21 research outputs found

    Heterogeneous vs Homogeneous MPSoC Approaches for a Mobile LTE Modem

    Get PDF
    International audienceApplications like 4G baseband modem require single-chip implementation to meet the integration and power consumption requirements. These applications demand a high computing performance with real-time constraints, low-power consumption and low cost. With the rapid evolution of tele- com standards and the increasing demand for multi-standard products, the need for flexible baseband solutions is growing. The concept of Multi-Processor System-on-Chip (MPSoC) is well adapted to enable hardware reuse between products and between multiple wireless standards in the same device. Heterogeneous architectures are well known solutions but they have limited flexibility. Based on the experience of two heterogeneous Software De- fined Radio (SDR) telecom chipsets, this paper presents the homoGENEous Processor arraY (GENEPY) platform for 4G ap- plications. This platform is built with SMEP units interconnected with a Network-on-Chip. The SMEP, implemented in 65nm low- power CMOS, can perform 3.2 GMAC/s with 77 GBits/s internal bandwidth at 400MHz. Two implementations of homogeneous GENEPY are compared to the heterogeneous MAGALI platform in terms of silicon area, performance and power consumption. Results show that a homogeneous approach can be more efficient and flexible than a heterogeneous approach in the context of 4G Mobile Terminals

    State of the art baseband DSP platforms for Software Defined Radio: A survey

    Get PDF
    Software Defined Radio (SDR) is an innovative approach which is becoming a more and more promising technology for future mobile handsets. Several proposals in the field of embedded systems have been introduced by different universities and industries to support SDR applications. This article presents an overview of current platforms and analyzes the related architectural choices, the current issues in SDR, as well as potential future trends.Peer reviewe

    Multicore development environment for embedded processor in arduino IDE

    Get PDF
    Internet of things (IoT) technology has found more applications that require complex computation while still preserving power. Embedded processors as the core of the IoT system approaches the need for computation by employing a parallel processor system, namely MPSoC. While various MPSoCs hardware is widely available, there is limited software support form of user-friendly libraries and development platform. There is a need for such a platform to facilitate both the study and development of parallel embedded software. arduino as the widely used embedded development platform is yet to officially support multicore programming. This work proposes an arduino-based development environment that supports multicore programming while maintaining arduino’s simple program structure, targeted at specific low-power MPSoC, the RUMPS401. The environment is fully functional, and while it targets only specific MPSoC, the proposed environment can easily be adopted to other MPSoCs with similar structures with minimal modification

    Design of a Reconfigurable Multi-Core Architecture for Streaming Applications

    Get PDF
    This thesis presents design of a reconfigurable multi-processor architecture.The architecture is composed of 9 nodes interconnected to each other through a 3x3 mesh-based Network-on-Chip. The central node of the architecture hosts a RISC processor. This node acts as master of the platform, taking care of the data and task scheduling. The surrounding nodes host a reconfigurable engine and do the actual processing. The system was prototyped on an Altera FPGA device and RTL simulations of the architecture were carried out to ensure the correct functionality of the system. The platform was designed to process streaming applications. As an example of these applications, a finite impulse response filter was mapped on the system. Simulation results showed a speed-up of 6.8x over the same FIR filter implemented on a COFFEE RISC core, while requiring a 20% less resources of similar architecture composed by a homogeneous mesh of COFFEE RISC cores

    Worst-case temporal analysis of real-time dynamic streaming applications

    Get PDF

    Design and Implementation of Software Defined Radios on a Homogeneous Multi-Processor Architecture

