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Abstract. Ant Colony Optimization (ACO) is a field of study that mimics the 
behaviour of ants to solve computationally hard problems. The majority of 
research in ACO focuses on homogeneous artificial ants although animal 
behaviour research suggests that heterogeneity of behaviour improves the overall 
efficiency of ant colonies. Therefore, this paper introduces and analyses the 
effects of heterogeneity of behavioural traits in ACO to solve hard optimisation 

problems. The developed approach implements different behaviour by 
introducing unique biases towards the pheromone trail and local heuristic (the 
next hop distance) for each ant. The well-known Ant System (AS) and Max-Min 
Ant System (MMAS) are used as the base algorithms to implement heterogeneity 
and experiments show that this method improves the performance when tested 
using several Travelling Salesman Problem (TSP) instances particularly for larger 
instances. The diversity preservation introduced by this algorithm helps balance 
exploration-exploitation, increases robustness with respect to parameter settings 

and reduces the number of algorithm parameters that need to be set.  
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1       Introduction 

Natural systems provide inspiration for tackling complex tasks by being able to 

self-organize without the need of a central controller.  These behaviours are due to 

evolution, development and learning thus providing a platform for nature-inspired 

algorithms to achieve good solutions to complex problems. Another example of such 

inspiration is the swarm behaviour in which natural organisms behave when they are in 

groups. As an example, ant collectives are capable of achieving complex tasks such as 

nest construction and food foraging that would not be possible for individual ants. A 

colony of ants is capable of finding the shortest path from nest to food in a sophisticated 

way. Inspiration can be taken from these behaviours and used to tackle optimization 
problems in the real world where their behaviours have been implemented in ant colony 

optimization (ACO) research [1]. The main contribution of ants in this research is the 

foraging behaviour where ants lay pheromone on the ground to mark their path from 

the nest to food source. This is to guide the ant back to the nest and also guide its colony 

members towards a food source during the recruitment process. ACO implements 

similar concepts when optimising combinatorial optimization problems such as the 

Travelling Salesmen Problem (TSP) [2].  TSP is one of the most widely studied by 

researchers working on combinatorial optimization problems, is an NP-hard problem 

and is an interpretation of a salesman requiring to visit n cities via the shortest complete 

tour.                                                                            

 A significant issue with ACO, as in most other metaheuristic approaches is to 

find a proper balance between exploitation and exploration. Exploitation is a process of 

concentration of the algorithm in the areas of the search space where good quality 

solutions have been previously been found while exploration of the search space 

denotes action by the search agent in moving towards unexplored areas. Several studies 
reviewed in [1] show that a proper balance between exploitation and exploration is 

required in order for a metaheuristic algorithm to achieve good to optimal results. In 

this paper, we investigate the influence of each ant having different behavioural 

characteristics or ‘traits’ in contrast to standard ACO where all ants have the same 

behavioural traits. In the proposed heterogeneous approach, each ant has individual 

pheromone (α) and heuristics coefficients (β) where both α and β are parameters that 

control the relative importance of the pheromone trail and local heuristics used in 
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transition probability [3]. It is known that too much emphasis on pheromone trail or 

local heuristics may hinder the performance of the algorithm through over exploration 

or exploitation. Hence the proposed method can overcome the exploration-exploitation 

problem thus improving the performance of ACO. The heterogeneous approach 

implemented in this study stems from the actual behaviour of social insects which are 

heterogeneous in nature, displaying different traits and in some circumstances 
behavioural roles within a colony [4] [5].  The paper is structured as follows. In Section 

2, ACO is discussed briefly while Section 3 discuss the previous work on heterogeneous 

approach in ACO. Section 4 describes the methodology of this study and Section 5 

explains the experimental setup. Section 6 present the results of the study and the paper 

is concluded in Section 7 with discussion and conclusion. 

