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A B S T R A C T   

Trends in crop phenometrics reveal the influence of climate variability and change on crop growth and devel-
opment. However, the trends are less clear in fragmented tropical smallholder landscapes, because there is high 
spatial and temporal variability in crop phenology. Frequent historical and high spatial resolution (≤30 m) Earth 
observations are needed to track changes in crop phenology in fragmented landscapes but are often unavailable. 
The spatial–temporal gap can be closed by integrating infrequent high spatial resolution Earth observations with 
low spatial/high temporal resolution observations through data fusion. We fused 30 m resolution Landsat and 
250 m resolution MODIS imagery to investigate trends in crop phenology from 2000 to 2020 in a fragmented 
agricultural landscape of Ethiopia. We used the Enhanced Spatial and Temporal Adaptive Reflectance Fusion 
Model (ESTARFM) that had recently been modified for application in fragmented agricultural landscapes. We 
used the non-parametric Mann–Kendall test for crop phenology trend analysis. Crop phenology based on 
Landsat–MODIS fusion was compared to MODIS-based crop phenology without fusion. We found data fusion 
yielded a smaller magnitude of changes in the start of season (SOS: -0.2-day-y− 1) and end of season (EOS: -0.50- 
day-y− 1) compared to MODIS SOS (-0.5-day-y− 1) and EOS (1.38-day-y− 1) due to MODIS-related mixing with the 
surrounding natural vegetation in the fragmented agricultural landscape. EOS showed a faster rate of change 
compared to SOS over the 21-years. The Landsat and MODIS fusion captured spatial variation in the timing and 
magnitude of change specific to crops and their growing environment, which has implications for adaptation 
strategies. Our results highlight the importance of long-term data fusion to improve the spatial dimension of crop 
phenology time series analysis. Integrating time series land cover maps into the data fusion processing chain 
could further improve long-term data fusion for crop phenology trend analysis.   

1. Introduction 

Agricultural production in smallholder farming systems faces enor-
mous challenges because of climate variability, extreme weather events, 
soil degradation, rapid population growth, and inequitable land tenure 
(Brown et al., 2010; Place, 2009). These problems remain the major 
drivers of poor agricultural production and the sources of food insecurity 
in Africa (Nakalembe et al., 2021). Understanding the changes in crop 
phenology (i.e., the timing and duration of crop development stages) 
provides essential information on the effect of climate variability on 
crop growth and production to address food insecurity. However, in 
various smallholder farming communities, monitoring the small (<1ha) 
and fragmented crop fields is difficult, which hinders our understanding 

of crop phenology dynamics (Bolton et al., 2020). 
Earth observations monitor crop phenology changes over large areas 

and over time (Yang et al., 2020). However, historical records, high 
spatial resolution (≤30 m), and frequent observations (≤8 days) are 
needed to monitor crop phenology changes in heterogeneous agricul-
tural landscapes (Li et al., 2017; Whitcraft et al., 2015b). The most 
important crop phenological parameters (hereafter phenometrics) 
include: start of season (SOS) or the emergence date; the end of the 
season (EOS) or harvest date; and peak of growth (POS) (Mishra et al., 
2021). Global and regional analyses of vegetation change using coarse 
spatial resolution Earth observation widely reported advance SOS and 
delay EOS in most croplands in the northern hemisphere (Brown et al., 
2012; Chen et al., 2021; Liu et al., 2017; Yang et al., 2021). However, 
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studies based on coarse spatial and temporal resolution data correlate 
poorly with field-level crop statistics (Chen et al., 2021). Similarly, in 
Africa, vegetation community-level studies using coarse spatial resolu-
tion data showed inconsistent spatial and temporal patterns in the 
timing of crop phenology and the magnitude of its change (Adole et al., 
2018a; Alemu and Henebry, 2017; Meroni et al., 2014). This has been 
attributed to high landscape heterogeneity caused by complex topog-
raphy, small and irregularly shaped fields, double and mixed cropping 
practices, and inter-annual rainfall variability. 

High spatial and temporal resolution information is important to 
reveal the long-term and environment-specific crop phenology changes 
in fragmented landscapes in Africa but are often unavailable (Naka-
lembe et al., 2021). The daily and 8/16-day composites Moderate Res-
olution Imaging Spectoradiometer (MODIS) (250–500 m) data, for 
example, is unable to discern field-level variations and is only mean-
ingful in areas of homogeneous crop-type cover (Tian et al., 2013; 
Whitcraft et al., 2015a). On the other hand, Landsat provides the 
longest, continuous historical satellite record at 30 m spatial resolution, 
which is appropriate to identify and monitor fragmented agricultural 
landscapes; however, the 16-day temporal resolution is not appropriate 
for tracking crop growth (Roy et al., 2016). Moreover, persistent cloud 
cover becomes a challenge to acquire adequate cloud-free images to 
monitor crop growth (at least every 8-days) in most tropical rainfed 
agriculture when using Landsat data for crop phenology trend analysis 
(Whitcraft et al., 2015b). The fusion of Landsat and MODIS data is an 
opportunity to analyse long-term crop phenology trends due to the 
availability of historical observations and the complementary nature of 
the datasets (Gao et al., 2015). 

