 for NDVI only in the first model, and p < 0.001 and p < 0.01 

respectively for NDVI and DOY for the second model. The NDVI estimate is negative in 

all models, meaning that the disease development is explained by the NDVI decrease, 

which can be explained by the reduction of the photosynthetic activity in infected crops. 

However, the inclusion of the DOY in the logistic regression improves the disease 

modeling: the positive estimate of DOY shows that the disease develops with time, 

especially within the studied period. These results are in agreement with those of 

Byamukama, Robertson and Nutter (2010) who found that the DOY explained about 94-

98% of the variation in the Bean pod mottle virus (BPMV) logit model. The big 

difference between the two studies resides in the quality and the quantity of the data 

collected. In fact, Byamukama et al. (2010) collected intensive field data including 

disease incidence over different years, while our study focused mainly on NDVI 

extracted from the synthetic images. Similarly, Byamukama, Robertson and Nutter 

(2011) estimated the disease rate development based on a logistic regression.  
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Table 4. 2. White mold modeled as a function of the Normalized Difference Vegetation 

Index (NDVI) only.   

 Estimate Std. Error Z Value Pr(>|z|) 

Intercept 55.53 11.02 5.038 4.70e-07*** 

NDVI -67.38 13.49 -4.994 5.91e-07*** 

 

Table 4. 3. White mold modeled as a function of the Normalized Difference Vegetation 

Index (NDVI) and Day of the Year (DOY).  

 Estimate Std. Error Z Value Pr(>|z|) 

Intercept 12.9461 12.5175 1.034 0.30102 

NDVI -131.6652 44.4090 -2.965 0.00303** 

DOY 0.4273 0.1814 2.355 0.0185* 

 

A comparison between the two models is summarized in table 4.4. The null 

deviance is a prediction made by a model that uses only the intercept while the residual 

deviance is a prediction made by a model which adds independent variables. As a rule, 

the lower these two values, the better the model. The null deviance (composed only of the 

intercept) is the same for the two models, while the residual deviance is lower for the 

NDVI+DOY model while compared to the NDVI model. The AIC however is considered 

as metric similar to R2, with the difference that the lower the better the model. 

Subsequently, the inclusion of the DOY reduces the AIC from 47.56 to 24.91. The ROC 
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summarizes the model’s performance by evaluating the trade-offs between true positive 

and false positive rates. The area under the ROC curve explains how well the ROC 

performs; therefore, the higher the AUC, the better the model. The computed AUC is 

higher for the NDVI+DOY (0.99) model than for NDVI (0.95) only model as shown in 

Figure 4.6. A recent study showed similar results where the vegetation index exhibited 

strong relationship (R2=0.90 for NDVI) with the AUC (Loladze et al. 2019). This 

highlights the importance of using time-series images for vegetation monitoring, whether 

for low (Zhang et al. 2003) or moderate spatial resolution images (Bhandari, Phinn and 

Gill 2012, Dong et al. 2016). The use of multiple images allows to characterize a 

particular disturbance and distinguish the observed signal from other disturbances that 

may present similar characteristics in a single common date.   

 

Table 4. 4. Comparison between the Normalized Difference Vegetation Index (NDVI) 

model and the NDVI + (Day of the Year) DOY models. 

 NDVI NDVI + DOY 

Null deviance 141.402 141.40 

Residual deviance 43.555 18.91 

AIC 47.555  24.91 

ROC AUC 0.957  0.993 
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Figure 4. 6. Area Under the Curve computed by the two models, showing a better (bigger 

area) estimation for the model that includes the Normalized Difference Vegetation Index 

(NDVI) and Day of the Year (DOY). 

4.6. CONCLUSION 

The study shows that white mold can be modelled using the NDVI. However, a 

better model would include timing consideration such as the Day of the Year (DOY). 

This highlights the importance of using remotely-sensed satellite images to help keep a 

close look on the development of crop diseases. The difference in the temporal 

development of white mold can be influenced by the sites location. This means that 

several local factors can influence the temporal development of the disease, including 

local field management, crop varieties, soil properties, or weather. Other factors could 

include change in the local elevation. While the models developed with remotely sensed 

satellite data are accurate enough, they still could be improved with complementary 

observations (i.e field surveys or scouting) that might represent an important factor in 

validating or controlling the remotely-sensed data and the evolution of crop health.  
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The temporal development of white mold can be further monitored by the use of 

fine spatial resolution images such as SENTINEL-2 or Planet images, in order the capture 

subtle spatio-temporal development of the disease, which could help in estimating the 

disease development rate. Punctual observations such as those acquired by the use of 

unmanned aerial vehicles (UAV), can be a time-efficient input for valid assessment of 

crop health.   
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CHAPTER 5: SUMMARY OF THE RESEARCH  

5.1. HYPOTHESIS #1:  

Based on field knowledge and available Landsat images, the occurrence of white mold 

can be accurately mapped and quantified.  