2       Ant Colony Optimization 

           ACO is an optimisation algorithm that takes inspiration from the foraging 

behaviours of real ants. Some of the most popular conventional ACO are Ant System 

(AS) [3]  and Max Min Ant System (MMAS) [6] that use metaheuristics approach 

inspired by ant colonies behaviour to find good solutions for an optimization problem. 

AS was the first ACO algorithm to be developed and acts as proof of ACO concept 

while MMAS is one of the best performing ACO algorithms in the literature. Both 

algorithms work through the deposition of pheromone by virtual ants who traverse the 

set of cities creating a tour, where the level of pheromone deposited on that tour is a 

function of tour optimality and the pheromone on all paths is evaporated uniformly.  
Subsequent ants probabilistically choose paths with a preference for those paths with 

greater pheromone with the goal of converging towards a near-optimal solution.  The 

algorithms differ in that ant system allows all ants to contribute to the deposition of the 

pheromone, whereas the max-min ant system allows only the best performing ant within 

a population to contribute and has a lower-bound on pheromone levels.   Both AS and 

MMAS have been applied to numerous TSP instances, a combinatorial optimization 

problem that has attracted extensive research [7]. This paper implements the 

heterogeneous approach on these two ACO variants. Due to limited space, AS and 

MMAS will not be discussed in detail here and can be referred to [3] and [6] 

respectively. 

3       Heterogeneous ACO 

Heterogeneity in swarm intelligence was firstly described in Particle Swarm 

Optimization (PSO) by Engelbrecht in [8] who proposed that introduction of 

heterogeneity in a search algorithm can improve the performance. This concept can also 
be adopted in ACO where artificial ants with different traits of behaviour can help to 

improve the performance of the ACO algorithm. This mimics the actual behaviour of  

real ants in a colony in terms of diversity and division of labour [9]. Heterogeneity in 

ACO can be grouped into individual and colony level. Artificial ants with different 

‘behaviours’ among them is said to be heterogeneous at the individual level while 

colonies of ants that differ in behaviour between the colonies is said to be the latter. 

Heterogeneous individual ants in ACO were first introduced by [10] where the authors 

used modified ACO with heterogeneity for path planning in mobile robots in order to 

find obstacle-free path in a certain environment. The author deployed ants with different 

sight, speed and function behaviours and found that the performance of Heterogeneous 

ACO (HACO) is better in terms of path planning when compared to conventional ACO. 
Chira et al. discussed the different sensitivity of the artificial ants to the pheromone trail 

level in [11]. Ants with higher pheromone sensitivity strongly follow the pheromone 

trail while ants with lower pheromone sensitivity are more inclined towards random 

search. In the meantime, Hara et al. [12] proposed the use of classic and exploratory 

ants where each ant constructs a partial solution which is then combined to produce one 

single solution. Yoshikawa et al [13] introduces a cranky ant approach to tackle the 

exploration-exploitation problem which appears to prevent the algorithm from being 

stuck in local optima. The cranky ants will explore paths with low pheromone level 

which is the opposite of the behaviour of standard artificial ant. Meanwhile, Zhang et 

al. [14] proposed colony level heterogeneity where ant colonies have different 

pheromone updating rules in order to balance exploration and exploitation in the search 



process. The authors proposed two colonies where each exhibits behaviour of Elitist 

Ant System (EAS) and Ant Colony System (ACS) characteristics respectively. They 

discussed that the algorithm overcomes stagnation and the early suboptimal path 

convergence problem. Melo et al [15] proposed a multi-caste ant colony in Ant Colony 

System (ACS) where ants with different preference towards q0, parameter that controls 

the degree of exploration or exploitation in ACS. Many more approaches implement 
heterogeneity at the colony level, but as this paper study and implementation at 

individual level, thus colony level heterogeneity will not be discussed in detail here. 

