1,253 research outputs found

    Combined scheduling of hard and soft real-time tasks in multiprocessor systems

    Get PDF
    Many complex real-time systems are composed of both hard and soft real-time tasks. Combined scheduling of hard and soft tasks in such systems should satisfy two important goals: (1) maximize the schedulability of soft real-time tasks with no or little impact on the schedulability of hard real-time tasks; (2) minimize the scheduling overhead. In this thesis, we develop two sets of algorithms for the problem, of which the first set allows sacrificing the schedulability of hard tasks and the second set does not. The first set of algorithms is based on a new concept, called task association , by which each soft task is associated with a hard task, whenever possible, in order to minimize the scheduling overhead. The second set has two algorithms, namely, background scheduling and emergency based scheduling. The background scheduling schedules soft tasks in the holes that are present in the schedule considering only the hard tasks. The emergency based scheduling always maintains two schedules (primary schedule and emergency schedule) and switches back and forth between them during the schedule construction process depending on the schedulability of a given hard task. To evaluate the schedulability of the proposed algorithms, extensive simulation studies were conducted and the results show that the proposed algorithms are superior to existing algorithms, in addition to some of them incurring lesser scheduling overhead

    Quality of Service Scheduling in Real-Time Systems

    Full text link

    Providing QoS with Reduced Energy Consumption via Real-Time Voltage Scaling on Embedded Systems

    Get PDF
    Low energy consumption has emerged as one of the most important design objectives for many modern embedded systems, particularly the battery-operated PDAs. For some soft real-time applications such as multimedia applications, occasional deadline misses can be tolerated. How to leverage this feature to save more energy while still meeting the user required quality of service (QoS) is the research topic this thesis focuses on. We have proposed a new probabilistic design methodology, a set of energy reduction techniques for single and multiple processor systems by using dynamic voltage scaling (DVS), the practical solutions to voltage set-up problem for multiple voltage DVS system, and a new QoS metric. Most present design space exploration techniques, which are based on application's worst case execution time, often lead to over-designing systems. We have proposed the probabilistic design methodology for soft real-time embedded systems by using detailed execution time information in order to reduce the system resources while delivering the user required QoS probabilistically. One important phase in the probabilistic design methodology is the offline/online resource management. As an example, we have proposed a set of energy reduction techniques by employing DVS techniques to exploit the slacks arising from the tolerance to deadline misses for single and multiple processor systems while meeting the user required completion ratio statistically. Multiple-voltage DVS system is predicted as the future low-power system by International Technology Roadmap for Semiconductors (ITRS). In order to find the best way to employ DVS, we have formulated the voltage set-up problem and provided its practical solutions that seek the most energy efficient voltage setting for the design of multiple-voltage DVS systems. We have also presented a case study in designing energy-efficient dual voltage soft real-time system with (m, k)-firm deadline guarantee. Although completion ratio is widely used as a QoS metric, it can only be applied to the applications with independent tasks. We have proposed a new QoS metric that differentiates firm and soft deadlines and considers the task dependency as well. Based on this new metric, we have developed a set of online scheduling algorithms that enhance quality of presentation (QoP) significantly, particularly for overloaded systems

    Hybrid Genetic Algorithms for Scheduling High-Speed Multimedia Systems

    Get PDF
    It has been observed that most conventional operating systems could not cope with the scheduling of multimedia tasks owing to the large size of these files. For instance, processing of multimedia tasks using the traditional operating systems are fraught with problems such as low quality of service and delay jitters. In order to address these problems, a scheduling algorithm christened hybrid genetic algorithm for multimedia task scheduling (HGAMTS) was developed. It employed heuristic knowledge of the problem domain to model a hybrid genetic algorithm in a multiprocessor environment. The system is made up of the scheduler model and the task model. The scheduler model consist a centralized dynamic scheduling scheme. In this scheme, all tasks arrive at a central processor (scheduler). The model has a minimum of five and maximum of ten processors. Attached to each processor is a dispatch queue

    Least space-time first scheduling algorithm : scheduling complex tasks with hard deadline on parallel machines

