41 research outputs found

    大域的最適化問題のための同種および異種粒子群最適化法の研究

    Get PDF
    The premature convergence problem and the exploration-exploitation trade-off problem are the two major problems encountered by many swarm intelligence algorithms in both global optimization and large scale global optimization. This thesis proposes that the two main problems could be handled by several variants of Particle Swarm Optimization (PSO) developed below. Five variants of homogeneous PSO have been developed for multimodal and large scale global optimization problems, and two variants of dynamic heterogeneous PSO for complex real-world problems.First of all, an individual competition strategy is proposed for the new variant of PSO, namely Fitness Predator Optimization (FPO), for multimodal problems. The development of individual competition plays an important role for the diversity conservation in the population, which is crucial for preventing premature convergence in multimodal optimization.To enhance the global exploration capability of the FPO algorithm for high multimodality problems, a modified paralleled virtual team approach is developed for FPO, namely DFPO. The main function of this dynamic virtual team is to build a paralleled information-exchange system, strengthening the swarm\u27s global searching effectiveness. Furthermore, the strategy of team size selection is defined in DFPO named as DFPO-r, which based on the fact that a dynamic virtual team with a higher degree of population diversity is able to help DFPO-ralleviate the premature convergence and strengthen the global exploration simultaneously. Experimental results demonstrate that both DFPO-r and DFPO have desirable performances for multimodal functions. In addition, DFPO-r has a more robust performance in most cases compared with DFPO.Using hybrid algorithms to deal with specific real-world problems is one of the most interesting trends in the last years. In this thesis, we extend the FPO algorithm for fuzzy clustering optimization problem. Thus, a combination of FPO with FCM (FPO-FCM) algorithm is proposed to avoid the premature convergence and improve the performance of FCM.To handle the large scale global optimization problem, a variant of modified BBPSO algorithm incorporation of Differential Evolution (DE) approach, namely BBPSO-DE, is developed to improve the swarm\u27s global search capability as the dimensionality of the search space increases. To the best of our knowledge, the Static Heterogeneous PSO (SHPSO) has been studied by some researchers, while the Dynamic Heterogeneous PSO (DHPSO) is seldom systematically investigated based on real problems. In this thesis, two variants of dynamic Heterogeneous PSO, namely DHPSO-d and DHPSO-p are proposed for complex real-world problems. In DHPSO-d, several differential update rules are proposed for different particles by the trigger event. When the global best position p_g is considered stagnant and the event is confirmed, then p_g is reset and all particles update their positions only by their personal experience. In DHPSO-p, two proposed types of topology models provide the particles different mechanism choosing their informers when the swarm being trapped in the local optimal solution. The empirical study of both variants shows that the dynamic self-adaptive heterogeneous structure is able to effectively address the exploration-exploitation trade-off problem and provide excellent optimal solutions for the complex real-world problem.To conclude,the proposed biological metaphor approaches provide each of the PSO algorithms variants with different search characteristics, which makes them more suitable for different types of real-world problems.博士(理学)法政大学 (Hosei University

    Optimisation de contrôleurs par essaim particulaire

    No full text
    http://cap2012.loria.fr/pub/Papers/10.pdfNational audienceTrouver des contrôleurs optimaux pour des systèmes stochastiques est un problème particulièrement difficile abordé dans les communautés d'apprentissage par renforcement et de contrôle optimal. Le paradigme classique employé pour résoudre ces problèmes est celui des processus décisionnel de Markov. Néanmoins, le problème d'optimisation qui en découle peut être difficile à résoudre. Dans ce papier, nous explorons l'utilisation de l'optimisation par essaim particulaire pour apprendre des contrôleurs optimaux. Nous l'appliquons en particulier à trois problèmes classiques : le pendule inversé, le mountain car et le double pendule

    H-ACO: A Heterogeneous Ant Colony Optimisation approach with Application to the Travelling Salesman Problem