Each of these algorithms approach the principle of heterogeneity from a different 

standpoint, either using different ant roles or through the implementation of problem 

specific heterogeneity.  The approach taken in this paper is one of biological plausibility 

for ants with similar roles, but differing behavioural traits, which would normally be 

expressed through genetic differences, but here are drawn from a distribution. 

4        Methodology 

The main motivation of this research work is to study the ant colonies as 

heterogeneous, multi-behaviours agents that can further improve the performance of the 

algorithm. The hypothesis is that with heterogeneity, a mixture of ants that are more 

inclined towards exploration of the search space with other ants that exploit the best 

path found creates a balance in the search process. This is due to the behaviours of the 

ants of which are randomly initialized either to be more inclined towards exploration or 

exploitation. The algorithm proposed a simple heterogeneous method in this study by 
pre-assigning a random behavioural trait for each of the ants in the population size 

during initialization that will not change during the iterations, as would be the case with 

genetic variation in real ants. Each behaviour has a pair of continuous traits that can be 

related to pheromone trail intensity and visibility or the local heuristic information. The 

heterogeneous approach in both AS and MMAS platform and comparison were carried 

out and compared with the original versions of each algorithm.  

                     Algorithm 1: Heterogeneous ACO for TSP 

1. Begin; 
2. Input: Distance Matrix of TSP; 
3. Initialize: Max Iteration, m, n, Q, τ, ρ; 
4. Initialize ants: 

For i = 1: m 

   a=0; b=2; 

   Alpha (i) = rand (1) * (b-a) + a; 

 

   c=3; d=5; 

   Beta (i) = rand (1) * (d-c) + c; 

  End 

5. Start Iteration: 
   For it=1: Max Iteration 

     For k=1: m 

     Position each ant on starting node; 

        While TourSize < n+1 

         Tour Construction; 

        End 

     End 

    End 

6. Update solution; 
7. Update Pheromone; 
8. Pheromone Evaporation; 
9. Check if termination criteria = true; 
10. End 

Algorithm 1 depicts the pseudocode of our proposed algorithm and the major 

difference between this and the base algorithm is that ants will have α and β values that 

are initialized randomly between a set of pre-determined values rather than identical 

parameters throughout the run. The range for α and β values were based on experiments 



by Dorigo et al in [3]  and additional extensive experiments have been conducted to 

determine the best range for α and β (discussed briefly in section 6.1). 

4.1 Travelling Salesman Problem [2] 

Travelling Salesman Problem (TSP) is a widely studied combinatorial 

optimization problem in computer science. The main objective of solving a TSP is to 

achieve the shortest tour visiting n cities and returning to the starting city when there 

are no more cities left to be visited. TSP is visualized in a graphical format where nodes 

act as the cities and edges as the link or path between the cities. The edges will have 

weighting determining the cost of following that edge. TSP has been a popular case 

study in ACO and other various optimization algorithms.  

5        Experimental Setup 

The experiments were conducted on an Intel Core i7 CPU-based computer 

running Windows 7 equipped with 4GB RAM. The base algorithms used are the Ant 

System (AS) and Max Min Ant System (MMAS) approach developed using the Matlab 

version R2015a. Each algorithm is tested using several TSP instances taken from 

TSPLIB [2]. Firstly, the developed AS and MMAS was compared with that of [3] and 

[6] to show a level of confidence that the developed algorithm is similar to the original 
version. All the parameters were set according to the authors’ recommendations where 

for AS the parameters were set as follows: α=1, β=5, ρ=0.5 and m = n where m is the 

number of ants and n is the number of cities related to the TSP. Meanwhile the 

parameters for MMAS were set as follows: α = 1, β = 2, m = n, ρ = 0.98 and 𝑃𝑏𝑒𝑠𝑡  is 
0.05. The function evaluations for all the experiments were set as k.n.10000 where k=1 

for symmetrical TSPs used, n=number of cities of the TSP instance and 10 000 is the 

maximum number of iterations. Table 1 shows the comparison between the developed 

algorithms against its original versions where the results for the developed algorithms 

are the average of 15 trials. As can be seen, the best cost of the developed algorithm and 

that of the original developers’ are very similar demonstrating that the base algorithm 

formulations are working appropriately.  

