797 research outputs found

    A Hierarchical Architecture with Parallel Comunication for Implementing P Systems

    Get PDF
    Membrane systems are computational equivalent to Turing machines. However, its distributed and massively parallel nature obtain polynomial solutions opposite to traditional non-polynomial ones. Nowadays, developed investigation for implementing membrane systems has not yet reached the massively parallel character of this computational model. Better published approaches have achieved a distributed architecture denominated “partially parallel evolution with partially parallel communication” where several membranes are allocated at each processor, proxys are used to communicate with membranes allocated at different processors and a policy of access control to the communications is mandatory. With these approaches, it is obtained processors parallelism in the application of evolution rules and in the internal communication among membranes allocated inside each processor. Even though, external communications share a common communication line, needed for the communication among membranes arranged in different processors, are sequential. In this work, we present a new hierarchical architecture that reaches external communication parallelism among processors and substantially increases parallelization in the application of evolution rules and internal communications. Consequently, necessary time for each evolution step is reduced. With all of that, this new distributed hierarchical architecture is near to the massively parallel character required by the model

    Modeling of Topologies of Interconnection Networks based on Multidimensional Multiplicity

    Get PDF
    Modern SoCs are becoming more complex with the integration of heterogeneous components (IPs). For this purpose, a high performance interconnection medium is required to handle the complexity. Hence NoCs come into play enabling the integration of more IPs into the SoC with increased performance. These NoCs are based on the concept of Interconnection networks used to connect parallel machines. In response to the MARTE RFP of the OMG, a notation of multidimensional multiplicity has been proposed which permits to model repetitive structures and topologies. This report presents a modeling methodology based on this notation that can be used to model a family of Interconnection Networks called Delta Networks which in turn can be used for the construction of NoCs

    Content addressable memory project

    Get PDF
    A parameterized version of the tree processor was designed and tested (by simulation). The leaf processor design is 90 percent complete. We expect to complete and test a combination of tree and leaf cell designs in the next period. Work is proceeding on algorithms for the computer aided manufacturing (CAM), and once the design is complete we will begin simulating algorithms for large problems. The following topics are covered: (1) the practical implementation of content addressable memory; (2) design of a LEAF cell for the Rutgers CAM architecture; (3) a circuit design tool user's manual; and (4) design and analysis of efficient hierarchical interconnection networks

    SIMD based multicore processor for image and video processing

    Get PDF
    制度:新 ; 報告番号:甲3602号 ; 学位の種類:博士(工学) ; 授与年月日:2012/3/15 ; 早大学位記番号:新595

    A Survey of Parallel Data Mining

    Get PDF
    With the fast, continuous increase in the number and size of databases, parallel data mining is a natural and cost-effective approach to tackle the problem of scalability in data mining. Recently there has been a considerable research on parallel data mining. However, most projects focus on the parallelization of a single kind of data mining algorithm/paradigm. This paper surveys parallel data mining with a broader perspective. More precisely, we discuss the parallelization of data mining algorithms of four knowledge discovery paradigms, namely rule induction, instance-based learning, genetic algorithms and neural networks. Using the lessons learned from this discussion, we also derive a set of heuristic principles for designing efficient parallel data mining algorithms

    Performance Study of Software AER-Based Convolutions on a Parallel Supercomputer

    Get PDF
    This paper is based on the simulation of a convolution model for bioinspired neuromorphic systems using the Address-Event-Representation (AER) philosophy and implemented in the supercomputer CRS of the University of Cadiz (UCA). In this work we improve the runtime of the simulation, by dividing an image into smaller parts before AER convolution and running each operation in a node of the cluster. This research involves a test cases design in which the optimal parameters are set to run the AER convolution in parallel processors. These cases consist on running the convolution taking an image divided in different number of parts, applying to each part a Sobel filter for edge detection, and based on the AER-TOOL simulator. Execution times are compared for all cases and the optimal configuration of the system is discussed. In general, CRS obtain better performances when the image is divided than for the whole image.Ministerio de Ciencia e Innovación TEC2009-10639-C04-0

    The "MIND" Scalable PIM Architecture

    Get PDF
    MIND (Memory, Intelligence, and Network Device) is an advanced parallel computer architecture for high performance computing and scalable embedded processing. It is a Processor-in-Memory (PIM) architecture integrating both DRAM bit cells and CMOS logic devices on the same silicon die. MIND is multicore with multiple memory/processor nodes on each chip and supports global shared memory across systems of MIND components. MIND is distinguished from other PIM architectures in that it incorporates mechanisms for efficient support of a global parallel execution model based on the semantics of message-driven multithreaded split-transaction processing. MIND is designed to operate either in conjunction with other conventional microprocessors or in standalone arrays of like devices. It also incorporates mechanisms for fault tolerance, real time execution, and active power management. This paper describes the major elements and operational methods of the MIND architecture

    Constraint Based System-Level Diagnosis of Multiprocessors

    Get PDF
    Massively parallel multiprocessors induce new requirements for system-level fault diagnosis, like handling a huge number of processing elements in an inhomogeneous system. Traditional diagnostic models (like PMC, BGM, etc.) are insufficient to fulfill all of these requirements. This paper presents a novel modelling technique, based on a special area of artificial intelligence (AI) methods: constraint satisfaction (CS). The constraint based approach is able to handle functional faults in a similar way to the Russel-Kime model. Moreover, it can use multiple-valued logic to deal with system components having multiple fault modes. The resolution of the produced models can be adjusted to fit the actual diagnostic goal. Consequently, constrint based methods are applicable to a much wider range of multiprocessor architectures than earlier models. The basic problem of system-level diagnosis, syndrome decoding, can be easily transformed into a constraint satisfaction problem (CSP). Thus, the diagnosis algorithm can be derived from the related constraint solving algorithm. Different abstraction leveles can be used for the various diagnosis resolutions, employing the same methodology. As examples, two algorithms are described in the paper; both of them is intended for the Parsytec GCel massively parallel system. The centralized method uses a more elaborate system model, and provides detailed diagnostic information, suitable for off-line evaluation. The distributed method makes fast decisions for reconfiguration control, using a simplified model. Keywords system-level self-diagnosis, massively parallel computing systems, constraint satisfaction, diagnostic models, centralized and distributed diagnostic algorithms

    On-Chip Optical Interconnection Networks for Multi/Manycore Architectures

    Get PDF
    The rapid development of multi/manycore technologies offers the opportunity for highly parallel architectures implemented on a single chip. While the first, low-parallelism multicore products have been based on simple interconnection structures (single bus, very simple crossbar), the emerging highly parallel architectures will require complex, limited-degree interconnection networks. This thesis studies this trend according to the general theory of interconnection structures for parallel machines, and investigates some solutions in terms of performance, cost, fault-tolerance, and run-time support to shared-memory and/or message passing programming mechanisms
    corecore