
TAMPERE UNIVERSITY OF TECHNOLOGY

Faculty of Computing and Electrical Engineering

Leyla S. Ghazanfari

DESIGN OF A RECONFIGURABLE MULTI-CORE

ARCHITECTURE FOR STREAMING APPLICATIONS

Master of Science Thesis

Subject approved by Faculty Council

March 7th, 2012

Examiners: Prof. Jari Nurmi (TTY)

MSc Roberto Airoldi (TTY)

To my family...

Contents

Contents i

List of Figures iii

List of Tables v

List of Symbols and Abbreviations vii

Acknowledgements ix

Abstract xi

1 Introduction 1

2 Streaming Applications

3

2.1 Characteristics of a Streaming application 3

2.2 Streaming Applications Domain . 4

2.3 Streaming Processors . 5

2.3.1 State of the Art Streaming Processor 5

3 Trends in MPSOC and Reconfigurable Processors

7

3.1 MPSoC . 7

3.2 Heterogeneous MPSoC . 8

3.3 Homogeneous MPSoC . 8

3.4 State of the Art in MPSoCs . 9

3.4.1 Picochip . 9

3.4.2 MAGALI . 10

3.5 Reconfigurable HW in MPSoC . 11

3.6 State of the Art in MPSoCs with Reconfigurable HW 12

i

Airyaman
Rectangle

Airyaman
Rectangle

Airyaman
Stamp

Airyaman
Stamp

Airyaman
Stamp

Airyaman
Stamp

ii CONTENTS

3.6.1 GENEPY . 14

4 Architecture Proposal and Synthesis Procedure 19

4.1 System overview . 19

4.1.1 COFFEE . 19

4.1.2 Network . 20

4.1.3 Reconfigurable Node . 23

4.1.4 Controllers . 29

4.2 Compilation and Simulation . 34

4.3 Synthesis . 35

5 Application Mapping Example 37

5.1 FIR Filter . 37

5.2 Mapping The Application . 38

5.3 Performance analysis . 42

Conclusion 45

Bibliography 47

Airyaman
Stamp

Airyaman
Rectangle

Airyaman
Stamp

Airyaman
Rectangle

Airyaman
Typewriter
5

List of Figures

2.1 The Imagine architecture block diagram [22] 6

3.1 General MPSoC Architecture . 8

3.2 The PicoArray concept [5] . 10

3.3 MAGALI Telecom chip resources [13] 11

3.4 Parallel task processing . 12

3.5 Parallel task processing in time and space 13

3.6 Cut parallel to the XY-plane at time point t1 and t2 13

3.7 Elementary unit (SMEP v0) of the homogeneous processor array with

host processor [19] . 15

3.8 GENEPY v0 platform [19] . 15

3.9 Elementary unit (SMEP v1) of the fully homogeneous processor array

[19] . 16

3.10 Fully homogeneous processor array: GENEPY v1 platform [19] . . . 17

4.1 System overview . 20

4.2 Interface of COFFEE Core [1] . 21

4.3 Global view of the NOC-based platform [11] 22

4.4 Reconfigurable Node Structure . 23

4.5 NOC interface structure . 24

4.6 Streaming data component . 25

4.7 The four FIFOs are filled row by row 25

4.8 Reconfigurable Processing Element 27

4.9 RPE output selection . 27

4.10 Clocking system . 28

4.11 Reconfigurable Processing Element 28

4.12 Select signals order in the configuration memory. 29

4.13 Memory controller . 30

4.14 FIFOs controller . 31

4.15 RPEC . 33

iii

iv LIST OF FIGURES

4.16 Design compilation procedure . 34

4.17 Design partition planner . 35

5.1 FIR filter diagram [5] . 38

5.2 FIR filter I/O . 39

5.3 Stream of data for the first three results in the FIR filter application 40

5.4 Configuration memory of each reconfigurable node in the FIR filter

application . 40

5.5 The order which the streaming data component of Node 0 is filled in

the FIR filter application . 41

5.6 The order which the streaming data component of Node i is filled in

the FIR filter application . 41

5.7 RPE process in FIR filter application 42

Airyaman
Stamp

Airyaman
Rectangle

List of Tables

4.1 Pattern specifications . 29

4.2 FIFOs selection to write data . 32

4.3 FPGA synthesis results of the proposed Reconfigurable MPSOC ar-

chitecture . 36

v

List of Symbols

and Abbreviations

Abbreviation Description

ADI Asynchronous Data Interface

AMPS Advanced Mobile Phone System

ALU Arithmetic Logic Unit

ASIC Application Specific Integrated

Circuit

CCC Communication and Configuration

Controller

CISC Complex Instruction Set Computer

COFFEE A COre For FrEE

CREMA Coarse-grain REconfigurable

array with Mapping Adaptiveness

DMEM Data MEMory

DSP Digital Signal Processor

EPI External Processor Interface

FIFO First In First Out

FIR Finite Impuls Response

FLASH Fast Low-Latency Access

with Seamless Handoff

FPGA Field Programmable Gate Array

GENEPY homoGENEous Processor arraY

GSM Global System Mobile

HDL Hardware Description Language

HW HardWare

IMEM Instruction MEMory

I/O Input/Output

IP Intellectual Property

IPI Inter-picoArray Interface

ISA Instruction Set Architecture

LSB Least Significant Bit

vii

Airyaman
Rectangle

viii LIST OF SYMBOLS AND ABBREVIATIONS

Abbreviation Description

LTE Long Term Evolution

MIMO Multi-Input Multi-Output

MPSoC Multi-Processor System on Chip

NI Network Interfacer

NoC Network on Chip

OFDM Orthogonal Frequency Division

Multiplexing

PE Processing Element

RAM Random-Access Memory

RH Reconfigurable Hardware

RISC Reduced Instruction Set Computer

RP Read Processes

RPE Reconfigurable Processing Element

RPEC Reconfigurable Processing Element

Controller

RTL Register Transfer Level

SIMD Single Instruction Multiple Data

SME Smart Memory Engine

SMEP Smart Memory Engine and a

Processor cluster with two DSPs

SoC System on Chip

SRAM Static Random Access Memory

TUT Tampere University of Technology

UI User Interface

VHDL VHSIC Hardware Description

Language

VLIW Very Large Instruction Word

VLSI Very Large-Scale Integration

Airyaman
Stamp

Airyaman
Rectangle

Acknowledgements

I would like to express my deepest gratitude to my supervisor Prof. Jari Nurmi,

who made me one of the members of the COFFEE family thanks for opening the

door to a professional academic life and guiding me through this project. I would

like to thanks Mr.Roberto Airoldi for first being a friend in need and second

being a superb instructor, this thesis would not have been completed without his

dedicated supports and guidance from the initial to the very final level of the

project.

I’m thankful to all my fellow COFFEE group member since many parts of my

project was based on their previous research and implementations; and especial

thanks to Dr.Fabio Garzia and Mr.Waqar Hussain for helping me in understand-

ing their previously developed designs.

I wish to express my love and gratitude to my mother Behjat who was my ideal

in both social and academic life, my father Jalal who was full of encouragement,

kindness and always made me believe in myself and my brothers Arash, Hossein

and Ahmadreza who no matter the distances I have always felt their love and

supports.

I would like to thanks my husband Ali who was always beside me with love and

encouragement and also thanks to his family in Espoo and Tehran who brought

more joy to my life.

Thanks to my Office mates Deepak and Roberto who made our office a cheerful

place to work.

Lastly, I offer my regards and blessings to all who supported me in any respect

during the completion of this project.

