1,015 research outputs found

    Actuators for Intelligent Electric Vehicles

    Get PDF
    This book details the advanced actuators for IEVs and the control algorithm design. In the actuator design, the configuration four-wheel independent drive/steering electric vehicles is reviewed. An in-wheel two-speed AMT with selectable one-way clutch is designed for IEV. Considering uncertainties, the optimization design for the planetary gear train of IEV is conducted. An electric power steering system is designed for IEV. In addition, advanced control algorithms are proposed in favour of active safety improvement. A supervision mechanism is applied to the segment drift control of autonomous driving. Double super-resolution network is used to design the intelligent driving algorithm. Torque distribution control technology and four-wheel steering technology are utilized for path tracking and adaptive cruise control. To advance the control accuracy, advanced estimation algorithms are studied in this book. The tyre-road peak friction coefficient under full slip rate range is identified based on the normalized tyre model. The pressure of the electro-hydraulic brake system is estimated based on signal fusion. Besides, a multi-semantic driver behaviour recognition model of autonomous vehicles is designed using confidence fusion mechanism. Moreover, a mono-vision based lateral localization system of low-cost autonomous vehicles is proposed with deep learning curb detection. To sum up, the discussed advanced actuators, control and estimation algorithms are beneficial to the active safety improvement of IEVs

    Advanced Sensing and Control for Connected and Automated Vehicles

    Get PDF
    Connected and automated vehicles (CAVs) are a transformative technology that is expected to change and improve the safety and efficiency of mobility. As the main functional components of CAVs, advanced sensing technologies and control algorithms, which gather environmental information, process data, and control vehicle motion, are of great importance. The development of novel sensing technologies for CAVs has become a hotspot in recent years. Thanks to improved sensing technologies, CAVs are able to interpret sensory information to further detect obstacles, localize their positions, navigate themselves, and interact with other surrounding vehicles in the dynamic environment. Furthermore, leveraging computer vision and other sensing methods, in-cabin humans’ body activities, facial emotions, and even mental states can also be recognized. Therefore, the aim of this Special Issue has been to gather contributions that illustrate the interest in the sensing and control of CAVs

    2nd Symposium on Management of Future motorway and urban Traffic Systems (MFTS 2018): Booklet of abstracts: Ispra, 11-12 June 2018

    Get PDF
    The Symposium focuses on future traffic management systems, covering the subjects of traffic control, estimation, and modelling of motorway and urban networks, with particular emphasis on the presence of advanced vehicle communication and automation technologies. As connectivity and automation are being progressively introduced in our transport and mobility systems, there is indeed a growing need to understand the implications and opportunities for an enhanced traffic management as well as to identify innovative ways and tools to optimise traffic efficiency. In particular the debate on centralised versus decentralised traffic management in the presence of connected and automated vehicles has started attracting the attention of the research community. In this context, the Symposium provides a remarkable opportunity to share novel ideas and discuss future research directions.JRC.C.4-Sustainable Transpor

    Multiple vehicle cooperation and collision avoidance in automated vehicles : Survey and an AI‑enabled conceptual framework

    Get PDF
    Prospective customers are becoming more concerned about safety and comfort as the automobile industry swings toward automated vehicles (AVs). A comprehensive evaluation of recent AVs collision data indicates that modern automated driving systems are prone to rear-end collisions, usually leading to multiple-vehicle collisions. Moreover, most investigations into severe traffic conditions are confined to single-vehicle collisions. This work reviewed diverse techniques of existing literature to provide planning procedures for multiple vehicle cooperation and collision avoidance (MVCCA) strategies in AVs while also considering their performance and social impact viewpoints. Firstly, we investigate and tabulate the existing MVCCA techniques associated with single-vehicle collision avoidance perspectives. Then, current achievements are extensively evaluated, challenges and flows are identified, and remedies are intelligently formed to exploit a taxonomy. This paper also aims to give readers an AI-enabled conceptual framework and a decision-making model with a concrete structure of the training network settings to bridge the gaps between current investigations. These findings are intended to shed insight into the benefits of the greater efficiency of AVs set-up for academics and policymakers. Lastly, the open research issues discussed in this survey will pave the way for the actual implementation of driverless automated traffic systems

    Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS 1994), volume 1

    Get PDF
    The AIAA/NASA Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS '94) was originally proposed because of the strong belief that America's problems of global economic competitiveness and job creation and preservation can partly be solved by the use of intelligent robotics, which are also required for human space exploration missions. Individual sessions addressed nuclear industry, agile manufacturing, security/building monitoring, on-orbit applications, vision and sensing technologies, situated control and low-level control, robotic systems architecture, environmental restoration and waste management, robotic remanufacturing, and healthcare applications

