2,160 research outputs found

    Microstrip Patch Antennas Fed by Substrate Integrated Waveguide

    Get PDF
    Dizertační práce je zaměřena na výzkum mikropáskových flíčkových antén a anténních řad napájených vlnovodem integrovaným do substrátu (SIW). Využitím vlnovodu integrovaného do substrátu pro napájení mikropáskové flíčkové antény dochází ke kombinaci výhodných vlastností obou struktur. Výsledkem je kompaktní anténní struktura, jejíž napájecí vedení neprodukuje parazitní záření a neovlivňuje tak vyzařovací charakteristiku antény. Práci lze z věcného hlediska rozdělit do dvou částí. První část práce (kapitola 2) je zaměřena na návrh flíčkových antén a jejich navázání na vlnovod integrovaný do substrátu. První dvě navržené flíčkové antény využívají vlnovod integrovaný do substrátu a štěrbinu nebo koaxiální sondu pro buzení lineárně polarizované vlny. Napájení koaxiální sondou je dále použito pro buzení kruhově polarizované flíčkové antény. Za účelem získání širšího pásma osového poměru je navrženo napájení flíčkové antény ve dvou bodech. Funkčnost všech anténních struktur je popsána pomocí parametrických simulací a ověřena realizací a měřením vyrobených prototypů antén. Prezentované napájecí metody představují nový způsob napájení pro mikropáskové antény využívající technologii SIW. Ve druhé části práce (kapitola 3) je pojednáno o implementaci štěrbinou napájené mikropáskové anténní struktury do malých anténních polí o velikosti 2x2 a 1x4. V případě lineární řady je uvažováno amplitudové rozložení pro optimální potlačení postranních laloků. Obě navržené anténní řady jsou ověřeny měřením a v porovnání s podobnými anténními řadami dostupnými v literatuře dosahují širšího pracovního pásma kmitočtů a vyššího zisku.The thesis deals with the research of microstrip patch antennas and antenna arrays fed by a substrate integrated waveguide (SIW). Exploiting an SIW structure for microstrip patch antenna feeding combines the benefits of both structures. The result is a compact antenna structure retaining advantageous properties of microstrip patch antennas and having a radiation characteristic non-effected by spurious radiation which is usually produced by a conventional feeding line. The thesis consists of two factual parts. The first one (Chapter 2) deals with the design of microstrip patch antennas and exploiting a substrate integrated waveguide for their feeding. The first two microstrip patch antennas exploit an SIW and a slot or a coaxial probe in order to excite a linearly-polarized wave. SIW-based probe feeding is further utilized for exciting a single- and dual-fed circularly-polarized microstrip patch. The functionality of the proposed antenna structures is described using parametric analyses and verified by measuring of fabricated prototypes. The proposed feeding methods represent a novel feeding approach for microstrip patch antennas exploiting SIW technology. The second part of the thesis (Chapter 3) deals with implementing the linearly-polarized aperture-coupled microstrip patch antenna structure fed by SIW into two small antenna arrays consisting of 2x2 and 1x4 radiators. An amplitude distribution is considered in the case of the linear antenna array for optimum suppression of side lobes. Both proposed antenna arrays are verified by measurements. Compared to similar antenna arrays available in the literature, they reach a wider operating frequency band and a higher gain.

    Highly efficient impulse-radio ultra-wideband cavity-backed slot antenna in stacked air-filled substrate integrated waveguide technology

    Get PDF
    An impulse-radio ultra-wideband (IR-UWB) cavity-backed slot antenna covering the [5.9803; 6.9989] GHz frequency band of the IEEE 802.15.4a-2011 standard is designed and implemented in an air-filled substrate integrated waveguide (AFSIW) technology for localization applications with an accuracy of at least 3 cm. By relying on both frequency and time-domain optimization, the antenna achieves excellent IR-UWB characteristics. In free-space conditions, an impedance bandwidth of 1.92 GHz (or 29.4%), a total efficiency higher than 89%, a front-to-back ratio of at least 12.1 dB, and a gain higher than 6.3 dBi are measured in the frequency domain. Furthermore, a system fidelity factor larger than 98% and a relative group delay smaller than 100 ps are measured in the time domain within the 3 dB beamwidth of the antenna. As a result, the measured time-of-arrival of a transmitted Gaussian pulse, for different angles of arrival, exhibits variations smaller than 100 ps, corresponding to a maximum distance estimation error of 3 cm. Additionally, the antenna is validated in a real-life worst-case deployment scenario, showing that its characteristics remain stable in a large variety of deployment scenarios. Finally, the difference in frequency-and time-domain performance is studied between the antenna implemented in AFSIW and in dielectric filled substrate integrated waveguide (DFSIW) technology. We conclude that DFSIW technology is less suitable for the envisaged precision IR-UWB localization application