Leyla S. Ghazanfari

ix

Airyaman
Stamp

Abstract

Tampere University of Technology

International Master’s Degree Programme in Information Technology

Leyla S. Ghazanfari: DESIGN OF A RECONFIGURABLE MULTI-CORE ARCH-

TECTURE FOR STREAMING APPLICATIONS

MSc Thesis, 57pages

March 2012

Major: Digital and Computer Electronics

Examiners: Prof. Jari Nurmi, MSc Roberto Airoldi

Keywords: MPSoC, Streaming applications, Streaming processors, Reconfig-

urable hardware

This thesis presents design of a reconfigurable multi-processor architecture.

The architecture is composed of 9 nodes interconnected to each other through

a 3x3 mesh-based Network-on-Chip. The central node of the architecture hosts

a RISC processor. This node acts as master of the platform, taking care of the

data and task scheduling. The surrounding nodes host a reconfigurable engine

and do the actual processing.

The system was prototyped on an Altera FPGA device and RTL simulations

of the architecture were carried out to ensure the correct functionality of the

system. The platform was designed to process streaming applications. As an

example of these applications, a finite impulse response filter was mapped on the

system. Simulation results showed a speed-up of 6.8x over the same FIR filter

implemented on a COFFEE RISC core, while requiring a 20% less resources of

similar architecture composed by a homogeneous mesh of COFFEE RISC cores.

xi

Airyaman
Stamp

Chapter 1

Introduction

In the past decades Multi-Processor architectures have become an important class

of very large scale integration (VLSI) systems and they have been widely utilized

for the implementation of complex signal processing systems such as multimedia

and wireless communications [20]. On one side there are heterogeneous Multi-

Processors Systems-on-Chip (MPSoCs), which are systems composed of different

types of processing elements (PE). They have the advantage of offering a high

power efficiency and high performance but generally they have limited flexibil-

ity. Homogeneous MPSOC architectures (composed of similar PEs) are generally

based on soft-cores. Although they allow a really high flexibility but they also

have the drawback of limited performance.

In this context the utilization of recofigurable hardware could be exploited in

order to achieve high flexibility and high computational power. At the same time

the range of application of the platform is expanded to different domains. The

goal of recongurable MPSoCs is to adjust the application to the multiprocessor

architecture automatically [35].

The purpose of this thesis is to present a reconfigurable architecture as a pro-

cessing engine for streaming applications. The MPSOC structure will increase

the ability to process parallel tasks and the reconfigurability makes the architec-

ture more suitable for streaming applications. The architecture that is going to

be presented has almost a homogeneous structure but each of the reconfigurable

nodes can function heterogeneously. This architecture can be used for multi-

media applications in general or for instance applications that need to process

vectors. This architecture is implemented in VHDL but receives its inputs in C

code which made the UI much more user friendly. Many of the components that

have been used in this work have been previously developed and tested here at

TUT. This made the developing and testing process faster and more precise.

The thesis is organized as follows: In Chapter 1, we talk about the streaming

1

2 CHAPTER 1. INTRODUCTION

applications. Their main characteristic and applications domain is presented. In

addition the reader will be familiarized with the concept of streaming processor

a state of the art Imagine processor which is also a streaming processor is intro-

duced; In Chapter 2 we speak about MPSoCs (Multi-Processor System-on-Chip)

which are aimed for increasing the performance. The heterogeneous and homo-

geneous structures of MPSoCs are defined and the effect of having reconfigurable

hardware in MPSoC architectures is realized. In this chapter the reader will also

be familiarized with some state of the art MPSoC designs; In Chapter 3 the de-

tails of the new design of the reconfigurable MPSoC architecture for streaming

applications is presented. After reviewing the overall structure of the system,

the architecture is divided into three parts of central controller, reconfigurable

node and the Network-on-Chip (NoC) interconnection and each part is explained

separately. At the end of this chapter the compilation process for the simulator

and the synthesis results are delivered; And finally in Chapter 4 we present an

FIR filter application which is mapped to our architecture.

Airyaman
Stamp

Airyaman
Rectangle

Chapter 2

Streaming Applications

Streaming applications have become increasingly important and widespread. There

have been proofs that streaming media applications are already consuming most

of the cycles on consumer machines and their use is continuing to grow [29].

In this chapter we define the properties of streaming applications then we

introduce their domains with examples from research and industry. In the third

section we present the state of the art streaming processor.

2.1 Characteristics of a Streaming application

In order to declare streaming applications we start by describing its character-

istics. In this section we point out the properties that are common in steaming

applications. They can be organized as follows [33]:

Large streams of data

The initial and most fundamental characteristic of streaming applications is that

it operates on large amount of data. In these applications this data is referred

to as stream data. Stream data enters the operation section from some external

source. Each item of data is processed for limited amount of time and then it

is discarded from the operation section. In streaming applications there is little

data reuse.

Independent stream filters

In streaming computation, sequence of transformations are applied to the data

stream. Every basic unit of transformation is referred to as a filter. In streaming

application each execution step has a filter. These filters read one or more data

3

4
CHAPTER 2. STREAMING APPLICATIONS

from input stream, then perform some operations over them and finally write

one or more of the data results to the output stream. These filters are generally

independent from each other but a chain of them makes the path of data through

the system, meaning that output data of some filters are connected to the input

data of other filters.

Occasional modification of stream structure

Although filters are connected to each other in an almost fixed chain sometimes

the order of this chain can change. This means that when operations are done

on stream data they might enter different set of filters. For example, if there

is high noise on an input channel in a wireless network, it might reacted by

adding some filters to clean up the signal. In some cases these re-initializations

are synchronized with some data in the stream. An example of this situation is

when a network protocol changes from Bluetooth to 802.11 at a certain point of

a transmission.

Occasional out-of-stream communication

In addition to large-volume stream of data that is passed from filter to filter

in streaming applications, it can also happen that filters are used to transfer

occasional control signals. These control signals can happen out-of-stream and

on random situations. They are also much less than stream data. Examples

of these occasions can be changing the volume on the cell phone, error message

printing on a screen or for instance updating a coefficient in an upstream FIR

filter.

High performance expectations

Often streaming applications must be able to satisfy real-time constraints. So ef-

ficient executions in terms of both latency and throughput is very important. In

addition to these concerns there are many embedded applications for instance mo-

bile environment applications where power consumption, memory requirements,

and code size are also important.

2.2 Streaming Applications Domain

Applications which make use of stream have diverse targets they can be used in:

• Embedded devices

• Consumer desktops

• High performance servers

Airyaman
Stamp

Airyaman
Rectangle

2.3. STREAMING PROCESSORS 5

Examples of such applications are Click modular router [24], the Spectrumware

software radio [32, 12], specifications like the Bluetooth communications protocol

[33], the GSM (Global System Mobile) Vocoder [27], and the AMPS (Advanced

Mobile Phone System) cellular base station [2]. Almost any application developed

with Microsoft’s DirectShow library [9], Real Network’s RealSDKSoftwareDevel-

opersKit2001 or Lincoln Labs Polymorphous Computing Architecture [8] are also

streaming applications.

2.3 Streaming Processors

Stream processors are high performance processors that are optimized to run

streaming applications. These processors are more efficient in area and energy

saving in comparison with the conventional programmable architectures. The

growing gap between arithmetic performance and bandwidth cause the gap be-

tween general purpose and special purpose processors to grow. General purpose

processors are limited by bandwidth and so they only use a small portion of

their die area for arithmetic unit. Thus they have relatively a performance which

is low peak. On the other hand special purpose processors, reduce their de-

mands of bandwidth by exploiting locality in their fixed applications. Graphic

chips are examples of such special purpose processors. Hence these processors

can efficiently exploit hundreds of arithmetic units. This means that they dedi-

cate a much larger portion of their die area to arithmetic than general purpose

processors. The gap between the special purpose solutions which are inflexi-

ble and general purpose processors which does not meet the computation and

arithmetic demands in streaming applications is bridged by stream processing.

Stream processing offers high performance without sacrificing programmability.

