
 Eindhoven University of Technology

MASTER

Clustering synchronous dataflow actors for efficient usage of configurable hardware

Sinha, S.S.

Award date:
2011

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/814b7ee5-bf94-41d0-b3e6-83e6e212cbca

Master’s Thesis

Clustering Synchronous Dataflow Actors for
Efficient Usage of Configurable Hardware

Shubhendu Sinha
September 2011

Supervisors
prof. dr. Henk Corporaal (Eindhoven University of Technology)
prof. dr. ir. Marco Bekooij (NXP Semiconductors, University of

Twente)
ir. Pjotr Kourzanov (NXP Semiconductors)

Eindhoven University of Technology
NXP Semiconductors

i

Abstract

In recent years, integration of digital wireless communication and embedded
systems has facilitated a wide range of wireless services such as cellular, digital
audio broadcasting, digital video broadcasting etc. These services can be rep-
resented under a common framework known as Software Defined Radio (SDR).
SDR applications are firm real time streaming applications. For fast channel
decoding of SDR streams FLexible Outer Receiver Architecture (FLORA) hard-
ware accelerator has been designed as part of a heterogeneous MPSoC designed
at NXP. FLORA consists of diverse hardware blocks for decoding common ker-
nels used in SDR applications. FLORA enables high performance with hard-
ware implementation but it is also configurable to support parametric kernels
and multiple standards. FLORA has DMA blocks to transfer data in and out
of FLORA. Since DMA blocks can be configured to serve any hardware block,
there are finitely many possible ways to group tasks mapped to hardware blocks
in FLORA as a FLORA configuration. FLORA is configured by external entity
such as ARM processor which incurs a scheduling load. An analytical method
is required to exploit the flexibility offered by FLORA and also to guarantee
the throughput requirement of each SDR application ported to FLORA. This
problem is addressed in this thesis.

Given a set of multiple independent applications represented in Synchronous
Data Flow (SDF) model of computation we obtain optimal configurations for
FLORA. An optimal configuration satisfies throughput and buffer constraints
and offers minimum scheduling load. We model a FLORA configuration as a
clustered atomic SDF actor which is obtained by clustering sub-graph(s) in the
original SDF graph. We present a clustering function which given an input
SDF graph and a set of SDF actors to be clustered, produces a clustered SDF
graph. We provide a condition to check for deadlock-free clusters. We prove
our clustering function results in consistent and deadlock-free clustered graphs.
Using the clustering function we present an exact and a heuristic clustering
algorithm to find the optimal clusterings in given set of input SDF graphs.
Experiments show for SDR applications heuristic algorithm performs as good
as exact algorithm in finding optimal configurations for FLORA.

ii

iii

Acknowledgement

This thesis summarizes the work of ten months graduation project carried out
in NXP Semiconductors. The graduation would not have been possible without
the help and support of several people. I would like to express my gratitude to
them.

First and foremost I would like to express my gratitude to prof. Marco
Bekooij, my supervisor in NXP. He made it possible for me to define the goal
of the thesis and achieve them within the limitations of available time and my
capacity. I owe my learning curve in understanding literature to him. He spent
his valuable time in guiding and reviewing my work. He helped me to make
practical decisions. His approach towards research motivated me to enjoy my
work.

Secondly I must thank ir. Pjotr Kourzanov, my daily supervisor in NXP.
He spent large amount of time to help solve my problems. With his exceptional
talent in computer science he helped me with practical problems such as mak-
ing algorithms and programming. He was a very useful critic and helped me
understand the advantages and shortcomings of every step.

I must thank my mentor in TU/e, prof. Henk Corporaal who during his
courses, inspired me for a career in computer architecture in the first place. He
facilitated and arranged this thesis for me in NXP. During the course of thesis
he provided me with valuable feedback and support.

I must also mention my gratitude to Derik and Arthur of the Modem &
Signal Processing research group in NXP who helped me by providing useful
information required for the project. Finally I must thank my family and friends
for their unconditional love and support.

iv

v

Contents

1 Introduction 1
1.1 Baseband Processing in Software Defined Radios 2
1.2 FLORA Architecture . 5
1.3 Problem Description . 6
1.4 Contributions . 12
1.5 Overview . 12

2 Dataflow Preliminaries 17
2.1 Synchronous Data Flow Graphs 17
2.2 Homogeneous Synchronous Dataflow Graph 18
2.3 Throughput Constraint for SDR applications 20

3 Problem Formulation 22
3.1 Goal . 22
3.2 Challenges . 22
3.3 Assumptions . 24
3.4 Formal Problem Statement . 25
3.5 Related Work . 26

4 Clustering Definition 30
4.1 Clustering . 30
4.2 Clustering Function (Φc) for a single sub-graph 32
4.3 Clustering Function (Φg) for sub-graphs 38
4.4 Deadlock - Free Clusters . 40
4.5 Properties of Clustering Function 42

4.5.1 Preservation of Consistency 42
4.5.2 Deadlock Freedom . 43

4.6 Effects of Clustering . 44

5 Clustering Algorithms 50
5.1 Algorithms For Checking Deadlock-free Clusters 50
5.2 Clustering Algorithms . 53

5.2.1 Exhaustive Search Approach 53
5.2.2 Heuristic Approach . 57

5.3 Implementation of Clustering Algorithm 59
5.4 Run-Time Evaluation of Algorithms 60

vi

6 Conclusion 65
6.1 Conclusion . 65
6.2 Future Work . 66

6.2.1 General Application of Clustering for SDF 67

Appendices 72

A MARS MPSoC Platform 72

B FLORA 74

C List of Symbols 78

Glossary 79

Bibliography 81

vii

0

Chapter 1

Introduction

In the past century digitalization revolutionized almost all facets of human life.
One of the recent revolutions empowered by digitalization was the revolution in
wireless technology. Digital Wireless Communication has evolved into a pow-
erful, robust and useful day-today phenomena. From the huge wooden box of
’radio receiver’ in 1960s which allowed consumers to listen to only songs and
news to the relatively tiny ’smartphones’ in 2000s which allows calling, view-
ing/listening wireless video/audio, playing games, emailing, web-surfing, online
shopping, etc. among other features. Indeed wireless technology is now used for
day to-day purposes such as cellphone communication, wireless internet, mobile
TV, wireless radio, etc.

Wireless technology was initially an analogue phenomena with weaker ca-
pabilities. Modern digital wireless technology owes its power to a number of
innovations and significant research in subjects like information theory, signal
modulation-demodulation, coding theory, digital signal processing, software ar-
chitecture, etc. [7] to name a few. The electronic systems consisting of hardware
and software which enables these functionalities come under the name of Embed-
ded Systems. Embedded Systems are defined as microprocessor based systems
that are built for certain specific function or range of specific functions [8].

Recently this complex integration of wireless communication and embedded
systems was more formally and eloquently defined under the term SDR. SDR is
defined in [22] as ’Radio in which some or all of the physical layer functions are
Software Defined’. The term ’Software Defined’ refers to the fact that a pro-
cessor based software system is used to implement and/or control the available
functionalities [22].

Smaller, faster and powerful. This thirst shaped the evolution of embedded
systems from a single processor based to a Multi-Processor System on Chip
(MPSoC) based. And indeed like many other consumer services/products SDR
is developed on a MPSoC platform.

The physical layer of SDR consists of multiple stages (and as mentioned in
[22], some or all of these are software defined). SDR applications have stringent
throughput and/or latency requirements. Each stage in the physical layer can be
optimized for the performance requirement of the particular SDR application.
Some of the popular SDR applications can be broadly categorized as Cellular,
Data Communication, Digital Radio, Digital Video. Therefore for each stage
in the physical layer of SDR different algorithms exist for different categories
of SDR applications. For proven robustness, inter-operability, re-usability and

1

to enable efficient commercial deployment, these algorithms or methods are
standardized by the respective standards organization as a Wireless Standard
or rather family of standards which keep on evolving with faster, robust and
powerful services. Standards such as

• Cellular- Global System for Mobile Communications (GSM), Long Term
Evolution (3GPP 4G technology) (LTE)

• Data Communication - Wireless Fidelity (IEEE 802.11) (WiFi), Blue-
tooth

• Digital Radio Broadcasting - Satellite radio (XM), Digital Audio Broad-
casting (DAB)

• Digital Video Broadcasting - Digital Video Broadcasting (DVB) fam-
ily, Integrated Services Digital Broadcasting (ISDB), Advanced Television
Systems Committee (ATSC)

SDR are streaming multimedia applications with firm performance con-
straints. For cost effectiveness it is desired to have a single platform supporting
as many standards as possible. At the same time the performance constraint of
each standard must be satisfied. Flexibility and performance are contradictory
goals. To achieve a desired balance between flexibility and required computa-
tional power for high performance a heterogeneous MPSoC called MARS has
been developed at NXP. The heterogeneous MPSoC contains a configurable
hardware accelerator called as FLORA. It consists of diverse hardware blocks
meant for fast decoding of SDR standards. Since decoding is in hardware it
enables higher performance. But at the same time FLORA is configurable so
as to support multiple SDR standards.

In order to guarantee performance requirements analytical methods are pre-
ferred [1,3,18]. For our problem domain of SDR and FLORA hardware accelera-
tor an analytical method is required which must be able to exploit the flexibility
offered by FLORA hardware accelerator to support multiple SDR applications
and at the same time guarantee performance requirements of each standard.
We present such an analytical method in this thesis.

In the following section we describe the available degree of flexibility in the
physical layer of SDR. In section 1.2 we describe the architecture of FLORA
hardware accelerator. We summarize the background of thesis in section 1.3.
At the end of chapter in section 1.4 we present the contributions of this thesis.

1.1 Baseband Processing in Software Defined Ra-
dios

Physical layer of SDR consists of two parts, Analog Front End (AFE) and
digital baseband processing. We briefly describe in this section different stages
in digital baseband processing and the flexibility available at each stage. The

2

physical layer of SDR consists of broadly three stages as shown in figure 1.1.
The left side of the dotted box consisting of ADC(Analog to Digital Converter),
DAC(Digital to Analog Converter) and RF-tuner form the AFE. The right side
of the dotted box goes to the Media Access Control (MAC) layer. The dotted
box forms digital baseband processing. We are concerned with this stage of
the physical layer where most of the computational load lies. Digital baseband
processing consists of following three parts.

Figure 1.1: Placement of Digital Baseband Processing

• Digital Front End (DFE) DFE chiefly consists of various filters to
achieve three essential functions [9]

– IQ transposition. Convert the digitalized real signal to complex signal
and vice versa.

– Sample Rate Conversion. Convert the stream rate to the rate that
fits the standard.

– Channel Selection. Select the proper channel. It includes conversion
to baseband and channel filtering.

These functions have high computational load but the algorithms for these
functions are similar in different standards. Therefore DFE is normally im-
plemented on a configurable hardware, but not mapped to a programmable
processor.

• Modem This stage is also called as ’Inner Transceiver’. It performs sev-
eral functions such as modulation, demodulation, channel equalization,
channel estimation, mapping, de-mapping and so on. This stage is usu-
ally implemented on a Digital Signal Processor (DSP). This is so because
of following reasons.

– The standards are highly diverse and algorithms are complex.

3

– The functions in modem involve intense computational load, such as
FFT, correlation. These functions can be efficiently implemented on
a application specific processor such as DSP.

– The standard leaves the freedom to manufacturers to design their
own algorithms for better performance.

• Codec The codec stage is also called as ’Outer transceiver’. This stage is
responsible for channel coding or decoding of a SDR. The decoding stage
can correct data if they are in errors, hence it is also called as Forward
Error Correction (FEC). It involves various mathematical functions de-
scribed in table 1.1. These mathematical functions are limited in number.
But each standard differs in the choice of functions used, the configura-
tion parameters such as equation or size of input/output and the order
in which they are used. Therefore for high-performance these functions
are implemented on hardware accelerator with a certain degree of run-
time configurability. We elaborate on the architecture of such a hardware
accelerator designed at NXP in the following section.

Function Description Stateful/
Stateless

Granularity

(De)Interleaving Within a block shuffle bits/bytes.
Prevents burst errors.

Stateless Bits to Kilo-
Bytes

(De)Puncturing Bits are removed at transmitter
and dummy bits are filled back
at receiver. Reduces bandwidth
requirement of channel.

Stateless Bits (0-64)

Low Density
Parity Check
(LDPC)

Block based error correcting
code

Stateless Bits

Reed Solomon
(RS)

Block based error correcting
code

Stateless Hundreds of
Bytes

Viterbi Convolutional error correcting
code

Stateful Bits(2-6)

Turbo Convolutional error correcting
code

Stateful Bits

(De)Scramble Re-code bits with a distribution.
Disperses signal energy.

Stateful Bits

Cyclic Redun-
dancy Check
(CRC)

Error detecting code. Cannot
correct data.

Stateless Bits(8/16/32)

Table 1.1: Summary of common coding techniques used for forward error cor-
rection in the physical layer of SDR

4

1.2 FLORA Architecture

FLORA

B1 B2 B3 B4 B5 B6

Connection Matrix

RDMA WDMA

Data Bus

Configuration Bus

μP

Figure 1.2: Architecture of FLORA hardware accelerator.

It was described in the previous section that codec stage in digital baseband
processing of SDR is best implemented on a configurable hardware. We have
FLORA as a hardware accelerator designed for fast forward error correction in
the outer receiver. A general overview of architecture of FLORA is explained
in this section. The specific details of the current FLORA architecture are
described in appendix B.

Figure 1.2 shows a general architecture of FLORA. It consists of different
hardware blocks. Each block is capable of processing data for a specific decod-
ing technique, those mentioned in table 1.1. Each block can be configured for
different set of equations and for different inputs/outputs. Blocks B1 to B6 in
figure 1.2 are hardware blocks. Read Direct Memory Access (RDMA) and Write
Direct Memory Access (WDMA) are special hardware blocks designed to trans-
fer data in and out of FLORA respectively. All the blocks can be connected
to the RDMA and the WDMA via the Connection Matrix. The connection
matrix also provides connections between certain hardware blocks. All blocks
have input and output buffers. Some blocks have big buffers (1 Mbit) and some
are have small buffers (8 bytes). All blocks are non-preemptible. Prempting by
re-configuring the configuration which is still running will corrupt the data.

5

To configure FLORA we need to decide the set of blocks to be programmed.
After deciding the set of blocks to be programmed, a necessary and complete
configuration of FLORA implies

• configuration of each block in FLORA for the mathematical equation,
parameters and input/output size.

• configuration of the connection matrix

• configuration of RDMA and WDMA with the appropriate data source and
sinks addresses and sizes.

Such a combined complete configuration is called as a slot. Blocks within
FLORA are data-driven, that is once configured a block triggers as soon as there
is data in input buffer. However a slot can only be programmed by some external
entity such as general purpose processor shown by the block µP in figure 1.2.
For example presently ARM processor configures a slot on the MARS MPSoC.
Therefore a slot is not data-driven.

1.3 Problem Description

It is desired to multiplex maximum applications on FLORA. Given a set of
applications to be implemented on FLORA it is required to find the optimal
configurations for the input applications. An analytical method is required to
exploit flexibility of FLORA configurations and also to guarantee performance
requirement of each application. There are two problems in applying such an
analytical method.

1. SDR applications that we consider consists of tasks partly mapped to
FLORA hardware blocks and partly mapped to other parts of MARS
MPSoC such as ARM processor. Moreover there is a hierarchy in schedul-
ing. Within the same application tasks mapped to hardware blocks in
FLORA which are collectively configured as a FLORA configuration are
scheduled internally with self-timed schedule (tasks are activated as soon
as data is available) that is because FLORA hardware blocks are data-
driven. Whereas a FLORA configuration itself is activated by ARM and
so are tasks mapped to ARM processor. We explain in chapter 2 that
we use SDF model of computation to model SDR applications. Figure
1.8 shows Digital Video Broadcasting -Terrestrial (DVB-T) standard ex-
pressed in an SDF graph. Actors DI1, DP, V,DI2, RS,DS are mapped
to FLORA hardware blocks. Whereas So, Sy+Re and Si are mapped on
ARM processor.

2. There are finitely many ways to configure FLORA hardware blocks for the
same application. It is required to find configurations that satisfy through-
put and buffer constraints for a given set of applications and reduce the
scheduling load on ARM processor. FLORA consists of diverse hardware

6

blocks for decoding common kernels used in SDR applications. FLORA
has RDMA and WDMA blocks to transfer data in and out of FLORA re-
spectively. FLORA has a configurable flexible datapath so that the RDMA
block and WDMA block can serve any hardware block within FLORA.
Therefore there are finitely many possible ways to group tasks mapped to
hardware blocks in FLORA as a FLORA configuration. Smaller groups
mean fewer blocks are used in a FLORA configuration which enables
pipelining via buffering in memories outside FLORA. However smaller
configurations may incur excess read/write overhead for channels in and
out of FLORA thus reducing throughput. Bigger groups means more
blocks are used in a FLORA configuration which incurs less read/write
overhead but pipelining is limited due to small buffers within FLORA and
non-preemptive nature of a FLORA configuration. Therefore there is a
trade-off between read/write overhead and pipelining for FLORA config-
urations. Both of these factors affect throughput.

Therefore there are two challenges - being able to model hierarchical schedule
for applications mapped to MARS MPSoC and choosing the best configuration
for FLORA among available possibilities.

With a simple example we shall illustrate here why we have multiple configu-
ration options for FLORA and why is it difficult to choose the best configuration.
Consider a simple application shown in figure 1.3. So and Si are source and
sink actors. A,B,C are actors mapped to FLORA blocks.

BA
210

C
22

So Si
1010 1 10

1

1
1

Figure 1.3: A simple application SDF graph.

A possibility of configuration is to combine actors A,B,C as a single configu-
ration. As we shall explain in chapter 4, to tackle both the problems mentioned
earlier, we model FLORA configuration as a clustered actor. The clustered ac-
tor represents an atomic firing of a number of iterations of the sub-graph which
is clustered. The resulting clustered graph for the biggest configuration option
is shown in figure 1.4. In figure 1.4, the SDF graph on top is the implemen-
tation SDF graph for FLORA with the specified buffers and execution times.
For fetching data inside FLORA and transferring data out of FLORA, RDMA
R1 and WDMA W1 are inserted. The self-timed schedule for this sub-graph is
shown below the sub-graph. Assuming FLORA is configured for one iteration of
this sub-graph, the total time to execute one iteration is 41. Thus the resulting
clustered graph is shown below the self-timed schedule with a clustered actor
R1ABCW1. The throughput of SDF graph can be calculated by number of
source data units processed per unit time. The Maximum Cycle Mean (mcm)
of the clustered SDF graph is 41. Therefore the throughput of this configuration
is 10 data units per 41 time units that is 10/41 = 0.244.