Table 1: Developed AS, MMAS vs Original AS, MMAS. Results show the average of 

the best cost. (Note: Average of 15 trials) 

TSP Optimum Optimum Developed 
AS 

Developed MMAS 
[6]   (Integer 

Length) 
 (Real 

Length)  A.S  MMAS 

Oliver 
30 420[2] 423.741 [3] 423.7406 

423.74 
[3] N.A N.A 

Eil51 426 [3] 428.87 [2] 437.56 
437.3 

[6] 427.5 
427.1 

kroA 
100 21285 [3] 

21285.44 
[2] 22451.9819 

22471.4 
[6] 21299.6 21291.6 

D198 15780 [3] 
15808.65 

[2] 16692.24 
16702.1 

[6] 15960.2 15956.8 

 

6       Heterogeneous ACO Results  

6.1    Exploring the ranges of Alpha and Beta 

           An extensive experiment based on AS was conducted to find the best range of α 
and β for our heterogeneous approach where lower and upper bounds of α and β were 

based on the recommendation of [3].  Both α and β values are varied to create a 

heterogeneous approach as both α & β plays an important role in exploration and 

exploitation of the search space. Hence, varying both parameters will introduce more 

variance in the agents. In addition, Stützle et al [16] suggests that both α and β are good 

candidates for parameter adaptation in ACO. As can be seen, the recommended range 

for α is between 0.25 and 1.5 while β has a range of 1 to 5. Therefore, extensive 

experiments were conducted where the ants were set to have a uniform distribution of 

α between 0 and 1 and 0 to 2 while a uniformly distributed β was varied between 0 and 



5, narrowed down to 4 to 5.  The other parameters were set according to [3]: 10 000 

iterations, m = n, ρ = 0.5, Q = 100, initial pheromone trail = m/Lnn where Lnn is the tour 

length of the tsp instance using nearest neighbour heuristic. 3 tsp instances were used 

to test the algorithm namely oliver30.tsp (integer length optimum = 420, real length 

optimum = 423.7406), eil51.tsp (integer length optimum = 426, real length optimum = 

428. 8716) and eil101.tsp (integer length optimum = 629). Table 2 and Table 3 
summarizes the outcome of our extensive experiment. The results are best tour length 

found in 15 trials. 

Table 2: Results from experimentation where α is uniformly distributed between 0 to 1 

and the β distribution varies. Algorithm tested on oliver30.tsp, eil51.tsp and eil101.tsp. 
Results represent average best cost out of 15 trials while values in bold represents the 

best average. 

α β oliver30 eil51 eil101 

0 -1 0 -5 427.0934 445.301 699.1238 

0 -1 1 -5 425.3379 441.6734 685.7444 

0 -1 2 -5 426.0892 439.5271 678.2238 

0 -1 3 -5 423.7406 436.2947 661.9443 

0- 1 4 - 5 423.7406 436.3278 659.4744 

 

Table 3: Results from experimentation whereα is uniformly distributed between 0 and 

2 and the β distribution varies. Algorithm tested on oliver30.tsp, eil51.tsp and eil101.tsp 

for 10 000 iterations with values representing average best cost out of 15 trials while 

values in bold represents the best average. 

α β oliver30 eil51 eil101 

0- 2 0 -5 427.2749 437.1203 688.2972 

0 -2 1 -5 424.6639 442.3749 672.3319 

0 -2 2 -5 423.9117 438.0173 665.7093 

0 -2 3 -5 423.7406 436.0904 645.5318 

0- 2 4- 5 423.7406 436.6167 651.2821 

Both Table 2 and Table 3 above show that the best range is α: 0 to 2 and β: 3 to 5. The 

experiment did not include α values greater than 2 because it is proven can lead to 

stagnation behaviour [3]. Therefore, the following experiments related to heterogeneous 

AS hereafter will use this parameter range. 

