8,890 research outputs found

    Modelling requirements for local transport plans in the UK

    Get PDF
    The aim of the paper is to provide a number of recommendations for use of transport and land use planning models in the formulation of local transport plans. It is based on a study of Local Transport Plans (LTPs) in England. LTPs are required by central government (Department for Transport) as part of its process of allocating funds to local authorities. The first round of LTPs (for which 85 authorities submitted plans) was carried out in 1999-2000 and the next round will be required in 2005. Authorities are also required to produce Annual Progress Reports (APRs) summarising the progress made towards meeting the objectives laid out in the LTP. The research was carried out in two stages, the first being a review of current guidance, publicly available Local Transport Plans and other relevant material, the second being a series of case study interviews with five local authorities. From these two processes a number of recommendations on modelling requirements and use of models were put forward classified by the size of the local authorit

    A design for testability study on a high performance automatic gain control circuit.

    Get PDF
    A comprehensive testability study on a commercial automatic gain control circuit is presented which aims to identify design for testability (DfT) modifications to both reduce production test cost and improve test quality. A fault simulation strategy based on layout extracted faults has been used to support the study. The paper proposes a number of DfT modifications at the layout, schematic and system levels together with testability. Guidelines that may well have generic applicability. Proposals for using the modifications to achieve partial self test are made and estimates of achieved fault coverage and quality levels presente

    Atoms-to-Circuits Simulation Investigation of CNT Interconnects for Next Generation CMOS Technology

    Get PDF
    In this study, we suggest a hierarchical model to investigate the electrical performance of carbon nanotube (CNT)- based interconnects. From the density functional theory, we have obtained important physical parameters, which are used in TCAD simulators to obtain the RC netlists. We then use these RC netlists for the circuit-level simulations to optimize interconnect design in VLSI. Also, we have compared various CNT-based interconnects such as single-walled CNTs, multi-walled CNTs, doped CNTs, and Cu-CNT composites in terms of conductivity, ring oscillator delay, and propagation time delay

    Development of Hierarchical Simulation Framework for Design and Optimization of Molecular Based Flash Cell

    Get PDF
    The field of molecular electronics continues to spur interest in the quest for miniaturization and reduction of operational power of electron devices. Most of the systems described in the literature are based on organic molecules, such as benzene, ferrocene and fullerenes [1]. However, the use of inorganic molecules known as polyoxometalates (POMs) (see Fig. 1 and Fig. 2) could offer several important advantages over the conventional and organic based devices. The interest in POMs for flash cell applications stems from the fact that POMs are highly redox active molecules and that they can also be doped with electronically active heteroatoms [3]. They can undergo multiple reversible reductions/oxidations, which makes them attractive candidates for multi-bit storage in flash memory cells. Our recent work showed that POMs are more compatible with existing CMOS processes than organic molecules and they can replace the polysilicon floating gate in contemporary flash cell devices [2]. In this work, we discuss a further improvement and development of our simulation framework and models, e.g. Poisson distribution of the molecules in the oxide, introducing a various device geometry such as FDSOI and nanowires and improved simulation flow

    A Hierachical Infrastrucutre for SOC Test Management

    Get PDF
    HD2BIST - a complete hierarchical framework for BIST scheduling, data-patterns delivery, and diagnosis of complex systems - maximizes and simplifies the reuse of built-in test architectures. HD2BIST optimizes the flexibility for chip designers in planning an overall SoC test strategy by defining a test access method that provides direct virtual access to each core of the system

    Hierarchical simulations of hybrid polymer-solid materials

    Get PDF
    Complex polymer-solid materials have gained a lot of attention during the last 2-3 decades due to the fundamental physical problems and the broad spectrum of technological applications in which they are involved. Therefore, significant progress concerning the simulations of such hybrid soft-hard nanostructured systems has been made in the last few years. Simulation techniques vary from quantum to microscopic (atomistic) up to mesoscopic (coarse-grained) level. Here we give a short overview of simulation approaches on model polymer-solid interfacial systems for all different levels of description. In addition, we also present a brief outlook concerning the open questions in this field, from the point of view of both physical problems and computational methodologies
    • 

    corecore