Spatiotemporal data fusion integrates high (low) spatial resolution 
and low (high) temporal resolution data to obtain frequent high spatial 
resolution historical records for crop phenology trend analysis (Tian 
et al., 2013). However, few studies have employed data fusion for 
continuous and long-term trend analysis. Those that have done so were 
conducted at temperate latitudes, where croplands are relatively ho-
mogeneous, fields are large, and cloud-free input imagery is readily 
available. Gao et al. (2017) fused Landsat and MODIS from 2001 to 2014 
at three-year intervals to analyze crop phenology variation in the US 
Corn Belt region. Schmidt et al. (2015) generated a 12-year time-series 
of Landsat–MODIS fused data in Queensland, Australia, to monitor 
forest disturbance. Using 11 years of Landsat and MODIS fusion, Tian 
et al. (2013) captured field-level vegetation change in the Loess Plateau, 
China. These studies, which were conducted for short periods and on 
natural vegetation, revealed relatively stable temporal dynamics. It is 
therefore important to evaluate the feasibility of data fusion for 
longer-term (2000 to 2020) crop phenology trend analysis in frag-
mented tropical (cloudy) agricultural landscapes that are dominated by 
smallholder farmers. 

The inherent limitation of data fusion algorithms to capture inter- 
annual and land cover changes could result in spurious trends, when 
frequent cloud-free Landsat inputs are unavailable (Knauer et al., 2016). 
Choosing the appropriate data fusion algorithm for fragmented agri-
cultural landscapes is crucial to capture both spatial and temporal 
growth changes through data fusion (Nietupski et al., 2021). The 
enhanced (E) STARFM (Zhu et al., 2010) performed favorably in het-
erogeneous environments but was unable to capture temporal change in 
crops. In a recent study (Sisheber et al., 2022), ESTARFM was modified 
to capture the spatial and temporal variation in crops by using crop 
calendar information to identify and distribute input images and a land 
cover map to select similar pixels from homogenous land cover classes. 
The model was evaluated using ground sowing and harvest date infor-
mation, and the modified model prediction error was 7 days RMSE for 
SOS and 10 days for EOS compared to 17 days for the SOS and EOS based 
on MODIS. ESTARFM also captured field-level crop phenology that 
could provide opportunity to investigate the long-term crop phenology 
change in fragmented agricultural landscapes. 

In this study, we investigated the long-term crop phenology trend in 

a fragmented tropical agricultural landscape in Ethiopia between 2000 
and 2020. We used Landsat and MODIS fusion to reveal the spatial and 
temporal patterns of SOS, POS and EOS changes specific to crops, which 
is important for informing climate adaptation and mitigation planning. 
We compared trends in crop phenometrics as detected by Landsat and 
MODIS data fusion with those detected using MODIS alone to assess the 
contribution of data fusion to discern crop phenometric change from the 
surrounding natural vegetation in a fragmented agricultural landscape. 
The main contribution of our approach is the derivation of a long-term 
(>20-years) crop phenology trend at high spatial resolution (30m) using 
Landsat–MODIS data fusion. 

2. Study Area 

The study covers crop growing districts surrounding the Lake Tana 
sub-basin in Ethiopia (Fig. 1), a major agroecosystem for staple grains 
(teff, maize, millet, and rice). The elevation ranges from 1700 to 3500 
meters, mean above sea level. The mean annual average temperature 
and cumulative precipitation range from 13

◦

C to 22
◦

C and 970 mm to 
1900 mm, respectively. The main rainy season (locally called kiremt, or 
summer) occurs between June and September. It supports the main 
(meher) cropping season. The northward movement of the inter-tropical 
convergent zone (ITCZ) drives kiremt rainfall. A short and highly vari-
able rainfall period (belg or spring) also occurs between March and May, 
while October to January (bega or winter) is the dry season that also 
influences meher crop production (Gummadi et al., 2018). Crops are 
sown between June and early August and harvested between November 
and mid-December. Crop production is mainly rainfed and stratified by 
climatology and topography. The highlands surrounding the basin are 
dissected plateau and receive the largest amount of rainfall. Here, fields 
are small (<1ha), and the main crops are millet and teff. The central 
districts (Bahir Dar Zuria, Dera, and Mecha) consist of plains and un-
dulating topography that support maize and teff cultivation. Rice is 
cultivated in the lowland floodplain east of Lake Tana (Fogera and 
Kemkem). 

3. Data and Methods 

Fig. 2 illustrates the main inputs, processes, and outputs of the 
technical workflow of the study. First, we fused the red and near- 
infrared bands of Landsat and MODIS using ESTARFM between 2000 
and 2020. Then EVI2 computed from the fused and MODIS time-series 
was used to detect crop phenology in TIMESAT (Eklundh and 
Jönsson, 2017). A crop mask classified in 2019 from Landsat data was 
used to identify the crop pixels. Finally, we analyzed the trends in crop 
phenology over 21 years. 