Stream processing exploits locality and concurrency in the application by parti-

tioning the communication and storage structure in order to reduce its demands

for bandwidth similar to special purpose processors. Hence it can also support

many ALUs efficiently. [21], [23]

2.3.1 State of the Art Streaming Processor

In this section we can study about a state of a art project that uses stream-based

computation at the application, compiler, and architecture level.

Imagine

Imagine project was designed and prototyped at Stanford University. This ar-

chitecture can execute stream-based programs. It has high performance with

48 floating-point units. The steam data is load and stored from the memory

through a streaming memory system. This architecture can provide large amount

Airyaman
Stamp

Airyaman
Rectangle

6
CHAPTER 2. STREAMING APPLICATIONS

Figure 2.1: The Imagine architecture block diagram [22]

of on-chip intermediate storage using its stream register file. During kernal ex-

ecution eight VLIW (Very Large Instruction Word) arithmetic clusters perform

SIMD (Single Instruction Multiple Data) operations on data streams. A micro

controller is used to sequence the data. In order to support the multi-Imagine

systems and the I/O transfers, a network interface is used in the architecture.

Finally the operation of all these units is managed by a stream controller. The

applications that are programed on Imagine architecture use stream program-

ming model. This model is composed of data streams and kernels. Kernels are

small programs that use set of data stream as their inputs, operate on them and

produce set of output data streams. Set of software tools and languages are used

to implement the stream programming model. The programming languages are

called StreamC and KernelC. StreamC is mapped to stream instructions using

stream scheduler and KernalC is mapped to VLIW kernels using kernel scheduler.

Imagine has high performance and is programmable and real-time. Thus appli-

cations such as programmable graphics pipelines have found their research path

through this project. A prototype of this architecture was design and fabricated

in 2002. Imagine contains 21 million transistors and has a die size of 16mm x

16mm in a 0.15 micron standard cell technology [3].

Airyaman
Stamp

Airyaman
Rectangle

Chapter 3

Trends in MPSOC and

Reconfigurable Processors

After studying about streaming applications in chapter one, we realized the im-

portance for high performance hardware that can manipulate the large amount of

data stream. Multi-Processors System-on-Chips (MPSoC) are made to increase

the performance and so they can be a very good choice for architectures that

are aimed for streaming applications. That is why in this chapter we introduce

MPSoCs. They are categorized and defined in to two different types of homo-

geneous and heterogeneous architectures. After defining these terminologies we

also present examples of their state of the art architectures. In order to increase

the performance of our system, reconfigurability can be added to it and so role of

reconfigurable hardware in MPSoC is also explained. By the end of this chapter

the reader will be introduced with the above mentioned concepts and their recent

trends in research and technology.

3.1 MPSoC

MPSoCs are known as an important class in VLSI systems since the last decade.

MPSoCs are composed of multiple components that are amid to process an appli-

cation. All or most of the components needed for an application is encapsulated

inside this VLSI system. Networking, signal processing, multimedia and com-

munications are examples of different areas where MPSoCs are widely used [20].

MPSoC architecture consists of several Processing Elements (PE) connected by

an interconnection structure. An example of the hardware organization of an

MPSoC can be seen in figure 3.1.

MPSoC can be divided into two families: Homogeneous and Heterogeneous.

7

8
CHAPTER 3. TRENDS IN MPSOC AND RECONFIGURABLE PROCESSORS

Figure 3.1: General MPSoC Architecture

Each of them are explained in the following sections.

3.2 Heterogeneous MPSoC

Heterogeneous systems structure is composed of different types of PEs. They are

a set of cores that are connected to each other and can have different function-

ality. For instance a generic heterogeneous MPSoC can consist of one or more

general purpose processors, accelerators which can be for (video, audio,..), DSPs,

peripherals and memory. And these different blocks are connected to each other

through a NoC (Network-on-Chip) interconnection infrastructure. Heterogeneous

MPSoCs are strong in having specialized hardware for different tasks but their

programming environment are usually more complex [18], [31].

3.3 Homogeneous MPSoC

In a homogeneous MPSoC the same programmable building block is instantiated

a number of times. This model of architecture is also called parallel model.

The basic concept of homogeneous models is that the capability should increase

because the number of physical resources has increased. So compared to non-

parallel models the execution time for each resource should divide to the number

of PEs. For instance if now we have N, PEs the application should be N times

faster. However this exact speedup is almost impossible to achieve in practice.

Another benefit of parallel models is that run time frequency decreases and so

dynamic power consumption also decreases significantly. Homogeneous MPSoCs

have an easier programming environment but they also lack in having specialized

Airyaman
Rectangle

Airyaman
Stamp

3.4. STATE OF THE ART IN MPSOCS 9

hardware for different tasks. These MPSoCs can also better provide flexibility,

fault tolerance and scalability [18], [31], [19].

3.4 State of the Art in MPSoCs

In this section we introduce the reader with examples of state of the art hetero-

geneous MPSoCs.

3.4.1 Picochip

PicoArray is designed for signal processing applications. Figure 3.2 shows an im-

age of the Pico Array below the concept of the architecture and communications

methods of this device is describe.

The picoArray Architecture

PicoArray has a parallel, MIMD (Multiple Instruction Multiple Data) architec-

ture. In picoArray different types of PEs are connected to each other through

picoBus. The 16-bit Harvard architecture processors are the basic building block

of the array architecture. Each building block has its own three-way LIW (Long

Instruction Word) and a local memory. To speedup some specific tasks FAUs

(Functional Acceleration Units) and hardwires execution blocks are also added

to this structure. A complete ARM9 processor subsystem can also be added to

this device. [7]

Inter-processor Communications

Inside the picoArray each device is organized in a two-dimensional grid, its com-

munication is done via a network of 32-bits buses and a programmable bus

switches. Ports connect the array elements together. These ports act as nodes

on the picoBus and provide an interface to the bus depending on put and get in-

structions. The inter processor communication protocol is based on TDM (Time

Division Multiplexing). In this protocol, data transfers between processor ports

occur during time slots scheduled automatically by the tools and controlled using

the bus switches [7], [15].

External Communications

Pico Array has three methods of external communications:

• External Processor Interface (EPI)

• Inter-picoArray Interface (IPI)

• Asynchronous Data Interface (ADI)

Airyaman
Rectangle

Airyaman
Stamp

10
CHAPTER 3. TRENDS IN MPSOC AND RECONFIGURABLE PROCESSORS

Figure 3.2: The PicoArray concept [5]

The EPI can be used to configure picoArray devices and it can also be used by

debugging tools for input and output of (2.5 Giga-bits per second) information.

The IPI is used to connect picoArray devices together. Using IPI multiple pi-

coArray devices can be connected to each other and form a system that contains

thousands of processos. The ADI is used for exchanging data with high band-

width (5 Giga-bits per second) external asynchronous data streams. Each device

has a one EPI and four other interfaces each of these interfaces can be configured

as either an IPI or an ADI [15].

3.4.2 MAGALI

MAGALI is a heterogeneous Telecom chip. It supports OFDMA/MIMO TX/RX

baseband algorithms. This chip is composed of different IPs (Intellectual Prop-

erty) which can communicate with each other through a mesh-based NoC. An

image of MAGALI structure is shown in figure 3.3. These IPs are not identi-

cal but each type can be available several times and used when they are needed

by the application. All the resources are associated to a Communication and

Configuration Controller (CCC) and a Network Interface (NI). The CCC and NI

Airyaman
Rectangle

Airyaman
Stamp

3.5. RECONFIGURABLE HW IN MPSOC 11

Figure 3.3: MAGALI Telecom chip resources [13]

control and configure the resources through the system’s NoC. As it is shown in

the figure there are different resources inside the MAGALI chip. The RH (Recon-

figurable Hardware) resources are coarse-grain reconfigurable cores that are used

for complex matrix computations. The SMEs (Smart Memory Engine [26]) are

reconfigurable memories resources which include data re-arrangement functions

trough virtual buffers and configuration servers. The RH and SME type have

no predetermined position in telecommunication chain. The other resources are

OFDM, RX BIT (bit operations) and CHAIN DEC (channel decoding). These

three type are specific reconfigurable IP cores and directly support functions of

the chain for receiving data [13].