7

B,2A,10
210

10
10 2

1

1
1

1

1
1

C,2
2

2

2

1

1
1

2

2

R1,1

1

1

1

1
1

10

10

10
W1,1

1

1
1

1
1

1 1

1

A

R1

10

Si
R1ABCW1

,41
So

1

1
1

1

1
1 1

1
1

R1 R1 R1 R1 R1 R1 R1 R1 R1

B

C

W1

B

C

W1

B

C

W1

B

C

W1

B

C

W1

10 21

10 10 5 5

1 1

Figure 1.4: Clustering option 1. The top SDF graph shows the sub-graph
mapped to FLORA with DMAs, buffers and execution times. The self-timed
schedule for the sub-graph is shown below the sub-graph. The resulting clustered
SDF graph is shown at the bottom.

Another configuration possibility is to split ABC into A and BC. This pos-
sibility is shown in figure 1.5. The respective two sub-graphs are shown above
in the figure 1.5. The resulting clustered graph with execution times equivalent
to one firing of individual sub-graph is shown below in the figure. The through-
put of this configuration is 10/30 = 0.333. The throughput improves due to
pipelining with buffering in external memories.

A third configuration possibility is to split ABC in A, B and C. This pos-
sibility is shown in figure 1.6. The respective sub-graphs are shown at the top.
We assume we have only two sets of DMAs. Therefore configuration B and
configuration C share R2 and W2. To model the sharing of resources in round-
robin modeling we add execution times of actors sharing resources. Therefore
in the bottom SDF graph the execution time of actors R2BW2 and R2CW2 are
redefined as 43 (22+21). The throughput of this configuration option is 10/43
= 0.233. The throughput reduces due to sharing of DMAs.

Figure 1.4, 1.5, 1.6 had number of clusters as 1,2,3 respectively. The through-
put performance of these options is shown in figure 1.7. Thus we see with differ-
ent clusterings we get different throughput. It is desired to choose configurations
which give maximum throughput or allow multiplexing maximum applications.

8

W1,1A,10
110

10
10 1

1

1
1

1

1
1

R1,1

1

1

1

1
1

10

10

10

Si
R1AW1

,30
So

1

1
1

1

1
1

1

1
1

10 10 10 5

B,2R2,1
21

2
1 2

1

1
1

1

1
1

C,2
2

2

2

1

1
1

2

2

W2,1

1
1

1 1

1

1

1
1

R2BCW2

,23

10 5

1

1
1

Figure 1.5: Clustering option 2. We have two FLORA configurations- A and
BC. The respective sub-graphs are shown at the top. The resulting clustered
SDF graph is shown below.

As we can observe in figure 1.7, a configuration option that gives maximum
throughput is not simply the biggest or the smallest but it can be in between.
Therefore in general it is difficult to find configuration option for FLORA to
multiplex maximum radio applications.

We shall illustrate the mentioned problems by explaining two configuration
possibilities for a real application of DVB-T standard shown in figure 1.8.

Configuration option 1

Figure 1.9 explains configuration option 1. Figure 1.9(a) shows the original SDF
graph of application with nodes (also called as actors in dataflow terminology) in
orange are mapped to hardware blocks in FLORA. The other actors are mapped
on ARM processor. Hardware blocks in FLORA cannot read data from memo-
ries outside FLORA without Direct Memory Access (DMA) blocks. Therefore
it is required to insert DMA actors in the application SDF graph to enable using
FLORA hardware blocks. Here we have freedom to insert RDMA and WDMA
blocks at different possible locations. Figure 1.9(b) shows possibility 1 which
identifies configuration option 1. W1,W2 are WDMA actors. DI1,DI2 are ac-
tors mapped to De-Interleaver which has its own RDMA. Therefore no RDMA
actors are inserted for DI1. There are two problems with SDF graph in figure
1.9(b). First, actors shown in orange in SDF graph shown in figure 1.9(b) are
scheduled differently than the rest of the actors. Secondly for SDF graph shown
in figure 1.9(b) we have two FLORA configurations (collective configuration
of DI1+DP+V+W1 and collective configuration of DI2+RS+DS+W2) which
are non-preemptible. In section 3.2 we shall explain we tackle both of these
problems by modeling FLORA configuration as a clustered atomic SDF actor.
Atomicity of SDF actor captures non-preemptibility and it abstracts from the

9

W1,1A,10
110

10
10 1

1

1
1

1

1
1

R1,1

1

1

1

1
1

10

10

10

Si
R1AW1

,30
So

1

1
1

1

1
1

1

1
1

10 10 10 10

B,2R2,1
21

2
1 2

1

1
1

1

1
1

W2,1
1

2

1

1

1
1

2

2

R2BW2

,22

10 5

1

1
1

C,2R2,1
21

2
1 2

1

1
1

W2,1
1

1

1

1

1
1

1

1

1

1
1

R2CW2

,21

10 5

1

1
1

Si
R1AW1

,30
So

1

1
1

1

1
1

1

1
1

10 10 10 10R2BW2

,43

10 5

1

1
1

R2CW2

,43

10 5

1

1
1

Figure 1.6: Clustering option 3. A, B and C are configured separately. B and
C share DMAs. Therefore the resulting clustered SDF graph is redefined with
new execution times in the bottom most SDF graph.

schedule of the sub-graph within the clustered atomic actor. The resulting SDF
graph is shown in figure 1.9(c). Figure 1.9(c) will now be useful in evaluating
performance of configuration option 1.

Configuration option 1 shown in figure 1.9(c) has two big configurations -
(DI1+DP+V+W1)) and (DI2+RS+DS+W2). Since a FLORA configuration
is non-preemptible, all the blocks in a FLORA configuration have to wait until
the complete configuration finishes and cannot be configured and triggered for
a different configuration. Therefore these blocks cannot be used for pipelining
different iterations of the whole SDF graph or for actors from other applications.

Configuration option 2

FLORA configuration option 2 is illustrated in figure 1.10. Here we split
(DI1+DP+V+W1) into (DI1) and (R1,DP,V,W1). Thus the total number of
configurations are 3 - (DI1), (R1,DP,V,W1) and (DI2+RS+DS+W2), this can

10

0.244

0.333

0.233

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3

T
h

ro
u

g
h

p
u

t

Number of Clusters

Figure 1.7: Throughput vs. Number of Clusters for simple example shown in
figure 1.3.

be seen in figure 1.10(c). All the edges in 1.10(c) are stored in memories outside
of FLORA. Hence we assume we have sufficient buffer space. Therefore because
of splitting configuration and available buffer space it is now possible to con-
figure hardware block De-Interleaver for firing of DI1 for next iteration of SDF
graph or possibly to use it for firing of other actors (mapped to De-Interleaver)
from other SDF graphs.

On the other hand by making smaller configurations, we include more DMA
transfers within every FLORA configuration thereby increasing the read/write
overhead. For SDR applications where big chunks of data are processed, this
could be a bottleneck. For example in figure 1.10(c) we add the overhead of R1
in the configuration (R1+DP+V+W1).

For the present version of FLORA, configuration option 1 utilizes FLORA for
29% (ratio of required throughput to maximum obtainable throughput). There-
fore the remaining 71% is slack which can be utilized for multiplexing more SDR
applications. Configuration option 2 utilizes FLORA for 34%. Therefore we see
for DVB-T standard the read/write overhead is significant and configuration
option 2 provides less slack for other SDR applications.

Therefore depending on the SDR application bigger configurations could be
suitable where read/write overhead is significant whereas if read/write overhead
is not significant than smaller configurations could be more useful to allow more

11

pipelining for multiplexing more SDR applications.

1.4 Contributions

An analytical method is required to exploit flexibility of FLORA configurations
and also to guarantee performance requirement of each application mapped on
FLORA. In this thesis such an analytical method is proposed based on clustering
of SDF actors. The contributions of the thesis are as follows:

• A definition of clustering for the SDF model of computation is presented
where clustered sub-graphs are modeled as a single SDF actor. This defi-
nition enables following advantages

– Each clustered actor represents a FLORA configuration. Thus the
definition enables capturing the flexibility offered in configurable hard-
ware such as FLORA in a formal model (SDF).

– Analyzing the trade-off between read-write overhead and constrained
pipelining for FLORA configurations. The communication cost of
channels (or edges in SDF graphs) are modeled with the help of
RDMA and WDMA actors. The modeling of finite non-zero commu-
nication overhead is crucial for finding the optimal clustering options
for MPSoC with DMAs.

– Modeling of hierarchical scheduling for a heterogeneous MPSoC. Sub-
graphs within a clustered actor can be scheduled differently than the
parent clustered graph which contains mixture of clustered and un-
clustered actors. For instance hardware blocks in FLORA are data
driven, therefore sub-graphs within a clustered actor are self-timed
scheduled. Whereas clustered graphs containing actors mapped to
different components of MARS MPSoC (memories, ARM processor,
FLORA) are scheduled using static-assignment (Round-Robin) strat-
egy.

• For the proposed definition of clustering, exact and heuristic algorithms
are presented to find the optimal clusterings in multiple applications to
satisfy throughput constraint of each application. An optimal clustering is
an option which satisfies throughput and buffer constraints and also mini-
mizes scheduling load on the entity which configures and triggers FLORA
(ARM processor on MARS MPSoC).

• A condition has been presented to avoid clusters which will result in dead-
lock. Exact and efficient algorithms to check for this condition are also
presented.

1.5 Overview

This document has been organized as follows.

12

In chapter 2 we explain the SDF model of computation and the associ-
ated definitions. The notations and definitions defined in this chapter are used
throughout the rest of the report.

In chapter 3 we describe the challenges and details of our problem domain.
We clarify our goal, assumptions and the problem statement of this thesis. At
the end of chapter we state the related work.

In chapter 4 we define a clustering function which given an input SDF graph
and a set of nodes to be clustered, produces a clustered SDF graph as output.
We give a condition to check for deadlock-free clusters. We guarantee by giving
proofs that the clustered graphs generated by the defined clustering function is
consistent and deadlock free.

In chapter 5 we present an algorithm to check for deadlock -free clusters.
We also present an exact and a heuristic clustering algorithm to find optimal
clusterings in given input SDF graphs. We describe experiments conducted to
evaluate performance of the clustering algorithms.

In chapter 6 we summarize the work of this thesis. We propose a general-
ized application of clustering definition presented in this thesis for scheduling
problems in MPSoC domain. We conclude by stating possible extensions and
improvements for the work presented in this thesis.

Appendix A describes architecture of MARS MPSoC. Appendix B describes
the architecture of FLORA in detail.

13

S
o

S
y
+

R
e

D
S

V
D

I1
D

P
D

I2
R

S
S

i
6

0
4

8
6

0
4

8
6

0
4

8
4

6
1

6
1

5
6

7
5

6
7

1
1

2
0

4
1

8
8

1
1

1
8

8
2

8
0

u
s

1
1

1

1
1

1

1
1

1

1
1

1

S
o
 =

 S
o
u

rc
e

D
I1

 =
 D

e
-i

n
te

rl
e
a

v
e
r1

D
P

 =
 D

e
-P

u
n

ct
u

re
r

V
 =

 V
it

e
rb

i

S
y
+

R
e
 =

 S
y
n

ch
ro

n
iz

e
r

+
 R

e
si

z
e
r

D
I2

 =
 D

e
-i

n
te

rl
e
a

v
e
r2

R
S

 =
 R

e
e
d

 S
o
lo

m
o
n

D
S

 =
 D

e
-s

cr
a

m
b

le
r

S
i

=
 S

in
k

R
e
d

 N
u

m
b

e
rs

 =
 S

o
ft

 B
it

s

B
lu

e
 N

u
m

b
e
rs

 =
 B

y
te

s

D
V

B
-T

2

K
,
6

4
Q

A
M

,
¾

 P
u

n
ct

u
re

 r
a

te

F
ig

u
re

1
.8

:
S

D
F

gr
a
p
h

m
od

el
o
f

o
u

te
r

re
ce

iv
er

o
f

D
V

B
-T

st
a
n

d
a
rd

2
K

m
od

e,
6
4
Q

A
M

,
3
/
4

P
u

n
ct

u
re

R
a
te

14

(a
)

S
o

S
y
+
R
e

D
S

V
D
I1

D
P

D
I2

R
S

S
i

6
0
4
8

6
0
4
8

6
0
4
8

4
6

1
6

1
5
6
7

5
6
7
1

1
2
0
4

1
8
8

1
1

1
8
8

(b
)

S
o

S
y
+
R
e

D
S

V
D
I1

D
P

D
I2

R
S

S
i

6
0
4
8
6
0
4
8

6
0
4
8
4

6
1
6

1
5
6
7

5
6
7

1
1

2
0
4

1
8
8

1
1

1
8
8

W
1

1
1

W
2

1
1

(c
)

S
o

S
y
+
R
e

D
I1

+
D
P

+
V

+
W
1

D
I2

+
R
S

+
D
S

+
W
2

S
i

6
0
4
8

6
0
4
8

5
6
7

5
6
7

4
0
8

1
8
8

3
7
6

5
6
7

F
ig

u
re

1
.9

:
(a

)
A

p
p
li

ca
ti

o
n

S
D

F
gr

a
p
h

(a
ss

u
m

in
g

im
p
li

ci
t

se
lf

-e
d
ge

s)
.

(b
)

A
p
p
li

ca
ti

o
n

S
D

F
gr

a
p
h

w
it

h
D

M
A

a
ct

o
rs

.
(c

)
M

od
el

in
g

o
f

co
n

fi
gu

ra
ti

o
n

1
o
bt

a
in

ed
fr

o
m

(b
).

15

(a
)

S
o

S
y
+
R
e

D
S

V
D
I1

D
P

D
I2

R
S

S
i

6
0
4
8

6
0
4
8

6
0
4
8

4
6

1
6

1
5
6
7

5
6
7
1

1
2
0
4

1
8
8

1
1

1
8
8

(b
)

S
o

S
y
+
R
e

D
S

V
D
I1

D
P

D
I2

R
S

S
i

6
0
4
8
6
0
4
8

6
0
4
8

4
6

1
6

1
5
6
7

5
6
7

1
1

2
0
4

1
8
8

1
1

1
8
8

W
1

1
1

W
2

1
1

R
1
1

1

(c
)

S
o

S
y
+
R
e

D
I1

D
I2

+
R
S

+
D
S

+
W
2

S
i

6
0
4
8

6
0
4
8

5
6
7

5
6
7

4
0
8

1
8
8

3
7
6

R
1

+
D
P

+
V

+
W
1

5
6
7

6
0
4
8

6
0
4
8

F
ig

u
re

1
.1

0
:

(a
)

A
p
p
li

ca
ti

o
n

S
D

F
gr

a
p
h

(a
ss

u
m

in
g

im
p
li

ci
t

se
lf

-e
d
ge

s)
.

(b
)

A
p
p
li

ca
ti

o
n

S
D

F
gr

a
p
h

w
it

h
D

M
A

a
ct

o
rs

.
(c

)
M

od
el

in
g

o
f

co
n

fi
gu

ra
ti

o
n

2
o
bt

a
in

ed
fr

o
m

(b
).

16

Chapter 2

Dataflow Preliminaries

Software Defined Radio (SDR) applications demand certain performance guar-
antees. Therefore for programming embedded systems for such applications
a model-driven approach is preferred [1, 3, 18] so that we can guarantee pre-
dictable performance at design stage. Literature suggests dataflow model of
computation are well suited for streaming applications (applications which can
iterate forever) such as multimedia applications. Different dataflow models offer
different expressibility, analyzability, succinctness [14]. The simplest model is
Homogeneous Synchronous Data Flow (HSDF), with highest analyzability but
poor expressibility. SDF graphs are just sufficient to express SDR applications
and still possess a useful level of analyzability. Therefore we use SDF as a model
of computation to model SDR. To be more specific we shall use SDF to model
only the outer receiver part of a SDR receiver, since design-flow of this part of
MPSoC is of interest to us.

In this chapter we describe the Synchronous Data Flow (SDF) model of com-
putation and related definitions. In section 2.2 we describe Homogeneous Syn-
chronous Dataflow Graphs. In section 2.3 we describe the modeling of through-
put constraint for SDR application. The notations and definitions defined in
this chapter are used throughout the rest of the thesis report.

2.1 Synchronous Data Flow Graphs

a,2
8 2 1 2

b,1 c,2

11

1

Figure 2.1: An example of SDF graph

SDF was first introduced in [11]. Figure 2.1 shows an example of a SDF
graph. The nodes a,b,c are called as actors which are connected to each other
by dependency edges also called as channels. Since we may deal with multi-
graphs, where multiple edges between two actors are possible, we define actors

17

as collection of ports. So that an edge can be uniquely defined as a tuple of
(outputPort,inputPort). We define an actor as follows.

Definition 1. (Actor) Assume P is set of Ports. An actor a is a tuple (I,O)
consisting of I ⊆ P input ports denoted by I(a) and set of O ⊆ P output ports
denoted by O(a) with I ∩O = φ. qv denotes that q is a port of actor v. A port
can belong to only one and unique actor.

A token is a container in which fixed amount of data can be stored. The
black dot on the self-loop edge of actor a in figure 2.1 is a token. With each
port is a rate associated with it which gives the amount of tokens consumed
on an input port or the amount of tokens produced on an output port. In
figure 2.1, the numbers shown nearby the head and tail of an edge are the
rates associated with those ports. By definition actors consume tokens from all
incoming edges via input ports and produce tokens on all outgoing edges via
output ports atomically when they fire. An actor can fire only when there are
sufficient tokens as required by the respective input ports on all incoming edges.
Firing of an actor takes finite time called as response time. Response time is
defined as the difference between finish and start of a firing of an actor. In figure
2.1, the numbers inside the actors give us the response time of the respective
actor. For many reasons we sometimes need initial tokens to be placed on some
edges. In figure 2.1 the self-loop edge of actor a has one initial token placed on
it. Without this token graph would deadlock.

Synchronous Data Flow are also called as Static/Multirate Data Flow. The
word static refers to the fact that the port rates and the response times remain
the same for all possible iterations of a SDF graph. Multirate refers to the fact
that ports have different rates relative to each other. In fact the static nature
of SDF makes it very analyzable and multirate property gives its expressibility.
We can now define functions for a SDF graph giving the static initial tokens, re-
sponse times, production and consumption rates. We summarize these concepts
in our definition of SDF graph in definition 2.

Let N0 = {0, 1, 2..} be set of natural numbers and N = N0 \ {0}.

Definition 2. (SDF graph) A SDF graph is a directed graph G(V,E, δ, ϕ, π, µ).
V consists of finite set of actors connected by set of edges E = {(ps, qd)|(s ∈
V) ∧ (d ∈ V)}. All ports of all actors are connected to precisely one edge.
δ : E → N0 gives initial tokens placed on every edge in E. The response time
ϕ : V → N0 gives the difference between finish and start time of a firing of every
actor in V . For every edge e = (ps, qd) ∈ E the function π : E → N0 gives
the number of tokens produced by actor s on port p and µ : E → N0 gives the
number of tokens consumed by actor d on port q.