3.1. Data acquisition and processing 

3.1.1. Landsat 
We acquired level-2 terrain corrected surface reflectance red and 

near-infrared spectral bands for 2000 to 2020 from the United States 
Geological Survey (USGS) Earth Explorer (https://earthexplorer.usgs. 
gov) for path/row: 170/52 of Landsat-5 Thematic Mapper (TM), 
Landsat-7 Enhanced Thematic Mapper (ETM+), and Landsat-8 Opera-
tional Land imager (OLI). The images were atmospherically corrected 
with the Landsat-8 Surface Reflectance Code (LaSRC), improved aerosol 
determination for Landsat-8, and the Landsat Ecosystem Disturbance 
Adaptive Processing System (LEDAPS) for Landsat-5 and Landsat-7 (Roy 
et al., 2016). As Landsat-5 imagery was unavailable from 2003 to 2009, 
we used Landsat-7 imagery, and applied the local linear 
histogram-matching method developed by the USGS (Hossain et al., 
2015) to fill gaps (SLC-off). We selected relatively low Landsat cloud 
cover scenes ≤30%, for input and 30-70% for validation after assessing 
of proportion of cloud-free pixels within the study boundary and used 
the Landsat pixel quality to mask cloud pixels because of the absence of 
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cloud-free images. Fig. 3 provides the distribution of Landsat inputs 
during the growing season over the 21-years data fusion period. 

3.1.2. MODIS 
We used the MODIS surface reflectance data (MOD09Q1:V006) ac-

quired from NASA’s LPDAAC website (https://lpdaac.usgs.gov) for 
image tile: 21/7 horizontal/vertical over the study period. The product 

consisted of atmospherically and aerosol corrected red and near-infrared 
spectral bands at 250 m spatial resolution composited over 8-day in-
tervals, which is important for improving data fusion for crop phenology 
monitoring in fragmented landscapes (Wang et al., 2017). The MODIS 
Sinusoidal projection was re-projected to WGS84 UTM zone 37 and 
resampled to 30 m using nearest neighbor to match the Landsat pro-
jection and spatial resolution. We used the MODIS state-quality flag to 

Fig. 1. Location of the study area within Ethiopia (a). NIR-red-green Landsat-8 (path/row: 170/52 of November 30, 2019) false-colour composite shows the spatial 
coverage of the study area (b). Land cover map of the study area (c) for the 2019 growing season adapted from Sisheber et al. (2022). 

Fig. 2. Technical workflow of the methodology. Landsat and MODIS fused through ESTARFM and crop mask classified in 2019 (Sisheber et al., 2022) used to identify 
crop pixels for trend analysis. 
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omit cloud and cloud shadow pixels from the trend analysis. 

3.1.3. Crop mask 
We used a land cover map (Fig. 1) classified in 2019 with Landsat-8 

(Sisheber et al., 2022) to filter croplands and categorize maize (2120 
km2), rice (258 km2), mixed croplands (2168 km2), natural vegetation 
classes (3736 km2), water bodies (3103 km2), and built-up areas (199 
km2). The cropland accounts for 39% of the land cover. An accuracy 
assessment using ground truth data showed that the classified map had 
an overall accuracy of 82.9%, a kappa coefficient of 0.80, a user’s ac-
curacy of 79%, and a producer’s accuracy of 78%. The location and 
extent of croplands in Ethiopia is largely defined by climate and 
topography (Evangelista et al., 2013).Change occurs gradually over the 
years (Mohammed et al., 2020). To validate this, we randomly sampled 
750 cropland points and visually analyzed them using historical Google 

Earth images between 2000 and 2020. Of these, 90% of the sample 
points were evaluated as stable cropland throughout the study period. 
To minimize the 10% error, we eliminated pixels with a high coefficient 
of variation (CV> 20%) of the phenometrics that could indicate land 
cover change, similar to the approach used by Qader et al. (2015). 

3.2. Analytical techniques 

3.2.1. Landsat–MODIS data fusion 
We used ESTARFM (Zhu et al., 2010), modified for fragmented 

agricultural landscapes (Sisheber et al., 2022), to fuse Landsat 
(TM/ETM+ and OLI) and MODIS imagery from 2000 to 2020. ESTARFM 
uses two pairs of Landsat and MODIS images at the base date (t0:t1 & t2) 
and MODIS images at the prediction dates (tp) to predict high-resolution 
Landsat–MODIS fused (hereafter fused) data. We distributed the avail-
able Landsat inputs at the vegetative, reproductive, and maturity stages 
based on the dominant crop (maize and rice) calendar of the study area 
(Fig. 3) to minimize the effect of reflectance change between t0 and tp 
(see,Sisheber et al., 2022). When frequent cloud-free Landsat inputs 
were available, we selected the Landsat and MODIS inputs at the same 
acquisition dates. When the available cloud free Landsat inputs are at 

different phenological stages of crops, we used the MODIS composite 
best correlated with MODIS input at tp and with Landsat at the base 
dates (MODIS t0-tp correlation) to compensate for phenology change. 
We used 128 Landsat inputs for fusion and six for validation (Fig. 3). 
Then, similar pixels were searched for based on the intersection of 
Landsat reflectance at t1 and t2 in a moving window (w) size of 50 × 50 
Landsat pixels and homogeneous land cover class (c). We used the land 
cover map (Fig. 1) as input to select similar pixels from the same land 
cover class. Due to the small field size and variation of management 
practice, adequate similar pixels (>20 pixels) were obtained when c=6 
for vegetative growth stage prediction and c=4 during the other periods. 
Finally, we calculated the spatial weighting function (wi) and conversion 
coefficient (vi) by applying the original ESTARFM (Zhu et al., 2010) to 
predict fused images for 21 years at 8-day intervals per year using Eq. 1.  

where L and M denote Landsat and MODIS pixels at coordinates xi and yi 
and band (b), xw/2, yw/2 are the coordinates of the central pixel. N and 
wi are the numbers of similar pixels in a moving window used to create 
the weight and coefficient of the ith date of prediction. We implemented 
the fusion in IDL® (Interactive Data Language). 