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the link in this record.Ant Colony Optimization (ACO) is a field of study that mimics the behaviour of ants to solve computationally hard problems. The majority of research in ACO focuses on homogeneous artificial ants although animal behaviour research suggests that heterogeneity of behaviour improves the overall efficiency of ant colonies. Therefore, this paper introduces and analyses the effects of heterogeneity of behavioural traits in ACO to solve hard optimisation problems. The developed approach implements different behaviour by introducing unique biases towards the pheromone trail and local heuristic (the next hop distance) for each ant. The well-known Ant System (AS) and Max-Min Ant System (MMAS) are used as the base algorithms to implement heterogeneity and experiments show that this method improves the performance when tested using several Travelling Salesman Problem (TSP) instances particularly for larger instances. The diversity preservation introduced by this algorithm helps balance exploration-exploitation, increases robustness with respect to parameter settings and reduces the number of algorithm parameters that need to be set.We would like to thank the Faculty of Electronics and Computer Engineering (FKEKK), Technical University of Malaysia Malacca (UTeM) and the Ministry of Higher Education (MoHE) Malaysia for the financial support under the SLAB/SlAI program

    The Application of MsPSO in the Rockfill Parameter Inversion of CFRD

    Get PDF
    An intelligent algorithm that simultaneously analyzes multiple rockfill parameters is proposed. First, the paper introduces the operation and monitoring condition of the Shuibuya concrete-faced rockfill dam (CFRD). Then the constitutive rockfill models and the FEM analysis procedure are introduced in this paper. Third, the MsPSO intelligent algorithm was adopted to inverse the rockfill parameters. The recalculated displacement of Shuibuya CFRD using the inversed rockfill parameters is presented, and a satisfactory result was obtained, indicating that the inversion method is correct and effective. The method developed in this paper can be adopted in any geotechnical engineering parameter inversion

    Differential Evolution with a Variable Population Size for Deployment Optimization in a UAV-Assisted IoT Data Collection System

    Get PDF
    This paper studies an unmanned aerial vehicle (UAV)-assisted Internet of Things (IoT) data collection system, where a UAV is employed as a data collection platform for a group of ground IoT devices. Our objective is to minimize the energy consumption of this system by optimizing the UAV’s deployment, including the number and locations of stop points of the UAV. When using evolutionary algorithms to solve this UAV’s deployment problem, each individual usually represents an entire deployment. Since the number of stop points is unknown a priori, the length of each individual in the population should be varied during the optimization process. Under this condition, the UAV’s deployment is a variable-length optimization problem and the traditional fixed-length mutation and crossover operators should be modified. In this paper, we propose a differential evolution algorithm with a variable population size, called DEVIPS, for optimizing the UAV’s deployment. In DEVIPS, the location of each stop point is encoded into an individual, and thus the whole population represents an entire deployment. Over the course of evolution, differential evolution is employed to produce offspring. Afterward, we design a strategy to adjust the population size according to the performance improvement. By this strategy, the number of stop points can be increased, reduced, or kept unchanged adaptively. In DEVIPS, since each individual has a fixed length, the UAV’s deployment becomes a fixed-length optimization problem and the traditional fixed-length mutation and crossover operators can be used directly. The performance of DEVIPS is compared with that of five algorithms on a set of instances. The experimental studies demonstrate its effectiveness

    A metaheuristic particle swarm optimization approach to nonlinear model predictive control

    Get PDF
    This paper commences with a short review on optimal control for nonlinear systems, emphasizing the Model Predictive approach for this purpose. It then describes the Particle Swarm Optimization algorithm and how it could be applied to nonlinear Model Predictive Control. On the basis of these principles, two novel control approaches are proposed and anal- ysed. One is based on optimization of a numerically linearized perturbation model, whilst the other avoids the linearization step altogether. The controllers are evaluated by simulation of an inverted pendulum on a cart system. The results are compared with a numerical linearization technique exploiting conventional convex optimization methods instead of Particle Swarm Opti- mization. In both approaches, the proposed Swarm Optimization controllers exhibit superior performance. The methodology is then extended to input constrained nonlinear systems, offering a promising new paradigm for nonlinear optimal control design.peer-reviewe
    corecore