3.5 Reconfigurable HW in MPSoC

The goal of Reconfigurable MPSoC is to adjust the application to the multi-

processor architecture automatically [14]. Hardware demands can differ from on

application to another. These demands can also change at runtime. The runtime

property changes happen because the application reacts to environment requests.

For this reason, new degree of freedom in system designs and runtime supports

is made. In programming flexible multi-processor systems, it is very important

that the complexity of the underlying hardware is hidden. Furthermore there is

a need of runtime operating system to take care of the resource management and

runtime scheduling of the applications. Nowadays FPGAs are used in a wide area

of applications. Previously, FPGAs were used as rapid prototyping systems to

integrate test systems. After the testing was done ASICs were used to make the

mass production of those prototypes. But recently things have changed. FPGA

prices are decreasing while the mask-costs of ASICs are still high. In addition

Airyaman
Rectangle

Airyaman
Stamp

12
CHAPTER 3. TRENDS IN MPSOC AND RECONFIGURABLE PROCESSORS

Figure 3.4: Parallel task processing

novel reconfigurable hardware have lower power-consumption then before. These

properties in addition to the flexibility have opened a market in industry and a

wide research area in scientific researches. Especially the ability to have runtime

reconfiguration which is supported by some state of the art FPGAs is a door to

new ideas for adaptive hardware. As long as FPGA architecture is SRAM or

FLASH based it can be reconfigured many times. Xilinx Virtex FPGA is one of

modern state-of-the-art FPGA devices which support a partial dynamic runtime

reconfiguration. This provides new aspects for designers who want to develop

applications which need reconfigurable and flexible hardware.

Figure 3.4 shows an example of running tasks which are executed in paral-

lel. The attributes shown in this diagram does not make difference between a

hardware reconfigurable system and microprocessor based system approach.

Another dimension is added in runtime reconfigurable systems. In the fig-

ure 3.5 axes X and Y represent chip area dimensions. For instance here we can

see that task 4 needs a lager amount of chip area compared to task 3 also task

1 needs more chip area than task 2. Figure 3.6 shows a cut through XY axes at

t1 and t2 of Fig 3.5. Here we can see more clearly which tasks need more chip

area. So it is realized that chip area can be reused for different tasks processes

that begin and finish at different points of time. These reusable chip areas can

be reconfigurable hardware that is used applications which their data processing

is on-demand. It means that the processing of data is initiated either by external

triggers or internal requirements. This way of approach has a benefit of reducing

chip size because only currently required tasks are using the HW and the idle

functions can be loaded from external memory when needed. [18]

3.6 State of the Art in MPSoCs with Reconfigurable HW

In this section GENEPY (homoGENEous Processor arraY) architecture is pre-

sented. GENEPY is state of the are for homogeneous MPSoCs with reconfig-

Airyaman
Rectangle

Airyaman
Stamp

3.6. STATE OF THE ART IN MPSOCS WITH RECONFIGURABLE HW 13

Figure 3.5: Parallel task processing in time and space

Figure 3.6: Cut parallel to the XY-plane at time point t1 and t2

Airyaman
Rectangle

Airyaman
Stamp

14
CHAPTER 3. TRENDS IN MPSOC AND RECONFIGURABLE PROCESSORS

urable hardware.

3.6.1 GENEPY

GENEPY [19] is a platform for 4G applications. This platform is built with

Smart ModEm Processors (SMEP) and it is interconnected with a NoC. The

SMEP used in this platform has been implemented in 65nm low-power CMOS

and it can perform 3.2 GMAC/s with 77 GBits/s internal bandwidth at 400MHz.

Two versions of GENEPY are presented in this sub-section.

GENEPY v0

GENEPY v0 is a homogeneous processor array with a host processor. SMEP

v0 is a Smart Memory Engine (SME) and a Processing unit with two DSPs.

Figure 3.7 shows the structure of this unit. This unit is used in GENEPY v0

and is used to support both data manipulation and data processing. The SME

handles four logical buffers that are mapped on the same 32KB local memory

(RAM data). Four Read Processors (RP) are used to manipulate data on the

four buffers. A RP is in charge of executing microinstructions to read data from

a buffer. As a result of this action it generates read addresses, writes data to a

specific target and it is also responsible for handling synchronizations between

RPs. The write target of RPs can be the Network Interface to access other units

or another buffer in the local memory. The inner communications of the SMEPs

are supported by a 6x6 crossbar. This interconnect can support six parallel 32-

bits transfers at 400MHz. There are two DSPs inside the processing cluster and

each of them reads incoming data from an input FIFO, the local memory stores

the intermediate processing values and the results are written into an output

FIFO. The read process in the SME reads the output data-flow from the output

FIFO. This SMEP unit of the processor array is highly programmable. The

computing is DSP based. Figure 3.7 also shows the CCC block. This block has

the same functionality as the one that was described in MAGALI and is used to

perform the reconfiguration and the scheduling of the system. GENEPY v0 has a

host processor and N SMEP units which are interconnected by an asynchronous

NoC (see figure 3.8). The main advantage of this solution is a reduced NoC size

(number of routers) for the same computing power compared to the MAGALI

structure.

GENEPY v1

GENEPY v1 has a homogeneous platform with a single units type which has

been instantiated several times. Each of these units is responsible for processing,

configuration and scheduling. GENEPY v1 has the same processing and data

management blocks as GENPY v0. The new architecture that is used in this

Airyaman
Rectangle

Airyaman
Stamp

3.6. STATE OF THE ART IN MPSOCS WITH RECONFIGURABLE HW 15

Figure 3.7: Elementary unit (SMEP v0) of the homogeneous processor array
with host processor [19]

Figure 3.8: GENEPY v0 platform [19]

system is SMEP v1. Figure 3.9 shows the structure of this unit. Using a Control

Processor instead of the previous CCC, the system can be fully distributed con-

trol. This control processor is a MIPS processor which is in charge of dynamic

reconfigurations, real-time scheduling and synchronizations. Several extensions

are used to improve the efficiency of the CPU. They are:

• Input/Output extension to manage a control flow between units

• Timer extension to handle real-time constraints

• Configuration handler to improve reconguration speed

Airyaman
Rectangle

Airyaman
Stamp

16
CHAPTER 3. TRENDS IN MPSOC AND RECONFIGURABLE PROCESSORS

Figure 3.9: Elementary unit (SMEP v1) of the fully homogeneous processor
array [19]

The NI, the SME and the processing cluster is managed by the control processor.

One difference between CCC and the control processor is that the management

of the control processor is software-based which causes increase in the flexibility

and the autonomy of each unit and there will be no need for a host processor.

Figure 3.10 shows the fully homogeneous processor array which was described

here. GNEPY v1 platform is a NoC interconnection of SMEP v1 units. At

this level, the platform is homogeneous and fully distributed. To increase the

computing capacity of GENEPY v1, SMEP unit can be replicated as needed.

Airyaman
Rectangle

Airyaman
Stamp

3.6. STATE OF THE ART IN MPSOCS WITH RECONFIGURABLE HW 17

Figure 3.10: Fully homogeneous processor array: GENEPY v1 platform [19]

Airyaman
Rectangle

Airyaman
Stamp

Chapter 4

Architecture Proposal and

Synthesis Procedure

In the previous chapter the reader was introduced with the concept of MPSoC

and reconfigurable hardwares. In this chapter we present a detailed picture of

the proposed architecture, its components and discuss about the procedure that

should be taken in order to synthesis our hardware. We will also present figures

to show the hardware usages of our design.