6.2    Comparison with Base Algorithms 

           Next, the Heterogeneous Ant System (HAS) was compared against AS 

developed by [3] based on several symmetrical tsp instances.  The AS (and later MMAS 

[6]) systems have been subjected to extensive experiments to determine the optimal 

alpha and beta settings for these problems.  The resulting comparisons are therefore 

made between the heterogeneous system and well-tuned examples of the base ACO 

algorithms. HAS has the same parameter settings as AS (mentioned in the previous 

section) expect that α is a uniform distribution between 0 and 2 while β is varied from 

3 and 5. The function evaluations for all experiments remain the same as previous 

section. Table 4 summarizes the comparison of AS and HAS on eil51.tsp for 25 trials. 

It can be seen that HAS improves on the best cost found by AS where the average is 

436 compared to that of AS which is 437.56.  Both AS and HAS was not able to find 
the optimum but it is shown that HAS performs better than AS in terms of 1% deviation 

and 2% deviation of the optimum. A value is said to be 1% deviation of optimum when 

it is within the range of 1% to the optimum. In eil51.tsp case, 1% deviation is 1/100 x 

426 (optimum value from TSPLIB [2]) =4.26+426 =430.26.  

426 < X< 430.26 = 1% deviation of optimum 

430.26 < X < 434.52 = 2% deviation of optimum 



Table 4: Best, average and worst cost comparison between AS & HAS for eil51.tsp, 10 

000 iterations over 25 trials. 

 

 

Figure 2: Comparison of average best cost for 25 independent trials of eil51.tsp with 10 

000 iterations for each trial.  

            

                          Figure 3 (a)                                                 Figure 3 (b) 

Figure 3: Frequency of Alpha & Beta values that managed to find the best cost in every 
iteration for HAS (eil51.tsp) (Note: 25 trials x 10 000 iterations each trial = 250 000 

iterations) 

Figure 2 shows that the Heterogeneous Ant System (HAS) has a better performance in 

terms of average best cost compared to AS over the duration of the optimisation. Figure 
3 show the frequency of alpha and beta values of ants that found the best cost in every 

iteration. It can be seen the alpha values that mostly contribute are between 1.9 and 2, 

with a strong skew towards these values whereas the beta distribution is much more 

uniform with a small skew towards beta values of 4.6 and 4.75. This shows that 

heterogeneous approach introduces diversity in the algorithm and suggests the 

mechanism behind the improved performance over the algorithm with a single 

‘behavioural trait’. 

Table 5: Best, average and worst cost comparison between AS & HAS for kroA100.tsp 

(optimum: 21282). Results in bold are the best in the table. 

 

Method Best Average Worst # Optimum 
Found 

1% dev 
of opt 

2% dev of 
opt 

AS 433 437.56 441 0 0 1 

HAS 428 436.00 442 0 1 5 

Method Best Average Worst # Optimum 
Found 

5% dev 
of opt 

6% dev of 
opt 

AS 22384 22469.4 22666 0 0 5 

HAS 22215 22347.6 22487 0 22 25 



Table 5 shows the comparison between AS and HAS for 100-city tsp, kroA100.tsp. 

HAS managed to improve on the fitness solution compared to AS where average best 

cost for HAS is 22347.6 and that of AS is 22469.4. Although both AS and HAS did not 

manage to find the optimum for 100-city TSP problem, HAS managed to find a best 

cost that is within 5% of the optimum 22 times compared to none by AS. In addition, 

HAS found a best cost of 22215 compared to 22384 of AS out of 25 trials. 

 

 

Figure 4: Average best cost comparison for AS & HAS (kroA100.tsp) for 10 000 

iterations over 25 trials.  

