
Constraint Based System-Level Diagnosis of
Multipr ocessors

J. Altmann1, T. Bartha2, A. Pataricza2, A. Petri2 and P. Urbán2

1 University of Erlangen, Dept. of Computer Science III, Martensstr. 3,
91058 Erlangen, Germany

2 Technical University of Budapest, Dept. of Measurement and Instrument Eng.,
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Abstract. The paper presents a novel modelling technique for system-level fault
diagnosis in massive parallel multiprocessors, based on a re-formulation of the
problem of syndrome decoding to a constraint satisfaction problem (CSP). The
CSP based approach is able to handle detailed and inhomogeneous functional
fault models to a similar depth as the Russel-Kime model [18]. Multiple-valued
logic is used to deal with system components having multiple fault modes. The
granularity of the models can be adjusted to the target diagnostic resolution
without altering the methodology. Two algorithms for the Parsytec GCel mas-
sively parallel system are used as illustration in the paper: the centralized
method uses a detailed system model, and provides a fine-granular diagnostic
image for off-line evaluation. The distributed method makes fast decisions for
reconfiguration control, using a simplified model.

1 Intr oduction

The large number of components built intomassively parallel multiprocessor systems
increases the probability of a component faults. Since reliable operation over a long
time period is also necessary for complex computations, the system must be able to
mask the effect of occurring errors byfault tolerance. The underlying diagnostic prin-
ciple is generallysystem-level diagnosis, followed by reconfiguration and recovery in
case of a detected fault.

Dif ferent models and algorithms were developed for system-level diagnosis typi-
cally originating in the first graph theory based “system-level models” (PMC for sym-
metric and BGM for asymmetric test invalidation) published in the late-sixties. Their
mathematical apparatus is simple and well-elaborated and practical implementations
proved their usefulness as well. However, the implicit limitations — for instance the
oversimplification of the test invalidation mechanism in order to assure a proper math-
ematical treatment — decrease the level of reality in the models. Moreover, the rapid
development of electronic technology and computer architectures radically modified
the basic assumptions used in diagnostic models [16]:

- fault rates are in general low and the dominating part of faults istransient;
- the complexity of additional components of the system (interface and commu-

nication circuits) is comparable with the that of the processing elements;
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- the number of the components in the systems is drastically increased.
The majority of insufficiencies result from the hardest simplification of the PMC-

type models: the assumption of a homogenous system and test structure (identical
components with the same test invalidation over the entire system). This reduces their
applicability due to the increasing practical importance of inhomogeneous systems.

1.1 Required Features of a New Diagnosis Method

The new requirements involved by the latest results in multiprocessor system
design characterize the expected features of a general purpose self-diagnosis method:

• it should be applicable to inhomogeneous systems as well as to homogenous
ones (components with different test invalidation models are to be considered);

• neither the actual system topology nor the test invalidation model should limit
the diagnostic resolution (current methods use rigid, inadaptive algorithms seri-
ously restricting the target system features);

• the algorithm should extract all of the useful information from the elementary
diagnostic results (e.g. for estimating the level of diagnosis at run-time);

• it should be able to work in massively parallel computers with several hundreds
or even thousands of system components, thus the algorithm should have an
excellent efficiency even for a very high number of units under test;

• many applications demand “on-the-fly” diagnosis for a maximal performance,
able to identify the fault states of certain units even from partial syndrome
information (i.e. before receiving all of the test results).

These requirements necessitate a new approach. A generalized test invalidation
model and syndrome decoding algorithm for inhomogeneous systems is published
in [1]. However, the efficiency of the algorithm becomes to a crucial factor in case of
large-scale systems due to the employed mathematical apparatus — operations on
matrices of the dimension of the number of processor in the system.

Syndrome decoding is the most important step in diagnosis, determining the actual
fault states of system components from the syndrome. This systematic search is in gen-
eral NP-complete. The main intention of “artificial intelligence” (AI) methods is to
find efficient solutions for difficult to solve problems. A group of them, the CSP (Con-
straint Satisfaction Problem) solving methods seem especially useful for system-level
diagnosis [2].