4.1 System overview

The proposed architecture is composed of 9 nodes that are connected to each

other in a 3x3 mesh topology. This architecture is based on Silicon Café [28].

Figure 4.1 is an overall view of the system. The central node is system’s controller

(COFFEE [25]) which is surrounded by eight other nodes that are reconfigurable.

The communication between these nodes is supported by a Network-on-Chip

(NoC) platform [11]. In the following sub-sections we introduce these parts in

more detail.

4.1.1 COFFEE

COFFEE is a general-purpose 32-bit RISC (Reduced Instruction Set Computer)

processor. This processor was developed at TUT. This core was designed to be

used in embedded systems and it was aimed for applications related to telecom-

munication and multimedia and its instruction set has 66 instructions [30]. The

external interface of this core is illustrated in figure 4.2. Having an overall view

of what are the main characteristics of the COFFEE core, now we are ready to

explain its role in our architecture.

19

20 CHAPTER 4. ARCHITECTURE PROPOSAL AND SYNTHESIS PROCEDURE

Figure 4.1: System overview

The central node acts as the system’s controller. We have chosen COFFEE

(a Core For FrEE [25]) RISC core to be the central node. This node is the only

node that is directly connected to the I/O ports. The C code which is the input

of the COFFEE core determines the data and configuration words that should be

passed from the controller node to the corresponding reconfigurable node through

the NoC.

4.1.2 Network

In this architecture, the interface between the central controller and the recon-

figurable nodes is a NoC-Based platform which has been also developed at TUT.

Figure 4.3 shows a global view of this network.

This platform has a hierarchically heterogeneous architecture which can in-

crease bandwidth inside processing clusters by using its local switches that re-

place shared buses. The NoC platform has priority-based low-latency arbitration

logic with a memory space conserving programming model. In short we can say

that our NoC can efficiently utilize the communication resources through the bus

oriented standard [11].

Airyaman
Rectangle

Airyaman
Stamp

4.1. SYSTEM OVERVIEW 21

Figure 4.2: Interface of COFFEE Core [1]

Airyaman
Rectangle

Airyaman
Stamp

22 CHAPTER 4. ARCHITECTURE PROPOSAL AND SYNTHESIS PROCEDURE

Figure 4.3: Global view of the NOC-based platform [11]

Airyaman
Rectangle

Airyaman
Stamp

4.1. SYSTEM OVERVIEW 23

Figure 4.4: Reconfigurable Node Structure

4.1.3 Reconfigurable Node

Previously we discussed the overall view of our multi-core system, the central core

and the network was explained. Now we are ready to take a deeper look to the

structure of the surroundings reconfigurable nodes. Figure 4.4 shows an abstract

view of the components and connections that are inside of each reconfigurable

node. Each reconfigurable node can be divided in to five main sections that are:

• NoC interface

• Streaming data

• Processing element

• Configuration memory

• Controllers

Next, these parts will be explained with more details.

Airyaman
Rectangle

Airyaman
Stamp

24 CHAPTER 4. ARCHITECTURE PROPOSAL AND SYNTHESIS PROCEDURE

Figure 4.5: NOC interface structure

NoC Interface

In figure 4.5 the NoC interface is shown. The initiator, switch and target blocks,

are the main components of our network interface. These components have been

previously developed here at TUT. The design aim of this switch is to replace

shared buses to increase bandwidth in the local clusters of large systems-on-

chip [10]. In the figure we can see two sets of arrows. The black arrows are the

routes for receiving the data from the NoC into the initiator, from the initiator

to the switch and from there to the other components. The red arrows show the

routes that data is sent to the NoC. After the processed data is ready it is sent

to the switch and from there to the target component. With every data there is

an address, using this address the data will be sent to the predefined core in the

network.

Streaming Data Component

Streaming data component is composed of four FIFOs (First In First Out). The

role of this component is to receive the data from the switch and keep them in the

FIFOs until the processing time. In figure 4.6 an abstract view of this component

is shown.

The FIFOs that are used in the streaming data component was previously

implemented as a gate-level net-list in our department. One of the important

features of this structure is that it is an asynchronous FIFO, meaning that it can

have different frequency clock cycles for writing and reading [34]. This feature

will be used in our implementation. When data is received by the reconfigurable

core, it is sent to the streaming one by one on every clock. This clock frequency is

Airyaman
Rectangle

Airyaman
Stamp

4.1. SYSTEM OVERVIEW 25

Figure 4.6: Streaming data component

Figure 4.7: The four FIFOs are filled row by row

the same frequency which the total system and central core is working with. The

entering data will fill the FIFOs row by row. The order with witch the FIFOs

are filled can be observed in figure 4.7.

After all the four FIFOs are filled with data, the reading procedure can start

to stream data to the processing section. Reading the data from the FIFOs will

be done four times slower than writing the data to the streaming data component.

Reading the data will be four times slower but instead we will read four data on

Airyaman
Rectangle

Airyaman
Stamp

26 CHAPTER 4. ARCHITECTURE PROPOSAL AND SYNTHESIS PROCEDURE

every cycle.

Reconfigurable Processing Element

The Reconfigurable Processing Element (RPE) is composed of four reconfigurable

cells attached to multiplexers, data and control signals. The structure of the

RPE is shown in figure 4.8. RPE speed of processing is four times slower than

the system clock cycle. This means that RPE works at the same pace as the

streaming data read procedure does.

Each reconfigurable cell is one CREMA (Coarse grain REconfigurable array

with Mapping Adaptiveness [16], [17]) cell. All the CREMA cells can be con-

figured to do different operations such as addition, subtraction, multiplication,

etc. depending on the value of their Configuration signal (CONF). The select

signals (sel) choose the inputs operands for each reconfigurable cell. By looking

at figure 4.8 we can see that RPE has four inputs and four outputs. The four

inputs are the four outputs of the streaming data component which was described

previously.

The outputs of the RPE should be sent back to the network. So first they

should be sent to the NoC interface. At every cycle, four data is generated as

RPE output but the switch can transfer one data at a time. This problem is

solved by our multi clocks which have different frequencies. The output data is

sent to the switch four times faster than it is generated as RPE output.

In figure 4.9 we can see that RPE outputs will first enter a four-input mul-

tiplexer. With every RPE clock cycle four different values can be sent to the

switch via this multiplexer.

By looking at figure 4.10 the RPE clock process can be described easier. We

can see that on every RPE clock cycle four data (for example: D0,D1,D2 and

D3) will enter the RPE. Since there are two levels of reconfigurable cells the final

results (meaning: R0,R1,R2 and R3) will be ready after two RPE clock cycles

delay. These results can enter the switch from our four-input multiplexer that

was explained from figure 4.9 on four consecutive system clock cycles.

Configuration Memory

The fourth important section of the Reconfigurable cell is the configuration mem-

ory. An image of this memory is shown in figure 4.11. The RPE configuration

signals are stored in the first four space of the memory. In the fifth space an

address is stored, which refers to the address of the core that the RPE outputs

are sent to. In the sixth space the REP select signals are stored. Each select sig-

nal is connected to a two to one multiplexer meaning that each of the four select

signals is one bit. They can be seen in figure 4.8. These four bits are stored in

the LSBs (Least Significant Bits) of the sixth word in the memory. The order of

the select signals has been specified in figure 4.12.

Airyaman
Rectangle

Airyaman
Stamp

4.1. SYSTEM OVERVIEW 27

Figure 4.8: Reconfigurable Processing Element

Figure 4.9: RPE output selection

Airyaman
Rectangle

Airyaman
Stamp

28 CHAPTER 4. ARCHITECTURE PROPOSAL AND SYNTHESIS PROCEDURE

Figure 4.10: Clocking system

Figure 4.11: Reconfigurable Processing Element

In order to increase the reconfigurability of the architecture the seventh space

of the configuration memory is where the result pattern is stored. The result

pattern word specifies the order in which our four RPE outputs are sent to the

network. The Result pattern is sent to the reconfigurable processing element

controller. Depending on the result pattern value the RPE controller assigns

different values to Mux4 Sel signal of the RPE output multiplexer. The pattern

for different values of the result pattern is specified in table 4.1.