    Small Footprint Multilayered Millimeter-Wave Antennas and Feeding Networks for Multi-Dimensional Scanning and High-Density Integrated Systems

    Get PDF
    This paper overviews the state-of-the-art of substrate integrated waveguide (SIW) techniques in the design and realization of innovative low-cost, low-profile and low-loss (L3) millimeter-wave antenna elements, feeding networks and arrays for various wireless applications. Novel classes of multilayered antenna structures and systems are proposed and studied to exploit the vertical dimension of planar structures to overcome certain limita-tions in standard two-dimensional (2-D) topologies. The developed structures are based on two techniques, namely multi-layer stacked structures and E-plane corners. Differ-ent E-plane structures realised with SIW waveguide are presented, thereby demonstrating the potential of the proposed techniques as in multi-polarization antenna feeding. An array of 128 elements shows low SLL and height gain with just 200g of the total weight. Two versions of 2-D scanning multi-beam are presented, which effectively combine frequency scanning with beam forming networks. Adding the benefits of wide band performance to the multilayer structure, two bi-layer structures are investigated. Different stacked antennas and arrays are demonstrated to optimise the targeted antenna performances in the smallest footprint possible. These structures meet the requirement for developing inexpensive compact millimeter-wave antennas and antenna systems. Different structures and architectures are theoretically and experimentally studied and discussed for specific space- and ground-based appli-cations. Practical issues such as high-density integration and high-volume manufacturability are also addressed

    Wideband and UWB antennas for wireless applications. A comprehensive review

    Get PDF
    A comprehensive review concerning the geometry, the manufacturing technologies, the materials, and the numerical techniques, adopted for the analysis and design of wideband and ultrawideband (UWB) antennas for wireless applications, is presented. Planar, printed, dielectric, and wearable antennas, achievable on laminate (rigid and flexible), and textile dielectric substrates are taken into account. The performances of small, low-profile, and dielectric resonator antennas are illustrated paying particular attention to the application areas concerning portable devices (mobile phones, tablets, glasses, laptops, wearable computers, etc.) and radio base stations. This information provides a guidance to the selection of the different antenna geometries in terms of bandwidth, gain, field polarization, time-domain response, dimensions, and materials useful for their realization and integration in modern communication systems

    Compact and wideband transmit opto-antenna for radio frequency over fiber

    Get PDF
    An advanced transmit remote opto-antenna unit is proposed that accomplishes impedance matching between a photodetector and a low-profile antenna in a specified frequency bandwidth, without requiring an area-consuming matching network. This results in a highly compact design, which also avoids the losses and spurious radiation by such an electrically large matching circuit. Instead, the photodetector is almost directly connected to the antenna, which is designed as a conjugate load, such that the extracted and radiated power are optimized. The required input impedance for the antenna is obtained by adopting a half-mode air-filled suhstrate-integrated-waveguide topology, which also exhibits excellent radiation efficiency. The proposed unit omits electrical amplifiers and is, therefore, completely driven by the signal supplied by an optical fiber when deployed in an analog optical link, except for an externally supplied photodetector bias voltage. Such a highly cost-effective, power efficient and reliable unit is an important step in making innovative wireless communication systems, which deploy extremely dense attocells of 15 cm x 15 cm, technically and economically feasible. As a validation, a prototype, operating in the Unlicensed National Information Infrastructure radio bands (5.15 GHz-5.85 GHz), is constructed and its radiation properties are characterized in free-space conditions. After normalizing with respect to the optical source's slope efficiency, a maximum boresight gain of 12.0 dBi and a -3 dB gain bandwidth of 1020 MHz (18.6 %) are observed. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreemen

    A novel 60 GHz wideband coupled half-mode/quarter-mode substrate integrated waveguide antenna

    Get PDF
    A novel wideband substrate integrated waveguide (SIW) antenna topology, consisting of coupled half-mode and quarter-mode SIW resonant cavities, is proposed for operation in the 60 GHz band. This innovative topology combines a considerable bandwidth enhancement and a low form factor with compatibility with low-cost printed circuit board manufacturing processes, making it excellently suited for the next generation, high data rate wireless applications. Moreover, exploiting SIW technology, a high antenna-platform isolation is obtained, enabling dense integration with active electronics without harmful coupling. The computer-aided design process yields an antenna that covers the entire 57-64 GHz IEEE 802.11ad band with a measured fractional impedance bandwidth of 11.7% (7 GHz). The measured maximum gain and radiation efficiency of the prototype are larger than 5.1 dBi and 65%, respectively, within the entire impedance bandwidth

    Compact Integrated Full-Duplex Gap Waveguide-Based Radio Front End For Multi-Gbit/s Point-to-Point Backhaul Links at E-Band

    Get PDF
    This paper presents the design and realization of a high data rate radio front-end module for point-to-point backhaul links at E-band. The design module consists of four vertically stacked unconnected metal layers without any galvanic and electrical contact requirements among the building blocks, by using gap waveguide technology. The module components are a high-gain array antenna, diplexer, and circuitry consisting of a transmitter (Tx) and a receiver (Rx) monolithic microwave integrated circuits (MMICs) on a carrier board, which is successfully integrated into one package with a novel architecture and a compact form. The diplexer consists of two direct-coupled cavity bandpass filters with channels at 71-76 GHz and 81-86 GHz with a measured return loss of 15 dB and an isolation greater than 50 dB. A wideband 16 x 16 slot array antenna with a measured gain of more than 31 dBi is used to provide high directivity. The measured results show that the packaged transmitter provides a conversion gain of 22 and 20 dB at 76 and 86 GHz, respectively, with an output power of 14 and 16 dBm at 1-dB gain compression point, at the same frequencies. The packaged receiver shows an average conversion gain of 20 dB at 71-76-GHz and 24 dB at 81-86-GHz bands. A real-time wireless data transmission is successfully demonstrated with a data rate of 8 Gbit/s using 32-quadrature amplitude modulated signal over 1.8-GHz channel bandwidth with spectral efficiency of 4.44 bit/s/Hz. The proposed radio front end provides the advantages of low loss, high efficiency, compact integration, and a simple mechanical assembly, which makes it a suitable solution for small-cell backhaul links

    Rotated Half-Mode Substrate Integrated Waveguide and other Planar Integrated Structures

    Get PDF
    High data rate communication channels are becoming more and more integrated into our increasingly technological society. Substrate Integrated Waveguides (SIW) are one planar solution available to the microwave engineer, offering a low-loss and low dispersion means of propagating these high speed, high bandwidth signals. In this thesis, a brief synopsis of SIW structures and components is presented covering the basic waveguide propagating modes and cut-off frequencies. The main analysis techniques associated with SIWs including full wave electromagnetic modelling methods are overviewed, and the associated loss mechanisms of conduction, dielectric and radiation defined, leading to the design rules and guidelines on how best to mitigate them. SIW antennas as both leaky-wave and radiating slots are discussed and an example of a single and dual resonating slot antenna design is presented, along with a detailed review of a novel switch beam antenna developed for use within the current WiFi bands. The Slot SIW (or SSIW), which has a small longitudinal gap in one of the main conducting surfaces, allows easy integration of lumped elements or active devices, enabling the waveguide to be loaded with impedances or to be shorted. When the slot is shorted, the waveguide reverts back to the full SIW mode, and when partially loaded an intermediate state results. This is discussed, and the SSIW analysed with the transverse resonance technique, leading to the development of a travelling wave attenuator with the SSIW being periodically loaded with pin diodes. The application of the pin diodes required the use of a capacitive overlay, a development of flexi circuit design to allow capacitive coupling of impedances to connect to the waveguide. The overlay concept is extended further, to form novel passive bandpass filters, with the introduction of virtual vias. A limitation of the SSIW is that the majority of the field resides within the dielectric; this allows only a limited interaction with the field at the slot. The rotated Half Mode SIW (rHMSIW), a new variant of the SIW family, places the maximum of the electric field directly on the top dielectric surface, allowing for direct interaction. The waveguide width a is now defined by the dielectric thickness, allowing for the waveguide height b to be adjustable, in normal SIWs this is the other way round; the dielectric thickness fixing the waveguide height and the waveguide width being adjustable. The rHMSIW is characterised with regard to the height and width ratios b/a and the dielectric exposed width (which is adjustable). These parameters effect the modal cut-off frequency, this is investigated and a new equation describing the fundamental mode cut-off frequency is empirically derived. Finally a test coupon which spans the Ku band is designed and measured, which required the development of a novel waveguide transition