    Locomotion and pose estimation in compliant, torque-controlled hexapedal robots

    Get PDF
    Several scenarios, such as disaster response or terrestrial and extra-terrestrial exploration, comprise environments that are dangerous or even inaccessible for humans. In those cases, autonomous robots pose a promising alternative to render such endeavours possible. While most of today’s robotic explorers are wheeled or tracked vehicles, legged systems gained increased attention in recent years. With their unique combination of omnidirectional mobility and intrinsic manipulation capabilities, they are envisioned to serve as the rough terrain specialists in scouting or sample and return missions. Especially, small to mid-size hexapods are of great interest for those scenarios. Providing static stability across a wide range of walking speeds, they offer an attractive trade-off between versatility and complexity. Another important advantage is their redundancy, allowing them to tolerate the loss of single legs. However, due to their small size, the computational on-board resources are limited. Thus, the use of smart and efficient algorithms is of utmost importance in order to enable autonomous operation within a priori unknown rough environments. Working towards such autonomous robotic scouts, this thesis contributes with the development, implementation, and test of a self-contained walking layer as well as a 6 degrees of freedom (DOF) leg odometry for compliant, torque-controlled, hexapedal robots. Herein, the important property of all presented algorithms is the sole use of proprioceptive measurements provided by the legs, i. e. joint angles and joint torques. Especially the joint torque sensors improve the walking process by enabling the use of sensitive compliance controllers and distributed collision detection. Comprising a set of algorithms, the walking layer organises and structures the walking process in order to generate robust, adaptive, and leg loss tolerant locomotion in uneven terrain. Furthermore, it encapsulates the walking process, and thus hides its complexity from higher-level algorithms such as navigation. Its three main functional components are a flexible, biologically-inspired gait coordination algorithm, single leg reflexes, and active joint compliance control. Thereof, the gait coordination algorithm realises temporal adaptation of the step sequence while reflexes adjust the leg trajectories to the local terrain. The joint compliance control reduces internal forces and allows for situation dependent stiffness adjustments. An algorithmic extensions to the basic gait coordination enables the immediate adaptation to leg loss. In combination with stiffness and pose adjustments, this allows the hexapod to retain stable locomotion on five legs. In order to account for the emerging gait, the leg odometry algorithm employs an optimisation approach to obtain a kinematics-based pose estimate from joint angle measurements. Fusing the resulting pitch and roll angle estimates with joint-torque-measurement-based attitude data, reduces the associated drift, and thus stabilises the overall pose estimate. Various simulations and experiments with the six-legged, torque-controlled DLR Crawler demonstrate the effectiveness of the proposed walking layer as well as the 6-DOF leg odometry.Für die planetare Exploration sowie den Einsatz in Katastrophengebieten sind autonome Laufroboter zunehmend von Interesse. In diesen Szenarien sollen sie den Menschen an gefährlichen oder schwer zugänglichen Orten ersetzen und dort Erkundungseinsätze sowie Probenahmen in schwierigem Gelände durchführen. Unter der Vielzahl an möglichen Systemen bieten im Besonderen kleinere Sechsbeiner einen sehr guten Kompromiss zwischen Stabilität, hoher Beweglichkeit, Vielseitigkeit und einer vertretbaren Komplexität der Regelung. Ein weiterer Vorteil ist ihre Redundanz, die es ihnen erlaubt, den Ausfall einzelner Beine mit geringem Aufwand zu kompensieren. Dementgegen ist die beschränkte Rechenkapazität ein Nachteil der reduzierten Größe. Um diesen auszugleichen und das autonome Agieren in einer unbekannten Umgebung zu ermöglichen, werden daher einfache und effiziente Algorithmen benötigt, die im Zusammenspiel jedoch ein komplexes Verhalten erzeugen. Auf dem Weg zum autonom explorierenden Laufroboter entwickelt diese Arbeit einen robusten, adaptiven und fehlertoleranten Laufalgorithmus sowie eine 6D Eigenbewegungsschätzung für nachgiebige, drehmomentgeregelte Sechsbeiner. Besonders herauszustellen ist, dass alle in der Arbeit vorgestellten Algorithmen ausschließlich die propriozeptive Sensorik der Beine verwenden. Durch diesen Ansatz kann der Laufprozess von anderen Prozessen, wie der Navigation, getrennt und somit der Datenaustausch effizient gestaltet werden. Für die Fortbewegung in unebenem Gelände kombiniert der vorgestellte Laufalgorithmus eine flexible, biologisch inspirierte Gangkoordination mit verschiedenen Einzelbeinreflexen und einer nachgiebigen Gelenkregelung. Hierbei übernimmt die Gangkoordination die zeitliche Steuerung der Schrittfolge, während die Einzelbeinreflexe für eine räumliche Variation der Fußtrajektorien zuständig sind. Die nachgiebige Gelenkregelung reduziert interne Kräfte und erlaubt eine Anpassung der Gelenksteifigkeiten an die lokalen Umgebungsbedingungen sowie den aktuellen Zustand des Roboters. Eine wichtige Eigenschaft des Laufalgorithmus ist seine Fähigkeit, den Ausfall einzelner Beine zu kompensieren. In diesem Fall erfolgt eine Adaption der Gangkoordination über die Erneuerung der Nachbarschaftsbeziehungen der Beine. Zusätzlich verbessern eine Veränderung der Pose und eine Erhöhung der Gelenksteifigkeiten die Stabilität des durch den Beinverlust beeinträchtigten Roboters. Gleich dem Laufalgorithmus verwendet die 6D Eigenbewegungsschätzung nur die Messungen der propriozeptiven Sensoren der Beine. Hierbei arbeitet der Algorithmus in einem dreistufigen Verfahren. Zuerst berechnet er mit Hilfe der Beinkinematik und einer Optimierung die Pose des Roboters. Nachfolgend bestimmt er aus den Gelenkmomentmessungen den Gravitationsvektor und berechnet daraus die Neigungswinkel des Systems. Eine Fusion dieser Werte mit den Nick- und Rollwinkeln der ersten Stufe stabilisiert daraufhin die gesamte Odometrie und reduziert deren Drift. Alle in dieser Arbeit entwickelten Algorithmen wurden mit Hilfe von Simulationen sowie Experimenten mit dem drehmomentgeregelten DLR Krabbler erfolgreich validiert

