311 research outputs found

    A Tabu Search WSN Deployment Method for Monitoring Geographically Irregular Distributed Events

    Get PDF
    In this paper, we address the Wireless Sensor Network (WSN) deployment issue. We assume that the observed area is characterized by the geographical irregularity of the sensed events. Formally, we consider that each point in the deployment area is associated a differentiated detection probability threshold, which must be satisfied by our deployment method. Our resulting WSN deployment problem is formulated as a Multi-Objectives Optimization problem, which seeks to reduce the gap between the generated events detection probabilities and the required thresholds while minimizing the number of deployed sensors. To overcome the computational complexity of an exact resolution, we propose an original pseudo-random approach based on the Tabu Search heuristic. Simulations show that our proposal achieves better performances than several other approaches proposed in the literature. In the last part of this paper, we generalize the deployment problem by including the wireless communication network connectivity constraint. Thus, we extend our proposal to ensure that the resulting WSN topology is connected even if a sensor communication range takes small values

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    Balancing the trade-off between cost and reliability for wireless sensor networks: a multi-objective optimized deployment method

    Full text link
    The deployment of the sensor nodes (SNs) always plays a decisive role in the system performance of wireless sensor networks (WSNs). In this work, we propose an optimal deployment method for practical heterogeneous WSNs which gives a deep insight into the trade-off between the reliability and deployment cost. Specifically, this work aims to provide the optimal deployment of SNs to maximize the coverage degree and connection degree, and meanwhile minimize the overall deployment cost. In addition, this work fully considers the heterogeneity of SNs (i.e. differentiated sensing range and deployment cost) and three-dimensional (3-D) deployment scenarios. This is a multi-objective optimization problem, non-convex, multimodal and NP-hard. To solve it, we develop a novel swarm-based multi-objective optimization algorithm, known as the competitive multi-objective marine predators algorithm (CMOMPA) whose performance is verified by comprehensive comparative experiments with ten other stateof-the-art multi-objective optimization algorithms. The computational results demonstrate that CMOMPA is superior to others in terms of convergence and accuracy and shows excellent performance on multimodal multiobjective optimization problems. Sufficient simulations are also conducted to evaluate the effectiveness of the CMOMPA based optimal SNs deployment method. The results show that the optimized deployment can balance the trade-off among deployment cost, sensing reliability and network reliability. The source code is available on https://github.com/iNet-WZU/CMOMPA.Comment: 25 page

    An enhanced evolutionary algorithm for requested coverage in wireless sensor networks

    Get PDF
    Wireless sensor nodes with specific and new sensing capabilities and application requirements have affected the behaviour of wireless sensor networks and created problems. Placement of the nodes in an application area is a wellknown problem in the field. In addition, high per-node cost as well as need to produce a requested coverage and guaranteed connectivity features is a must in some applications. Conventional deployments and methods of modelling the behaviour of coverage and connectivity cannot satisfy the application needs and increase the network lifetime. Thus, the research designed and developed an effective node deployment evaluation parameter, produced a more efficient node deployment algorithm to reduce cost, and proposed an evolutionary algorithm to increase network lifetime while optimising deployment cost in relation to the requested coverage scheme. This research presents Accumulative Path Reception Rate (APRR) as a new method to evaluate node connectivity in a network. APRR, a node deployment evaluation parameter was used as the quality of routing path from a sensing node to sink node to evaluate the quality of a network deployment strategy. Simulation results showed that the behaviour of the network is close to the prediction of the APRR. Besides that, a discrete imperialist competitive algorithm, an extension of the Imperialist Competitive Algorithm (ICA) evolutionary algorithm was used to produce a network deployment plan according to the requested event detection probability with a more efficient APRR. It was used to reduce deployment cost in comparison to the use of Multi-Objective Evolutionary Algorithm (MOEA) and Multi-Objective Deployment Algorithm (MODA) algorithms. Finally, a Repulsion Force and Bottleneck Handling (RFBH) evolutionary-based algorithm was proposed to prepare a higher APRR and increase network lifetime as well as reduce deployment cost. Experimental results from simulations showed that the lifetime and communication quality of the output network strategies have proven the accuracy of the RFBH algorithm performance