    Get PDF
    In the wireless communications domain, multi-mode and multi-standard platforms are becoming increasingly the central focus of system architects. In fact, mobile terminal users require more and more mobility and throughput, pushing towards a fully integrated radio system able to support different communication protocols running concurrently on the platform. A new concept of radio system was introduced to meet the users' expectations. Flexible radio platforms have became an indispensable requirement to meet the expectations of the users today and in the future. This thesis deals with issues related to the design of flexible radio platforms. In particular, the flexibility of the radio system is achieved through the concept of software defined radios (SDRs). The research work focuses on the utilization of homogeneous multi-processor (MP) architectures as a feasible way to efficiently implement SDR platforms. In fact, platforms based on MP architectures are able to deliver high performance together with a high degree of flexibility. Moreover, homogeneous MP platforms are able to reduce design and verification costs as well as provide a high scalability in terms of software and hardware. However, homogeneous MP architectures provide less computational efficiency when compared to heterogeneous solutions. This thesis can be divided into two parts: the first part is related to the implementation of a reference platform while the second part of the thesis introduces the design and implementation of flexible, high performance, power and energy efficient algorithms for wireless communications. The proposed reference platform, Ninesilica, is a homogeneous MP architecture composed of a 3x3 mesh of processing nodes (PNs), interconnected by a hierarchical Network-on-Chip (NoC). Each PN hosts as Processing Element (PE) a processor core. To improve the computational efficiency of the platform, different power and energy saving techniques have been investigated. In the design, implementation and mapping of the algorithms, the following constraints were considered: energy and power efficiency, high scalability of the platform, portability of the solutions across similar platforms, and parallelization efficiency. Ninesilica architecture together with the proposed algorithm implementations showed that homogeneous MP architectures are highly scalable platforms, both in terms of hardware and software. Furthermore, Ninesilica architecture demonstrated that homogeneous MPs are able to achieve high parallelization efficiency as well as high energy and power savings, meeting the requirements of SDRs as well as enabling cognitive radios. Ninesilica can be utilized as a stand-alone block or as an elementary building block to realize clustered many-core architectures. Moreover, the obtained results, in terms of parallelization efficiency as well as power and energy efficiency are independent of the type of PE utilized, ensuring the portability of the results to similar architectures based on a different type of processing element

    Cognitive Radio Programming: Existing Solutions and Open Issues

    Get PDF
    Software defined radio (sdr) technology has evolved rapidly and is now reaching market maturity, providing solutions for cognitive radio applications. Still, a lot of issues have yet to be studied. In this paper, we highlight the constraints imposed by recent radio protocols and we present current architectures and solutions for programming sdr. We also list the challenges to overcome in order to reach mastery of future cognitive radios systems.La radio logicielle a évolué rapidement pour atteindre la maturité nécessaire pour être mise sur le marché, offrant de nouvelles solutions pour les applications de radio cognitive. Cependant, beaucoup de problèmes restent à étudier. Dans ce papier, nous présentons les contraintes imposées par les nouveaux protocoles radios, les architectures matérielles existantes ainsi que les solutions pour les programmer. De plus, nous listons les difficultés à surmonter pour maitriser les futurs systèmes de radio cognitive

    Design and Implementation of Software Defined Radios on a Homogeneous Multi-Processor Architecture

    Get PDF
    In the wireless communications domain, multi-mode and multi-standard platforms are becoming increasingly the central focus of system architects. In fact, mobile terminal users require more and more mobility and throughput, pushing towards a fully integrated radio system able to support different communication protocols running concurrently on the platform. A new concept of radio system was introduced to meet the users' expectations. Flexible radio platforms have became an indispensable requirement to meet the expectations of the users today and in the future. This thesis deals with issues related to the design of flexible radio platforms. In particular, the flexibility of the radio system is achieved through the concept of software defined radios (SDRs). The research work focuses on the utilization of homogeneous multi-processor (MP) architectures as a feasible way to efficiently implement SDR platforms. In fact, platforms based on MP architectures are able to deliver high performance together with a high degree of flexibility. Moreover, homogeneous MP platforms are able to reduce design and verification costs as well as provide a high scalability in terms of software and hardware. However, homogeneous MP architectures provide less computational efficiency when compared to heterogeneous solutions. This thesis can be divided into two parts: the first part is related to the implementation of a reference platform while the second part of the thesis introduces the design and implementation of flexible, high performance, power and energy efficient algorithms for wireless communications. The proposed reference platform, Ninesilica, is a homogeneous MP architecture composed of a 3x3 mesh of processing nodes (PNs), interconnected by a hierarchical Network-on-Chip (NoC). Each PN hosts as Processing Element (PE) a processor core. To improve the computational efficiency of the platform, different power and energy saving techniques have been investigated. In the design, implementation and mapping of the algorithms, the following constraints were considered: energy and power efficiency, high scalability of the platform, portability of the solutions across similar platforms, and parallelization efficiency. Ninesilica architecture together with the proposed algorithm implementations showed that homogeneous MP architectures are highly scalable platforms, both in terms of hardware and software. Furthermore, Ninesilica architecture demonstrated that homogeneous MPs are able to achieve high parallelization efficiency as well as high energy and power savings, meeting the requirements of SDRs as well as enabling cognitive radios. Ninesilica can be utilized as a stand-alone block or as an elementary building block to realize clustered many-core architectures. Moreover, the obtained results, in terms of parallelization efficiency as well as power and energy efficiency are independent of the type of PE utilized, ensuring the portability of the results to similar architectures based on a different type of processing element
    corecore