2 System-level Diagnosis and CSP

2.1 Definition of the CSP

Constraint satisfaction problems (CSP) deal with the estimation of a single or all
consistent solutions in large-scale relation systems. More formally, a CSP is a
(X, D, C) tuple, whereX = { X1, X2, …,Xn} is a set of variables, defined over the set
D = { D1, D2, …,Dn}  domains, andC = { C1, C2, …,Ck} is a set of constraints. Con-



straints arerelations between the variables, that is they are subsets of the Cartesian

product of the corresponding variables’ domains (Ci ⊆ D* = Dp × Dq × … × Dz). A
solution of a CSP is a vectorx = [x1, x2, …,xn] of values that satisfies all the con-
straints.

The structure of CSPs can be represented by aG = (X, C) hypergraph where the
variables are represented bynodes and the relations defined between them byedges of
the network.Binary CSPs constitute a special subclass of CSPs, where each constraint
affects at most two variables and the network becomes to a simple graph.Loop edges
represent unary constraints (affecting only a single variable),multiple parallel edges
are different constraints affecting the same variables.

The CSP isstatic if both the constraint network topology and the constraints them-
selves are fixed, anddynamic if they can change during the search for solutions.

2.2 CSPs solution methods

Solving discrete CSPs is proved to be NP-complete [10], so exhaustive algorithms
are impractical for large-scale systems. Intelligent search algorithms (using backjump-
ing, conflict based backtracking, forward checking, etc.) [14] offer a better average
time complexity, yet their worst-case complexity is still exponential.

Let us assume for simplicity, that each of then variables in the CSP has a discrete

domain of the same cardinality d, so the search space isD* = Dn. The worst-case com-

plexity of a simple exhaustive search isΟ(dn). This complexity can be reduced only
by decreasingd. (A decrease inn would imply that the CSP contains redundant vari-
ables, i.e. an improperly formulated CSP). Decreasing ofd can be achieved by prepro-
cessing the CSP problem prior to the solution procedure. The so-calledconsistency
algorithms [10,11, 12] exclude locally inconsistent value combinations from the
domains of variables, since these values surely cannot appear in a globally consistent
solution. These methods work generally only on binary CSPs, because every variable
can be evaluated independently in this subclass of CSPs. Moreover, such an evaluation
of the variables guarantees the global consistency as well.

Consistency algorithms can be grouped according to the number of the nodes they
consider during an elementary step, while searching for local inconsistencies:
• Node-consistency or 1-consistencyconsiders only a single node at a time. It sim-

ply checks unary constraints, and deletes all values not complying to them. As
unary constraints can be previously eliminated by restricting the domains, this
algorithm is used only as a supplementary step in more complex algorithms.

• Ar c-consistency or 2-consistency considers at a time two variablesXi andXj and a
binary relationRij  between them. Every value is excluded from the domain ofXi
without a value ofXj satisfyingRij . Full consistency can be achieved by checking
appropriate vertex pairs and relations. There are three basic versions of general
purpose arc consistency algorithms (enlisted in the order of decreasing worst case
time complexity):
- AC-1 updates all the variables whenever any of the variable domains has

changed. Its time complexity isΟ(d3nc), wherec is the number of constraints;



- AC-3 updates only the domains of the variables adjacent to the changed vari-
able. Its complexity isΟ(d2n);

- AC-4 updates only those adjacent variables which are affected by the change of
a variable domain. It reaches the proven optimal complexity ofΟ(d2c), at the
price of some bookkeeping of the relations and the variable domains [10].

• Path consistency or 3-consistency algorithms check the transitivity of the consis-
tency of a candidate value assignment, thus path consistency between two vari-
ablesXi andXj connected by a binary relationRij means that all value pairs in a
solution allowed byRij must be also allowed byall paths betweenXi andXj. The
entire constraint network is path consistent if every vertex pair is path consistent.
Full path consistency in a complete constraint graph is equal to the consistency for
length 2 paths. Checking path consistency requires only the checking of all length
2 paths, since any constraint network can be virtually extended to a complete con-
straint graph by inserting dummy (“always true”) constraints.
There are also three basic versions of path consistency algorithms similarly to arc
consistency algorithms:
- PC-1 updates domains of every vertex, vertices along every arc and every

length 2 path if any vertex has changed. Its time complexity isΟ(d5n5);
- PC-2 updates domains of those length 2 paths that contain the changed vertex.

Its complexity isΟ(d5n3);
- PC-3 updates only the length 2 path affected by the changes of a vertex

domain. It uses similar bookkeeping about the influence of variables and edges
like AC-4 [10]. It is also proven to be optimal, its complexity isΟ(d3n3).