2.2 Homogeneous Synchronous Dataflow Graph

SDF graphs are useful because they express only true data dependencies, thus
allowing maximum parallelism. For instance in example of figure 2.1 the SDF

18

graph only says for 1 firing of actor a, b can fire 4 times and c can fire 2 times.
With this information the 4 firings of b and 2 firings of c can take place in
parallel. This becomes clear in the equivalent HSDF or also called as Single
Rate Data Flow (SRDF) of the SDF graph. The equivalent HSDF graph for
example in figure 2.1 is shown in figure 2.2.

a,2

b1,1

b2,1

b3,1

b0,1

c0,2

c1,2

1

Figure 2.2: Equivalent HSDF graph of example in figure 2.1

In HSDF all actors produce or consume only single tokens on all edges.
Therefore we do not show port rates in figure 2.2. Every SDF graph can be
converted into its equivalent HSDF graph as described in [13]. The parallelism
available in any application becomes more visible in its equivalent HSDF graph.

Actors are usually used to model tasks or functions in an application. With
actors, we completely abstract from the functionality of task and simply consider
the amount of tokens they consume (possibly zero) or they produce (possibly
zero) and this production and consumption is atomic.

Consistency and Repetition Vector

Deadlock and Consistency are two important properties of SDF graphs. In-
consistent SDF graph will require either unbounded memory or may deadlock.
When a SDF graph deadlocks no actor is able to fire either due to inconsistency
or due to insufficient initial tokens. A SDF graph is consistent if it has non
trivial repetition vector. We define them in definition 3.

Definition 3. (Repetition Vector,Consistency) A repetition vector γ of a SDF
graph G(V,E, δ, ϕ, π, µ) is a function γ : V → N0 such that ∀e = (ps, qd) ∈ E :
γ(s) × π(e) = γ(d) × µ(e). A repetition vector is called non-trivial if and only
if ∀v ∈ V : γ(v) > 0. A SDF graph is consistent if and only if it has a non-
trivial repetition vector. For a consistent SDF graph there is a unique smallest
non-trivial repetition vector called as the repetition vector of a SDF graph.

For example, the repetition vector of SDF graph in figure 2.1 is {γ(a) =
1, γ(b) = 4, γ(c) = 2}. Hence the SDF graph is consistent.

19

Throughput

Throughput of an SDF graph can be computed with mcm analysis on its equiv-
alent HSDF graph [13]. For a strongly connected HSDF graph, we can compute
a cycle mean as follows

cm(c) =
∑

v∈V (c) ϕ(v)∑
e∈E(c) δ(e)

where V(c) is the set of actors traversed by simple cycle c and E(c) is the
set of edges traversed by simple cycle c. A simple cycle is a cycle that traverses
actors maximally once. The mcm of the equivalent HSDF graph is given by

Definition 4. (mcm) For an HSDF graph mcm : G→ N0 is defined as

mcm(G) = maxc∈C(G) cm(c)

Where C(G) is the set of all simple cycles in HSDF graph G.

The maximum attainable throughput of the HSDF graph is 1
mcm .

2.3 Throughput Constraint for SDR applications

Throughput specified as 1
mcm gives the rate at which a SDF graph iterates

(that is all the actors in an SDF graph fire as many times as required by the
repetition vector). This is the computed throughput. For checking throughput
constraint, we compare the computed throughput with a specified value by the
application. For practical radio applications throughput constraint is usually
specified as the minimum rate at which a source or sink actor should fire. For
example in figure 2.3 we show an example of the DVB-T standard. The SDF
graph in figure 2.3 models the outer receiver part of the standard. The standard
requires that input should be periodically accepted for every 280µs. We model
this constraint using a source actor So with a response time of 280µs as shown
in figure 2.3. For radio applications, firing of source actor represents periodic
input. Therefore the firings of source actor are never concurrent. Therefore we
show a self-edge on the source actor.

To check throughput constraint for the SDF graph in figure 2.3 is to check
if actor So fires periodically with period 280µs. Depending on the production
and consumption rate, the mcm of an SDF graph may cover multiple firings
of source actor. What is necessary is that all the firings of source actor take
periodically with period of 280µs.

Therefore we specify throughput constraint for SDR application as

mcm(G) = γ(So)× ϕ(So)

Where So is the source actor of SDF graph G.

20

S
o

S
y
+

R
e

D
S

V
D

I1
D

P
D

I2
R

S
S

i
6

0
4

8
6

0
4

8
6

0
4

8
4

6
1

6
1

5
6

7
5

6
7

1
1

2
0

4
1

8
8

1
1

1
8

8
2

8
0

u
s

1
1

1

1
1

1

1
1

1

1
1

1

S
o
 =

 S
o
u

rc
e

D
I1

 =
 D

e
-i

n
te

rl
e
a

v
e
r1

D
P

 =
 D

e
-P

u
n

ct
u

re
r

V
 =

 V
it

e
rb

i

S
y
+

R
e
 =

 S
y
n

ch
ro

n
iz

e
r

+
 R

e
si

z
e
r

D
I2

 =
 D

e
-i

n
te

rl
e
a

v
e
r2

R
S

 =
 R

e
e
d

 S
o
lo

m
o
n

D
S

 =
 D

e
-s

cr
a

m
b

le
r

S
i

=
 S

in
k

R
e
d

 N
u

m
b

e
rs

 =
 S

o
ft

 B
it

s

B
lu

e
 N

u
m

b
e
rs

 =
 B

y
te

s

D
V

B
-T

2

K
,
6

4
Q

A
M

,
¾

 P
u

n
ct

u
re

 r
a

te

F
ig

u
re

2
.3

:
S

D
F

gr
a
p
h

m
od

el
o
f

o
u

te
r

re
ce

iv
er

o
f

D
V

B
-T

st
a
n

d
a
rd

2
K

m
od

e,
6
4
Q

A
M

,
3
/
4

P
u

n
ct

u
re

R
a
te

21

Chapter 3

Problem Formulation

In was discussed in chapter 1 that FLORA can be configured in different possible
ways for the same application. Each configuration gives different throughput.
An analytical method is required to model and analyze the effect of different
configurations for FLORA. This problem is addressed in this thesis. In this
chapter we elaborate the addressed problem. We translate the details of our
problem in the dataflow model of computation so that we can solve the problem
formally. In section 3.2 the identified challenges are descried. In section 3.3
we explain the assumptions of the thesis. In section 3.4 we present the formal
problem statement of the thesis. At the end of the chapter in section 3.5 we
mention the related work.

3.1 Goal

Configurability of FLORA hardware blocks and configurability of the connec-
tion matrix in FLORA enables us to support multiple applications representing
different standards simultaneously. We wish to exploit the flexibility offered by
FLORA hardware accelerator to support multiple SDR applications and at the
same time guarantee performance requirements of each standard. Therefore the
goal of the thesis defined as follows - Given a number of applications to be im-
plemented on FLORA, to find the optimal configurations for FLORA such that
throughput constraint of each application is satisfied. An optimal configuration
satisfies throughput and buffer constraints and minimizes scheduling load on
ARM processor.

Before describing the addressed problem of this thesis, we describe in the
following section the challenges in implementing SDR applications to an MP-
SoC.

3.2 Challenges

While porting SDR applications to MARS MPSoC, we identify following aspects
where we have room for improvement.

1. Scheduling tasks of application onto resources of MARS platform

2. Obtaining FLORA configurations.

We shall explain these two points in the following sections in detail.

22

Scheduling

In this section we shall explain what is meant by finding a schedule. Given an
application model consisting of tasks (also called as actors in dataflow terms)
and a number of available resources (on the MPSoC platform), finding a sched-
ule involves taking following decisions. We need to decide on which resource
an actor should be executed, the order in which actors should be fired and the
exact invocation time of each actor. For each of these decisions we have in gen-
eral two choices. We can decide them at compile time (during design phase) or
during run-time. Taking decisions at run-time gives some dynamism and flexi-
bility. On the other hand dynamism reduces predictability and it implies certain
run-time overhead. This run-time overhead may reduce the maximum obtain-
able performance. The opposite holds for compile-time decisions. Flexibility is
reduced since we make one-time decisions. But we can guarantee predictable
performance, we can also obtain the maximum possible performance. Based
on the choice of compile-time or run-time decision for the above mentioned
three aspects, we can have different scheduling strategies (see [1,13]). These are
mentioned in table 3.1.

Scheduling strategy Assignment Ordering Invocation Time

Fully-static Compile-time Compile-time Compile-time
Static-Order Compile-time Compile-time Run-time
Static-Assignment Compile-time Run-time Run-time
Fully-dynamic Run-time Run-time Run-time

Table 3.1: Comparison of scheduling strategies [1].

We use static-assignment scheduling strategy for MARS MPSoC. In section
3.3 we explain our reasoning behind choosing static-assignment schedule.

FLORA Configuration Possibilities

We have the configurable hardware accelerator - FLORA. Therefore schedul-
ing a SDF graph application on FLORA means configuring FLORA hardware
blocks as per the scheduling strategy for every present SDF actor present in the
application model. Programming FLORA means programming a FLORA slot
as was explained in section 1.2. Configuring a FLORA slot consists of

• Selecting and configuring FLORA hardware blocks

• Configuring RDMA and WDMA with appropriate source and sink.

Thus to find FLORA configurations for an application is equivalent to an-
swer the questions - How many slots should be formed to completely map an
application on FLORA? And more importantly which FLORA blocks should be
selected with what type of configuration for each of these slots? Such configura-
tions gives us freedom to choose a number of hardware blocks to be programmed

23

together in a slot. Before we elaborate the necessity, significance and implica-
tions of such freedom, we first formalize this idea of freedom for SDF graph.

When we program a number of hardware blocks in FLORA together in a
complete configuration as a slot, such a slot can be triggered when input data is
available, the slot cannot be pre-empted, execution of slot is atomic that is we
cannot re-trigger hardware blocks of a slot in execution for next set of input data.
Once output data is transferred to an output First In First Out (FIFO), we can
re-trigger this slot for next iteration. Now this behaviour of a slot is in direct
correlation with the definition of an actor explained in chapter 2. Therefore we
define a slot of FLORA as a composite actor. The composition refers to the
grouping of actors in the original SDF graph, but this newly defined composite
actor has same semantics as that of a SDF actor defined in definition 1. We call
the process of grouping a number of actors into a new actor as clustering. We
shall formalize clustering in chapter 4.

With the concept of clustering we have expressed the flexibility available in
programming FLORA purely in semantics of SDF. This shall help us in devel-
oping analytical methods with SDF to find the best configuration possibilities
for FLORA.

Before going to problem statement we shall enumerate the assumptions of
the thesis in the following section.

3.3 Assumptions

In this section we explain the assumptions in our thesis. For multiplexing max-
imum possible SDR applications on FLORA and the MPSoC platform we are
required to find the optimal mapping, optimal schedule and also the optimal
clustering. This is a multi-level problem. Moreover each level is inter-dependent,
that is decisions at a level affect decision at other levels, hence we cannot find
solution to each level in isolation. Therefore we make some simplifying but rea-
sonable assumptions. We first explain the problem at each level and then our
simplified assumptions.

Mapping

Tasks mappable to FLORA hardware blocks can be mapped to those blocks, but
if we are short of hardware resources in FLORA then we can also map the excess
tasks on a general purpose processor(s). Thus we get multiple combinations.
To simplify the complete problem we assume we have only one general purpose
processor (presently ARM processor). Since tasks mappable to FLORA are
fastest executed on FLORA, we assume fixed mapping of tasks. Tasks are
mapped to the respective FLORA hardware block if such a block exists in
FLORA or to ARM processor otherwise.

24

Scheduling

Of the different scheduling strategies mentioned in table 3.1 we cannot have a
fully-static schedule for FLORA because we cannot have static invocation times.
Hardware blocks in flora are self-timed triggered, that is they trigger themselves
as soon as data arrives. This is only true within a FLORA slot. A configuration
is programmed by an external processor such as ARM and this is event triggered
based on the output of inner receiver.

Static-order is a promising choice, since it is possible to find the best ordering
of tasks at compile time. To be able to compute a static-order schedule for
multiple applications sharing resources, it is necessary that the tasks in multiple
applications are synchronized. Without guaranteed synchronization of multiple
applications, there is possibility of relative deviation in arrival times of tasks in
different applications. But because we have a static-order schedule, the required
change in ordering due to deviation does not take place. Thus applications may
either deadlock due to insufficient buffers thus breaking throughput constraint or
could result in buffer-overflow resulting in loss of data. For radio applications we
cannot guarantee synchronization. A radio application may deviate in its arrival
times independently of the other radio application. Therefore we do not use
static-order schedule. Thus we make a reasonable conclusion to design a static-
assignment schedule. In our static-assignment schedule ordering is decided at
run-time with round-robin policy.

Scheduling Load

The thesis problem is framed as an optimization problem. FLORA is a class
of hardware which has to be configured and triggered by an external hardware
unit(s) (presently ARM processor in our MPSoC). This incurs a scheduling load
on this external unit. This scheduling load depending on the application and
FLORA configuration can be very high. But the external hardware unit may
have other tasks to do as well. Hence it is not desired to load the external
hardware unit only for the sake of configuring/triggering FLORA.

Therefore our optimization criteria is to minimize the scheduling load on
hardware unit used for configuring/triggering FLORA. This criteria is relevant
as long as configurable hardware such as FLORA does not have the capacity to
configure and trigger themselves for any arbitrary tasks allotted to them.

3.4 Formal Problem Statement

In previous sections we identified challenges in our problem domain. They
concern decisions on mapping, scheduling and FLORA configurations. The
focus of this thesis is the problem of finding optimal configurations for FLORA.
We have explained the assumptions of the thesis for the aspects of mapping and
scheduling in section 3.3.

Revisiting our assumptions we assume following points are given:

25

1. SDF graphs for each application.

2. Assignment of each actor in the SDF graphs onto the resources on MARS
platform which includes FLORA hardware units.

3. Worst Case Execution Time of each actor for all SDF graphs on the re-
spective hardware unit to which it is mapped.

These details are accepted via an eXtensible Markup Language (XML) file.
These details are specified in chapter 5. Our input, analysis and output are
completely on SDF model of computation. Therefore the output is as follows:

1. Clustered SDF graphs for each respective input application SDF graph.
Where each clustered actor in the output SDF graphs represent a complete
FLORA configuration.

2. Buffer sizes for each channel in the clustered SDF graphs

These details are outputted as a normal text file with all required details.
Let S is the set of input SDF graphs representing SDR applications. S′

is the set of clustered SDF graphs. Vsrc is the specified source actor for each
input application graph g. Buffer : G → N0 gives the total buffer space re-
quired for an SDF graph. B is the maximum available total buffer capacity
for all SDF graphs. For an SDF graph g representing an SDR application the
throughput constraint is stated as mcm(g) = γ(Vsrc) × ϕ(Vsrc) where γ is the
Repetition Vector and ϕ gives the response time of an actor. ASL(g) gives the
absolute scheduling load of an SDF graph g and it is defined in definition 9 as
ASL(g) = |γ|/mcm(g) where |γ| =

∑
v∈V γ(v). SDF model and other related

definitions are explained in chapter 2. The throughput constraint is explained
in section 2.3. Then the problem can be formally stated as follows:

Input S = {g1, g2, ...gn}
Output S′ = {g′1, g′2, ...g′n}

Constraints

1. Throughput ∀g ∈ S′ : mcm(g) = γ(vsrc)× ϕ(vsrc)

2. Buffer
∑
g∈S′

Buffer(g) ≤ B

Minimize
∑
g∈S′

ASL(g)

We enumerate the related work in literature in the following section.

3.5 Related Work

Use of dataflow models of computation for scheduling a MPSoC system have
been extensively studied in the literature. Among different aspects of dataflow
models, work on scheduling and clustering for SDF are relevant to us.

26

Given a HSDF graph, computing a fully static schedule for a finite number
of processors for a throughput constraint is NP-Complete [2,11]. Further given
a SDF graph, its equivalent HSDF graph can have exponential number of nodes.
Therefore in-complete heuristic approaches have been proposed. Lee et.al in [11]
propose a heuristic approach based on optimal unfolding of SDF graph to find a
Periodic Admissible Sequential Schedule (PASS). S.Stuijk et.al propose a heuris-
tic approach in [15] which works directly on a SDF graph without expanding to
an equivalent HSDF graph. Bonfietti et.al. in [2] propose an exact algorithm to
find a fully static schedule for HSDF. Static assignment scheduling and resource
contention has been studied in depth by A.Kumar in [10].

Given a dataflow model, transforming the original model into a new one by
grouping or clustering nodes has also been studied for various motivations as
follows.

Book of [13] discusses three clustering algorithms for obtaining a multiproces-
sor schedule such that the makepsan of the obtained schedule is minimal. These
three algorithms consider scheduling a single application represented in HSDF
graph on a finite number of processors. In each of the discussed algorithms
a cluster of nodes represents a group of tasks scheduled on a single processor.
Each edge has an associated inter-processor-communication(IPC)cost. The un-
derlying idea behind clustering in these three algorithms is that the IPC cost
for edges within a cluster are zeroed to analyze the performance of schedule.

J.L Pino et.al in [12] present a hierarchical multiprocessor scheduling ap-
proach using clustering. For obtaining a multiprocessor schedule SDF graph is
translated into its equivalent HSDF or Acyclic Precedence Graph (APG). This
translation can give rise to exponential increase in number of nodes in the equiv-
alent HSDF or APG. The goal of [12] is to reduce number of nodes in an SDF
graph using their clustering approach so as to reduce complexity of scheduling
the SDF graph. Not all clusterings are valid, an arbitrary cluster can deadlock.
A theorem is presented in [12] which explain four conditions which guarantee
deadlock-free clusters.

S.Bhattacharya et.al in [4] consider a dynamic data flow graph to model the
application. Their goal of clustering is to replace SDF sub-graphs appearing in
the dynamic data flow graph by a single dynamic data flow actor such that the
global performance in terms of latency and throughput is optimized. A quasi-
static schedule is then obtained for the clustered dynamic dataflow actor. Thus
they try to exploit advantages of static model of computation in the application
graph which comprises of more general model of computations.

Masters thesis in [19] is about an earlier version of FLORA hardware. It has
similar goal as ours. They find largest configurations for FLORA for multiple
applications while meeting throughput constraint for each application. They do
not have an optimality criteria.

Comparison with Previous Work

State-of-art work on clustering has been discussed in [4, 12, 13]. Work in [19] is
also on FLORA. Therefore we compare our work with [4, 12,13,19].