5.1.1. Summary of the methods  

Landsat images were collected for the year 2017 covering three counties in north-

eastern South Dakota. Three images in total have been collected, covering the dates May 

11, July 14 and August 31. The first two images were used to map the land cover and 

extract the soybean mask, while the last image was used to map white mold. The 

classification was conducted using the random forest (RF) algorithm for both the land 

cover and white mold. In the first step, trainings were collected for the four mapped 

classes (Water, Corn, Soybean and Other Land Cover) and the RF algorithm used the 

Landsat bands from the two dates as independent variables, and the four classes as 

response variable. In the second step, training have been collected on known white mold 

fields and the RF algorithm used the five Landsat bands and the NDVI as independent 

variables and the forest status (healthy vs unhealthy) as response variables. Spectral 

characteristics of white mold were used to reduce false positive, by excluding from the 

soybean mask, early stress that might occur before the timing of white mold. White mold 

areas have been extracted from the mapped white mold pixels.  

5.1.2. Results and Conclusions  

Hypothesis #1 was verified: The Land cover map was classified with an overall 

accuracy of 95%, with the soybean class mapped with Producer’s and User’s Accuracies 
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of respectively 94% and 93%. The mapped soybean areas compared well with the 

soybeans areas reported by the USDA, meaning that the classified map was accurate 

enough to map the land cover. Additionally, soybean health map was mapped with an 

overall accuracy of 99%, with the white mold producing Producer’s and User’s accuracy 

of respectively 99% and 97%. Furthermore, the known fields have been checked visually 

on the resulting maps for accuracy and they all have been correctly mapped with white 

mold.  

5.1.3. Implications and future work  

The results obtained in this study show that white mold can be accurately mapped 

with freely available remotely sensed satellite images. Our study used the Random Forest 

algorithm for the classification, but other algorithms such as Artificial Neural Network 

(ANN) can also be used as some studies showed that it outperformed RF (Raczko and 

Zagajewski 2017). The Crop Data Layer dataset can also represent an alternative; 

however, the release date of this dataset may represent a limitation if disease estimation 

needs to be made sooner or within the growing season. When more accurate images are 

available such as the SENTINEL-2 images, such a study might be able to capture smaller 

patches of white mold that could not be captured by the medium/low resolution Landsat 

(30m). In fact, in the field, some occurrence of white mold is smaller than the smallest 

detectable unit by the satellite, which results to an underestimation of the diseased areas. 

A more extensive field scouting could also improve the accuracy of the mapped white 

mold by incorporating regional differences. Disease rating might also represent an 

important factor mapping the occurrence of white mold, as according to the latitude and 

the difference in the planting dates for instance, some differences might be observed in 
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the signal of white mold. Including all those differences would allow to better capture the 

disease.  

5.2. HYPOTHESIS #2: 

Spatiotemporal characteristics of yield in white mold infected soybean fields can be 

modeled using NDVI computed from a fusion of Landsat and MODIS images, and the 

relationship can provide estimates of yield loss caused by white mold.   

5.2.1. Summary of the methods 

Yield data collected in a two different soybean fields in two different years (2016 

and 2017), was harmonized in a regular 30mx30m grid, with individual cells 

corresponding to Landsat pixels, and on which the average yield was computed for each 

cell. The regular grid was converted into a neighborhood object from which yield spatial 

distribution was analyzed using the Moran’s I statistics. A validation of the computed 

Moran’s I was assessed with a Monte-Carlo simulation.  The yield and NDVI values 

extracted from each cell for the two years were used to generate surface maps using the 

kriging algorithm. For the 2017 soybean field, NDVI were computed from images 

resulting from the fusion of Landsat and MODIS to match the 2016 images. These time-

series NDVI were analyzed to estimate the best yield predictor using a simple linear 

regression analysis. The relationship between white mold pixels and yield was examined 

to estimate the yield loss caused by white mold, and the best period for accurately 

estimating this loss.  
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5.2.2. Results and Conclusions 

Hypothesis #2 has been verified: The correlation coefficients extracted from the 

simple linear regression between the time-series NDVI and yield suggested that yield can 

be predicted from the NDVI from DOY 218 (August 21) and DOY 251 (September 8). 