We computed the two-band enhanced vegetation index (EVI2) 
(Jiang et al., 2008) from the fused and MODIS time-series (eq. 2) for crop 
phenology trend analysis because it is less sensitive to soil background 
and does not saturate for dense vegetation (Yang et al., 2020). For 
spatial consistency, the MODIS EVI2 was resampled at 30 m spatial 
resolution. A linear correlation of EVI2, determined from independent 
Landsat images reserved for validation and fused images, was used to 
evaluate the inter-annual data fusion performance (see Supplementary 
data, Fig.S1). 

EVI2 = 2.5
(

ρNIR − ρRed
1 + ρNIR + 2.4ρRed

)

(2) 

Ideally, Landsat missions are consistent and comparable, allowing 
for continuous time-series analysis. However, incremental de-
velopments in sensors, data transmission, acquisition, and processing 
could influence the interpretation of Landsat time-series. Thus, the 

Fig. 3. Distribution of Landsat input images identified from the onset of the main crop growing season (May) to harvest (December). The black colour represents data 
fusion inputs and the red colour represents validation inputs. 

L
(
xw

/
2, yw

/
2, tp, b

)
= L(xw / 2, yw / 2, t0, b) +

∑N

i=1
wi ∗ vi ∗

(
M

(
xi, yi, tp, b

)
− − M(xi, yi, t0, b)

)
(1)   
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combined use of Landsat-5, -7, and -8 data requires further harmoni-
zation. To this end, we obtained 15 images from overlapping Landsat 
scenes (row/Path: 169/52) and calculated EVI2 on cloud-free sample 
pixels. Then all the time-series EVI2 were transformed to Landsat-7 
values using linear transformation as proposed by Roy et al. (2016). 
The equations for data harmonization are: 

LS7 = 0.023637 + 0.933630 ∗ EVI2LS5……(R2= 0.83,P

≤ 0.01, n= 195174) (3)  

LS7 = 0.023464 + 0.895451 ∗ EVI2LS8…..(R2= 0.84,P ≤ 0.01, n= 228229
(4)  

where LS7, LS5 and LS8 represent the EVI2 derived from Landsat-7, -5, 
and -8. For n cloud-free sample pixels, high R2 at p ≤0.01 was obtained 
to convert Landsat-5 and -8 values to Landsat-7 values. 

3.2.2. Crop phenometrics 
The TIMESAT software package was used to calculate phenometrics. 

We first smoothed the EVI2 time-series using the Savtizky–Golay (S–G) 
filter Eklundh and Jönsson, 2017) to minimize the impact of atmo-
spheric effects and data fusion inconsistencies. We used the MODIS 
quality flag to define the influence (weight) of pixels as 1.0 (full 
contribution) for cloud-free, 0.0 (no contribution) for cloudy pixels, and 
0.5 (reduced contribution) for medium cloud and cloud shadow prob-
ability pixels. For each year, the second upper envelope iteration, 
adaptive strength ((3), and window size (4) were used for fitting. From 
the fitted fused EVI2 time-series, the SOS and EOS were extracted using 
the seasonal amplitude (dynamic threshold) method, as this method 
takes account of crop characteristics (Yang et al., 2020). We used 
thresholds of 10% and 30% of the seasonal amplitude to determine the 
SOS and EOS respectively. The time at the apex of the fitted curve was 
the POS (EVI2max date). Crop phenometrics were also extracted from 
MODIS to assess how the fusion improved our understanding of cropland 
phenology dynamics. The crop phenometrics detection were fine-tuned 
and tested using sowing and harvest date information collected from 17 
maize and 16 rice fields (see supplement, Table S1) randomly identified 
in the study area, and found that data fusion performed well than MODIS 
(Sisheber et al., 2022). We used bias, root mean square error (RMSE) and 
coefficient of determination (R2) to assess the deviation and error be-
tween the fused and MODIS phenometrics. The 21-years mean pheno-
metrics were aggregated at pixel level to understand the spatial 
distribution of crop phenology. 

3.3. Crop phenology trend analysis 

The crop phenology trend was determined from fused and MODIS 
derived phenometrics for comparison. We used the timing of SOS, EOS, 
and POS in the trend analysis for pixels (n=1,648,020) within the crop 
mask area over the study period (2000 to 2020). A 4-year temporal 
filter, considering the average crop rotation period, based on a Gaussian 
weighted mean, was applied to exclude outliers and minimize the like-
lihood of a spurious trend (Schmidt et al., 2012). We applied the 
non-parametric Theil–Sen (TS) median slope estimator to investigate the 
magnitude of crop phenology change and the Mann–Kendall (MK) test 
(Eastman et al., 2013) to test the significance of the trend. Unlike the 
slope of linear regression, the TS estimator and MK test are 