Airyaman
Rectangle

Airyaman
Stamp

4.1. SYSTEM OVERVIEW 29

Figure 4.12: Select signals order in the configuration memory.

Table 4.1: Pattern specifications

Result Pattern Order of Results entering the Network
in four consecutive clock cycles

X 00000000 R0, R1, R2 and R3

X 00000001 R0, R2, R0 and R2

X 00000002 R1, R2, R1 and R2

X 00000003 R0, R0, R0 and R0

X 00000004 R1, R1, R1 and R1

X 00000005 R2, R2, R2 and R2

X 00000006 R1, R3, R0 and R2

4.1.4 Controllers

In each reconfigurable cell there are three controllers. They are as follow:

• Memory Controller

• FIFOs Controller

• Reconfigurable Processing Element Controller (RPEC)

An abstract view of them were shown if figure 4.4. In the following parts we

will look at them with more details.

Memory Controller

Figure 4.13 shows the logic of the memory controller. Our memory controller is

a simple 3 to 8 decoder which can be activated with an enable (en) signal. As it

is shown in the figure Imem-request-link is a bus link that is received from the

network interface (NOC UI). This bus is 68 bits. The 32-bits configuration data,

32-bits address of the configuration data and 1-bit write enable (wren) control

signal are also in this link. The fourth to second bits of the address is the input

of the decoder. The first two bits of the address are left out because every data

is 32-bits meaning that its four bytes so the first two address for every new data

will be ”00”. When the Imem-link-wren signal is active it means a data should

Airyaman
Rectangle

Airyaman
Stamp

30 CHAPTER 4. ARCHITECTURE PROPOSAL AND SYNTHESIS PROCEDURE

Figure 4.13: Memory controller

enter our configuration memory block. Using the address bits we can select the

memory block to which the data will locate.

FIFOs Controller

FIFOs controller primer task is to assign appropriate values to the streaming

data component control signals. Figure 4.14 shows the signals connected to this

controller. The inputs are received from NoC UI and streaming data components

and the output signals are sent to streaming data and RPEC component which

will be explain after this part. FIFOs controller main structure is a state machine.

As it can be seen in the figure dmem-request-link is a bus that contains 32-bits

data write enable signal (dmem-link-wren) and 32-bits address of the data. The

data is sent to the Streaming data component. When the write enable (en) signal

is activated it means that the data should be written in one of the streaming data

Airyaman
Rectangle

Airyaman
Stamp

4.1. SYSTEM OVERVIEW 31

Figure 4.14: FIFOs controller

FIFOs. The destination FIFO is selected through the write increment (winc)

signal with the third and second bit of the address. The first two bits of the

address are left out because the data are 32-bits. In the table 4.2 this selection

pattern is explained.

When the FIFOs become full their write full (wfull) signal is activated. At

this point no more data is written to the streaming data component which means

all the bits of the winc signal are zero. Now its time to start processing these

data and activate the RPE component. So ”Start RPE” is activated and the data

are read from the FIFOs four at a time by activating the read increment (rinc)

signal. The reading procedure is done until the FIFOS are empty. The ”rempty”

signal points out whether the FIFOs are empty or not.

Airyaman
Rectangle

Airyaman
Stamp

32 CHAPTER 4. ARCHITECTURE PROPOSAL AND SYNTHESIS PROCEDURE

Table 4.2: FIFOs selection to write data

Address (3 downto 2) winc Description

”00” ”0001” Data is written to the FIFO number 1

”01” ”0010” Data is written to the FIFO number 2

”10” ”0100” Data is written to the FIFO number 3

”11” ”1000” Data is written to the FIFO number 4

RPEC

Figure 4.15 shows the Reconfigurable Processing Element Controller (RPEC)

and its connections. RPEC receives its input signals from configuration memory,

FIFOs controller and streaming data components. The clock signals are the

inputs of the reconfigurable core. RPEC outputs are sent to RPE, RPE output

multiplexer and NoC UI.

The ”Reconfigurable Cells en” signal is connected to the enable input of all

four reconfigurable cells inside the RPE. When the ”Start RPE” signal is acti-

vated by the FIFOs controller, this signal is also activated.The reconfigurable cells

enable signal will be deactivated when there are nomore data to process. This

means that no more data are left in the streaming data component. So when

”rempty” signal is active the reconfigurable cells enable signal is deactivated.

The ”Mux4 Sel” signal select the order with which we want RPE outputs to

be sent to the NoC UI. Result pattern word from the configuration memory is

received as input to select the four consecutive values of the Mux4 Sel signal. The

clock frequency with which the four input multiplexer select signal will change

is same as the ”System clk” frequency. More details of this can be found in

table 4.1.

For every final result data that is generated from the RPE an address should

be assigned. RPEC has a counter that counts the number of RPE outputs data.

RPEC adds the counter value to the ”Core Address” that was received from the

configuration memory and generates the proper address.

”wr en” signal is active when a data is ready to be sent to the NoC UI. This

signal is activated and deactivated same as reconfigurable cells enable signal,

but the only difference is that ”wr en” turns one two ”RPE clk” cycles after

”Reconfigurable Cells en”. This is done because RPE outputs are generated

with two REP cycles delay from the time their inputs were assigned.

The NoC UI input is ”cpu-request-link” bus. This bus is a combination of

the RPE output data, the write enable signal and the result data address. These

links can be seen in the figure.

Airyaman
Rectangle

Airyaman
Stamp

4.2. COMPILATION AND SIMULATION 33

Figure 4.15: RPEC

Airyaman
Rectangle

Airyaman
Stamp

34 CHAPTER 4. ARCHITECTURE PROPOSAL AND SYNTHESIS PROCEDURE

Figure 4.16: Design compilation procedure

4.2 Compilation and Simulation

All the components explained in chapter 3 were coded in VHDL (VHSIC Hard-

ware Description Language). In order to test and observe the simulation of the

architecture a c code was implemented and fed into the system. This procedure

can be explained using the diagram in figure 4.16.

The C code is compiled using COFFEE compiler. This compiler has been

developed with the COFFEE core here at TUT. By compiling the C code two

memory image files are generated. ”demo ts.hex” is memory image file which

stores the instructions and ”demo ds.hex” is data memory image file.

The VHDL codes were compiled using Modelsim software. For compiling, all

the components were organized in bottom to top level in our script file. After

the compilation of the VHDL codes their library files were generated and stored

in a predefined location.

For compiling the C code and VHDL files Cygwin which is a Linux-like en-

vironment for windows was used. Through ”vsim” command, the top entity is

called and the design is loaded in to the Modelsim.

Airyaman
Rectangle

Airyaman
Stamp

4.3. SYNTHESIS 35

Figure 4.17: Design partition planner

4.3 Synthesis

The design was synthesized using Altera Quartus software. Stratix IV was chosen

as the target FPGA. Figure 4.17 shows the design partition. The clusters from

I10 to I18 are the 9 nods of the overall system. We can see that I14 cluster has a

larger partition compared to the other nodes, and this is because it is COFFEE

core. The other 8 clusters are our reconfigurable nodes. Other than these nine

nodes, we can view I20 mesh which represents the network.

Table 4.3 presents a summary of hardware resources that our architecture

consumes. The register and logic elements numbers also show that COFFEE

node consumes more hardware than the Reconfigurable node.

The number of DSPs used in this system is 166 and the table shows that each

of the nine cores used sixteen DSPs.