• k-consistency examines a setSk of k variables is considered at a time. If a com-
pletely consistent subset of valuek - 1 tuples exist onSk-1 ⊂ Sk (with k - 1 vari-
ables), then any value from the domain of thekth variable can be eliminated which
cannot form a consistent value set with any one of the consistentk - 1 tuples. Glo-
bal consistency can be achieved by successive elimination for increasing values of
k until all variables are involved or a domain becomes empty indicating the insatis-
fiability of the CSP. The most widely usedk-consistency algorithm, theinvasion
procedure [9] has a time complexity ofΟ(cdf + 1), wheref is the maximal number
of new nodes found traversing the graph.

2.3 Formulating the Diagnosis Problem as a CSP

The ultimate goal of syndrome decoding and CSP is very similar: the algorithm
must classify the fault state of system components in a consistent way that conforms to
the given diagnostic model, test invalidation rules and the actual outcomes of the ele-
mentary tests (syndrome elements). These restrictions can be represented as binary
relations between the fault state of the tester and the tested units. Note that the use of
relations instead oflogical functions supports the handling of diagnostic uncertainty
appearing in some test invalidation models (e.g. in symmetric invalidation the outcome
of a test executed by a faulty tester is non-deterministic).

A diagnosis problem can be very easily reformulated to a constraint satisfaction
problem. Thevariables of the CSP represent thefault states of the system components.



Theconstraints correspond to the restrictions derived from thetest invalidation model
and the currentsyndrome elements, thus the test invalidation rules determine a set of
candidate relations, from which the actually used one has to be selected, when know-
ing the actual test outcome. For instance, the relation over the tester-tested unit fault
state value pair consists in the case of PMC test invalidation {(0,0), (1,0), (1,1)} of the
outcome is 0, and {(0,1), (1,0), (1,1)} if the outcome is 1, respectively.

If one-pass diagnosis is required, simply a static binary CSP is produced after per-
forming all tests. However, in the case ofon-the-fly diagnosis, newly generated test
results must be processed immediately. Only a few syndrome elements are present at
the beginning, so the complete set of relations cannot be created at once. Every incom-
ing test result adds new relations to this set, while the previously constructed ones
remain still valid. Thus the solution space is gradually reduced, in other words amono-
tone dynamic CSP is produced.

The resulting constraint network is a “clear” mathematical structure, details such as
the applied fault model or the system topology appear only implicitly in the relations
and the variable domains. This representation is extremely flexible and applicable to a
wide range of systems. Moreover, a well-elaborated toolset of CSP solution methods is
available, so the diagnosis problem can be solved computationally efficiently.

If not all the components does have a sure classification after the transitive closure,
the remaining ones are classified using further restrictions on the fault model (limita-
tion on maximal number of faults, exclusion of certain faults, etc.).

3 The Modelled System

The diagnosis model of the algorithms presented in this paper were derived from
the Parsytec GCel massively parallel reliable multiprocessor (Fig. 1).

The processing elements are Inmos T805 transputers. Sixteen transputers are
grouped together in onecluster, forming the basic building block of a machine. Each
transputer has 4 physical data links connected to C004 link switch chips. Each cluster
incorporates 4 link switch chips each of them having 32 connection ports, so inside a
cluster arbitrary interconnection topology can be realized.

Four clusters constitute a so-calledGigaCube. The topology of the clusters is a
static  two-dimensional grid. A GigaCube forms a physical unit: it has its own
temperature and voltage monitoring facilities, and a separate transputer working as a
control node. GigaCubes can be arranged in a  spatial array, so in its full con-
figuration the system is scalable up to 16,384 transputers.

As a default, transputers are connected in a two-dimensional grid topology. Yet,
despite the only 4 physical data connections each transputer can communicate with an
arbitrary number of other transputers viavirtual links.

The machine has built-in fault-tolerant mechanisms. In every cluster, there is an
additional spare processor, replacing the faulty one in case of a detected error. The
local memory of the transputers is ECC-protected, and soft memory errors are elimi-
nated by memory scrubbing. These actions, as well as booting, job control and
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dynamic configuration management are supervised by control nodes. They communi-
cate over a separate interconnection network called theControl Network (C-Net).