27

1. We have presented a method to compute optimal clusterings for multiple
applications on multiple resources to satisfy throughput constraint of each
application. Our proposed method works on SDF model. We model the
communication overhead of channels and its effect on throughout of the
application with the help of SDF actors (modeling DMAs)which are in-
serted at the appropriate positions in an SDF graph for every sub-graph to
be clustered. Using SDF actors gives better approximation of the commu-
nication overhead due to DMAs. Whereas clustering algorithms presented
in [13] consider a single application on multiple resources, they consider
HSDF model and they consider communication cost by attaching constant
weights to edges.

2. Clustering approach in [12] considers a single application in SDF model.
They also consider communication cost by attaching constant weights to
edges in a Directed Acyclic Graph obtained from SDF graph.

3. We present exact and heuristic algorithms to find the optimal partitioning
(clusters that cover the entire application graph) of applications graphs.
Algorithms to find clusterings are not mentioned in [12] and [4].

4. While traversing the search space to find the optimal clustering, clusters
which introduce deadlock should be avoided. The paper of [12] presents a
theorem which specifies four conditions for SDF graphs which allow check-
ing for deadlock-free clusters. No algorithms are presented in [12] to check
their four conditions. We present a single condition on equivalent APG
which covers the four conditions presented in [12]. We present exact and
efficient algorithms to check for deadlock-free clusters using our condition.

5. Clustering defined in [12] and [4] considers only connected actors. We
do not limit our search space with this constraint. In our exhaustive
search approach all valid clustering options (those which do not result in
deadlock) are tried which can also comprise of unconnected SDF actors.

6. Masters thesis of [19] is based on an earlier version of FLORA and they also
find FLORA configurations for multiple application to satisfy throughput
constraint of each application. Our work differs with their approach as
follows.

• Figure 3.1 shows the architecture of FLORA used in [19]. Architec-
ture of FLORA that we use is shown in figure B.1 and B.2. FLORA
in [19] had no RDMA (data enters only via De-Interleaver) and one
WDMA. Whereas our version of FLORA has one RDMA and two
WDMAs (and one De-Interleaver with its own RDMA and WDMA).

• Due to the fact that no separate RDMA is present and only one
WDMA is available, the possible FLORA configurations in [19] are
limited. Moreover the approach presented in [19] always results in
one clustering option (the largest possible cluster with actors mapped
to FLORA hardware blocks). Therefore approach presented in [19]

28

completely excludes multiple possibilities of clustering that exist in
any future version of FLORA.

• We exploit the fact that the present FLORA has RDMA and WDMA
blocks. With availability of RDMA and WDMA all possibilities of
clustering exist in an SDF graph. Unlike [19] we consider all available
possibilities.

• Work in [19] does not consider any optimization criteria. We take
scheduling load on the ARM processor as an optimization criteria.

Figure 3.1: FLORA architecture used in [19].

29

Chapter 4

Clustering Definition

For obtaining optimal configurations for FLORA, a method is proposed in this
thesis where a FLORA configuration is modeled as a clustered actor formed by
clustering actors in an SDF graph. A definition of clustering is proposed in this
chapter wherein we cluster sub-graph(s) in an input SDF graph into a single
actor called as composite actor. The new graph containing the newly defined
composite actor is also a pure SDF actor therefore it is atomic. Such a definition
achieves two important objectives.

1. The atomicity of the composite actor models the non-preemptive nature
of the FLORA configuration.

2. The hierarchical composition separates clustered sub-graph(s) from the
parent graph containing composite actors. This allows separate analysis of
sub-graph to be clustered from analysis of the parent graph. For instance
it allows us to model self-timed schedule of actors mapped to FLORA
hardware blocks. Whereas the clustered graph is scheduled with static-
assignment (round-robin modeling) scheduling strategy.

In following section we describe our concept of clustering for SDF graphs.
In section 4.2 we describe the clustering function in detail. In section 4.4 we
describe that arbitrary clusters can result in deadlock. We immediately present a
condition to prevent such clusterings. In section 4.5 we give two theorems with
their proofs which guarantee consistency and deadlock freedom for clustered
graphs obtained by the clustering function explained in section 4.3. In section
4.6 we elaborate the effects of clustering on throughput, buffers and scheduling
load.

4.1 Clustering

In our concept of clustering, sub-graph(s) in an input SDF graph are clustered
into a single actor called as composite actor. This means that the composite
actor represents an atomic firing of k iterations of sub-graph(s). For a formal
and generic definition of clustering we define a clustering function which accepts
input and produces output as follows:

Input

1. G(V,E, δ, ϕ, π, µ)

30

2. Vs ⊂ V

3. k ∈ N where N = {1, 2, 3 . . .}

Output

1. G′(V ′, E′, δ, ϕ′, π′, µ′)

G is an input SDF graph. Definition of SDF graph is explained in chapter
2. Vs ⊂ V is set of nodes to be clustered. From Vs sub-graph of sub-graphs are
formed which are clustered. k is the number of sub-graph iterations that are
clustered. G′ is the clustered SDF graph with new set of nodes, edges, response
times, production rates and consumption rates.

Vs ⊂ V as an input parameter of clustering function can be any possible
subset of V . In the clustering function from Vs we form a connected sub-graph.
A sub-graph is created by removing all nodes in the original SDF graph which
do not belong to Vs and by removing all edges whose source or sink node is not
a node from Vs. However Vs may also consist of disconnected sub-graphs. For
example in figure 4.2 Vs = {b, c} forms only one connected sub-graph shown in
figure 4.4. On the other hand for SDF graph shown in figure 4.1 for Vs = {b, c, e}
we get two maximal (largest possible) sub-graphs, a sub-graph formed by {b, c}
which is same as shown in figure 4.4 and the other sub-graph consists of a single
actor e with its self-edge.

Clustering disjoint sub-graphs without assigning appropriate token rates to
the composite actor may lead to inconsistent SDF graph. Therefore we define
two clustering functions. The first clustering function Φc accepts Vs which only
contains one connected sub-graph and second clustering function Φg which ac-
cepts any Vs which may contain disjoint sub-graphs as well. The main difference
between Φg and Φc is that the token rates in Φg are constrained to guarantee
consistency for the resulting clustered SDF graph irrespective of disjoint sub-
graphs.

Φc and Φg are explained in detail in the following sections.

c,1b,1 d,3a,10
9 1 3 1 62

1

1
1

1

1
1

1

1
1

e,1

1

1
1

1

1

1

1 1

99

6
2 3

Figure 4.1: An example SDF graph with branches.

31

4.2 Clustering Function (Φc) for a single sub-graph

This clustering function Φc has input and output as explained in section 4.1.
The important requirement for Φc clustering function is that Vs ⊂ V consists of
a single connected sub-graph. Clustering function is explained here informally.
The formal definition is presented in definition 6.

The output of clustering function Φc is a clustered SDF graphG′(V ′, E′, δ, ϕ′, π′, µ′)
. Thus clustering produces a new SDF graph. To define clustering function it is
required to define every component of the new SDF graph namely – set of new
nodes (V ′), set of new edges (E′). set of new response times (ϕ′), set of new
production rates (π′) and set of new consumption rates (µ′). The set of initial
tokens δ for edges are kept same. We elaborate each component in the following
sections.

For illustration we consider an example SDF graph shown in figure 4.2.
Consider figure 4.2 shows the input SDF graph G(V,E, δ, ϕ, π, µ). The set of
nodes to be clustered are Vs = {b, c}. We illustrate the effect of different k in
following sections.

c,1b,1 d,3a,10
9 1 3 1 62

1

1
1

1

1
1

1

1
1

1

1
1

6
2 3

Figure 4.2: An example SDF graph for illustrating clustering.

New set of Nodes and Edges

The set of nodes to be clustered are replaced by a new node. The new node
is called as composite actor vc. Therefore the new set of nodes is obtained by
removing all nodes in Vs and adding a new node {vc}. This is formally defined
as V ′ = V \ Vs ∪ {vc}. For our example in figure 4.2 the new set of edges are
V ′ = {a, b, c, d} \ {b, c} ∪ {vc} = {a, vc, d}.

On similar lines the set of new edges E′ is defined by removing set of edges
Es from original set of edges E and adding new set of edges Ec. Therefore
E′ = E \ Es ∪ Ec. Es is the set of edges in E which have either source or sink
in Vs. For example in figure 4.2 Es has all the edges except the self-edges of a
and d. Ec is the set of constructed edges to connect vc to remaining graph. It
is constructed using only the nodes in V ′. Ec consists of outgoing edges from
vc and incoming edges to vc. Outgoing edge – for every edge in E where the
source is a node from Vs and sink is a node v ∈ V ′, an edge is created in Ec with
source as vc and sink as v ∈ V ′. Incoming edge – for every edge in E where the
source is a node from v ∈ V ′ and sink is a node from Vs, an edge is created in
Ec with source as v and sink as vc. vc has input and output ports which are
created for every incoming and outgoing edges in Ec respectively. Additionally

32

a self-edge is added for vc in Ec with one initial token to limit one firing of vc
at a time. The resulting graph is shown in figure 4.3.

vc d,3a,10
9 6

1

1
1

1

1
1

1

1
1

Figure 4.3: Resulting SDF graph after defining new set of nodes and edges.

Token production and consumption rates and the response times of actor vc
are missing in figure 4.3. They are explained in following section.

New Production Rates(π’) and Consumption Rates(µ’)

For every newly constructed edge in Ec the production rate and the consumption
rate have to be defined. For the remaining edges in E′ the production and
consumption rates remain the same. The new production and consumption
rates depend on the input parameter k. k is the number of sub-graph iterations
we wish to cluster.

Composite actor vc represents an atomic firing of k iterations of the sub-
graph formed by actors in Vs. Therefore vc consumes on each of its input ports
as many tokens as are required to fire k iterations of sub-graph formed by Vs
and produces tokens on each of its output port as many tokens as produced by
k iterations of sub-graph formed by Vs. Therefore to compute new token rates
a sub-graph is created from set of nodes to be clustered Vs. A sub-graph is
created by removing all nodes in the original SDF graph which do not belong
to Vs and by removing all edges whose source or sink node is not a node from
Vs. The sub-graph formed by Vs = {b, c} is shown in figure 4.4.

b,1 c, 1

6

32

3
2

1

1
1

1

1
1

Figure 4.4: Sub-graph of SDF graph shown in figure 4.2 formed by set of nodes
{b,c}.

We call the sub-graph shown in figure 4.4 GSG. The repetition vector for
GSG is {γGSG

(b) = 3, γGSG
(c) = 2}. Therefore the minimum token consumption

rate for newly constructed incoming edge e′ = (a, vc) for k = 1 (minimum value
of k) is µ′(e′) = γGSG

(b)×µ(e) = 3×1 = 3 where e = (a, b) is the corresponding

33

edge for e′ in E. The production rate for newly created edge e′′ = (vc, d) is
π′(e′′) = γGSG

(c)× π(e) = 2× 1 = 2 where e = (c, d) is the corresponding edge
for e′′ in E.

In this way the clustered SDF graph for k = 1 is shown in figure 4.5(a) and
for k = 3 the clustered SDF graph is shown in figure 4.5(b).

Therefore for any value of k ∈ N the new consumption rate for all newly
created incoming edges e′ ∈ Ec is µ′(e′) = k × γGSG

(v) × µ(e) where v ∈ Vs is
the corresponding sink node in Vs and e is the corresponding edge in E. The
new production rate for all newly created outgoing edges e′ ∈ Ec is π′(e′) =
k × γGSG

(v)× π(e) where v ∈ Vs is the corresponding source node in Vs and e
is the corresponding edge in E.

(a)

vc,4 d,3a,10
9 6

1

1
1

1

1
1

1

1
1

3 2

(b)

vc,10 d,3a,10
9 6

1

1
1

1

1
1

1

1
1

9 6

Figure 4.5: (a) Resulting clustered SDF graph for input SDF graph shown in
figure 4.2 for Vs = {b, c}, k = 1.(b) Resulting clustered SDF graph for input
SDF graph shown in figure 4.2 for Vs = {b, c}, k = 3.

New Response Times(ϕ′)

The response times of all actors in G′ remain same except for actors in Vs that
is ϕ′(v) = ϕ(v) where v ∈ V \ Vs. Actors in Vs will be removed and they will
be replaced by new composite actor vc. Therefore only the response time of
composite actor vc has to be defined.

The response time of actor vc depends on the input parameter k. Since
vc represents an atomic firing of k iterations of sub-graph formed by Vs, the
response time of composite actor vc is the amount of time spent in k iterations
of sub-graph formed by Vs.

To compute the amount of time spent for a number of iterations of a sub-
graph, we need to decide the schedule for the SDF graph to be clustered.
FLORA blocks are data-driven, that is the blocks fire as soon as data is avail-
able to them and there is enough space in the output FIFO. Therefore we use
self-timed schedule for the SDF graph to be clustered. In self-timed schedule,

34

actors fire as soon as they can. To model the back-pressure due to finite output
FIFOs the input SDF graph must be modeled with back edges with appropriate
initial tokens.

Thus the response time of the composite actor depends on the scheduling
strategy we choose for the SDF sub-graph to be clustered. We present a formu-
lation for the response time of composite actor for self-timed schedule.

SDF actors in a self-timed schedule are pipelined [13,14]. It is proven in [5]
that for every consistent and strongly connected SDF graph in a self-timed
schedule there is a transient phase followed by a periodic phase.

For every firing of composite actor, the sub-graph it represents, is fired from
its initial state. Therefore the response time of the composite actor is the time
the sub-graph spends in transient phase + the time sub-graph spends in k
periodic iterations. Inspired by latency-rate server modeling for dataflow [21]
we say that the time spent in the transient phase of a graph is modeled by θ and
the time spent in periodic phase is modeled by ρ. This is illustrated in figure
4.6.

b

c c c

Latency

θ

mcm

b b b b b

c

mcm mcm

b

c c

b b

b,1 c,1

6

32

3
2

ρ

1

1
1

1

1
1

Figure 4.6: Self-timed schedule for three iterations of sub-graph.

We use function defined in [6] to compute latency between SDF nodes in
a self-timed schedule. latency(G, vi, vj) gives latency between nodes vi and vj
in the SDF graph G. Using this function, for the sub-graph obtained from
the original SDF graph we find the maximum latency which is the time spent
to cover all firings of actors in the sub-graph as required by the repetition
vector of the sub-graph. In figure 4.6, the maximum latency is 4 which covers 3
firings of b and 2 firings of c. For brevity we refer to this maximum latency as
latency(G) where G is the sub-graph obtained from Vs. Similarly mcm(G) gives
the Maximum Cycle Mean of an SDF graph for a self-timed schedule. Then the

35

latency- server variables θ and ρ for the sub-graph GSG can be found as follows.

θ = latency(GSG)−mcm(GSG) (4.1)

ρ = mcm(GSG)× k (4.2)

We define a new function τ to compute the response time of an SDF graph
for self-timed schedule in definition 5.

Definition 5. (Response Time of a Graph) Response Time of a Graph is a
function τ(G, k) = θ + ρ, where G is an SDF graph, k ∈ N is the number of
iterations of SDF graph G, θ = latency(G) −mcm(G) and ρ = mcm(G) × k.
latency(G) is the time spent for all firings of all actors in G as required by the
repetition vector γ(G).

Therefore the response time of composite actor is ϕ′(vc) = τ(GSG, k) where
GSG is the sub-graph formed with set of nodes Vs and k is the number of
iterations of the sub-graph SDF graph GSG that we specify.

For illustration,for SDF graph G shown in figure 4.2 clustered for Vs = {b, c}
, k = 1 , the response time of vc is

latency(G) = 4

mcm(G) = 3

θ = latency(G)−mcm(G) = 1

ρ = k ×mcm(G) = 1× 3 = 3

ϕ′(vc) = θ + ρ = 1 + 3 = 4

For k = 3 we have

θ = latency(G)−mcm(G) = 1

ρ = k ×mcm(G) = 3× 3 = 9

ϕ′(vc) = θ + ρ = 1 + 9 = 10

The resulting clustered SDF graphs for k = 1 and k = 3 are shown in figure
4.5(a) and 4.5(b) respectively.

Set of Initial Tokens

In an SDF graph with cycles initial tokens on edges are essential to initiate tran-
sition of the graph. Without sufficient initial tokens graph deadlocks. Initial
tokens denote different meaning in different context. Initial tokens placed on
the back edges from consumer to producer denote capacity of buffer between
producer and consumer. We have freedom to change amount of initial tokens
for such edges. However if the original SDF representation of an algorithm

36

has initial tokens on some edges, they denote amount of data tokens used in a
loop. Usually such tokens have important meaning and changing the amount
of initial tokens in such cases may give a different meaning to the original algo-
rithm. Therefore we do not change the set of initial tokens when constructing
a clustered graph.

It is possible to shift the initial tokens from an edge to a consecutive edge(s)
with appropriate pre-processing before firing the SDF graph. For example con-
sider an SDF graph shown in figure 4.7(a). If we consider that actor a is fired
one time before initiating the SDF graph then the produced 4 tokens from actor
a can be placed in on the edge (a,b). The new SDF graph is shown in figure
4.7(b).

(a)

db

c

a 4 1 11

1

1
1

1 1
1

1

1
1

1
1

1

1

1 1

4
1

(b)

db

c

a 4 1 11

1

1
1

1 1
1

1

1
1

1
1

1

1

1 1

1

4

Figure 4.7: (a) An example of SDF graph with a cycle. (b) A new SDF graph
after pre-firing actor a and then placing the produced tokens on edge (a,b).

Shifting of initial tokens enables some clustering options which were before
not possible and disables some other clustering options. For example in figure
4.7(a) cluster (c,a) results in deadlock. Whereas (c,a) is a valid clustering option
in figure 4.7(b). However cluster (a,b) now results in deadlock in figure 4.7(b)
which was a deadlock-free cluster in figure 4.7(a). Shifting of initial tokens gives
additional freedom in clustering. Therefore to restrict the clustering space we
do not consider shifting initial tokens.

37

Formal Definition of Clustering Function Φc

Clustering function results in a new SDF graph. In the previous sections con-
struction of each component of the clustered SDF graph was described. We
summarize the description formally in definition 6.