           

                           Figure 5 (a)                                                  Figure 5 (b) 

Figure 5: Frequency of Alpha & Beta values that managed to find the best fitness 
solution in every iteration for HAS (kroA100.tsp) (Note: 25 trials x 10 000 iterations 

each trial = 250 000 iterations) 

Figure 4 shows the improved performance of HAS over AS in terms of average best 

cost while Figure 5 (a) and 5 (b) show the frequency of alpha and beta values of ants 
that managed to find best cost in all the 10 000 iterations for 25 trials. The distributions 

are similar to those of the previous experiments with alpha values peaking at 1.85 while 

beta has a peak at 4.45.  

Table 6: Best, average and worst cost comparison between AS & HAS for d198.tsp 

(Optimum: 15780). Results in bold are the best in the table.                          

 

Table 6 summarizes the outcome of 25 trials of d198.tsp using both AS and HAS. AS 
found a best cost of 16356 throughout the 25 trials while HAS found a best cost of 

16186.  In additionHAS has a lower average compared to AS. Although the optimum is 

not found by any of the algorithms, HAS managed to find fitness solutions that are 3% 

Method Best Average Worst # Optimum 
Found 

3% dev of 
opt 

4% dev of 
opt 

AS 16356 16572.48 16724 0 0 3 

HAS 16186 16359.04 16700 0 6 19 



within the optimum range 6 times and 19 times within 4% of the optimum compared to 

0 and 3 times respectively by AS.  

 

Figure 6: Average of best cost comparison between AS & HAS (d198.tsp) over 25 trials, 

10 000 iterations in each trial. 

              

             Figure 7 (a)                           Figure 7 (b) 

Figure 7: Frequency of Alpha & Beta values that found the best fitness solution in every 
iteration for HAS (d198.tsp) (Note: 25 trials x 10 000 iterations each trial = 250 000 

iterations) 

Figure 6 shows the major improvement in terms of average best cost performance of 

HAS over AS while it can be seen clearly in Figure 7 that even though both α=1 and 
β=5 as per suggested in [3] are covered in the pre-determined range for heterogeneous 

approach, both α and β values that managed to find best cost in every iteration increases 

rapidly from 0.5 to 2 and a steady increase from 3 to 5 respectively with α values having 

a peak at 1.9 while β values have a peak of 4.9.  

           The encouraging results of the heterogeneous approach on Ant System leads to 

the approach to be implemented on to Max Min Ant System (MMAS) known as 

Heterogeneous MMAS (HMMAS). All the parameters were set according to 

[6](discussed in experimental setup) except that of α which was set to 0 to 2 while β is 

varied between 1 and 3. The same sets of TSP instances were used to compare HMMAS 

against MMAS. Table 7 summarizes the comparison for eil51.tsp which has an 

optimum of 426. Although overall average of HMMAS is slightly higher compared to 

that of MMAS, HMMAS performed much better in relation to the number of times 

optimum found where both MMAS and HMMAS managed to find the optimum 4 times 

and 10 times respectively out of 25 trials. Figure 11 shows the comparison of the 

average best cost of both MMAS and HMMAS for the 51-city TSP problem. 

 

 

 



Table 7: Best, average and worst cost comparison between MMAS & HMMAS for 

eil51.tsp (optimum: 426). Results in bold represents the best value in the table. 

 

 

Figure 8: Comparison of average best cost for MMAS & HMMAS (eil51.tsp) over 25 

trials, each trial = 10 000 iterations. 

                 

 Figure 9 (a)              Figure 9 (b) 

Figure 9: Frequency of Alpha & Beta values that managed to find the best fitness 

solution in every iteration for HMMAS (eil51.tsp) (Note: 25 trials x 10 000 iterations 

each trial = 250 000 iterations) 

Figure 8 shows that both MMAS and HMMAS have a similar average best cost. Figure 

9 illustrates that both the alpha and beta values of ants that managed to find the best cost 

in every iteration for HMMAS with alpha has a peak value of 1.55 while beta has a peak 

of 2.05. The overall distributions are somewhat similar to those from HAS. The 

diversity in the algorithm helps too as it shows that various alpha and beta values 

contribute towards finding the best cost.  