Peripheral I/O management is done by a stand-alone host computer (usually a Sun
workstation) connected to the Parsytec GCel machine.

4 Fault Model

Different diagnostic goals require this complex multiprocessor to be modelled at
separate abstraction levels. A centralized diagnostic algorithm is intended for off-line
monitoring of the system. Diagnosis is made at the replacement unit level, hence the
fault model should provide a detailed view about the multiprocessor. The model can be
rather complex, as no tight time limits are imposed on the algorithm.

On the other hand, the system should take reconfiguration measures quickly in the
case of faults, in order to minimize the effects of fault propagation and the error-
related loss of performance. The efficiency of the diagnosis algorithm is crucial, neces-
sitating a simple fault model, supporting a diagnostic resolution only down to the
reconfiguration unit level. Also, the diagnosis algorithm should avoid using any central
resources to maintain scalability and hence be executed locally at every processing ele-
ment (i.e. distributed diagnosis is needed).

These fault models can be constructed by astepwise model refinement; gradually
refining a basic initial model to provide a more sophisticated view of the system.

T805

T805

T805

T805

C004

C004

C004

C004

Host

Control
Network

Control
Node

Cluster 2

Cluster 3

Cluster 4

Cluster 1

16 + 1

(Sun

GigaCube

workstation)

Fig. 1. The structural layout of the Parsytec GCel



4.1 Centralized Diagnosis

The modelled system is a simplified version of the Parsytec GCel massively paral-
lel multiprocessor (see Fig. 2) consisting of processing elements and communication
links in the form of a two-dimensional grid. Each processor mutually tests all of its
neighbors. Test results are sent to the host computer performing syndrome decoding.

For simplicity, host—transputer communication facilities are assumed to be reliable in
the model. The used fault model (Table 1) includes the faults in inter-processor links
and routing chips as well, additionally to the processor faults [4].

Testing of system components is done by time-out protected mutual <I’malive>
messages, sent periodically between neighboring processors. Asynchronous transfer
mode is used for message exchange, because it does not block the sender processor.
The possible test results are:
- good (0) if a correct <I’m alive> message was received within the time limit;
- faulty  (1) if a corrupted <I’m alive> message was received;
- dead (c) if no message was received within the predefined time limit.

Unit
Fault state

and its notation
Behavior

Possibly faulty
component(s)

Processor

fault-free 0P correct operation -

faulty 1P
incorrect test result
evaluation

memory

dead cP

no communication CPU configuration, virtual
link, Control Network,
hardware exceptions

Data link
live LP,R

correct message
transfer

-

broken LP,R
no message
transfer

wires/connectors, CPU data
link circuit

Router

fault-free 0R correct operation -

single port
fault

1R,P
no transfer via the
faulty port

router data port circuit

dead cR
all ports are faulty internal routing scheme,

clock

Table 1:Component fault states

Tester
Data
link

Data
linkRouter

Unit
under
test

Fig. 2. Components involved in a test

P P’RLP,R LR,P’



An extended PMC-like test invalidation [17] is used (Table 2) to describe the fault
state−test result relationships.

4.2 Distributed Diagnosis

Diagnosis is made in the distributed case on each individual transputer of the mul-
tiprocessor. Processors broadcast test results across the network after performing the
tests. At the end, every processor receives everysyndrome message. The dynamic
specification of the broadcasting mechanism (e.g. an upper limit on the communication
delays) assures that after a specific time limit there are no pending messages [7].

Only syndrome messages containing a “faulty” test result will be sent by the testers
to their neighbors and no message transfer is invoked in the “fault-free” case. This is a
significant reduction in the number of messages, as typically only a few faults occur.

Broadcast messages require the interaction of intermediate processors, due to the
limited neighborhood of the message source processor. Syndrome messages from
other processors will be potentially altered or lost by a faulty processor during this
broadcast. Corrupted messages can be detected by a simple error detecting protocol;

altered messages are ignored1. Thus the diagnosing program assumes that no undetec-
ted changes will occur.

The other type of syndrome losses cannot be detected in such a simple way, so the
diagnosing processor will never or only occasionally receive fault reports from unfor-

1. Theoretically, an altered message indicates a fault in the message forwarding chain of ele-
ments, but in order to avoid cross-interference between test and syndrome decoding time
faults, we neglect corrupted messages.