Definition 6. (Clustering Function (Φc) for single sub-graph) Given an SDF
graph G(V,E, δ, ϕ, π, µ), a set of actors Vs ⊆ V to be clustered and k ∈
N, clustering function produces a new SDF graph Φc(G,Vs, k) = G′ where
G′(V ′, E′, δ, ϕ′, π′, µ′) is the clustered SDF graph. G′ is obtained by replac-
ing Vs by a new actor vc called as a composite actor. V ′ = V \ Vs ∪ {vc}.
E′ = E \ Es ∪ Ec where Es = {(ps, qd) ∈ E|(s ∈ Vs) ∨ (d ∈ Vs)} is the set of
old edges to be removed and Ec = {(ps, qd)|(s ∈ V ′) ∧ (d ∈ V ′) ∧ (s = vc ⇒
((pv, qd) ∈ E∧(v ∈ Vs)))∧(d = vc ⇒ ((ps, qv) ∈ E∧(v ∈ Vs)))} is the set of new
constructed edges. For all actors except vc that is {v ∈ V ′ \ vc}, the response
times are ϕ′(v) = ϕ(v). For the composite actor vc, ϕ

′(vc) = τ(GSG, k) where τ
is a function which gives response time of an SDF graph defined in definition 5,
GSG is the connected sub-graph formed with set of nodes Vs. For all edges ex-
cept the new constructed edges {e ∈ E′ \Ec}, the production and consumption
rates are π′(e) = π(e) and µ′(e) = µ(e). For all new outgoing edges from vc,
{e′ = (pvc , qd) ∈ Ec}, π′(e′) = k× γGSG

× π(e) where e = (pv, qd) ∈ E ∧ v ∈ Vs.
For all new incoming edges to vc, {e′ = (ps, qvc) ∈ Ec}, µ′(e′) = k×γGSG

×µ(e)
where e = (ps, qv) ∈ E ∧ v ∈ Vs.

4.3 Clustering Function (Φg) for sub-graphs

Clustering function we explained in section 4.2 accepts three input parameters,
an input SDF graph G(V,E, δ, ϕ, π, µ), a set of actors Vs ⊆ V to be clustered
and k ∈ N is the number of sub-graph iterations. As was explained in section
4.1, Vs ⊂ V as an input parameter can be any subset of V . Therefore Vs
may also consist of disjoint sub-graphs. For SDF graph shown in figure 4.1 for
Vs = {b, c, e} we get two maximal (largest possible) sub-graphs shown in figure
4.9.

For arbitrary Vs ⊂ V and k ∈ N we may generate an inconsistent clustered
SDF graph. For SDF graph shown in figure 4.1, for k = 1 and Vs = {b, c, e} the
resulting clustered SDF graph is shown in figure 4.8.

Therefore to guarantee consistent clustered graphs we need to bound Vs
and/or k. In our new definition of clustering function we guarantee consistency
by restricting k. Thus all possible subset of actors Vs can be tried and therefore
all possible configurations of FLORA can be tried. Instead of keeping k variable
(by accepting it as input parameter) for each maximal sub-graph formed by Vs
we choose value of k to be equal to as many iterations of sub-graph as possible
with firings of actor in sub-graph specified by the repetition vector of the input
graph. Therefore for input SDF graph G(V,E, δ, ϕ, π, µ) and any subset of
actors Vs ⊂ V to be clustered we compute k for each sub-graph as follows.

38

vc

da
9 3 6

1

11

1

1
1

1

1

1

1
99

2

1

Figure 4.8: Resulting inconsistent clustered SDF graph for input SDF graph
shown in figure 4.1 for Vs = {b, c, e} and k = 1.

Let SG be the set of all maximal connected components that can be formed

from nodes in Vs. Then for each sub-graph, g ∈ SG, k = γ(v)
γg(v)

where γ is the

repetition vector of input SDF graph, γg is the repetition vector of sub-graph g
and v ∈ Vs.

For example, for input SDF graph shown in figure 4.1 to cluster Vs = {b, c, e}
we have two sub-graphs formed from Vs shown in figure 4.9.

c,1b,1
32

1

1
1

1

1
1

e,1

1

1
1

6
2 3

Figure 4.9: Resulting sub-graphs for input SDF graph shown in figure 4.1 for
Vs = {b, c, e}

For input SDF graph shown in figure 4.1, repetition vector is γ = {γ(a) =
1, γ(b) = 9, γ(c) = 6, γ(d) = 1, γ(e) = 9}. For sub-graph G1 formed by {b, c},
γG1 = {γ(b) = 3, γ(c) = 2} . Therefore for sub-graph G1, k = 9

3 = 3. Using
this k, the new rates for incoming edge to actor b and the outgoing edge from
actor c can be computed. For sub-graph G2 formed by {e}, γG2

= {γ(e) = 1} .
Therefore for sub-graph G2, k = 9

1 = 9.
For computing the response time of clustered actor vc, the maximum of the

response time of all sub-graphs is taken. That is ϕ′(vc) = maxg∈SG τ(g,K(g))

where SG is the set of maximal sub-graphs formed by Vs and K(g) = γ(v)
γg(v)

,

v ∈ Vs gives the number of iterations for each sub-graph g ∈ SG.
Thus for SDF graph shown in figure 4.1, the resulting clustered SDF graph

is shown in figure 4.10. The new response time of actor vc is max(9, 10) = 10.
We summarize the definition of this general clustering function Φg in defini-

tion 7.

Definition 7. (General Clustering Function (Φg) for sub-graphs) Given an

39

Vc ,10
d,3a,10

9 9 6

1

11

1

1
1

1

1

1

9
99

6

9

Figure 4.10: Resulting consistent SDF graph for input SDF graph shown in
4.1 for Vs = {b, c, e}

SDF graph G(V,E, δ, ϕ, π, µ), a set of actors Vs ⊆ V to be clustered, gen-
eral clustering function produces a new SDF graph Φg(G,Vs) = G′ where
G′(V ′, E′, δ, ϕ′, π′, µ′) is the clustered SDF graph. G′ is obtained by replacing Vs
by a new actor vc called as a composite actor. V ′ = V \Vs∪{vc}. E′ = E\Es∪Ec
where Es = {(ps, qd) ∈ E|(s ∈ Vs) ∨ (d ∈ Vs)} is the set of old edges to be re-
moved and Ec = {(ps, qd)|(s ∈ V ′) ∧ (d ∈ V ′) ∧ (s = vc ⇒ ((pv, qd) ∈ E ∧ (v ∈
Vs))) ∧ (d = vc ⇒ ((ps, qv) ∈ E ∧ (v ∈ Vs)))} is the set of new constructed
edges. For all actors except vc that is {v ∈ V ′ \ vc}, the response times are
ϕ′(v) = ϕ(v). For the composite actor vc, ϕ

′(vc) = maxg∈SG τ(g,K(g)) where

SG is the set of maximal sub-graphs formed by Vs and K(g) = γ(v)
γg(v)

, v ∈ Vs
gives the number of iterations for each sub-graph g ∈ SG and τ is a function
which gives response time of an SDF graph defined in definition 5. For all edges
except the new constructed edges {e ∈ E′ \ Ec}, the production and consump-
tion rates are π′(e) = π(e) and µ′(e) = µ(e). For all new outgoing edges from vc,
{e′ = (pvc , qd) ∈ Ec}, π′(e′) = K(g)×γg×π(e) where e = (pv, qd) ∈ E∧v ∈ Vs.
For all new incoming edges to vc, {e′ = (ps, qvc) ∈ Ec}, µ′(e′) = K(g)×γg×µ(e)
where e = (ps, qv) ∈ E ∧ v ∈ Vs.

4.4 Deadlock - Free Clusters

Clustering actors in an SDF graph may result in an SDF graph which deadlocks.
An SDF graph does not deadlock if its equivalent Precedence Graph is acyclic
[12]. Conversely an SDF graph which does deadlock must have at least one
cycle in its equivalent Precedence Graph. Equivalent precedence graph for an
SDF graph is obtained by removing all the edges in the equivalent HSDF graph
which have at least one initial token [13].

Consider an SDFgraph shown in figure 4.11(a). Clustering {b, c} results in
an SDF graph shown in figure 4.11(b). This SDF graph deadlocks because there
is a cycle between actor bc and d which is seen in its equivalent precedence graph
in figure 4.11(c) and also in 4.11(b).

To avoid clustering options for an SDF graph G(V,E, δ, ϕ, π, µ) that lead to
deadlock it is necessary to check if clustering set of actors Vs ⊂ V in a single
actor vc creates a cycle in the precedence graph of clustered SDF graph. For

40

(a)

db

c

a 4 1 11

1

1
1

1 1
1

1

1
1

1
1

1

1

1 1

4
1

(b)

dbca
4 1 1

1

1
1

1

1

11

1
1

1

11 1
4

1

(c)

a

bc0

bc1

bc2

bc3

d0

d1

d2

d3

Figure 4.11: (a) An example of SDF graph. (b) Resulting SDF graph after
clustering {b, c} which deadlocks.(c) Equivalent Precedence Graph for clustered
SDF graph in (b).

different set of actors to be clustered Vs ⊂ V we get different clustering options.
Therefore for each given set Vs ⊂ V we need to check for deadlock.

In the input SDF graph if there is a path from any node in Vs to any other
node in Vs via a node outside Vs then a cycle will be created in the resulting
clustered SDF graph with the clustered actor vc. Therefore to check for a
clustering option Vs ⊂ V that leads to deadlock we state a condition on the
input SDF graph in definition 8.

Definition 8. (Condition for checking deadlock) Given an SDF graphG(V,E, δ, ϕ, π, µ)
and a set of actors Vs ⊂ V to be clustered, the resulting SDF graph is deadlock
free if no path (vi, . . . , vk, . . . , vj) exists in the equivalent precedence graph of
G where (vi ∈ Vpgs)∧ (vj ∈ Vpgs)∧ (vk /∈ Vpgs) where Vpgs is the corresponding
set of actors for Vs in the equivalent precedence graph of G.

41

For illustration consider SDF graph shown in figure 4.11(a). Its equivalent
precedence graph is shown in figure 4.12. For the case when we wish to cluster
Vs = {b, c} we see in figure 4.12 that there are multiple paths from bi to ci
(i = {0, 1, 2, 3}) via nodes di and di /∈ Vpgs. Therefore clustering Vs will result
in deadlock. This holds as illustrated in figure 4.11.

a

b0

b1

b2

b3

d0

d1

d2

d3

c0

c1

c2

c3

Figure 4.12: Equivalent precedence graph for SDF graph shown in figure
4.11(a).

4.5 Properties of Clustering Function

It is important that the clustering function defined in definition 7 results in
consistent and deadlock-free SDF graphs so that the clustered graphs are prac-
tically useful. In this section we present theorems guaranteeing consistency and
deadlock freedom along with their proofs.

4.5.1 Preservation of Consistency

Theorem 1. Given an SDF graph G(V,E, δ, ϕ, π, µ) and a set of actors Vs ⊂ V
to be clustered, if G is consistent than the clustered graph Φg(G,Vs) = G′ is
also consistent.

Proof. If G(V,E, δ, ϕ, π, µ) is consistent than the repetition vector γ of G has
non-zero elements. That is ∀v ∈ V : γ(v) > 0. To prove thatG′(V ′, E′, δ, ϕ′, π′, µ′)
is also consistent we must show ∀v ∈ V ′ : γ′(v) > 0.

We shall derive γ′ for G′ using steps as defined by the clustering function
Φg in definition 7 and prove that ∀v ∈ V ′ : γ′(v) > 0. In the proof, to derive γ′

we shall be required to derive γ′(vc). To find γ′(vc) we can evaluate either an
incoming edge to vc or an outgoing edge from vc. We use an incoming edge in
the proof. γSG in the proof indicates the repetition vector of sub-graph formed

42

by Vs ⊂ V . For simplicity we consider an edge to be a tuple e = (s, d) where s
is the source actor and d is the destination actor.

1 ∀v ∈ V : γ(v) > 0 Given

2 γ(V) = {γ(v)|v ∈ V } Given

3 V ′ = V \ Vs ∪ {vc} Clustering Function

4 ∀e = (s, vc) ∧ (s ∈ V ′ \ {vc}) ∧ (d ∈ Vs) : π′(e) = π(e) Clustering Function

5 ∀e = (s, vc) ∧ (s ∈ V ′ \ {vc}) ∧ (d ∈ Vs) : µ′(e) = K(d) · µ(e) · γSG(d) Clustering Function

6 K(v) = { γ(v)
γSG(v) |v ∈ Vs} Clustering Function

7 γ′(V ′) = {γ(v)|v ∈ V \ Vs ∪ {vc}} Using 2,3

8 γ′(V ′) = {γ(v)|v ∈ V \ Vs} ∪ {γ(v)|v ∈ {vc}} Property of ∪

9 γ′(V ′) = {γ(v)|v ∈ V } \ {γ(v)|v ∈ Vs} ∪ {γ(v)|v ∈ {vc}} Property of \

10 γ′(V ′) = {γ(v)|v ∈ V } \ {γ(v)|v ∈ Vs} ∪ γ(vc) Single Element

11 ∀e = (s, d) ∧ (s ∈ V) ∧ (d ∈ V) : γ(s) · π(e) = γ(d) · µ(e) Definition of γ for G

12 ∀e = (s, vc) ∧ (s ∈ V ′ \ {vc}) ∧ (vc ∈ V ′) Incoming edge to vc

13 γ′(s) · π′(e) = γ′(vc) · µ′(e) Definition of γ for G′

14 γ(s) · π′(e) = γ′(vc) · µ′(e) Using 10,13

15 γ(s) · π(e) = γ′(vc) · µ′(e) Using 4,14

16 γ(s) · π(e) = γ′(vc) ·K(d) · µ(e) · γSG(d) Using 5,15

17 γ(s) · π(e) = γ′(vc) · γ(d)
γSG(d) · µ(e) · γSG(d) Using 6,16

18 γ(s) · π(e) = γ′(vc) · γ(d) · µ(e)

19 γ(s) · π(e) = γ′(vc) · γ(s) · π(e) Using 11,18

20 γ′(vc) = 1

21 ∀v ∈ V ′ : γ′(v) > 0 Using 1,2,10,20

4.5.2 Deadlock Freedom

Theorem 2. Given an SDF graph G(V,E, δ, ϕ, π, µ) and a set of actors Vs ⊂ V
to be clustered the resulting clustered graph Φg(G,Vs) = G′ is deadlock-free if
G is deadlock-free and the condition specified in definition 8 is satisfied.

Proof. The clustered SDF graph G′ will deadlock if there is a cycle in its equiv-
alent precedence graph. Such a cycle was created either after clustering process
or it existed in the input SDF graph G before clustering.

43

If it existed before clustering, the condition that G should be deadlock-free
is dissatisfied and hence theorem holds.

For the case when a cycle was created after clustering process, we need to
show that if condition in definition 8 is satisfied then no cycle is created in the
equivalent precedence graph of clustered graph G′.

Clustering set of actors Vs ⊂ V results in a single actor vc as defined in
definition 7. Therefore all edges going out from v ∈ Vs in G originate from vc
in G′ and all edges coming to v ∈ Vs terminate on vc in G′. Therefore for the
context of paths we can say there is an equivalence between actors in G and
G′ and also in their equivalent precedence graphs. That is ∀v ∈ Vpgs : vc ≡ v
where Vpgs is the corresponding set of actors for Vs in the equivalent precedence
graph. On the other hand set of paths are transformed in a new modified set of

paths with
←→
Φg(P) � P ′, where P is the set of paths in precedence graph of G

and P ′ is the set of paths in equivalent precedence graph of G′.
Let condition defined in 8 hold.

1 @p = (vi, ...vk, ..vj) ∧ (p ∈ P) : (vi ∈ Vpgs) ∧ (vj ∈ Vpgs) ∧ (vk /∈ Vpgs) Assumption

2 ∀v ∈ Vpgs : vc ≡ v Clustering Equivalence

3
←→
Φg(P) � P ′ Clustering Transformation

4 @p = (vc, ...vk, ..vc) ∧ (p ∈ P ′) : (vc ∈ Vpgs) ∧ (vc ∈ Vpgs) ∧ (vk /∈ Vpgs) Using 2,3 for vi, vj

5 @p = (vc, ...vk, ..vc) ∧ (p ∈ P ′) : (vc ∈ Vpgs) ∧ (vk /∈ Vpgs) a ∧ a ≡ a

6 @p = (vc, ...vk, ..vc) ∧ (p ∈ P ′) : (vc ∈ Vpgs) ∧ (vk /∈ Vs) Vpgs ≡ Vs

The derived statement above in 5 says, in the set of all paths in the equivalent
precedence graph of clustered SDF graph G′ no path exists from vc to vc via
a node which is not from Vs (that is any node in V ′ other than vc). Which
means after clustering transformation no cycle was created in set of all paths in
equivalent precedence graph of G′ containing vc. Therefore G′ is deadlock free.

4.6 Effects of Clustering

Clustering of SDF actors in a single SDF actor affects obtainable throughput,
buffer requirement and the scheduling load to schedule the SDF graph. In
this section we explain the significance of clustering. We detail the effects of
clustering on throughput, scheduling load and buffers.

Clustering and throughput

Clustering actors into a single actor affects throughput. For the case where we
ignore the time spent in reading/writing FIFO in an SDF graph, clustering may
only decrease the throughput. This happens because we constrain the pipelining

44

possibilities in the clustered actor. This is illustrated in figure 4.13. Figure
4.13(a) shows two SDF graphs with their self-timed schedule shown below. Their
throughput constraints are defined by the inverse of the time period of their
source actors (So1 and So2). Actors A and C are mapped to resource P1
and actors B and D are mapped to resource P2. If we let the resources be
shared via round-robin scheduler we get an execution shown in 4.13(b). We
see that their throughput constraints are satisfied. Now we cluster the actors
A and B and actors C and D. The token rates are adjusted to let as many
firings of A and B take place as there are in the repetition vector ({γ(So1) =
1, γ(A) = 2, γ(B) = 1}) and ({γ(So2) = 1, γ(C) = 2, γ(D) = 3}). Since we use
round-robin scheduler we sum the execution time of actors on shared resources.
Therefore actors AB and CD have execution time 7. The clustered graph is
shown in figure 4.13(c). We see that we either break the throughput or the
SDF graph shall take unbounded memory for execution. Hence we have allowed
boundless FIFO in figure 4.13(c). This tells us we should avoid clustering to
allow maximum possible throughput.

On the other hand, if we consider that finite time is spent in reading/writing
FIFOs, then clustering can improve the throughput. This is illustrated in figure
4.14. Figure 4.14(a) shows an example of SDF graph without read/write over-
head. We can model read/write overheads in different ways such as introducing
a RDMA and WDMA actors on every edge (this gives better approximation of
the overhead). But for illustration we assume a constant read/write overhead
for all actors. Say every actor takes 0.5 time units to read and write. We ac-
commodate the read/write overhead in the firing duration of each actor. Thus
we see in figure 4.14(b) we have added 1 to every actor (ignoring the source
actor). The self-timed execution is also shown thereby. The dark-green region
shows the time spent in reading/writing. We see that the bottle neck is execu-
tion of 4 Bs with mcm of 8. This breaks the throughput constraint. But when
we cluster actors B and C in figure 4.14(c), the bottleneck reduces to execution
of composite actor BC with firing duration of 7, thus throughput constraint is
met.