Airyaman
Rectangle

Airyaman
Stamp

36 CHAPTER 4. ARCHITECTURE PROPOSAL AND SYNTHESIS PROCEDURE

Table 4.3: FPGA synthesis results of the proposed Reconfigurable MPSOC ar-
chitecture

Registers #Logic Elements # DSP

System 18925 45154 144

NOC 4261 5295 0

COFFEE Node 5454 5708 16

COFFEE Core 5087 5177 16
Other peripherals 367 521 0

Reconf. Node 1143 4260 16

RPE 289 3479 16
Steaming Data 288 262 0
CONF. MEM 90 0 0

Airyaman
Rectangle

Airyaman
Stamp

Chapter 5

Application Mapping Example

In the previous chapter the proposed architecture was explained. In this chap-

ter we map an FIR filter application to our architecture. We will go through

the applications theory and present an introductory section about FIR filters

next we focus on the solution we have chosen to map this application in to our

architecture. Finally in the last section the performance of the application on

this architecture is compared to the same application on a single COFFEE core

processor.

5.1 FIR Filter

In digital signal processing ”filtering” is a common term that is applied to many

applications. Any operation performed to extract wanted information from a

digital signal is called filtering in general.Finite Impulse Response (FIR) filters is

a filter whose impulse response is of finite duration that is because it settles to

zero in finite time.

For a discrete-time FIR filter, the output is a weighted sum of the current and

a finite number of previous values of the input. The operation can be described

by the following equation. This equation defines the output sequence y[n] in

terms of its input sequence x[n]:

Yn =
N∑
i=0

Xn−i · bi (5.1)

in this equation :

Y[n] is the output signal,

X[n] is the input signal,

bi are the filter coefficients,

37

38 CHAPTER 5. APPLICATION MAPPING EXAMPLE

Figure 5.1: FIR filter diagram [5]

The coefficients make up the impulse response. N is the order of the filter;

an N th-order filter has (N + 1) terms on the right-hand side. X[n − i] in these

terms are commonly called taps based on the structure of a tapped delay line

that in many implementations or block diagrams provides the delayed inputs to

the multiplication operations [6], [4].

In the next section we explain how an FIR filter is mapped to our architecture.

5.2 Mapping The Application

Figure 5.2 shows our nine-core architecture. As we described in the previous

chapter, only the central controller is connected to system’s I/O. We receive the

X input signals and the coefficients b array from the input and we send the final

Y array result to the output (see figure 5.2).

The central controller sends data and configuration that are required to each

node. We decided to have 8 number of coefficients.

At the start the first 512 data of the X array and the coefficients are sent to

the first node. When the reconfigurable nodes apply the process on the data the

products that are as below are send back to the central controller.

X0 ∗ b0, X1 ∗ b1, .., X7 ∗ b7, .., X511 ∗ b7
In the central core the total sum of these products are for calculation and

these output signals can be generated:

Y0, Y8, .., Y64.

At the same time that node0 is sending the products to the central controller,

the shifted X array is also send to the next node. In order for the next node to

starts it process, the controller will send the coefficients plus the next X value

(X512) to node1. The same process as the first node is operated to produce and

Y1, Y9, .., Y65.

Figure 5.3 shows the transmission of data that needs to be done between in

the network in order to generate the first three results. Figure 5.5 and 5.6 present

the order which the four FIFOs in the streaming data component are filled in

Airyaman
Rectangle

Airyaman
Stamp

5.2. MAPPING THE APPLICATION 39

Figure 5.2: FIR filter I/O

node0 and nodei respectively. The rows of data that are processes to generate

each Y output are also illustrated in these two figures.

In addition to the streams of data that are transfered in our MPSoC we

also have configuration memory words which needs to be set for the application.

Figure 5.4 shows configuration memory component of each reconfigurable node

for our filter. So as it can also be seen in figure 5.7 the first to reconfigurable

cells in the RPE act as a multiplier and the second two are repeated . The

”Select” word in configuration memory is zero which means that the second row

of reconfigurable cells receive their inputs directly from the outputs the cells

above them. The result pattern is assigned to value six and that means that the

pattern which the results are send to the NI is in this order :

R1,R3,R0 and R2.

This order can be seen from left to right in figure 5.7 where the data and

address bus are shown. The central controller (COFFEE core) address is loaded

in the memory and as it can also be seen in figure 5.4 the free space is used for the

next node address. This addresses are send to RPEC then they are synchronized

with their corresponding data and finally sent to the NoC.

Airyaman
Rectangle

Airyaman
Stamp

40 CHAPTER 5. APPLICATION MAPPING EXAMPLE

Figure 5.3: Stream of data for the first three results in the FIR filter application

Figure 5.4: Configuration memory of each reconfigurable node in the FIR filter
application

Airyaman
Rectangle

Airyaman
Stamp

5.2. MAPPING THE APPLICATION 41

Figure 5.5: The order which the streaming data component of Node 0 is filled
in the FIR filter application

Figure 5.6: The order which the streaming data component of Node i is filled in
the FIR filter application

Airyaman
Rectangle

Airyaman
Stamp

42 CHAPTER 5. APPLICATION MAPPING EXAMPLE

Figure 5.7: RPE process in FIR filter application

5.3 Performance analysis

After mapping the FIR filter on our design the same filter was implemented on

a single COFFEE core processor. As the equation 5.2 shows, it takes 144 clock

cycles to generate each sample.

FIRCOFFEE = 144Cycles/Sample (5.2)

In our architecture in every 16 clock cycles the Xi ∗ bj products of 8 out put

signals are ready and it take Tsum clock cycles to sum up every set of products

for each output sample.Hence, we have:

8 ∗ FIRmulti−core = 16 + 8 ∗ Tsum (5.3)

Simulations show that Tsum is equivalent to 19 system clock cycles. As a

result :

Airyaman
Rectangle

Airyaman
Stamp

5.3. PERFORMANCE ANALYSIS 43

FIRmulti−core = (16 + 8 ∗ 19)/8 = 21Cycles/Sample (5.4)

COFFEEPerformance

Multi− CorePerformance
= 144/21 = 6.857 (5.5)

By comparing the two final results we can conclude that the application per-

formance has a speed up of 6.8 in the recent architecture in comparison with a

single COFFEE core.

Airyaman
Rectangle

Airyaman
Stamp

Conclusion

In this thesis we discussed the characteristics of streaming applications and their

wide range of domain. We saw that streaming processors fill up the gap between

general purpose processors and specific purpose processors meaning that they

can perform wide range of applications and also have high performance. It was

realized that choosing a multi-processor will gain our goal to have higher perfor-

mance and to facilitate the use of processor for general purposes, reconfigurability

can be introduced in the design.

Hence, after introducing multi-processor system-on-chips and use of reconfig-

urable hardware in the state of the art processors we presented our own design.

The proposed architecture is a MPSoC composed of nine cores interconnected to

each other in a 3x3 mesh topology NoC. The central node is a COFFEE RISC

core responsible for data and configuration words streaming and the eight other

surrounding nodes act as reconfigurable processors. A streaming data component

is located in the reconfigurable nodes to handle the data stream that enters the

nodes. The RPE component is configured through the configuration word which

were previously loaded in the configuration memory and made their process on

the data stream.

After developing the architecture, it was simulated in modelsim and synthe-

sized on a Startix IV Altera FPGA. The architecture of this design was coded

in VHDL and the application was fed to the COFFEE core in C code. Using

many pre-developed components in our architecture speed up the progress of sys-

tem implementation and testing. The correctness of the design was first checked

through simple test codes and finally an FIR filter application was mapped to

the architecture. The FIR filter was also implemented on a single COFFEE core.

The obtained speed-up for the proposed architecture was 6.8x, when compared to

the COFFEE implementation. Also from the synthesis result we could observe

that this architecture is about 20% smaller in size compared to a similar nine

core MPSoC were all nodes are COFFEE RISC cores.