Diagnosis Tester Data links Router UUT Test result

centralized

0P

LP,R ∧ LR,P’ 0R

0P’ 0

1P’ 1

cP’ c

LP,R ∨ LR,P’ X X c

X cR ∨ 1P,R ∨ 1R,P’ X c

1P X X X 1

cP X X X c

distributed

0P

LP,R ∧ LR,P’

0P’ 0

1P’ 1

LP,R ∨ LR,P’ X 1

1P X X 1

Table 2:Test invalidation model used in diagnosis (X indicates adon’t care value)



tunately placed− good or faulty− processors [6]. (Fig. 3 is an example for such a situ-
ation).

No routers are considered in the fault model, as router faults are assumed to turn
reconfiguration within a processor cluster impossible so faulty routers must be handled
by reconfiguration at cluster level. Also, no distinction between “faulty” and “dead”
fault states and test outcomes is made for simplicity. The lower part of Table 2
describes the simplifications to the fault model in the centralized approach.

5 Implementation

5.1 Centralized Diagnosis

5.1.1 Transformation of the Implication Rules into Constraints

Syndrome decoding is driven by implication rules, represented by constraints.
They originate from the system structure, the test invalidation model and the actual test
outcomes. All the constraints are binary over the fault state of the tester and the tested
component, to achieve a greater simplicity: the test results (syndrome bits) are elimi-
nated from them as variables after receiving the test outcome [3].
The constraints originated from the implication rules are the following (SP,R,P’ denotes
the result of the test made byP onP’ via routerR):

• Forward implication (from the state of the tester to the state of the tested)
- SP,R,P’ = 0 ∧ 0P ⇒ 0P’ (if the tester processor is fault-free and the test result

is “good” then the tested processor is also fault-free);
- SP,R,P’ = 1 ∧ 0P ⇒ 1P’ (if the tester is fault-free and the test is “faulty” then

the tested unit is faulty);
- SP,R,P’ = c ∧ 0P ⇒ LP,R ∨ cR ∨ LP’,R ∨ cP’ (if the tester is fault-free and the

test is “dead” then the links between them are broken, the router involved is
dead or the tested unit is dead).

30 2

74 6

118 9 10

1512 14

5

13

1

Fig. 3. The system is cut into two isolated parts
(Processor 0 never receives messages from Processor 12)



• Backward implication (from the state of the tested to the state of the tester)
- SP,R,P’ = 0 ∧ 1P’ ⇒ 1P (if a faulty unit is tested as good then the tester is

faulty);
- SP,R,P’ = 1 ∧ 0P’ ⇒ 1P (if a good unit is tested as faulty then the tester is

faulty);
- SP,R,P’ = c ∧ cP’ ⇒ LP,R ∨ cR ∨ LP’,R ∨ 0P (if a unit is tested as dead and it

is not dead then the links are broken, the router is dead or the tester is not
fault-free).

5.1.2 One Pass and “On-the-Fly” Diagnosis

The diagnostic algorithm has the ability to create diagnosis “on-the-fly”, using
only partial syndrome information. In this case the diagnostic part is invoked several
times at the arrival of partial test results. Implications from new syndrome elements
are added to this dynamic constraint network during each call and a path-consistency
based preprocessing of the network is performed, successively restricting the solution
domain. If few syndromes are available, the solution process is expected to be fast (see
Section [7]).Table 3 summarizes this process:

5.2 Distributed Diagnosis

5.2.1 Modelling the Constraints

First of all, implication rules should be created on the basis of the system structure, the
applied test invalidation model and the actual syndrome elements [5]. These implica-
tion rules can then be represented by constraints. Moreover, some syndrome-indepen-
dent constraints can be generated before receiving any fault reports:

• Known faulty componentsC of the system — for instance those on the list of a
priori known faults obtained by the power-on self-test — are predefined in this
model as faulty (1C).

• The diagnosing processorP is fault-free (0P) in his own local diagnostic image;
this assumption is justified by the fact that a diagnosis produced by a faulty pro-
cessor is worthless anyway.

initialization

process the list of already known faults

while there are syndrome messages do

read some syndrome messages

process the list of syndrome messages

preprocess the constraint network

solve the constraint network

generate output from the solution set

Table 3: “On-the-fly” diagnosis



• The processors on the cluster boundary have unconnected links; these are con-
sidered by the algorithm as virtually existing, always fault-free links (LP,0) in
order to keep a total symmetry of the structure.