Clustering and scheduling load

For every model of computation we can have a program or schedule. For ex-
ample, for turing machines such as processors we have machine code stored in
memory. For dataflow models we can have different types of schedules explained
in table 3.1. If it is a static schedule we can store such a schedule. We can say
such code or a schedule has a load associated with it. For stored programs in
a memory, the code size can be inferred as the load. For a periodic schedule
the length of the schedule for a period can be inferred as its load. For run-time
schedules or fully-dynamic schedules the switching over-head can be inferred as
a scheduling load. For FLORA as explained in section 3.1 such a scheduling load
is relevant to us.

Since we use SDF as a model of computation, we wish to measure scheduling
load for a SDF graph. There are numerous ways to measure scheduling load. A

45

simple measure is number of firings per unit time. We define this measure as
follows.

Definition 9. (Absolute Scheduling Load) Absolute Scheduling Load of a SDF
graph G(V,E, δ, ϕ, π, µ) is defined as ASL(G) = |γ|/mcm(G) where |γ| =∑
v∈V γ(v).

Clustering always decreases scheduling load. This is illustrated in figure
4.15. Figure 4.15(a) shows the original SDF graph with repetition vector γ =
{1, 4, 2} and mcm=4. Therefore Absolute Scheduling Load (ASL)=1.75. In
figure 4.15(b) we have clustered 4 Bs and in figure 4.15(c) we have clustered 4
Bs and 2 Cs to form actor BC. We see that ASL reduces from 1.75 to 1 to 0.333.

Clustering and buffer requirement

Finite buffers are represented with back edges from consumer to producer ac-
tors with initial tokens placed on these back edges [14]. Buffer sizing affects
throughput [14]. Clustering also affects the buffer requirement. This is so be-
cause clustered actors get new firing durations, new consumption rates and
new production rates which means the waiting time of tokens in FIFO can
change. But unlike scheduling load, clustering does not affect buffer require-
ment monotonously. In figure 4.15 we show buffers for maximum throughput.
As we cluster 4 Bs in figure 4.15(b), buffer capacity required changes from 20
to 24. And in figure 4.15(c) buffer capacity required is again 20. Even though
actors B and C are clustered, we say that actor BC has internally a buffer of
size 4 which is also accounted for.

46

(a)

B,1A,1 So,4
2 1 21

24

So1

A

B

A

So1

A

B

A

So1

A

B

A

1 1 22

D,1C,1 So,4
2 1 23

64

1 3 22

So2

C

D

C

D D

So2

C

D

C

D D

So2

C

D

C

D D

So1 So2

mcm=4 mcm=4

1

1
1

1

1
1

1

1
1

1

1
1

1

1
1

1

1
1

(b)

P1 = {A,C} P2 = {B,D}

So1

A

B

A

So1

A

B

A

So1

A

B

AC C

D D D D D D D D D

C C C C

So2 So2 So2So2

So1

mcm=4

(c)

AB,7 So,4
2 2

So1

CD,7 So,4
2 2

C

D

C

D D

A

B

A

So1 So1

C

D

C

D D

A

B

A

So1

So2 So2 So2So2

mcm=7

1

1
1

1

1
1

1

1
1

1

1
1

Figure 4.13: Clustering may reduce throughput. (a) Two SDF graphs with
their schedules shown below. Both have throughput constraint of 1/4. (b) A
combined schedule on shared resources. A,C are mapped to resource P1 and
B,D are mapped to resource P2. Throughput constraints of both SDF graphs are
still satisfied. (c) A,B are clustered to form actor AB. C,D are clustered to form
CD. Throughput constraint of both SDF graphs break.

47

(a)

B,1A,2 C,2So,7
8 8 2 1 28

1

1
1

1

1
1

1

1
1

1

1
1

(b)

B,1+1A,2+1 C,2+1So,7
8 8 2 1 28

B B

A

B B

C C

B

A

B

A

So So SoSo

mcm=8

1

1
1

1

1
1

1

1
1

1

1
1

B B

C C

(c)

A

B B B B

CC

B B B B

CC

A

B B B B

CC

A

mcm2So So SoSo

BC,6+1A,2+1So,7
8 8 88

mcm=7

1

1
1

1

1
11

1
1

Figure 4.14: Clustering can improve throughput when FIFOs have finite
read/write overhead. (a) An example SDF graph without read/write over-
head.(b) SDF graph with a constant read/write overhead of 0.5 time units to
read and write. Throughput constraint is not met.(c) Actors B and C are clus-
tered. Throughput constraint is met.

48

(a)

B,1A,2
28

16

8 2

1

1
1

1

1
1

C,2
2

4

2

1

1
1

1

1

(b)

B,4A,2
88

16

8 8

1

1
1

1

1
1

C,2
2

8

2

1

1
1

4

4

(c)

BC,6A,2
88

16

8 8

1

1
1

1
1

Figure 4.15: Clustering always reduces scheduling load. Clustering affects
buffer requirement. (a) Absolute Scheduling Load(ASL)= 1+4+2

4 = 1.75. Buffer
capacity required 16+4=20.(b) ASL= 1+1+2

4 = 1. Buffer capacity required
16+8=24.(c) ASL= 1+1

6 = 0.333. Buffer capacity required 16+4=20.

49

Chapter 5

Clustering Algorithms

In the previous chapter we described our clustering function which given an
input SDF graph and a set of nodes to be clustered produces a clustered SDF
graph. Using this clustering function in this chapter we present an exact ex-
haustive search algorithm and a heuristic algorithm. In section 5.1 we describe
algorithms for checking deadlock. In section 5.2 we describe the exact algo-
rithm and the heuristic algorithm to find optimal clusterings for input SDF
graphs. We describe the details of the implemented algorithm in section 5.3. In
section 5.4 we describe experiments to evaluate performance of the clustering
algorithms.

5.1 Algorithms For Checking Deadlock-free Clus-
ters

In section 4.4 it was explained that given a set of nodes Vs ⊂ V to be clustered
in an SDF graph G(V,E, δ, ϕ, π, µ) the resulting clustered graph may deadlock.
To prevent such clustering options a condition was presented in definition 8. A
naive algorithm implementing condition specified in definition 8 is presented in
algorithm 1. The algorithms returns valid if clustering set of nodes Vs ⊂ V does
not lead to a deadlock. Otherwise invalid is returned.

Algorithm 1 checks for all paths between all nodes in Vpgs where Vpgs is the
set of nodes corresponding to Vs in the equivalent precedence graph of the input
SDF graph. The equivalent precedence graph for an SDF graph is obtained by
removing edges in the equivalent HSDF graph which have at least one initial
token [13]. Therefore the equivalent precedence graph may contain exponential
number of nodes and edges and therefore exponential number of paths. For
example consider SDF graph shown in figure 5.1(a). Its precedence graph is
shown in figure 5.1(b). For checking clustering option Vs = {b, c} there are 26
possible paths from node bi to ci, i ∈ {0, 1, 2, 3} in the precedence graph shown
in 5.1(b). Therefore algorithm 1 can have exponential complexity in size of
repetition vector of input graph. For practical SDR applications the complexity
of algorithm 1 is unacceptable. Therefore we propose an efficient algorithm as
follows.

50

input : G(V,E, δ, ϕ, π, µ), Vs ∈ V
output: V alid|Invalid

1 Obtain Precedence Graph Gpg for G
2 Vpgs are the corresponding nodes for Vs in Gpg
3 for all vi, vj ∈ Vpgs do
4 for all paths in Gpg between vi, vj ∈ Vpgs do
5 if path contains vk /∈ Vpgs then
6 return Invalid
7 end

8 end

9 end
10 return Valid

Algorithm 1: Algorithm to check for deadlock-free clusters.

input : G(V,E, δ, ϕ, π, µ), Vs ∈ V
output: V alid|Invalid

1 // Construct GSPG as follows

2 Clone G(V,E) into GSPG(V ′, E′)
3 for each e = (s, d) ∈ E′ do
4 if δ(e) ≥ γ(d) · µ(e) then
5 remove (e)
6 end

7 end
8 // Check for deadlock in GSPG as follows

9 for all vi, vj ∈ Vs do
10 for all paths in GSPG between vi, vj ∈ Vs do
11 if path contains vk /∈ Vs then
12 return Invalid
13 end

14 end

15 end
16 return Valid

Algorithm 2: Efficient Algorithm to check for deadlock-free clusters.

Paths in the equivalent HSDF are redundant as the equivalent HSDF graph
contains replicated nodes and paths. Therefore we propose to construct a prece-
dence graph directly from an SDF graph skipping the intermediate transforma-
tion to equivalent HSDF graph. We do so by removing edges from the input
SDF graph which have initial tokens. However number of initial tokens are
important. Removing an edge which has insufficient amount of tokens may
validate a clustering option which will deadlock. Therefore we remove an edge
e = (s, d) ∈ E if it has as many tokens as required by the destination actor of
the edge. The number of tokens required by destination actor is the product of
the consumption rate of the destination actor times its repetition vector, that is

51

(a)

db

c

a 4 1 11

1

1
1

1 1
1

1

1
1

1
1

1

1

1 1

4
1

(b)

a

b0

b1

b2

b3

d0

d1

d2

d3

c0

c1

c2

c3

(c)

db ca

Figure 5.1: (a) An example of SDF graph. (b) Equivalent Precedence Graph
for SDF graph in (a). (c) A precedence graph constructed directly from SDF
graph.

δ(e) ≥ γ(d)·µ(e). For example in figure 5.1(a) the precedence graph constructed
directly from SDF graph is shown in figure 5.1(c). Note that only information
of nodes and edges are required to check for deadlock. Therefore rates, response
times are omitted while constructing graph in figure 5.1(c). Figure 5.1(c) has
only one path between node b and c via node d /∈ Vs compared to 26 paths in
figure 5.1(b). In this way we avoid searching exponential number of paths. The
efficient algorithm is presented algorithm 2.

52

5.2 Clustering Algorithms

In chapter 4 definition for clustering function (Φg) was presented. Given an in-
put SDF graph and a set of nodes to be clustered, clustering function Φg returns
a clustered graph. In this section we present clustering algorithms for the prob-
lem statement mentioned in section 3.4. All the clustering algorithms accept a
set of input SDF graphs and output corresponding set of optimal clustered SDF
graphs using the clustering function Φg. A clustered graph is optimal if it sat-
isfies the throughput and buffer constraints and minimizes absolute scheduling
load (defined in definition 9).

5.2.1 Exhaustive Search Approach

Given a set of SDR applications optimal configurations for FLORA are com-
puted at compile time. Therefore an exact clustering algorithm is desired. In ex-
haustive search approach all the possible clustering options are searched to find
the exact solution. For the clustering function Φg(G,Vs) = G′ , G(V,E, δ, ϕ, π, µ)
is the input SDF graph, Vs ⊂ V is the set of actors to be clustered and G′ is
the resulting clustered SDF graph. To try out all clustering options for G is to
try all partitions of set of actors V . For example consider SDF graph in figure
5.1(a). The set of actors are V = {a, b, c, d} . The list of all partitions for set
V is presented in table 5.1. The number of all possible non-empty partitions
of a set is given by Bell Number or Sterling Numbers of the second kind 1. To
obtain list of all partitions, a recursive procedure is presented in algorithm 3.

1 [[a] [b] [c] [d]]
2 [[a,b] [c] [d]]
3 [[b] [a,c] [d]]
4 [[b] [c] [a,d]]
5 [[a] [b,c] [d]]
6 [[a,b,c] [d]]
7 [[b,c] [a,d]]
8 [[a] [c] [b,d]]
9 [[a,c] [b,d]]
10 [[c] [a,b,d]]
11 [[a] [b] [c,d]]
12 [[a,b] [c,d]]
13 [[b] [a,c,d]]
14 [[a] [b,c,d]]
15 [[a,b,c,d]]

Table 5.1: List of all partitions of set V = {a, b, c, d}
1http://en.wikipedia.org/wiki/Bell_number, http://en.wikipedia.org/wiki/

Stirling_numbers_of_the_second_kind

53

http://en.wikipedia.org/wiki/Bell_number
http://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind
http://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind

input : Biggest Partition. Example {{a,b,c,d}}
output: List of all partitions

1 // An example of element is {a,b}
2 // An example of partition for set {a,b,c,d} is {{a,c},{b,d}}

3 // An example of list of partition is

{{{a,b,c,d}},{{a,c},{b,d}} }
4 // partition.n denotes nth element in a partition

5 ListOfPartition ObtainListOfPartition(partition P)

6 begin
7 LP = new(ListOfPartition)
8 if P.size() == 0 then
9 return LP

10 end
11 if P.size() == 1 then
12 LP.push(P)
13 return LP

14 end
15 if P.size() == 2 then
16 LP.push(P)
17 LP.push({P.1},{P.2})
18 return LP

19 end
20 front = P.popfront()
21 SUB LP = ObtainListOfPartition(P)

22 for each partition P ′ ∈ SUB PL do
23 LP.push({front,P’})
24 for each element e ∈ P ′ do
25 e.push(front)
26 LP.push(P’)

27 end

28 end
29 return LP

30 end

Algorithm 3: A recursive procedure to obtain list of all partitions.

For every partition the clustering function Φg is called as many times as
there are clusterings (elements of a partition). For example in option 12 shown
in table 5.1 we have two clusterings {a, b} and {c, d}. Therefore for option 12,
the clustering function Φg is called twice with Vs = {a, b} and Vs = {c, d}.

Naive Exhaustive Search Algorithm

A naive exhaustive search based algorithm is presented in algorithm 4. Algo-
rithm 4 is called naive because it is unoptimized.

54

input : S = {g1, g2, ...gn}
output: S′ = {g′1, g′2, ...g′n}|⊥
constraints: ∀g ∈ S′ : mcm(g) = γ(vsrc)× ϕ(vsrc)∑

g∈S′
Buffer(g) ≤ B

minimize:
∑
g∈S′

ASL(g)

1 For each g ∈ S obtain all partitions of set V using algorithm 3
2 For each list of partitions for each g ∈ S filter invalid clusters
3 for all valid partitions of S do
4 for each gi ∈ S do
5 for each member of partition Vs do
6 Insert RDMA and WDMA actors in gi
7 Vsd = Vs ∪ Vd where Vd contains set of DMA actors
8 g′i = Φg(gi, Vsd)

9 end

10 end
11 A solution set is S′ = {g′1, g′2, ...g′n}
12 Model each graph g′ ∈ S′ with Round-Robin
13 For each g′ ∈ S′ Compute Buffers and Throughput
14 if all constraints are met then
15 Select S′ as a valid solution
16 end

17 end
18 if no valid solutions are found then
19 return ⊥
20 end
21 For all valid solutions choose a solution S′ with minimum ASL
22 return S′

Algorithm 4: Näıve Exhaustive Search Clustering Algorithm.

In step 1 we obtain all partitions of set of actors for all SDF graphs. For
obtaining list of partitions, algorithm 3 is used.

In step 2 the obtained list of all partitions for all graphs is filtered for invalid
clusters. We specify following two conditions to remove a partition.

1. A partition is discarded if it contains a group combining FLORA actor(s)
and at least one external actor (an actor ported to ARM or other com-
ponent such as SDRAM). Such an option is not useful because we are
looking for FLORA configurations which consists of only FLORA actors.

2. A partition is discarded if it has at least one cluster which leads to dead-
lock. Algorithm 2 is used to check if a clustering option leads to deadlock.

After filtering invalid partitions, all remaining valid partitions are evaluated
in step 3.

55

In step 5-9 all the clusterings Vs (group of actors) in a partition are clustered
using clustering function Φg to obtain the set of clustered SDF graphs S′.

In step 6 for each clustering Vs RDMA actors are inserted in the input
SDF graph for every incoming edge to the actors in Vs and WDMA actors are
inserted for every outgoing edge from actors in Vs. This enables data transfer
in and out of FLORA. Since RDMA and WDMA actors are part of FLORA
configuration, they are added in Vs in step 7.

After correctly constructing set of all clustered SDF graphs S′, each graph in
S′ is modeled with Round-Robin schedule in step 12. In round-robin modeling
the response times for each actor in each graph is redefined as follows:

For all graphs, for each actor v its response time is redefined as ϕ(v) =
ϕ(v) +

∑
w∈W ϕ(w) where W is the set of actors from all SDF graphs in S′ that

share resources with actor v.
In step 13 for each clustered graph in S′ the required buffer capacity for

each edge and the throughput for each graph is computed. A solution set S′ is
selected if it satisfies the buffer and throughput constraints. At the end of the
algorithm in step 21 a solution with lowest absolute scheduling load is returned.

Optimized Exhaustive Search Algorithm

Exhaustive search algorithm presented in algorithm 4 can be optimized. The
optimized algorithm is presented in algorithm 5.

The first optimization is to merge the three loops in step 1,2,3 in algorithm
4. The loops consist of generating a partition, filtering a partition and clustering
the graph based on the partition. These three steps can be merged as presented
in the optimized algorithm 5.

The second optimization is as follows. Buffer capacity for each channel in
an SDF graph for a throughput constraint is computed using algorithm men-
tioned in [16]. It can have exponential complexity depending upon the number
of available options for buffer size distribution for all edges. For some cases
this step takes a long time. Therefore this step is conditionally executed by
performing a simple throughput check for the case of infinite buffers. For the
case of infinite buffers, due to self-edges throughput of an SDF graph is limited
by the maximum response time of actors in the SDF graph. If a solution (set of
clustered graph) fails to satisfy throughput constraint for infinite buffers it will
also definitely fail for any buffer capacity of finite size. The simple throughput
construct check is implemented as follows.

After round-robin modeling if for each actor v in each graph, ϕ(v) > ϕ(vsrc)·
γ(vsrc) where vsrc is the source actor for each SDF graph, than the step for
computing buffers and throughput is skipped and next partition option is tried.
ϕ(vsrc) · γ(vsrc) is the throughput constraint for SDR applications as explained
in section 2.3.

56

input : S = {g1, g2, ...gn}
output: S′ = {g′1, g′2, ...g′n}|⊥
constraints: ∀g ∈ S′ : mcm(g) = γ(vsrc)× ϕ(vsrc)∑

g∈S′
Buffer(g) ≤ B

minimize:
∑
g∈S′

ASL(g)

1 while all solutions have not been tried do
2 // Generate a solution

3 For each g ∈ S generate partitions of set V
4 if each partition for each g ∈ S is valid then
5 for each gi ∈ S do
6 for each member of partition Vs do
7 Insert RDMA and WDMA actors in gi
8 Vsd = Vs ∪ Vd where Vd contains set of DMA actors
9 g′i = Φg(gi, Vsd)

10 end

11 end
12 A solution set is S′ = {g′1, g′2, ...g′n}
13 Model each graph g′ ∈ S′ with Round-Robin
14 if simple throughput check does not fail then
15 For each g′ ∈ S′ Compute Buffers and Throughput
16 if all constraints are met then
17 Select S′ as a valid solution
18 end

19 end

20 end

21 end
22 if no valid solutions are found then
23 return ⊥
24 end
25 For all valid solutions choose a solution S′ with minimum ASL
26 return S′

Algorithm 5: Optimized Exhaustive Search Clustering Algorithm.