    Measurable Safety of Automated Driving Functions in Commercial Motor Vehicles

    Get PDF
    With the further development of automated driving, the functional performance increases resulting in the need for new and comprehensive testing concepts. This doctoral work aims to enable the transition from quantitative mileage to qualitative test coverage by aggregating the results of both knowledge-based and data-driven test platforms. The validity of the test domain can be extended cost-effectively throughout the software development process to achieve meaningful test termination criteria

    Haptic Steering Interfaces for Semi-Autonomous Vehicles

    Full text link
    Autonomous vehicles are predicted to significantly improve transportation quality by reducing traffic congestion, fuel expenditure and road accidents. However, until autonomous vehicles are reliable in all scenarios, human drivers will be asked to supervise automation behavior and intervene in automated driving when deemed necessary. Retaining the human driver in a strictly supervisory role, however, may make the driver complacent and reduce driver's situation awareness and driving skills which ironically, can further compromise the driver’s ability to intervene in safety-critical scenarios. Such issues can be alleviated by designing a human-automation interface that keeps the driver in-the-loop through constant interaction with automation and continuous feedback of automation's actions. This dissertation evaluates the utility of haptic feedback at the steering interface for enhancing driver awareness and enabling continuous human-automation interaction and performance improvement in semi-autonomous vehicles. In the first part of this dissertation, I investigate a driving scheme called Haptic Shared Control (HSC) in which the human driver and automation system share the steering control by simultaneously acting at the steering interface with finite mechanical impedances. I hypothesize that HSC can mitigate the human factors issues associated with semi-autonomous driving by allowing the human driver to continuously interact with automation and receive feedback about automation action. To test this hypothesis, I present two driving simulator experiments that are focused on the evaluation of HSC with respect to existing driving schemes during induced human and automation faults. In the first experiment, I compare obstacle avoidance performance of HSC with two existing control sharing schemes that support instantaneous transfers of control authority between human and automation. The results indicate that HSC outperforms both schemes in terms of obstacle avoidance, maneuvering efficiency, and driver engagement. In the second experiment, I consider emergency scenarios where I compare two HSC designs that provide high and low control authority to automation and an existing paradigm that decouples the driver input from the tires during collision avoidance. Results show that decoupling the driver invokes out-of-the-loop issues and misleads drivers to believe that they are in control. I also discover a `fault protection tradeoff': as the control authority provided to one agent increases, the protection against that agent's faults provided by the other agent reduces. In the second part of this dissertation, I focus on the problem of estimating haptic feedback from the road, or the road feedback. Road feedback is critical to making the driver aware of the state of the vehicle and road conditions, and its estimates are used in a variety of driver assist systems. However, conventional estimators only estimate road feedback on flat roads. To overcome this issue, I develop three estimators that enable road feedback estimation on uneven roads. I test and compare the performance of the three estimators by performing driving experiments on uneven roads such as road slopes and cleats. In the final part of this dissertation, I shift focus from physical human-automation interaction to human-human interaction. I present the evidence from the literature demonstrating that haptic feedback improves the performance of two humans physically collaborating on a shared task. I develop a control-theoretic model for haptic communication that can describe the mechanism by which haptic interaction facilitates performance improvement. The model creates a promising means to transfer the obtained insights to design robots or automation systems that can collaborate more efficiently with humans.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/169975/1/akshaybh_1.pd
    • …
    corecore