    Antennas and Arrays for Mobile Platforms -- Direct Broadcast Satellite and Wireless Communication

    Get PDF
    Flexibility of any proposed communication links is becoming one of the most challenging features. Direct broadcasting satellite services, for example, will be greatly enhanced by providing service-on-the-move. This market is very demanding as it necessitates the development of a low cost, low profile antenna that can be mounted on top of SUVs and minivans, which is capable of continuously tracking the satellite. Another example is the wireless antennas for laptops and smart-phones, where the antennas should fit within an extremely small volume and should be capable of addressing many services over wide frequency range. In this dissertation, both DBS and the wireless antennas are addressed. In these studies, efforts have been concentrated in developing low profile planar antennas, in particular, slot arrays. Travelling wave slotted waveguide arrays have been utilized to minimize the scanning angle range limits due to their inherent beam tilt angle. CNC machines were utilized first to fabricate the early prototypes for sub-array developments. Subsequently, a low cost fabrication technology is adopted to develop a low cost and light weight full array using substrate integrated waveguides (SIWs). The SIW is fully characterized and an excellent equivalent model has been derived to allow easy translation of metallic waveguide components to SIW. Various SIW junctions, transitions, and arrays have been developed for array feed networks including a 64 radiating SIW full array and a 32 radiating SIW array with folded feed. Meanwhile, for the wireless antennas, the utilization of reconfigurable hardware has been introduced to provide the required multi-functionality services and wide frequency coverage. Various reconfigurable antennas were developed and utilized to demonstrate their advantages compared to other design options such as wide-band or multi-band approaches. Both micro-electro-mechanical switches MEMS and PIN diodes have been successfully utilized to switch between the different configurations. The placement, control, and modeling of the switches are also discussed and novel modeling and biasing topologies are introduced. A novel and practical concept of reconfigurable multiband antenna is introduced here too, where advantages of both the multi-band and the reconfigurable antenna structures can be simultaneously achieved while supporting more services

    Design of a Novel Efficient High-Gain Ultra-Wide-Band Slotted H-Shaped Printed 2×1 Array Antenna for Millimeter-Wave Applications with Improvement of Bandwidth and Gain via the Feed Line and Elliptical Edges

    Get PDF
    This paper describes design procedure of a high-performance miniaturized antenna with an array configuration, which contributes to enhancing the communication system’s performance. The basic antenna features a compact size (6 x 6) mm2, and its single element is an H-shaped slotted patch printed on the top side of a Rogers RT5880 substrate, with a relative permittivity and thickness of 2.2 and 0.3 mm, respectively. The edge-to-edge distance of the 2 × 1 array antenna is 9 x 14 mm2, and the isolation between its radiation elements is 4.5 mm. To increase the capabilities of the antenna in terms of gain and bandwidth, we proceeded to use the 2 × 1 array configuration and then optimized the model via either the width of the feed line or the elliptical edges of the patch. The miniaturized array antenna achieved a peak gain of 12.56 dB, a directivity of 13.11 dBi, and a return loss of -47.52 dB at a resonance frequency of 91.5 GHz, with a radiation efficiency of more than 91% over an operating bandwidth of 15.83 GHz, ranging from 79.7 GHz to 95.6 GHz. The design and simulation results of the proposed antenna were obtained using the CST Studio software
    corecore