5.2.2 Heuristic Approach

The largest FLORA configurations give the lowest scheduling load (larger con-
figuration means more blocks are grouped together within FLORA and blocks
within FLORA trigger themselves as soon as data arrives, thus reducing the
scheduling load on ARM). Moreover for FLORA the larger configurations usu-
ally also satisfy throughput constraint (since larger configurations reduce read/write
overhead for data transfer in and out of FLORA). Therefore a heuristic algo-
rithm is proposed as follows.

57

After obtaining list of all partitions for all graphs, the list can be ordered from
the largest partitions to the smallest partitions or they can also be generated
is such order. The first solution which satisfies all constraints is chosen as the
final optimal solution. Since the list of partitions were ordered, the first feasible
solution may also have the lowest scheduling load. This algorithm is presented in
algorithm 6. The algorithm shall keep searching until a valid solution is found.
Therefore the worst case running time of algorithm 6 is same as the worst case
running time of the exhaustive search algorithm 4.

In general the solution obtained by algorithm 6 may not be optimal. How-
ever for SDR applications the deviation is negligible as observed in section 5.4.

input : S = {g1, g2, ...gn}
output: S′ = {g′1, g′2, ...g′n}|⊥
constraints: ∀g ∈ S′ : mcm(g) = γ(vsrc)× ϕ(vsrc)∑

g∈S′
Buffer(g) ≤ B

minimize:
∑
g∈S′

ASL(g)

1 For each g ∈ S obtain all partitions of set V
2 For each list of partitions for each g ∈ S filter invalid clusters
3 Sort list of partitions for each g ∈ S in descending order of partition size
4 for all valid partitions of S do
5 for each gi ∈ S do
6 for each member of partition Vs with |Vs| > 1 do
7 Insert RDMA and WDMA actors in gi
8 Vsd = Vs ∪ Vd where Vd contains set of DMA actors
9 g′i = Φg(gi, Vsd)

10 end

11 end
12 A solution set is S′ = {g′1, g′2, ...g′n}
13 Model each graph g′ ∈ S′ with Round-Robin
14 For each g′ ∈ S′ Compute Buffers and Throughput
15 if all constraints are met then
16 return S′

17 end

18 end
19 if no valid solutions are found then
20 return ⊥
21 end

Algorithm 6: Stop-at-first-solution heuristic based Clustering Algorithm.

58

5.3 Implementation of Clustering Algorithm

We described clustering algorithms in pseudo code for applications represented
in SDF graphs in general in the previous section. The details of implementation
of clustering algorithms for SDR applications and FLORA are presented in this
section.

• A cluster-analysis-sdf tool is developed in C++ using classes of SDF3.
SDF3 is a collection of tools for generating, transforming and analyzing
HSDF, SDF graphs [17].

• SDF graphs representing SDR applications are taken as input in an XML
file. A separate XML file is used to provide details of FLORA platform
such as execution time of DMA blocks. The output consisting of optimal
clusterings for each application, buffer capacity for each edge, the total
required buffer capacity and scheduling load is outputted in a text file.

• To check for deadlock the efficient algorithm (algorithm 2) is implemented.

• Two versions of clustering algorithms are implemented, naive exhaustive
search algorithm (algorithm 4) and the stop-at-first-solution heuristic al-
gorithm (algorithm 6).

• For the implementation we do not use the value of k (number of sub-
graph iterations to be clustered) specified in definition 7. It was explained
in section 4.3 that for our definition of generalized clustering we restrict

k to deliver consistent graphs. The value of k was defined as k = γ(v)
γg(v)

where γ is repetition vector of input graph and γg is the repetition vector
of sub-graph formed by the actors to be clustered. However for SDF
graphs with prime rates, the repetition vector explodes based on least
common multiple of the token rates. Thus the consumption rate(s), the
production rate(s) and the response time of the clustered actor is also set
to a corresponding high value. For example consider SDF graph in figure
5.2(a). The resulting clustered SDF graph using the clustering function
Φg defined in definition 7 is shown in figure 5.2(b). In figure 5.2(b) we see
that the new consumption and production rate is 110 which results in a
buffer capacity requirement of incoming and outgoing edge to be at least
110. Similarly the response time of clustered actor bc explodes to cover as
many sub-graph iterations as specified by k.

For practical SDR applications which have uneven prime rates using the
value of k specified in definition 7 results in impractical buffer requirements
and very long response times of FLORA configurations. Therefore we
propose a value of k which results in practical buffers and response times.

We let as many iterations of sub-graph be clustered as many as are possible
in a single firing of the source actor vsrc of every application. Thus the

59

(a)

cb da
10 1 2 2 111

1

1
1

1

1
1

1

1
1

1

1

1

(b)

bc da
10 110 11110

1

1
1

1

1

1
1

1

1
1

1

1

(c)

bc da
10 10 1110

1

1
1

1

1

1
1

1

1
1

1

1

Figure 5.2: (a) An example of SDF graph with repetition vector γ =
{11, 110, 55, 10}. (b) Resulting clustered SDF graph using clustering function
Φg defined in definition 7 for Vs = {b, c}. (c) Resulting clustered SDF graph for
k defined in equation 5.1.

new value of k is

k =

⌊
γ(v)

γ(vsrc)

⌋
(5.1)

Where v ∈ Vs, Vs is the set of actors to be clustered and vsrc is the source
actor of application. The resulting clustered graph using the new practical
value of k specified in equation 5.1 is shown in figure 5.2(c). In general
the new practical k specified in equation 5.1 may result in inconsistent
graphs. However for SDR applications which do not have multiple paths,
no inconsistent graphs are generated.

5.4 Run-Time Evaluation of Algorithms

FLORA has been designed for fast decoding of SDR applications. Therefore for
evaluating performance of proposed clustering algorithms, the clustering algo-
rithms were experimented with SDR applications. In table 5.2 we summarize

60

the results for experiments with different modes of DVB-T, DVB-SH and XM-T
standards 2.

For every input a detailed output consisting of optimal configurations, clus-
tered graphs, required buffer capacity for each edge, total buffer capacity, and
total scheduling load were generated. However for brevity we only capture per-
formance parameters in table 5.2. In table 5.2, column 2 contains the set of
applications which were given as input. Column 3 mentions if the clustering al-
gorithm was able to find a solution for which throughput and buffer constraints
were satisfied. Column 4 mentions the number of clustering options which were
generated for the given set of applications. Column 5 gives the total number
of HSDF actors present for each given application. Column 6 gives FLORA
utilization which is the percentage of time FLORA is busy on average and it
is computed by taking the ratio of throughput constraint of an application to
the maximum attainable throughput (without source actor). Thus utilization
above 100% means throughput constraint was not met. Column 7 shows the
total time spent in generating clustered graphs in the execution of clustering
algorithm. Column 8 shows the total time spent in computing buffers in the
complete execution of clustering algorithm. Column 6-9 capture performance of
exhaustive search algorithm 4. Column 10-13 capture performance of heuristic
algorithm 6. From the experiments following inferences were observed.

• The experiments were done incrementally so as to fit maximum possible
applications. Single applications of DVB-T and DVB-SH standards were
tried in input set 1 to 4 in table 5.2. Based on these observations two
applications were fed as input in input set 5,6. Input set 5 failed to meet
throughput constraint by a margin of 4%. Accordingly DVB-T mode
was reduced from 64QAM (Quadrature Amplitude Modulation) to 4QAM
which is a change of 36288 Bytes per heart beat(time period of SDR
application) to 12096 Bytes per heart beat. Thus reducing throughput
requirement of input 6. Solution for input 6 was obtained with a slack
of 6.5%. Thus the clustering algorithm proves helpful in finding optimal
configurations for FLORA for a given set of applications.

• For the mentioned SDR applications in table 5.2 the optimal solutions
given by exhaustive search algorithm and stop-at-first-solution heuristic
algorithm matched. This is due to the fact that SDR applications con-
sist of actors with an extremely wide range of token granularity. Therefore
smaller configurations incur huge read/write overhead due to data-transfer
in and out of FLORA which breaks the throughput constraint. Thus the
bigger configurations (with more FLORA blocks configured together) re-
duce the read/write overhead by making maximum use of datapath within
FLORA and also incur a lower scheduling load. In heuristic algorithm the
clustering options are ordered from biggest to smallest, therefore for SDR

2The experiments were conducted on a PC with Intel Core 2 Duo processor (2 Cores on
3.06GHz), 4GB of main memory and Linux OS

61

applications usually the first solution which satisfies constraints is also the
optimal solution.

• For positive solutions, the running time of stop-at-first-solution heuristic
algorithm is negligible compared to the running time of exhaustive search
algorithm. For negative solutions, the worst case running time of heuristic
algorithm is same as the worst case running time of the exhaustive search
algorithm. Therefore for input set 5 in table 5.2 where no solutions could
be found, the running time of heuristic algorithm and exhaustive search
algorithm was observed to be same.

• For all set of inputs the total time spent in generating clustered graphs
is consistent and in the of range of milliseconds to few minutes. This is
due to the fact that generating clustered graphs involves two parts - first
part is removing/adding nodes and edges which is trivial. The second part
computes execution time of the clustered actor which involves computing
throughput and latency of sub-graphs to be clustered. Since the sub-
graphs are smaller in size (with respect to number of nodes and edges)
compared to the original graph, the second part also takes acceptable
time.

• On the other hand the total time spent in computing buffers is inconsistent
varying from milliseconds to hours and depends on the input SDF graphs.
The algorithm used in SDF3 to compute buffers explores all the options of
buffer distribution for all edges until the throughput constraint is satisfied
[16]. This algorithm has exponential run-time complexity. Therefore for
some cases of SDR applications the algorithm to compute buffers did not
terminate in an acceptable time (an hour). Such cases are omitted in table
5.2.

• In table 5.2, the input set in 6 uses the same DVB-T mode specified in
input set 3. However due to the bottleneck of computing buffers the SDF
graph in 3 was simplified with respect to the token rates to reduce the
complexity of computing buffers for evaluating input set 6. Therefore the
application in input set 6 is called DVB-T’-8K-4QAM.

• In round-robin modeling for SDF graphs, response times of actors are
added if they share a resource to capture worst case response time. In
worst case actors share the resource for equal share of time. However
for the average case the obtainable response time is much lower. For
example SDR applications with different heart beats (period of input)
share the resources with different frequencies. However for such cases the
clustering algorithm makes use of worst case response time and therefore
throughput constraint of applications are not met. Such cases were ex-
cluded in table 5.2. For making use of average case response time either
static-order scheduling or a probabilistic model of resource sharing was
necessary. Static-order scheduling was not possible under the assumption

62

of unsynchronized applications. Probabilistic model is not used in this
thesis.

63

E
x
h

a
u

st
iv

e
S

ea
rc

h
H

eu
ri

st
ic

S
ea

rc
h

N
o.

A
p

p
li

ca
ti

on
(s

)
C

on
st

-r
ai

n
ts

S
at

is
-

fi
ed

C
lu

st
e

-r
in

g
O

p
-

ti
on

s

H
S

D
F

a
ct

o
rs

F
L

O
R

A
U

ti
-

li
za

-
ti

o
n

C
lu

st
e

-r
in

g
T

im
e

B
u

ff
er

C
o
m

-
p

u
ta

-
ti

o
n

T
im

e

T
o
ta

l
T

im
e

F
L

O
R

A
U

ti
-

li
za

-
ti

o
n

C
lu

st
e

-r
in

g
T

im
e

B
u

ff
er

C
o
m

-
p

u
ta

-
ti

o
n

T
im

e

T
o
ta

l
T

im
e

1
D

V
B

T
-2

K
-6

4Q
A

M
Y

es
32

2
5
1
4

2
9
.7

0
%

3
.2

7
s

3
m

s
3
.2

7
3
s

2
9
.7

0
%

4
1
m

s
1
m

s
4
2
m

s

2
D

V
B

T
-8

K
-6

4Q
A

M
Y

es
32

8
7
5
1

2
8
.9

0
%

6
.7

2
s

6
4
m

s
6
.7

3
s

2
8
.9

0
%

5
4
m

s
4
m

s
5
8
m

s

3
D

V
B

S
H

-8
K

-4
Q

A
M

Y
es

16
4
8
4
1
5
7

5
6
.9

7
%

3
8
.4

s
2
5
.3

m
in

2
6
m

in
5
6
.9

7
%

2
.4

s
1
0
0
m

s
2
.5

s

4
D

V
B

S
H

-8
K

-
16

Q
A

M
Y

es
16

7
6
8
5

9
5
.3

4
%

4
.7

s
8
9
m

s
4
.7

1
s

9
5
.3

4
%

4
8
m

s
4
m

s
5
2
m

s

5
D

V
B

T
-8

K
-6

4Q
A

M
+

D
V

B
S

H
-8

K
-

4Q
A

M

N
O

32
×

16
=

51
2

7
6
8
5

+
8
7
5
1

1
0
4
.2

%
3
.3

4
m

in
1
2
0
m

s
3
.3

6
m

in
1
0
4
.2

%
3
.3

4
m

in
1
2
0
m

s
3
.3

6
m

in

6
D

V
B

T
’-

8K
-4

Q
A

M
+

D
V

B
S

H
-8

K
-

4Q
A

M

Y
es

32
×

16
=

51
2

5
0
2
4

+
7
6
8
5

9
3
.5

1
%

2
.7

m
in

3
6
s

2
.7

6
m

in
9
3
.5

1
%

1
.9

8
s

1
m

s
1
.9

8
s

7
X

M
-T

Y
es

8
4
8
3
7
8
3

6
.7

1
%

2
.7

s
2
4
m

s
2
.7

s
6
.7

1
%

0
.9

s
1
m

s
0
.9

s

T
a
b

le
5
.2

:
S

u
m

m
a
ry

o
f

re
su

lt
s

fo
r

ex
pe

ri
m

en
ts

w
it

h
d
iff

er
en

t
m

od
es

o
f

D
V

B
-T

,
D

V
B

-S
H

a
n

d
X

M
-T

st
a
n

d
a
rd

s.

64

Chapter 6

Conclusion

Integration of digital wireless communication and embedded systems has facili-
tated a wide range of wireless services. These are represented under a common
framework of Software Defined Radio (SDR). SDR applications are firm real
time streaming applications. Due to the wide range of variety in supported ser-
vices, each stage in digital baseband processing of SDR application has different
requirements for flexibility and performance. To suit the requirements of each
stage a heterogeneous MPSoC platform has been designed. For fast channel de-
coding of SDR streams FLORA hardware accelerator has been designed as part
of the heterogeneous MPSoC. FLORA consists of diverse hardware blocks for
decoding common kernels used in SDR applications. FLORA enables high per-
formance with hardware implementation but it is also configurable to support
parametric kernels and multiple standards. An analytical method is required
to exploit the flexibility offered by FLORA and also to guarantee the through-
put requirement of each SDR application ported to FLORA. This problem is
addressed in this thesis.

In section 6.1 we draw conclusions from the presented work in this thesis.
We conclude this chapter in section 6.2 where we list the shortcomings of this
thesis and propose future work which can improve the work presented in this
thesis. The proposed analytical method in this thesis is based on clustering for
SDF model of computation. Hence apart from FLORA, the analytical method
is also applicable for a range of scheduling problems in MPSoC domain. We
illustrate the general application of clustering in section 6.2.1.

6.1 Conclusion

This thesis presents an analytical method based on clustering of SDF actors
which helps to analyze trade-off between read/write overhead and pipelining for
FLORA and it also helps to capture the hierarchical schedule of actors within
FLORA and outside FLORA for the same application described as SDF graph.
The conclusions from this are as follows

• For configurable hardware such as FLORA we identified challenges in con-
figuring FLORA for multiple applications. FLORA is designed to be a
configurable hardware so as to support multiple SDR applications. How-
ever due to configurable hardware blocks and configurable datapath within
FLORA we have many configuring options for FLORA and each option

65

provides different throughput. Bigger configurations have longer execution
times due to small buffers within FLORA and hence can be a bottleneck.
Smaller configurations allow pipelining by buffering in external memo-
ries, however they also add read/write overhead which can also reduce the
throughput. Thus for supporting multiple applications it is not immedi-
ately clear which configuration options satisfy throughput requirements
for multiple applications.

• We showed that SDF model can be used to evaluate the optimal config-
uration option for FLORA that satisfies throughput constraint of each
application. We model a FLORA configuration as a clustered SDF ac-
tor. Such modeling helps model the atomicity of a FLORA configuration
and also we can abstract from the schedule of actors mapped to FLORA
thus modeling the hierarchical schedule for a radio application mapped to
MARS MPSoC

• An exhaustive algorithm was presented which evaluates all the clustering
options and a heuristic algorithm was presented which evaluates clustering
options starting with the biggest partition and stops at the first option
which satisfies throughput constraint.

• It was found out that for present FLORA with an assumption of single
RDMA and WDMA, the biggest configurations perform best. Therefore
the heuristic algorithm which starts with the biggest configurations per-
forms as good as the exhaustive algorithm.

• The algorithms were evaluated with real SDR applications. The exhaus-
tive search algorithm finds solution within an hour and the heuristic algo-
rithm finds a solution within few minutes. It was observed that there are
two bottlenecks in both the algorithms. Firstly the total number of clus-
tering options rise more than exponentially with number of SDF actors in
the input SDF graphs. Secondly the step which computes buffer capacities
for clustered SDF graphs can also take exponential time depending upon
the input SDF graphs.

• The proposed clustering algorithm in this thesis can be extended for mul-
tiple DMAs and can be used for any hardware accelerator which adheres
to the FLORA template described in chapter 1.

6.2 Future Work

The work in this thesis can be extended as follows

• The exhaustive clustering algorithm is based on obtaining all partitions of
set of nodes. For a set with n elements the total number of partitions is

in the order of O(n) <
(

n
log(n)

)n
1. Therefore for input SDF graphs with

1http://en.wikipedia.org/wiki/Bell_number

66

http://en.wikipedia.org/wiki/Bell_number

more than 14 actors, the running time of exhaustive clustering algorithm is
unacceptable (hours). A better technique can be implemented to explore
only useful partitions.

• We have assumed only one RDMA and WDMA block is present in the
FLORA hardware accelerator. Thus all the RDMA and WDMA actors
inserted for every clustering option share one RDMA and one WDMA
block. For a finite number of available DMAs, assigning DMAs for every
communication edge in an SDF graph to maximize parallel communication
is a non-trivial problem. This problem can be solved and integrated in
the present clustering method.