    Get PDF
    Both time constraints and logical correctness are essential to real-time systems and failure to specify and observe a time constraint may result in disaster. Two orthogonal issues arise in the design and analysis of real-time systems: one is the specification of the system, and the semantic model describing the properties of real-time programs; the other is the scheduling and allocation of resources that may be shared by real-time program modules. The problem of scheduling tasks with precedence and timing constraints onto a set of processors in a way that minimizes maximum tardiness is here considered. A new scheduling heuristic, Least Space Time First (LSTF), is proposed for this NP-Complete problem. Basic properties of LSTF are explored; for example, it is shown that (1) LSTF dominates Earliest-Deadline-First (EDF) for scheduling a set of tasks on a single processor (i.e., if a set of tasks are schedulable under EDF, they are also schedulable under LSTF); and (2) LSTF is more effective than EDF for scheduling a set of independent simple tasks on multiple processors. Within an idealized framework, theoretical bounds on maximum tardiness for scheduling algorithms in general, and tighter bounds for LSTF in particular, are proven for worst case behavior. Furthermore, simulation benchmarks are developed, comparing the performance of LSTF with other scheduling disciplines for average case behavior. Several techniques are introduced to integrate overhead (for example, scheduler and context switch) and more realistic assumptions (such as inter-processor communication cost) in various execution models. A workload generator and symbolic simulator have been implemented for comparing the performance of LSTF (and a variant -- LSTF+) with that of several standard scheduling algorithms. LSTF\u27s execution model, basic theories, and overhead considerations have been defined and developed. Based upon the evidence, it is proposed that LSTF is a good and practical scheduling algorithm for building predictable, analyzable, and reliable complex real-time systems. There remain some open issues to be explored, such as relaxing some current restrictions, discovering more properties and theorems of LSTF under different models, etc. We strongly believe that LSTF can be a practical scheduling algorithm in the near future

    Dynamic Resource Allocation in Embedded, High-Performance and Cloud Computing

    Get PDF
    The availability of many-core computing platforms enables a wide variety of technical solutions for systems across the embedded, high-performance and cloud computing domains. However, large scale manycore systems are notoriously hard to optimise. Choices regarding resource allocation alone can account for wide variability in timeliness and energy dissipation (up to several orders of magnitude). Dynamic Resource Allocation in Embedded, High-Performance and Cloud Computing covers dynamic resource allocation heuristics for manycore systems, aiming to provide appropriate guarantees on performance and energy efficiency. It addresses different types of systems, aiming to harmonise the approaches to dynamic allocation across the complete spectrum between systems with little flexibility and strict real-time guarantees all the way to highly dynamic systems with soft performance requirements. Technical topics presented in the book include: Load and Resource Models Admission Control Feedback-based Allocation and Optimisation Search-based Allocation Heuristics Distributed Allocation based on Swarm Intelligence Value-Based Allocation Each of the topics is illustrated with examples based on realistic computational platforms such as Network-on-Chip manycore processors, grids and private cloud environments.Note.-- EUR 6,000 BPC fee funded by the EC FP7 Post-Grant Open Access Pilo

    Dynamic Resource Allocation in Embedded, High-Performance and Cloud Computing

    Get PDF
    The availability of many-core computing platforms enables a wide variety of technical solutions for systems across the embedded, high-performance and cloud computing domains. However, large scale manycore systems are notoriously hard to optimise. Choices regarding resource allocation alone can account for wide variability in timeliness and energy dissipation (up to several orders of magnitude). Dynamic Resource Allocation in Embedded, High-Performance and Cloud Computing covers dynamic resource allocation heuristics for manycore systems, aiming to provide appropriate guarantees on performance and energy efficiency. It addresses different types of systems, aiming to harmonise the approaches to dynamic allocation across the complete spectrum between systems with little flexibility and strict real-time guarantees all the way to highly dynamic systems with soft performance requirements. Technical topics presented in the book include: • Load and Resource Models• Admission Control• Feedback-based Allocation and Optimisation• Search-based Allocation Heuristics• Distributed Allocation based on Swarm Intelligence• Value-Based AllocationEach of the topics is illustrated with examples based on realistic computational platforms such as Network-on-Chip manycore processors, grids and private cloud environments

    Flexible Scheduling in Middleware for Distributed rate-based real-time applications - Doctoral Dissertation, May 2002