    Reliable cost-optimal deployment of wireless sensor networks

    Get PDF
    Wireless Sensor Networks (WSNs) technology is currently considered one of the key technologies for realizing the Internet of Things (IoT). Many of the important WSNs applications are critical in nature such that the failure of the WSN to carry out its required tasks can have serious detrimental effects. Consequently, guaranteeing that the WSN functions satisfactorily during its intended mission time, i.e. the WSN is reliable, is one of the fundamental requirements of the network deployment strategy. Achieving this requirement at a minimum deployment cost is particularly important for critical applications in which deployed SNs are equipped with expensive hardware. However, WSN reliability, defined in the traditional sense, especially in conjunction with minimizing the deployment cost, has not been considered as a deployment requirement in existing WSN deployment algorithms to the best of our knowledge. Addressing this major limitation is the central focus of this dissertation. We define the reliable cost-optimal WSN deployment as the one that has minimum deployment cost with a reliability level that meets or exceeds a minimum level specified by the targeted application. We coin the problem of finding such deployments, for a given set of application-specific parameters, the Minimum-Cost Reliability-Constrained Sensor Node Deployment Problem (MCRC-SDP). To accomplish the aim of the dissertation, we propose a novel WSN reliability metric which adopts a more accurate SN model than the model used in the existing metrics. The proposed reliability metric is used to formulate the MCRC-SDP as a constrained combinatorial optimization problem which we prove to be NP-Complete. Two heuristic WSN deployment optimization algorithms are then developed to find high quality solutions for the MCRC-SDP. Finally, we investigate the practical realization of the techniques that we developed as solutions of the MCRC-SDP. For this purpose, we discuss why existing WSN Topology Control Protocols (TCPs) are not suitable for managing such reliable cost-optimal deployments. Accordingly, we propose a practical TCP that is suitable for managing the sleep/active cycles of the redundant SNs in such deployments. Experimental results suggest that the proposed TCP\u27s overhead and network Time To Repair (TTR) are relatively low which demonstrates the applicability of our proposed deployment solution in practice

    An Energy-Efficient Distributed Algorithm for k-Coverage Problem in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks (WSNs) have recently achieved a great deal of attention due to its numerous attractive applications in many different fields. Sensors and WSNs possesses a number of special characteristics that make them very promising in many applications, but also put on them lots of constraints that make issues in sensor network particularly difficult. These issues may include topology control, routing, coverage, security, and data management. In this thesis, we focus our attention on the coverage problem. Firstly, we define the Sensor Energy-efficient Scheduling for k-coverage (SESK) problem. We then solve it by proposing a novel, completely localized and distributed scheduling approach, naming Distributed Energy-efficient Scheduling for k-coverage (DESK) such that the energy consumption among all the sensors is balanced, and the network lifetime is maximized while still satisfying the k-coverage requirement. Finally, in related work section we conduct an extensive survey of the existing work in literature that focuses on with the coverage problem

    A trust-based probabilistic coverage algorithm for wireless sensor networks

    Get PDF
    Sensing coverage is a fundamental issue for many applications in wireless sensor networks. Due to sensors resource limitations, inherent uncertainties associated with their measurements, and the harsh and dynamic environment in which they are deployed, having a QoS-aware coverage scheme is a must. In this paper, we propose a Trust-based Probabilistic Coverage algorithm, which leverages the trust concept to tackle the uncertainties introduced by the nodes and the environment, in which they operate. We formulate this problem as an Integer Linear Programming (ILP) problem, which is able to always guarantee the required QoS despite uncertainties introduced by node and/or environment. In consideration of the limitation of ILP, we also put forward a greedy heuristic algorithm to achieve almost the same ILP results without suffering from complexities imposed by ILP. We examine our heuristic with different input parameters and compare it with the ILP approach. Simulation results are presented to verify our approaches

    Connectivity, Coverage and Placement in Wireless Sensor Networks

    Get PDF
    Wireless communication between sensors allows the formation of flexible sensor networks, which can be deployed rapidly over wide or inaccessible areas. However, the need to gather data from all sensors in the network imposes constraints on the distances between sensors. This survey describes the state of the art in techniques for determining the minimum density and optimal locations of relay nodes and ordinary sensors to ensure connectivity, subject to various degrees of uncertainty in the locations of the nodes

    Differential Evolution-based 3D Directional Wireless Sensor Network Deployment Optimization

    Get PDF
    Wireless sensor networks (WSNs) are applied more and more widely in real life. In actual scenarios, 3D directional wireless sensors (DWSs) are constantly employed, thus, research on the real-time deployment optimization problem of 3D directional wireless sensor networks (DWSNs) based on terrain big data has more practical significance. Based on this, we study the deployment optimization problem of DWSNs in the 3D terrain through comprehensive consideration of coverage, lifetime, connectivity of sensor nodes, connectivity of cluster headers and reliability of DWSNs. We propose a modified differential evolution (DE) algorithm by adopting CR-sort and polynomial-based mutation on the basis of the cooperative coevolutionary (CC) framework, and apply it to address deployment problem of 3D DWSNs. In addition, to reduce computation time, we realize implementation of message passing interface (MPI) parallelism. As is revealed by the experimentation results, the modified algorithm proposed in this paper achieves satisfying performance with respect to either optimization results or operation time
    • …
    corecore