recommended for remote sensing time-series analysis because of their 
insensitivity to outliers and occasional missing data and do not require a 
normally distributed time-series (Marshall et al., 2016). Thus, for every 
pixel with a valid retrieval of SOS, EOS, and POS, the slope of pairwise 
combinations n(n − 1)/2 was computed, and the median value estimates 
the rate of change. The slope above zero indicates a positive trend; the 
slope below zero indicates a negative trend. The MK test statistics con-
sists of calculating the Kendall Score (S:Eq. 5) and its variance (var) 
(Jong et al., 2012). S denotes the sign of data values (xj), and n is the 
number of years (21). The test statistics Z-score was calculated (Eq. 6), 
and the result was classified as a significant increase/decrease based on 
the level of confidence to show spatial variation of phenological change 
(Table 1). An MK z-score ≥±1.96 indicates a significant increase/de-
crease at 95% confidence. To ascertain the spatial extent of phenology 
change, the percentage of pixels with increasing and decreasing trends 
was also calculated. 

S =
∑n− 1

i=1

∑n

j=i+1
sgn(xj − xi) (5)  

Z =
S − 1
̅̅̅̅̅̅̅̅̅̅̅̅̅
var(S)

√ , if S > 0; Z = 0, if S = 0 and
S + 1
̅̅̅̅̅̅̅̅̅̅̅̅̅
var(S)

√ , if S < 0 (6)  

4. Results 

4.1. Spatial variations in data fusion and MODIS phenometrics 

The 21-year (2000 to 2020) average crop phenology shows that data 
fusion (Fig. 4a-c) captured distinct spatial phenological patterns 
compared to MODIS (Fig. 4d-f). The subsets in Fig. 4a-f represent spatial 
variation in dominantly maize and Fig. 4g-i in the rice dominant fields 
during the study period. The spatial variability was greater for SOS than 
for EOS and POS. The SOS became progressively later northwards: it was 
earliest in the highland regions with more fragmented fields south of the 
study area (Dengla, south Mecha, Yilmana Densa districts) and occurred 
later in central Mecha and Bahir Dar Zuria, possibly as a result of the 
difference in the onset of rainfall and crop types. The SOS mean and 
standard deviation were day of year (DOY) 177±7.3 (fused) versus DOY 
171.2±8.8 (MODIS). About 75% of the fused SOS pixels ranged between 
DOY 170 and 190, and 82% of the MODIS pixels were before DOY 180. 
Data fusion yielded a spatial and temporal average EOS (DOY 321±8) 
that was later than that obtained from MODIS (DOY 312±10.1). 92% of 
the fused pixels reached EOS after DOY 310, while 82% of the MODIS 
pixels reached EOS before DOY 320. Crops reached peak productivity 
(POS) at DOY 255±6.5 (fused) and at DOY 243±7.6 (MODIS). Tempo-
rally, the EVI2 signals (see supplement, Fig. S2) showed data fusion 
detected seasonal and inter-annual variability, and MODIS detected 
earlier phenology than the fused (Fig. 6) in maize and rice dominant 
fields over 21 years for pixels within the zoom window of Fig. 4a and d. 

The maps showing the difference (in days) between the values ob-
tained by data fusion and those obtained from MODIS (Fig. 4g-i) illus-
trate the spatial differences between the datasets. A larger difference 
between fused and MODIS occurred mainly in the fragmented and mixed 
crop croplands. Positive change in most of the study area shows data 
fusion yielded later phenology than MODIS for most of the study area 
(82% of SOS, 58% of POS and 88% of EOS pixels), except in the rice- 
growing northeast of the study area. The difference between data 
fusion and MODIS was about 15 days for 84% of EOS, 91% of SOS, and 
98% of POS pixels. The late EOS captured by data fusion coincides with 
the harvest season, usually between November and mid-December. 
However, in the rice-dominant Fogera district, the mean SOS and EOS 
were earlier for MODIS than for the data fusion. This might be because 
flooding in the early growth stage and re-greening at EOS due to 
available moisture after harvest could influence the detection of phe-
nometrics from the coarse-resolution MODIS. A greater difference and 

Table 1 
MKZ-score classes for classifying trend test.  

MKZ-score Significance of the Trend 

≥±1.96 Increase/decrease at 95% level of confidence 
±1.96 to ±1.65 Increase/decrease at 95-90% level of confidence 
±1.65 to ±0.83 Increase/decrease at 90-80% level of confidence 
±0.83 to ±0 Increase/decrease trend but insignificant  
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Fig. 4. Spatial distribution of the mean SOS (a), POS (b), and EOS (c) determined from fused from 2000 to 2020, and MODIS-determined SOS (d), POS (e), and EOS 
(f). Data fusion minus MODIS SOS (g), POS (h), and EOS (i) highlight differences. The metrics in g-i show a statistical relationship between fused and MODIS- 
determined phenometrics. The zoom windows focused on maize (a-f) and rice (g-i) dominant sites where the two datasets showed major differences. 
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Fig. 5. Spatial distribution of significant crop phenology trends over the 21 years period. The direction of fused SOS (a), POS (b), and EOS (c) changes compared with 
MODIS SOS (d), POS (e), and EOS (f). The significance of change was based on the Mann–Kendall Z score (MKZ). The maps of the difference between data fusion and 
MODIS show the spatial distribution of fused and MODIS trend differences for SOS (g), POS (h), and EOS (i). 
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lower correlation between Landsat–MODIS fusion and MODIS were 
obtained for EOS (bias=7.8 days, RMSE=10.6 days, R2=0.43) and the 
SOS (bias=6.4 days, RMSE=9.6 days, R2=0.38), compared to POS 
(bias=1.0 days, RMSE=5.0 days, R2=0.52). 