45

Airyaman
Stamp

Bibliography

[1] COFFEE Core User Manual - 2007. [cited at p. iii, 21]

[2] Eia/tia: Mobile station-land station compatibility spec. tech. rep. 553 (1989).

[cited at p. 5]

[3] http://cva.stanford.edu/projects/imagine/. [cited at p. 6]

[4] http://en.wikipedia.org/. [cited at p. 38]

[5] http://images.google.com/. [cited at p. iii, iv, 10, 38]

[6] http://www.edaboard.com/thread180310.html. [cited at p. 38]

[7] http://www.picochip.com/page/42/multi-core-dsp-architecture. [cited at p. 9]

[8] Lebak, j.: Polymorphous computing architecture (pca) example applications and

description. external report, mit lincoln laboratory (august 2001). [cited at p. 5]

[9] Microsoft corporation: Microsoft directshow. online documentation (2001).

[cited at p. 5]

[10] T. Ahonen and J. Nurmi. Programmable switch for shared bus replacement. In

Proc. Ph Research in Microelectronics and Electronics 2006 D, pages 241–244, 2006.

[cited at p. 24]

[11] Tapani Ahonen and Jari Nurmi. Hierarchically heterogeneous network-on-chip.

In EUROCON 2007 The International Conference on Computer as a Tool, 2007.

[cited at p. iii, 19, 20, 22]

[12] V. Bose, M. Ismert, M. Welborn, and J. Guttag. Special issue on software radios.

In Virtual radios. IEEE/JSAC, 1999. [cited at p. 5]

[13] Fabien Clermidy, Romain Lemaire, Xavier Popon, Dimitri Ktenas, and Yvain Thon-

nart. An open and recongurable platform for 4g telecommunication: Concepts and

application. 2009. [cited at p. iii, 11]

[14] Linfeng Ye Jean-Philippe Diguet and Guy Gogniat. Reconfigurable mpsocs for on-

demand computing. In Groupe d Etudes du Traitement du Signal et des Images,

2009. [cited at p. 11]

47

Airyaman
Stamp

48 BIBLIOGRAPHY

[15] Andrew Duller, Daniel Towner, Gajinder Panesar, Alan Gray, and Will Robbins.

picoarray technology: the tools story. In Proceedings of the Design, Automation and

Test in Europe Conference and Exhibition (DATE05), 2005. [cited at p. 9, 10]

[16] F. Garzia, W. Hussain, and J. Nurmi. Crema: A coarse-grain reconfigurable array

with mapping adaptiveness. In Proc. Int. Conf. Field Programmable Logic and

Applications FPL 2009, pages 708–712, 2009. [cited at p. 26]

[17] Fabio Garzia. From Run-Time Reconfigurable Coarse-Grain Arrays to Application-

Specific Accelerator Design. PhD thesis, Tampere University of Technology, 2009.

[cited at p. 26]

[18] Michael Hubner and Jurgen Becker. Multiprocessor System-on-Chip: Hardware De-

sign and Tool Integration. Springer, 2011. [cited at p. 8, 9, 12]

[19] Camille Jalier, Didier Lattard, Ahmed Amine Jerraya, Gilles Sassatelli, Pascal

Benoit, and Lionel Torres. Heterogeneous vs homogeneous mpsoc approaches for a

mobile lte modem. DATE, 2010. [cited at p. iii, 9, 14, 15, 16, 17]

[20] W. Wolf A .A. Jerraya and G. Martin. Multiprocessor system-on-chip (mpsoc)

technology. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 2008. [cited at p. 1, 7]

[21] Ujval J. Kapasi, William J. Dally, Scott Rixner, John D. Owens, and Brucek

Khailany. Programmable stream processors. In IEEE Computer, 2003. [cited at p. 5]

[22] Ujval J. Kapasi, Peter Mattson, William J. Dally, John D. Owens, and Brian Towles.

Stream scheduling. In MICRO-34, 2001. [cited at p. iii, 6]

[23] Brucek Khailany, William J. Dally, Scott Rixner, Ujval J. Kapasi, John D. Owens,

and Brian Towles. Exploring the vlsi scalability of stream processors. In In Interna-

tional Conference on High Performance Computer Architecture, 2003. [cited at p. 5]

[24] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M.F. Kaashoek. The click modular

router. ACM Trans. on Computer Systems 18, pages 263–297, 2000. [cited at p. 5]

[25] J. Kyllainen and J. Nurmi. Coffee - a core for free. International symphosium on

System-on-Chip. Procedings, 2003. [cited at p. 19, 20]

[26] Jerome Martin, Christian Bernard, Fabien Clermidy, and Yves Durand. A micropro-

grammable memory controller for high-performance dataflow application. In IEEE

International Symposium on Networks-on-Chips (NoCs), 2009. [cited at p. 11]

[27] M. Mouly and M. Pautet. The gsm system for mobile communications. In Cell&Sys,

1992. [cited at p. 5]

[28] J. Nurmi. Silicon cafe : a heterogeneous multi-processor platform based on coffee

(risc core). In 8th International Forum on Application-Specific Multi-Processor SoC,

2008. [cited at p. 19]

[29] Scott Rixner, William J. Dally, Ujval J. Kapasi, Brucek Khailany, Abelardo Lpez-

Lagunas, Peter R. Mattson, and John D. Owens. A bandwidth-efficient architecture

for media processing. In Micro-31, 1998. [cited at p. 3]

Airyaman
Stamp

Airyaman
Rectangle

Airyaman
Stamp

BIBLIOGRAPHY 49

[30] Piia Saastamoinen. Program Code Compression on Single-and Multi-Core Embedded

Systems. PhD thesis, Tampere University of Technology, 2012. [cited at p. 19]

[31] Hao Shen and Frederic Petrot. Novel task migration framework on congurable

heterogeneous mpsoc platforms. In IEEE, 2009. [cited at p. 8, 9]

[32] D. Tennenhouse and V. Bose. The spectrumware approach to wireless signal pro-

cessing. In Wireless Networks, 1999. [cited at p. 5]

[33] William Thies, Michal Karczmarek, and Saman Amarasinghe. Streamit: A language

for streaming applications. Springer-Verlag, pages 179–196, 2002. [cited at p. 3, 5]

[34] Xin Wang, T. Ahonen, and J. Nurmi. A synthesizable rtl design of asynchronous

fifo. In Proc. Int System-on-Chip Symp, pages 123–128, 2004. [cited at p. 24]

[35] Linfeng Ye, Jean-Philippe Diguet, and Guy Gogniat. Modeling of reconfigurable

mpsocs for on-demand computing. In GRETSI, 2009. [cited at p. 1]

Airyaman
Stamp

Airyaman
Rectangle

	Contents
	List of Figures
	List of Tables
	List of Symbols and Abbreviations
	Acknowledgements
	Abstract
	1 Introduction
	2 Streaming Applications
	2.1 Characteristics of a Streaming application
	2.2 Streaming Applications Domain
	2.3 Streaming Processors
	2.3.1 State of the Art Streaming Processor

	3 Trends in MPSOC and Reconfigurable Processors
	3.1 MPSoC
	3.2 Heterogeneous MPSoC
	3.3 Homogeneous MPSoC
	3.4 State of the Art in MPSoCs
	3.4.1 Picochip
	3.4.2 MAGALI

	3.5 Reconfigurable HW in MPSoC
	3.6 State of the Art in MPSoCs with Reconfigurable HW
	3.6.1 GENEPY

	4 Architecture Proposal and Synthesis Procedure
	4.1 System overview
	4.1.1 COFFEE
	4.1.2 Network
	4.1.3 Reconfigurable Node
	4.1.4 Controllers

	4.2 Compilation and Simulation
	4.3 Synthesis

	5 Application Mapping Example
	5.1 FIR Filter
	5.2 Mapping The Application
	5.3 Performance analysis

	Conclusion
	Bibliography