• If a processor is faulty, the fault states of its links cannot be determined in the
applied fault model, i.e. processor faults dominate the faults of the associated
links. Links are assumed to be fault-free to reduce the number of solutions and
speed up the algorithm:

Links L i are connected toP: 1P ⇒ LP,1 ∧ LP,2 ∧ LP,3 ∧ LP,4 .

The implication rules depend on the actual test results, so they can be produced only at
“run-time”. In the following paragraphsP stands for the processor performing the test,
P’ for the processor under test andL  for the link connecting them.

A compact representation has a low number of variables, with a domain kept small,
and a simple structure of the constraint network. These are contradictory aspects, so a
compromise had to be made: a variable is assigned to a processor and the links to its
eastern and northern neighbors. The variable does not include the fault states of the
western and southern links in order to avoid modelling links twice, together with each
of the two processors connected by the link.

This representation ensures that the constraint¬(0P ∧ LP,P’ ∧ 0P’) becomes binary.
Now, asP andP’ are neighboring processors, the linkL  between them is assigned to
either the variable representingP or to the one representingP’.

Even the implication expressing the dominance of a processor fault over the link
faults in the form of1P ⇒ LP,1 ∧ LP,2 ∧ LP,3 ∧ LP,4 is now binary. Additionally, a part
of it becomes unary, i.e. the values101, 110 and111 are not allowed, reducing the

domain size from to 5.
It did not seem worthwhile to integrate more components into a single variable, as

the domain size would have become intolerably large (growing exponentially with the
number of components).

5.2.2 A Priori Known Faults

A list of already known faults could be generated by the power-on self-test, or by a
previous diagnosis. This list is processed on the first invocation of the diagnostic part:
the initialization of the constraint network includes restricting the domains of variables
by node consistency, conforming to a faulty component of the list. This simplifies the
constraint network, thus speeding up the diagnosis algorithm.

Test result Implication rules Constraint(s)

0 0P ⇒ LP,P’ ∧ 0P’; LP,P’ ∨ 1P’ ⇒ 1P ¬(0P ∧ LP,P’); ¬(0P ∧ 1P’)

1 0P ⇒ LP,P’ ∨ 1P’; LP,P’ ∧ 0P’ ⇒ 1P ¬(0P ∧ LP,P’ ∧ 0P’)

Table 4: Implication rules generated from test results

23 8=



5.2.3 Detection of Message Losses

The constraint network built on the basis of the received syndrome messages has−
in most practical cases− a huge number of solutions. This prevents the algorithm from
generating any useful diagnosis. The reason for this is that, despite of the relatively
low fault rate, no limitation on the number of faulty elements is used in an intrinsic
way by the algorithm. If only a few of the components fail, most processors test all of
their neighbors as fault-free and broadcast no syndrome messages. Thus, there are too
few syndrome messages, the constraints and the solution space remains large. To over-
come this problem, an inference engine reconstructs the results of tests performed by
“silent” processors.
Silent processors can be classified the following way:

- Reachable processorshave a live connection to the diagnosing processor. They
are silent because there is nothing to broadcast (their neighbors are fault-free).

- Non-reachable processors cannot communicate with the diagnosing processor;
they are isolated from it by faulty components.

The algorithm has to find the processors, which are reachable but were silent in the
previous round. Numerous new constraints can be formulated by using this additional
information and consequently the solution space shrinks.

The identification of these processors and addition of new constraints can be
solved by means of reachability constraints. The transitivity of the relation “reachable”
can be described by simple implication rules such as “ifx is reachable andy, a neigh-
bor of x is fault-free, theny is reachable”. However, this would make the constraint
network much more complex, by introducing ternary constraints.

Therefore the problem of processor reachability is handled by a non-CSP based
iterative process, shown on Table 5. In the first step, the existing constraints are satis-
fied. Components, which were faulty in all the solutions of the network are marked as
faulty. Then the silent and reachable processors are identified by a simple backtracking
algorithm starting from the diagnosing processor. If such processors were found, new
constraints are formulated and the first step is repeated; the subsequent processing of
the extended constraint network will generate fewer solutions. The iteration terminates
when there are no more silent and reachable processor candidates. In this case no fur-
ther reduction of the solution space is possible. Note, that this process is strictlymono-
tone, i.e. no constraint is removed from the network, only new ones are added, and the
solution space is cut by the new constraints. Test runs show that the algorithm termi-
nates after at most 5 steps, even in the case of the most complicated fault patterns.