4.2. Crop phenology trend retrieved from data fusion and MODIS 

4.2.1. Temporal pattern of data fusion and MODIS crop phenology trend 
Crop phenology trend analysis based on data fusion (Fig. 5a-c and 

Fig. 7a-c) and MODIS (Fig. 5d-f and Fig. 7d-f) aligned more in direction 
than in terms of magnitude of change in most parts of the study area. 
Fig. 5 shows both datasets captured crop phenology change (MKZ∕=0) 
and a general tendency for early SOS, POS, and EOS (MKZ<0) during the 
study period. However, MODIS detected a higher magnitude of signifi-
cant change (MKZ>1.96, p=0.05) for most parts of the study area than 
for the data fusion. Data fusion detected 60.2% of crop pixels that had 

shifted on average by -0.2±0.9 day-y− 1 whereas MODIS captured 67.3% 
early SOS pixels at a magnitude of -0.5±0.6 day-y− 1. A statistically 
significantly early SOS was found for 20% of the fused pixels and 10.5% 
of MODIS pixels. The fused SOS retreated from DOY 190 to DOY 180 and 
MODIS SOS retreated from DOY 180 to DOY 170 in maize dominant 
sites. 76% of MODIS crop pixels showed significantly early EOS on 
average by -1.38±1 day-y− 1; the corresponding result for data fusion 
was 26% EOS pixels and -0.5 ±1.2 day-y− 1. On average, EOS shifted 
from DOY 325 to DOY 313 (fused) and DOY 323 to DOY 304 (MODIS). 
As shown in Fig. 5f, the absence of spatial variation in the magnitude of 
MODIS EOS trend, which is significant throughout the study area 
resulted in a bigger overall shift over the study period compared to the 
fused. 

Data fusion also captured a larger proportion of significantly delayed 
SOS (10%) and EOS (7%) pixels than MODIS SOS (6%) and EOS (2%). 
Data fusion also yielded a slightly higher proportion (39.8%) and 

Fig. 6. Temporal pattern of phenometrics in maize (a: SOS, b: POS, and c: EOS) and rice dominant (d: SOS, e: POS, and f: EOS) pixels within the zoom area of Fig. 6a 
and c respectively. 
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magnitude (-0.51 ±0.8 day-y− 1) of significantly early POS than MODIS 
(32% and -0.36 ±0.7 day-y− 1). As observed in the zoom windows, data 
fusion captured more localized changes in the maize dominant mecha-
nized winter irrigated farms (Fig. 5a-f) and the rice growing region 
(Fig. 5g-i). The mean temporal pattern of phenometrics change (Fig. 6) 
for crop pixels within the zoom windows showed an opposite trend in 
maize (earlier) and rice (delayed) growing sites in both datasets. MODIS 
showed large inter-annual variability in the rice region, where flooding 
usually influences the timing of SOS and POS detection. The result also 
indicates in the rice dominant site (Fig. 6d-f) data fusion detected a 
higher rate SOS and EOS change than MODIS. 

4.2.2. Spatial pattern of fused and MODIS crop phenology trends 
The spatial distribution in the direction of significant change (MKZ- 

score) in Fig. 5 and the spatial distribution of the rate of change (TS 
slope) in Fig. 7 showed data fusion (a-c) captured larger variations in 
pixel-level crop phenology trends than MODIS (d-f). For instance, 
MODIS detected early EOS in the entire study area (Fig. 5f), whereas 
data fusion revealed larger spatial variation in the direction and 
magnitude of significant EOS change (Fig. 5c). The datasets exhibited 
large differences between them and had opposing EOS trends. The 
spatial pattern of the fused crop phenology change was related to the 
spatial distribution of crop types and their growing environment. For 
instance, data fusion detected insignificant early SOS change (a), 

Fig. 7. The magnitude (Theil–Sen slope estimator) of crop phenology change for fused SOS (a), POS (b), and EOS (c), and MODIS SOS (d), POS (e), and EOS (f)  
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whereas MODIS (d) detected more significant early SOS change in most 
maize dominant districts south of Lake Tana. In the rice-growing region 
(Fogera district), fused data captured more spatial (Fig. 5a) and tem-
poral (Fig. 6d) variation in the direction and magnitude of SOS change 
than MODIS (Fig. 5b and Fig. 6d), where surface water in the rice fields 
obscures vegetation signals in the early growth stage at MODIS spatial 
resolution. The trend difference map obtained by subtracting MODIS 
from fused (Fig. 5g-i) also showed that most of the differences between 
fused and MODIS were located in the highland and mixed crop growing 
regions (South Achefer, Dengla, Yilmana Densa districts). In these sites, 
the difference between the crop phenology of the coarse resolution 
MODIS and data fusion may have resulted from more mixed pixel issues 
and the early start of the rainy season. Moreover, as shown in Fig. 7, 
MODIS estimated a higher rate of change than fused, which resulted in a 
high overall rate of change. 