    Get PDF
    Distributed rate-based real-time systems, such as process control and avionics mission computing systems, have traditionally been scheduled statically. Static scheduling provides assurance of schedulability prior to run-time overhead. However, static scheduling is brittle in the face of unanticipated overload, and treats invocation-to-invocation variations in resource requirements inflexibly. As a consequence, processing resources are often under-utilized in the average case, and the resulting systems are hard to adapt to meet new real-time processing requirements. Dynamic scheduling offers relief from the limitations of static scheduling. However, dynamic scheduling offers relief from the limitations of static scheduling. However, dynamic scheduling often has a high run-time cost because certain decisions are enforced on-line. Furthermore, under conditions of overload tasks can be scheduled dynamically that may never be dispatched, or that upon dispatch would miss their deadlines. We review the implications of these factors on rate-based distributed systems, and posits the necessity to combine static and dynamic approaches to exploit the strengths and compensate for the weakness of either approach in isolation. We present a general hybrid approach to real-time scheduling and dispatching in middleware, that can employ both static and dynamic components. This approach provides (1) feasibility assurance for the most critical tasks, (2) the ability to extend this assurance incrementally to operations in successively lower criticality equivalence classes, (3) the ability to trade off bounds on feasible utilization and dispatching over-head in cases where, for example, execution jitter is a factor or rates are not harmonically related, and (4) overall flexibility to make more optimal use of scarce computing resources and to enforce a wider range of application-specified execution requirements. This approach also meets additional constraints of an increasingly important class of rate-based systems, those with requirements for robust management of real-time performance in the face of rapidly and widely changing operating conditions. To support these requirements, we present a middleware framework that implements the hybrid scheduling and dispatching approach described above, and also provides support for (1) adaptive re-scheduling of operations at run-time and (2) reflective alternation among several scheduling strategies to improve real-time performance in the face of changing operating conditions. Adaptive re-scheduling must be performed whenever operating conditions exceed the ability of the scheduling and dispatching infrastructure to meet the critical real-time requirements of the system under the currently specified rates and execution times of operations. Adaptive re-scheduling relies on the ability to change the rates of execution of at least some operations, and may occur under the control of a higher-level middleware resource manager. Different rates of execution may be specified under different operating conditions, and the number of such possible combinations may be arbitrarily large. Furthermore, adaptive rescheduling may in turn require notification of rate-sensitive application components. It is therefore desirable to handle variations in operating conditions entirely within the scheduling and dispatching infrastructure when possible. A rate-based distributed real-time application, or a higher-level resource manager, could thus fall back on adaptive re-scheduling only when it cannot achieve acceptable real-time performance through self-adaptation. Reflective alternation among scheduling heuristics offers a way to tune real-time performance internally, and we offer foundational support for this approach. In particular, run-time observable information such as that provided by our metrics-feedback framework makes it possible to detect that a given current scheduling heuristic is underperforming the level of service another could provide. Furthermore we present empirical results for our framework in a realistic avionics mission computing environment. This forms the basis for guided adaption. This dissertation makes five contributions in support of flexible and adaptive scheduling and dispatching in middleware. First, we provide a middle scheduling framework that supports arbitrary and fine-grained composition of static/dynamic scheduling, to assure critical timeliness constraints while improving noncritical performance under a range of conditions. Second, we provide a flexible dispatching infrastructure framework composed of fine-grained primitives, and describe how appropriate configurations can be generated automatically based on the output of the scheduling framework. Third, we describe algorithms to reduce the overhead and duration of adaptive rescheduling, based on sorting for rate selection and priority assignment. Fourth, we provide timely and efficient performance information through an optimized metrics-feedback framework, to support higher-level reflection and adaptation decisions. Fifth, we present the results of empirical studies to quantify and evaluate the performance of alternative canonical scheduling heuristics, across a range of load and load jitter conditions. These studies were conducted within an avionics mission computing applications framework running on realistic middleware and embedded hardware. The results obtained from these studies (1) demonstrate the potential benefits of reflective alternation among distinct scheduling heuristics at run-time, and (2) suggest performance factors of interest for future work on adaptive control policies and mechanisms using this framework

    A weakly hard scheduling approach of partitioned scheduling on multiprocessor systems

    Get PDF
    Real-time systems or tasks can be classified into three categories, based on the “seriousness” of deadline misses – hard, soft and weakly hard real-time tasks. The consequences of a deadline miss of a hard real-time task can be prohibitively expensive because all the tasks must meet their deadlines whereas soft real-time tasks tolerate “some” deadline misses. Meanwhile, in a weakly hard real-time task, the distribution of its met and missed deadlines is stated and specified precisely. As real-time application systems increasingly come to be implemented upon multiprocessor environments, thus, this study applies multiprocessor scheduling approach for verification of weakly hard real-time tasks and to guaranteeing the timing requirements of the tasks. In fact, within the multiprocessor, the task allocation problem seem even harder than in uniprocessor case; thus, in order to cater that problem, the sufficient and efficient scheduling algorithm supported by accurate schedulability analysis technique is present to provide weakly hard real-time guarantees. In this paper, a weakly hard scheduling approach has been proposed and schedulability analysis of proposed approach consists of the partitioned multiprocessor scheduling techniques with solutions for the bin-packing problem, called R-BOUND-MP-NFRNS (R-BOUND-MP with next-fit-ring noscaling) combining with the exact analysis, named hyperperiod analysis and deadline models; weakly hard constraints and µ-pattern under static priority scheduling. Then, Matlab simulation tool is used in order to validate the result of analysis. From the evaluation results, it can be proven that the proposed approach outperforms the existing approaches in terms of satisfaction of the tasks deadlines
    • …
    corecore