This strategy contains the implicit assumption that links have only permanent
faults. Without this assumption no diagnostic correctness is ensured. An example is

determine the “union” of possible faults

f ind some reachable silent processors

produce new constraint from new information

do while there is new information

Table 5:Detection of message losses



shown inFig. 4; if the faulty link behaves fault-free when processor 9 tests processor 8
but blocks communication during the distribution of messages, the diagnosis program
comes to the wrong conclusion that every processor is reachable. Therefore the obser-
vation seen by the program (on processor 0) that processors 1, 5, and 13 are tested
faulty from the left and fault-free from the right leads to a global contradiction.

5.2.4 Implementation Characteristics

In its present form the distributed algorithm runs on a single processor. A tool sim-
ulating a cluster of the Parsytec machine and a random fault injector were developed.
The diagnostic part itself could be used on a multiprocessor without any modification.

5.3 The Applied CSP Solver

A diagnostic purpose CSP solver should be written in a low-level, effectively com-
pilable language, as it is expected to be run fast and require relatively few resources.
Due to the “benign” nature of the employed special class of CSPs, there is no need to
apply a full-featured, general purpose CSP solver system. The majority of known con-
straint-oriented languages and systems (CLPR, CONSTRAINTS, etc.) are strongly
related to resource-hungry, interpreter-based languages like Prolog or LISP; a solver
for special CSP classes, written in the more effective C programming language was
much more promising. The applied CSP solver is based on a public domain CSP
library [14], intended for solving static binary CSPs. Fortunately, its built-in prepro-
cessing methods made it applicable for the class of dynamic CSP appearing in the
developed model as well [15].

The solver was added the ability to prune obviously useless branches of the deci-
sion tree. This involves checking of an explicit upper bound on the number of faults
(diagnostict-limit), based on a priori knowledge about the system. Typically, uncorre-
lated faults affect only a few processors. The assumed testing frequency is by several
orders of magnitude higher than the fault rate, thus the accumulation of many faulty
components is highly improbable. If, in spite of this, the number of faults exceeds the
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Fig. 4. Fault pattern in a system; failure of link 8-9 is transient



predefined upper bound, the constraint network becomes unsatisfiable: a global contra-
diction occurs. This way the incorrect assumption about the behavior of the system can
be detected.

6 Reconfiguration Control

The goal ofreconfiguration is to exclude the faulty components from the system.
Usually the architecture of a multiprocessor does not allow the exclusion of an arbi-
trary set of components; if multiple neighboring components fail, the exclusion of a
larger group of components might be necessary. Therefore, the list of components to
be excluded may differ from the list of the faulty components identified by the diagno-
sis algorithm.

The implemented distributed diagnosis algorithm is able to generate the list of
components to be excluded, based on the following modification of the system model:

• groups of  neighboring processors form so-calledreconfiguration entities;
• a reconfiguration entity must be excluded if it has less than 3 processors that are

- fault-free
- connected by fault-free links
- reachable via fault-free links and processors (see Section 5.2.3).

Moreover, all faulty components — links or processors — not contained in the
excluded reconfiguration entities must be excluded one by one. Generating the list of
components to be excluded is a simple task and is performed by means of conventional
methods. It may be worthwhile to implement it using constraint-based methods in the
case of a more complicated reconfiguration policy.

The program extends the list of the faulty components with the reconfiguration
measures that remove the corresponding fault. These may be the exclusion of the com-
ponent or the exclusion of the whole enclosing reconfiguration entity.

7 Measurement Results

The CSP-based diagnosis algorithm was tested by means of a logic fault injector:
the host machine generated a random fault pattern for the Parsytec processors and
downloaded it as part of the test initialization messages. The low-level testing mecha-
nism on the Parsytec processors interpreted the fault pattern and acted according to the
fault state: “fault-free” processors tested their neighbors and sent the results back to the
host, “faulty” processors performed the test but reported a random result and “dead”
processors remained totally inactive. This construction was necessary because no
physical fault injection was available for the Parsytec machines equipped with T805
transputers and the fault injector developed for the final model based on T9000 was
unusable due to the difference in the hardware structure.