5. Discussion 

This study comprehensively investigated the longer-term crop 
phenology trends using Landsat and MODIS data fusion in a fragmented 
landscape of Ethiopia for the period 2000–2020. The four main findings 
were: i) Data fusion detected SOS, POS and EOS occurred later than in 
MODIS; ii) MODIS and data fusion showed similarities in the direction of 
crop phenology change, but data fusion yielded slower rates of change in 
SOS and EOS trend than MODIS; iii) EOS showed the highest magnitude 
of crop phenology change resulting in a shorter detected growing season 
length; and iv) data fusion captured greater per-pixel level phenology 
variation and environment–specific crop phenology trends than those 
captured by MODIS. Our findings demonstrate the feasibility and po-
tential of longer-term (>20 years) Landsat and MODIS fusion for crop 
phenology trend analysis in a fragmented landscape. 

5.1. Detecting time-series crop phenometrics 

In general, the long-term mean crop phenometrics determined from 
fused data were later than those found using MODIS, because the 
improved spatial resolution captured crop fields. Our finding agrees 
with previous studies that found coarse spatial resolution Earth obser-
vation data detects earlier phenology than the high spatial resolution 
due to a mix of natural vegetation (Melaas et al., 2016; Qiu et al., 2020; 
Tian et al., 2015; Yang et al., 2020). The largest difference we found 
between MODIS and fused phenology was for EOS; the smallest differ-
ence was for POS. This implies the improved spatial resolution 
contributed to distinguishing harvested fields from senescence, which 
the coarse resolution MODIS lacks in fragmented agricultural landscape, 
consistent with the findings of Yang et al. (2020). Data fusion detected 
lower inter-annual variability and greater spatial variation of crop 
phenology than MODIS. The difference between fused and MODIS 
phenology occurred in the more fragmented and mixed crop-growing 
sites and in frequently flooded fields. Therefore, in fragmented agri-
cultural landscapes, time-series data fusion provides an opportunity to 
distinguish the spatial and temporal patterns of crop phenology from the 
surrounding natural vegetation, which is valuable for recommending 
adaptation practices. 

5.2. Crop phenology trend using data fusion and MODIS 

In most of the study areas, MODIS and data fusion detected a similar 
direction of change. However, data fusion yielded smaller changes in the 
timing and magnitude of SOS and EOS than MODIS. For instance, 
MODIS EOS changed more than the fused EOS (-1.38 days/y versus 
-0.5days/y), and fused SOS changed more than MODIS SOS (-0.2days/y 
versus -0.5days/y). These high crop phenology changes deserve atten-
tion since small changes have a cascading effect on crop management 
practices and crop productivity for smallholder farmers (Rezaei et al., 
2017). The difference between the fused and MODIS trends might be 

attributable to over-emphasis by the coarse resolution due to mixing 
with the surrounding natural vegetation of the fragmented landscape in 
the study area. Although we excluded non-crop pixels in the analysis, the 
MODIS pixels might still have contained natural vegetation that influ-
enced the timing and magnitude of crop phenology change. In this 
context, Tian et al. (2013) reported that MODIS NDVI (Normalized 
Difference Vegetation Index) trend overestimation could be eliminated 
by using higher-resolution images. Through Landsat and MODIS fusion, 
we obtained more reasonable phenometrics timing, consistent with the 
crop calendar (Sisheber et al., 2022), that normalized the rate of change 
and captured spatial variability. 

Although data fusion and MODIS agreed on the direction of SOS 
change, opposing trends were found in EOS, particularly in fragmented 
and mixed cropping locations. The fused data and MODIS also differed 
in capturing the rate of change in phenometrics. These differences might 
be related to the difference in the drivers and the likelihood of detection 
at Landsat and MODIS resolutions. In a rainfed system, the onset of 
rainfall is the main driver for SOS and for green-up in the other vege-
tation classes (Adole et al., 2018b), and hence the difference between 
MODIS and fused SOS was in the timing and magnitude rather than in 
the direction of change. The management after sowing greatly in-
fluences the POS and EOS. Predominantly early POS and EOS may be 
associated with intensive management practices such as improved va-
rieties, fertilizers, and weed control mechanisms, all of which have been 
improved following government policies aimed to improve agricultural 
productivity since 2000 in Ethiopia (Evangelista et al., 2013; Srivastava 
et al., 2019). Whereas data fusion detected pixel-level variation in the 
direction and magnitude of EOS, MODIS did not, which could be due to 
the influence of natural vegetation in the MODIS pixels. In this regard, 
Liang et al. (2021) reported that the EOS trend in natural vegetation 
could be opposite to that in agricultural areas due to adaptation re-
sponses in the farmed fields. Another explanation for the early EOS in 
our study might be early harvesting to minimize crop loss due to earlier 
dry-down time after maturity thanks to improved management, similar 
to the finding reported by Luo and Yu (2017). Our results indicate that 
the spatial resolution of the data influences the timing and magnitude of 
the detected crop phenology change. 