• Cyclo Static Data Flow (CSDF) model of computation offers more express-
ibility and can capture some applications details more eloquently than
SDF model of computation. Therefore the proposed clustering method in
this thesis can be extended for CSDF model of computation.

• A bottleneck in the proposed clustering algorithms is computation of
buffer capacities for channels in the clustered SDF graphs. Currently
the algorithm used from SDF3 toolset computes all possible buffer distri-
bution for all channels until the throughput constraint is satisfied. For
some SDF graphs representing SDR applications, this algorithm takes un-
acceptable time to terminate. Therefore for computing buffer capacities
an efficient algorithm could be used.

• For scheduling multiple clustered SDF graphs static-assignment scheduling
(round-robin) was used. In round-robin modeling for input SDF graphs
with unequal heart beats(time period of input) response times of all actors
which share resources are added. Due to this throughput constraint of SDF
graphs with lower heart beat is not met. This makes clustering algorithm
inapplicable for SDF graphs with unequal heart beats. Therefore a better
scheduling strategy is required for scheduling multiple SDF graphs.

6.2.1 General Application of Clustering for SDF

The clustering method proposed in this thesis is based on SDF model of compu-
tation. SDF model of computation has been used to address scheduling problems
for streaming applications [1, 2, 10, 11, 13, 14]. Therefore the proposed cluster-
ing method can be extended for addressing scheduling problems in the MPSoC
domain. Specifically for scheduling problems where it is required to schedule
multiple applications with following assumptions

• Applications have real time constraints

• Communication cost cannot be ignored

For illustration consider a generic MPSoC template shown in figure 6.1. It
consists of four tiles. Every processor Pi has a DMA Di and cache Ci of its own.

67

M is a shared memory. All tiles are connected by a Network -on-Chip (NoC).
Consider a streaming application which can be modeled as an SDF graph shown
in figure 6.2. For simplicity only tasks (nodes) and dependencies (edges) have
been shown. The application has real-time constraints and the communication
cost of NoC is not negligible.

Since number of tasks are more than the number of processors, more than one
task will be scheduled on a processor. Such a mapping decision can be modeled
with the clustering method proposed in this thesis. Every such mapping decision
has an impact on throughput of application. The impact can be analyzed with
two aspects, the communication cost offered by the mapping decision and the
execution time of the clustered composite tasks. For example consider tasks
b,c,d in figure 6.2. Assume that for application shown in figure 6.2, tasks b,c,d
are the bottleneck for throughput. We illustrate two cases with their analysis.

C1

P1

D1

NoC

M

D4

C2

P2

D2

C3

P3

D3

Figure 6.1: An MPSoC Template.

Case I Lets say tasks b,c,d are mapped to processor P1. The communication
cost in the proposed method is modeled with DMA actors. For simplicity let
TR(e) be the time spent in reading data on an edge e and TW (e) be the time
spent in writing data on an edge e. Assume a non-preemptive static schedule
is designed for processor P1. Since there is only one processor, tasks b,c,d will
run sequentially run on processor P1. Edges e2, e3, e4 are stored in cache C1

therefore communication cost of these edges will be neglected. Therefore the
throughput of the composite actor bcd is

68

db

c

a e1 e3

f

e

e2 e4

e5

e7

e6

Figure 6.2: An example of application.

Thput =
1

TR(e1) + T (b) + T (c) + T (d) + TW (e5)

Case II We now map task b, c, d on three processors P1, P2, P3 respectively.
Since edges e2, e3, e4 will now be stored in the external memory M , the through-
put of application will be

Thput = max

(
1

TR(e1) + T (b) + max (TW (e2), TW (e3))
,

1

TR(e2) + T (c) + TW (e4)
,

1

max (TR(e3), TR(e4)) + T (d) + TW (e5)

)
Case I has low communication overhead but the execution time of tasks

b,c,d get added up due to sequential execution and can be a bottleneck. Case
II offers pipelining between actors b,c,d but the communication cost of edges
e2, e3, e4 can be a bottleneck. Therefore to decide the best mapping decision
we can model mapping of tasks to a processor as clustering of the SDF actors
in a single SDF actor. Then the proposed clustering algorithms can analyze all
possibilities of clustering and find the mapping which can satisfy the throughput
constraint.

In the proposed clustering method all sub-graphs are scheduled with self-
timed schedule (actors fire as soon as they can) and the parent clustered graph
containing the clustered actors is scheduled with static-assignment schedule
(round-robin). However in our clustering approach the clustered actor is treated
as an atomic SDF actor. Therefore sub-graphs to be clustered are scheduled in-
dependently than the parent clustered graph. It is possible to further generalize,
that is each sub-graph and the parent graph can be scheduled independently
with different scheduling strategies. Therefore in the above example every pro-
cessor can use different scheduling strategy.

69

In this way the proposed clustering method for SDF model of computation
can be extended for scheduling problems in MPSoC domain.

70

Appendices

71

Appendix A

MARS MPSoC Platform

NXP has developed an MPSoC platform called as MARS for the baseband
processing of SDR applications. This platform was designed not only keeping
in mind the performance requirements of SDR applications but also to serve
multiple standard multiple applications. Figure A.1 shows a basic block digram
of the MARS MPSoC. In the following paragraph we relate blocks in figure A.1
to the blocks in the baseband processing of SDR explained in section 1.1 and
figure 1.1.

The transceiver block serves the function of AFE. The DFE is a hardware
block designed to serve the function of DFE. VDSP1 and VDSP2 are Vector
Digital Signal Processors which perform the task of inner receiver. ARM pro-
cessor and FLORA are used to implement the outer receiver or the codec stage.
FLORA can only decode, it is not used for encoding.

All the blocks are connected via a set of buses shown in black lines. The
decoded data is transmitted to a host for processing of the MAC layer via the
Universal Serial Bus (USB) . Apart from internal Static Random Access Mem-
ory(s) (SRAM), MARS chip also has a connection to an external Synchronous
Dynamic Random Access Memory (SDRAM) which has larger storage capac-
ity. UPL block is used for Up-Link that is to transmit data. GPIO is General
Purpose Input/Output.

72

Figure A.1: MARS MPSoC Platform

73

Appendix B

FLORA

As explained in section 1.1 codec stage is best implemented on a configurable
hardware for high performance. We have FLORA as a hardware accelerator
designed for fast forward error correction in the outer receiver. Its design is as
follows.

1. Figure B.1 shows block diagram of FLORA. It consists diverse hardware
blocks. Each block is capable of processing data for a specific decoding
technique, those mentioned in table 1.1. But there are multiple blocks
for same functions. For example as we can see in figure B.1, we have two
de-puncture units, two de-scramblers, etc. Multiple blocks allow parallel
processing of multiple radio streams.

2. Although hardware blocks process only fixed functions, they can process
family of the same function. They can be configured for different set of
equations, for different input/output sizes. Each block has two sets of
registers for storing two configurations. We can program a set of registers
while other set is running.

3. All blocks are non-preemptible. Prempting by re-configuring the configu-
ration which is still running will corrupt the data.

4. Different blocks work on different granularity ranging from few bits to
thousands of bytes. But majority of blocks work on bits.

5. Data transfer on the external shared bus is costly. Therefore FLORA
has its own internal set of buses to allow passing data from a block to
another block. Keeping in mind the most common order of functions
used in wireless standards, a set of datapaths have been created using a
configurable bus matrix shown in figure B.1. The matrix is illustrated
in figure B.2. We can see each block can accept data from one of the
preceding blocks. Each block has a multiplexer to choose the block from
which it can accept data.

6. All blocks have input and output buffers. But some blocks have big buffers
(De-Interleaver has 1Mbit buffer), while some have small buffers in order
of few bits (De-puncture, Viterbit, De-Scrambler, etc.)

7. All blocks are data driven. That is once configured a block triggers as
soon as there is data in input buffer. After processing it sends data to the

74

input buffer of next block connected to its output which triggers the next
block and so on. Thus by configuring a set of blocks on a datapath we
can decode the data stream as specified by the standard.

8. Blocks within FLORA are data driven, but data has to be fed in from
outside of FLORA via a RDMA and has to be taken out of FLORA via a
WDMA. Thus from RDMA to set of connected and configured blocks to
WDMA we form a unidirectional datapath.

9. Therefore, once we have decided on the set of blocks to be programmed,
a necessary and complete configuration of FLORA implies

• configuration of each block in FLORA for the mathematical equation,
parameters and input/output size.

• configuration of input multiplexers of each block - that is configuring
the datapath

• configuration of RDMA and WDMA with the appropriate data source
and sinks addresses and sizes.

Such a combined complete configuration is called as a slot.

10. Blocks within FLORA are data-driven. However a slot can only be pro-
grammed by some external entity such as general purpose processor. For
example presently ARM processor configures a slot. And therefore a slot
is not data-driven.

75

F
ig

u
re

B
.1

:
B

lo
ck

D
ia

gr
a
m

o
f

F
L

O
R

A

76

F
L

O
R

A
 D

a
ta

p
a

th

D
e
I

V
D

e
P

u
n

1

R
S

D
e
S

cr
a

m
1

T
u

rb
o

D
e
S

cr
a

m
2

D
e
P

u
n

2

L
D

P
C

R
D

M
A

W
D

M
A

1

W
D

M
A

2

C
R

C

S
R

A
M

1
S

R
A

M
2

A
R

M
S

D
R

A
M

F
ig

u
re

B
.2

:
S

ch
em

a
ti

c
d
ia

gr
a
m

o
f

F
L

O
R

A
d
a
ta

pa
th

a
n

d
in

te
rf

a
ce

to
ex

te
rn

a
l

co
m

po
n

en
ts

77

Appendix C

List of Symbols

N0 Set of Natural numbers N0 = {0, 1, 2..}
N N = N0 \ {0}
V Set of nodes

E Set of edges

δ Initial tokens function δ : E → N0

ϕ Response time function ϕ : V → N0

π Production rate function π : E → N0

µ Consumption rate function µ : E → N0

γ Repetition Vector function γ : V → N0

γG Repetition Vector function of an SDF graph G

mcm Maximum Cycle Mean function for SDF graph
mcm : G→ N0

Φc Clustering function for a connected SDF sub-graph
defined in definition 6

Φg General Clustering function for an SDF sub-graph(s)
defined in definition 7

θ Duration of transient phase of a self-timed schedule
of an SDF graph defined in equation 4.1

ρ Duration of periodic phase of a self-timed schedule
of an SDF graph defined in equation 4.1

78

Glossary

AFE Analog Front End. 2, 3, 68

APG Acyclic Precedence Graph. 24, 25

ASL Absolute Scheduling Load. 43

ATSC Advanced Television Systems Committee. 2

CSDF Cyclo Static Data Flow. 65

DAB Digital Audio Broadcasting. 2

DFE Digital Front End. 3, 68

DMA Direct Memory Access. 7, 25, 56, 61, 63, 65

DSP Digital Signal Processor. 3, 4

DVB Digital Video Broadcasting. 2

DVB-T Digital Video Broadcasting -Terrestrial. 6, 7, 11, 17, 18

FEC Forward Error Correction. 4

FIFO First In First Out. 21, 31, 32, 41–43

FLORA FLexible Outer Receiver Architecture. ii, 2, 5–10, 19–27, 31, 35, 42,
50, 52–54, 56–58, 61, 62, 65, 68, 70–73

GSM Global System for Mobile Communications. 2

HSDF Homogeneous Synchronous Data Flow. 14, 16, 17, 24, 25, 37, 47, 48,
56, 58

ISDB Integrated Services Digital Broadcasting. 2

LTE Long Term Evolution (3GPP 4G technology). 2

MAC Media Access Control. 3, 68

mcm Maximum Cycle Mean. 17, 43

79

MPSoC Multi-Processor System on Chip. 1, 2, 6, 9, 10, 14, 19–23, 61–64, 68

RDMA Read Direct Memory Access. 5–7, 9, 20, 25, 26, 42, 53, 61, 65, 71

SDF Synchronous Data Flow. ii, 6–9, 14–18, 20, 21, 23–43, 47–51, 53, 56, 59,
61–66

SDR Software Defined Radio. ii, 1–7, 14, 17, 19, 21, 23, 47, 50, 53, 55–59, 61,
62, 66, 68

SRDF Single Rate Data Flow. 16

WDMA Write Direct Memory Access. 5–7, 9, 20, 25, 26, 42, 53, 61, 65, 71

WiFi Wireless Fidelity (IEEE 802.11). 2

XM Satellite radio. 2

XML eXtensible Markup Language. 23, 56

80

Bibliography

[1] Bekooij, M., Moreira, O., Poplavko, P., Mesman, B., Pastrnak,
M., and Meerbergen, J. V. Predictable embedded multiprocessor sys-
tem design. In In Proc. Intl Workshop on Software and Compilers for
Embedded Systems (SCOPES), LNCS 3199 (2004), Springer.

[2] Bonfietti, A., Lombardi, M., Milano, M., and Benini, L. Through-
put constraint for synchronous data flow graphs. In Proceedings of the
6th International Conference on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems (Berlin,
Heidelberg, 2009), CPAIOR ’09, Springer-Verlag, pp. 26–40.

[3] Buck, J., Ha, S., Lee, E. A., and Messerschmitt, D. G. Ptolemy:
A framework for simulating and prototyping heterogeneous systems, 1992.

[4] Falk, J., Keinert, J., Haubelt, C., Teich, J., and Bhattacharyya,
S. S. A generalized static data flow clustering algorithm for mpsoc schedul-
ing of multimedia applications. In Proceedings of the 8th ACM international
conference on Embedded software (New York, NY, USA, 2008), EMSOFT
’08, ACM, pp. 189–198.

[5] Ghamarian, A., Geilen, M., Stuijk, S., Basten, T., Moonen, A.,
Bekooij, M., Theelen, B., and Mousavi, M. Throughput analysis of
synchronous data flow graphs. In Application of Concurrency to System
Design, 2006. ACSD 2006. Sixth International Conference on (june 2006),
pp. 25 –36.

[6] Ghamarian, A., Stuijk, S., Basten, T., Geilen, M., and Theelen,
B. Latency minimization for synchronous data flow graphs. Digital Systems
Design, Euromicro Symposium on 0 (2007), 189–196.

[7] Haykin, S., and Moher, M. Modern Wireless Communications. Prentice
Hall, 2004.

[8] Heath, S. Embedded System Design, second ed. Newnes, 2002.

[9] Hentschel, T., Henker, M., and Fettweis, G. The digital front-end
of software radio terminals. Personal Communications, IEEE 6, 4 (aug
1999), 40 –46.

[10] Kumar, A. Analysis, Design and Management of Multimedia Multipro-
cessor Systems. PhD thesis, Eindhoven University of Technology, 2009.

81

[11] Lee, E., and Messerschmitt, D. Synchronous data flow. Proceedings
of the IEEE 75, 9 (sept. 1987), 1235 – 1245.

[12] Pino, J. L., Bhattacharyya, S. S., and Lee, E. A. A hierarchical
multiprocessor scheduling system for dsp applications. In In Proceedings
of the IEEE Asilomar Conference on Signals, Systems, and Computers
(1995), pp. 122–126.

[13] Sriram, S., and Bhattacharyya, S. S. Embedded Multiprocessors:
Scheduling and Synchronization, 1st ed. Marcel Dekker, Inc., New York,
NY, USA, 2000.

[14] Stuijk, S. Predicatable Mapping of Streaming Applications on Multipro-
cessors. PhD thesis, Eindhoven University of Technology, 2007.

[15] Stuijk, S., Basten, T., Geilen, M., and Corporaal, H. Mul-
tiprocessor resource allocation for throughput-constrained synchronous
dataflow graphs. In Design Automation Conference, 2007. DAC ’07. 44th
ACM/IEEE (june 2007), pp. 777 –782.

[16] Stuijk, S., Geilen, M., and Basten, T. Exploring trade-offs in buffer
requirements and throughput constraints for synchronous dataflow graphs.
In Design Automation Conference, 2006 43rd ACM/IEEE (0-0 2006),
pp. 899 –904.

[17] Stuijk, S., Geilen, M., and Basten, T. SDF3: SDF For Free. In Ap-
plication of Concurrency to System Design, 6th International Conference,
ACSD 2006, Proceedings (June 2006), IEEE Computer Society Press, Los
Alamitos, CA, USA, pp. 276–278.

[18] Stuijk, S., Geilen, M., and Basten, T. A predictable multiprocessor
design flow for streaming applications with dynamic behaviour. In Dig-
ital System Design: Architectures, Methods and Tools (DSD), 2010 13th
Euromicro Conference on (sept. 2010), pp. 548 –555.

[19] Tong, W. Multi-standard multi-channel channel decoder architecture for
mobile applications. Master’s thesis, Eindhoven University of Technology,
2009.

[20] Wiggers, M., Bekooij, M., Jansen, P., and Smit, G. Efficient com-
putation of buffer capacities for multi-rate real-time systems with back-
pressure. In Proceedings of the 4th international conference on Hard-
ware/software codesign and system synthesis (New York, NY, USA, 2006),
CODES+ISSS ’06, ACM, pp. 10–15.

[21] Wiggers, M. H., Bekooij, M. J. G., and Smit, G. J. M. Modelling
run-time arbitration by latency-rate servers in dataflow graphs, 2007.

82

[22] Wireless Innovation Forum. SDRF Cognitive Radio Defini-
tions. http://www.sdrforum.org/pages/documentLibrary/documents/

SDRF-06-R-0011-V1_0_0.pdf.

83

http://www.sdrforum.org/pages/documentLibrary/documents/SDRF-06-R-0011-V1_0_0.pdf
http://www.sdrforum.org/pages/documentLibrary/documents/SDRF-06-R-0011-V1_0_0.pdf

	Introduction
	Baseband Processing in Software Defined Radios
	FLORA Architecture
	Problem Description
	Contributions
	Overview

	Dataflow Preliminaries
	Synchronous Data Flow Graphs
	Homogeneous Synchronous Dataflow Graph
	Throughput Constraint for SDR applications

	Problem Formulation
	Goal
	Challenges
	Assumptions
	Formal Problem Statement
	Related Work

	Clustering Definition
	Clustering
	Clustering Function (c) for a single sub-graph
	Clustering Function (g) for sub-graphs
	Deadlock - Free Clusters
	Properties of Clustering Function
	Preservation of Consistency
	Deadlock Freedom

	Effects of Clustering

	Clustering Algorithms
	Algorithms For Checking Deadlock-free Clusters
	Clustering Algorithms
	Exhaustive Search Approach
	Heuristic Approach

	Implementation of Clustering Algorithm
	Run-Time Evaluation of Algorithms

	Conclusion
	Conclusion
	Future Work
	General Application of Clustering for SDF

	Appendices
	MARS MPSoC Platform
	FLORA
	List of Symbols
	Glossary
	Bibliography