As expected, the correlation coefficient increased throughout the growing season, 

reaching the peak in the interval described above, and declining as the crops reached 

senescence. The Moran’s I test for the spatial distribution of yield suggested a significant 

positive autocorrelation (Moran’s I = 0.38, p-value < 2.2e-16 in 2016 and Moran’s I = 

0.45, p-value < 2.2e-16 in 2017), meaning that there is evidence of clustering (the 

distribution of yield is not random). The Monte-Carlo simulation of this distribution 

suggested that evidence of clustering was not due by chance. Yield loss caused by the 

worst white mold pixels was estimated between 36% and 56% for the two fields, with the 

most accurate estimation occurring between late August and early September.  

5.2.3. Implications and future work  

The results obtained in this study may be applied in other fields: producers can 

have an idea of their expected yield by using NDVI computed around the dates of 

importance. However, in the presence of consistent images, there is no need to employ 

data fusion in order to obtain NDVI. Also, the use of high spatial resolution (10 m) and 

high temporal resolution (5days) such as SENTINEL-2 can open an interesting venue for 

predicting yield by using frequent and accurate vegetation indices computed on the 

required areas. Another alternative would be the inclusion of high resolution (<1m, daily) 

commercial images such as Planetscope, as these images can be now obtained with 

authorized access. Farmers can also use personal drones to capture images as needed, if 
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they can produce important products such as the vegetation index that may help them get 

an idea of the expected yield.  

It would be important to explore elevation influence in the occurrence of white 

mold in soybeans field. This may require acquisition of yield data, local elevation or 

LiDAR data, and high spatio-temporal images in different years, as this influence can 

vary as a function of the raining regime. As demonstrated in this study, yield spatial 

distribution is not random, and may be influenced by other factors; soil physico-chemical 

properties, when available, can also be used in the investigation of factors influencing the 

yield spatial distribution. However, these data require intensive and systematic collection.     

 

5.3. HYPOTHESIS #3: 

White mold temporal characteristics can be modeled as a function of the Normalized 

Difference Vegetation Index obtained by a fusion of Landsat and MODIS.  

5.3.1. Summary of the methods 

Several soybean fields were scouted and confirmed with white mold in Marshall, 

Day and Codington counties in 2017. Daily NDVI were computed from the synthetic 

fused images (from Landsat 8 and MODIS). For healthy fields and fields infected with 

white mold, NDVI was extracted from the central pixel of each field and the average 

NDVI signal was calculated. Time-series NDVI allowed to assess the temporal change in 

the difference between healthy soybeans and white mold. A logistic model was used to 

model white mold as a function of NDVI only, and NDVI+DOY.   
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5.3.2. Results and Conclusions 

Hypothesis #3 has been confirmed: white mold was modelled as a function of 

NDVI resulting from the fusion of Landsat and MODIS. The model was improved by the 

inclusion of the DOY as an independent variable as shown by several model parameters. 

While the null deviation is the same for both models (141.1) the residual deviance is 

lower for the NDVI+DOY model (18.91) than for the NDVI only model (43.56). The 

NDVI+DOY model reduces the AIC from 47.55 to 24.91. Finally, the computed AUC is 

improved from 0.95 to 0.99 by the NDVI+DOY model. The ANOVA of NDVI changes 

between healthy soybeans and white mold showed that at least one location was different 

from the others. A paired comparison between locations showed the temporal 

development of white mold was different in five of the six pairs comparison.   

5.3.3. Implications and Future Work 

These results show the importance of using remotely-sensed images in monitoring 

crop health, particularly white mold in this study. NDVI was able to model white mold 

using a logistics regression model, but the model was further improved by including the 

DOY as an independent variable, highlighting the importance of the timing of the disease 

for its characterization. White mold is a complex disease, and several factors can 

influence its temporal development. These factors include local conditions that can range 

from soil physico-chemical properties, local elevation, to local weather. A more accurate 

white mold analysis needs therefore to consider these local and regional differences. An 

ideal and robust model should be able to capture the maximum of variabilities by 

including different sites characteristics. This remains however a complex task that can be 
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achieved by the development of regional collaborations that could include many 

universities in order the capture most of the disease variabilities.  
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