Unlike MODIS, the fused data detected both early and delayed EOS 
trends, and the variation was related to the distribution of dominant 
crop types and environmental differences. Our results confirm the 
contention that crop phenology change is environment-specific and 
their trend differs from natural vegetation classes (Oteros et al., 2015; 
Yang et al., 2020). Global and regional phenology studies in Africa focus 
on change in the general vegetation growth, which did not capture the 
changes in the fragmented croplands (Brown et al., 2012; Vrieling et al., 
2013). For instance, lengthened growing seasons due to early SOS and 
delayed EOS have been reported in most natural vegetation classes in 
Ethiopia (Teferi et al., 2015; Workie and Debella, 2018). However, we 
found a higher magnitude of early EOS followed by POS change than the 
magnitude of early SOS, which has implications for a shorter growing 
season length. Data fusion detected large spatial and pixel-level varia-
tions in the SOS change, indicating the dataset captured management 
practice variations among smallholder farmers. Moreover, data fusion 
detects both positive and negative significant changes that imply the 
improved spatial resolution captured local variations that were not 
detected using MODIS. Therefore, the increased spatial resolution 
through data fusion in our study minimized the effect of the surrounding 
natural vegetation on crop pixels and detected a change specific to 
crops. 

Delayed SOS, POS, and EOS were found in the rice-growing region, 
whereas early SOS and EOS were found in the maize and mixed crop 
locations, which indicates the change is crop-specific, consistent with 
Rezaei et al. (2017). Crop rotation and utilization of drought-resistant 
varieties in maize dominant sites (Srivastava et al., 2019); and resil-
ience of rice to rainfall variability (Adhikari et al., 2015) could be 
attributed to crop type difference, which needs further investigation. 
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Moreover, the higher rainfall requirement for rice SOS than maize; 
increasing May and June rainfall, and frequent occurrence of flooding 
delayed rice phenometrics. The fused data also captured a high rate of 
SOS and EOS change than MODIS in rice dominant sites, where large rice 
field expansion occurred over the study period, implying the improved 
resolution contributed to detect crop type change in smallholders 
framing agricultural landscapes. Our previous study also confirmed that 
Landsat and MODIS fusion captured maize and rice phenology compa-
rable to ground information than MODIS due to the small filed size and 
mixed cropping pattern in the fragmented landscape in the study area 
(Sisheber et al., 2022). Therefore, long-term crop phenology monitoring 
using data fusion could be a valuable strategy for uncovering crop type 
and environment-specific phenology change in fragmented crop land-
scapes that cannot be derived from other sources. 

5.3. Contributions and limitations 

To our knowledge, this study is the first to map crop phenology 
trends over 20+ years in a fragmented landscape using spatiotemporal 
Landsat and MODIS data fusion. Using the data fusion, local-scale crop 
phenology changes that could not be identified through coarse resolu-
tion sensors were mapped, yielding crucial information for farmers in 
smallholder agricultural systems. Unlike vegetation community-level 
investigations in previous global and regional studies, this study dis-
cerned phenological changes specific to crops from the surrounding 
natural vegetation in the fragmented tropical smallholder farming sys-
tem, important to recommend adaptation measures. We also applied 
long-term data fusion to derive high spatial resolution phenology over a 
longer-period (21-years) that can be used to understand the effects of 
climate variability and climate change on crop production and estimate 
historical trends in crop yield that require further investigation. 

One shortcoming of the study is that crop rotation and crop type 
could have changed during the long-term study period, thereby affecting 
the magnitude of the trends found. To establish that agricultural land 
had not changed, we used a land cover map from 2019 to mask crop-
lands and augmented this with local knowledge of the study area. 
However, even when croplands remain unchanged, outliers can occur 
because of expansion of agricultural fields and misclassification, 
particularly at the boundaries of crop fields. 

Although we used the smoothed phenometrics in the trend analysis, 
persistent cloud cover during the growing season and data fusion un-
certainties could have created inter-annual variability in crop phenology 
detection and influenced the magnitude of crop phenology change. 
Taking account of historical crop type distribution could further 
improve data fusion to detect changes specific to crops, whilst ac-
counting for the uncertainty introduced by cloud contaminated images 
in the time series. 

As the time-series of high spatial resolution imagery increases, the 
relationship between crop phenology with climatic factors (especially 
rainfall and temperature) and management factors (practices, inputs and 
technologies) should also be explored. 

6. Conclusion 

This study applied longer-term (>20-years) data fusion to analyse 
crop phenology trend in a fragmented landscape, using the main crop- 
growing region of Lake Tana sub-basin, Ethiopia as a case study. Our 
data fusion method detected advancing crop phenology trends that 
require attention. The timing of the SOS, POS and EOS detected using 
data fusion was later than using MODIS. Although MODIS and fusion 
agreed on the direction of SOS, POS and EOS, data fusion detected a 
large significant change in the SOS and POS and spatial and temporal 
variability in the pattern of the EOS. Data fusion also showed a high 
overall rate of field level SOS, POS and EOS changes specific to crops. 
This improves our understanding of the changes in crop calendar in 
tropical smallholders farming agricultural landscapes and can guide 

adaptation recommendations. 
Due to the mix of natural vegetation, we obtained a higher rate of 

SOS and EOS change using MODIS than the fused, implying higher 
spatial and temporal resolution is required to reveal changes specific to 
crops in fragmented landscapes. Furthermore, crop phenology based on 
data fusion contributed to detecting spatially explicit changes at field 
level compared to the uniform change obtained using MODIS. Our study 
sheds light on integrating available Earth observation data through 
multi-temporal Landsat and MODIS data fusion to understand crop 
phenology changes in fragmented agricultural landscapes. 
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