The results of a typical test run for the centralized algorithm are shown at first on
Fig. 5. In this case the fault pattern contained a single faulty processor. Fig. 6 displays
the number of the candidate solutions found by the CSP solver and the number of pro-
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cessors considered at various stages of the solution process. Fig. 7 displays the number
of consistency checks made, as a measure for the computational efficiency.

It was examined how at-limit-like upper bound on the number of faults affects the
efficiency of the distributed algorithm by diagnosing the same fault pattern with a vari-
able fault limit (Fig. 8).

The efficiency of the algorithm is strongly influenced by thet-limit. The proper
selection depends on the failure characteristics of the system: a hight-limit unneces-
sarily increases the execution time, while an excessively low one can lead to a contra-
diction in the constraint network and thus to no diagnosis, if there are more faults than
the presett-limit.

0 10 20 30 40 50

Number of syndromes

0

5

10

15

20

Number of processors considered
Number of solutions

T
he

 s
ol

ut
io

n 
pr

oc
es

s

Fig. 5. Centralized diagnosis: the solution process

0 10 20 30 40 50

Number of syndromes

0

100

200

300

400

C
on

si
st

en
cy

 c
he

ck
s

With max. 1 fault considered
Without considerations

Fig. 6. Centralized diagnosis: computational efficiency



Moreover, detection of a global inconsistency− in the case when the number of
faults exceeds thet-limit − is by some orders of magnitudes faster than finding the cor-
rect diagnosis. At values slightly greater than the actual number of faults the gradient
of the curve is high. This property suggests an adaptive fault number minimization ori-
ented diagnosis algorithm: the testing is started with the assumption of a single fault;
the limit can be increased if global contradiction was detected. This strategy will result
in low computational cost for the most frequent cases, while the diagnostic capabilities
of the algorithm are preserved.
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It was examined how the scale of the system affects the number of consistency
checks performed by the diagnosis algorithm. The number of faults and its upper
bound was fixed; the fault pattern was generated randomly. As the number of consis-
tency checks strongly varies with the actual fault pattern, the averages of 40 test runs
were taken.

The statistically fitted curves suggest that the algorithm is of a complexity
Ο(n2.52) (execution time) and the complexity of the backtracking part is
Ο(n1.61) (number of consistency checks), wheren is the number of processors. In
fact, the majority of the time is spent with the preprocessing of the network (this task is
of complexity Ο(n3) for general binary CSPs). The reason for this is the CSP library,
which contains only inoptimal preprocessing methods (PC-2, see Section 2.2). A sig-
nificant improvement is expected from implementing faster preprocessing techniques.
The number of consistency checks, measuring the efficiency of the backtracking part
has exponential worst-case complexity. In fact, it varied strongly with the actual fault
pattern, hence the 5 highest and the 5 lowest values were omitted from the analysis.
The most important task in the future is to find a good heuristic function to decrease
this fluctuation. Also, the CSP library is written for general binary networks and can-
not make use of the special properties of the constraint network used for diagnosis.
Theoretical investigations could help to find a more efficient constraint solver for this
special class of CSPs.

Another possibility is to employ an approximate diagnosis method as a heuristic
for the reduction of the search space. The algorithm described in [8] introduces the
number of implications supporting a fault state hypothesis as a decision factor. Addi-
tional assumptions about the fault model can be included in the diagnosis by using a
weighted sum instead of simply counting the implications. This heuristic could con-
tribute to decrease the number of fruitless backtracks during the search process.

8 Conclusions and Further Work

The CSP-based diagnosis approach proved the correctness of the basic concepts, in
both a centralized and a distributed environment. It is capable of handling situations
which cause problems in traditional diagnosis algorithms; in particular, complex fault
models and situations when a part of the system is isolated from other parts by faulty
components. It was demonstrated that at-limit affects the speed of the algorithm sig-
nificantly. Adjusting this upper bound adaptively during the diagnosis enables to
exploit this fact. In the distributed model the inter-processor communication was
reduced radically, at the expense of a moderate performance degradation.

Further work involves selecting an optimal constraint solver focusing on memory
use, fast preprocessing and exploiting the special properties (e.g. sparseness) of diag-
nostic constraint networks. Another task is studying the applicability to large-scale
systems. Hierarchical diagnosis and stepwise fault model refinement could help reduc-
ing the time complexity.
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