Table 8: Best, average and worst cost comparison between MMAS & HMMAS for 

kroA100.tsp (optimum: 21828). Results in bold represent the best value in the table. 

 

Table 8 shows the outcome of experiment on kroA100.tsp where both MMAS and 

HMMAS managed to find the optimum of 21282 while MMAS has an average of 

Method Best Average Worst # Optimum 
Found 

1% dev 
of opt 

2% dev 
of opt 

MMAS 426 427.4 430 4 25 25 

HMMAS 426 427.6 431 10 23 25 

Method Best Average Worst # Optimum 
Found 

1% dev 
of opt 

2% dev 
of opt 

MMAS 21282 21299.6 21390 4 25 25 

HMMAS 21282 21316.6 21379 11 21 22 



21294.4 and HMMAS has an average of 21316.6. This can be due to several trials 

producing fitness solutions out of the 1% and 2% range of optimum thus causing the 

HMMAS to have a higher average. Although MMAS have a lower average best and 

lower worst cost, HMMAS still outperforms MMAS by finding the optimum 11 times 

compared to 4 times for MMAS. Figure 10 shows the comparison of the average best 

cost between MMAS and HMMAS. 

 

 

Figure 10: Comparison of MMAS & HMMAS of average best cost (kroA100.tsp) over 

25 trials, each trial = 10 000 iterations. 

            

          Figure 11 (a)                Figure 11 (b) 

Figure 11: Frequency of Alpha & Beta values that managed to find the best fitness 

solution in every iteration for HMMAS (kroA100.tsp) (Note: 25 trials x 10 000 

iterations each trial = 250 000 iterations) 

Figure 10 shows that the average best cost of MMAS is slightly better compared to 

HMMAS for 100-city problem. Both Figure 8 and Figure 10 suggest that MMAS 

performs considerably well for eil51.tsp and kroA100.tsp due to the small problem size. 

Figure 11 illustrates the alpha and beta values related to the best cost in every iteration 

over 25 trials. Alpha values peak around 1.3 and beta has a peak of 2.65 respectively.  

Table 9: Best, average and worst cost comparison between MMAS & HMMAS for 

d198.tsp (optimum: 15780). Results in bold represents the best value in the table. 

 

Table 9 summarizes the comparison made between MMAS and HMMAS for 198-city 

TSP. HMMAS has a best cost of 15795 compared to 15846 of MMAS and HMMAS 

also has a lower average and lower worst cost compared to MMAS. Meanwhile, 

Method Best Average Worst # Optimum 
Found 

1% dev 
of opt 

2% dev 
of opt 

MMAS 15846 15961.12 16137 0 10 22 

HMMAS 15795 15871.68 16006 0 21 25 



HMMAS also managed to find fitness solutions 21 times within the 1% range of 

optimum compared to that of MMAS of 10 times.  

 

 

Figure 12: Comparison of MMAS & HMMAS of average best cost (d198.tsp) over 25 

trials, each trial = 10 000 iterations. 

         

                       Figure 13 (a)            Figure 13 (b) 

Figure 13: Alpha & Beta values that managed to find the best fitness solution in every 

iteration for HMMAS (eil51.tsp) (Note: 25 trials x 10 000 iterations each trial = 250 

000 iterations) 

Figure 12 shows the comparison of the average best cost between MMAS and HMMAS 

over 25 trials for eil51. HMMAS have a better average best cost compared to MMAS 

in a medium-sized tsp. Figure 13 shows the alpha and beta values with a peak of 1.7 

and 2.2 respectively.  

 

Figure 14: Boxplot of best cost for 25 independent trials of 4 different algorithms 

namely AS, HAS, MMAS and HMMAS for eil51.tsp. Each trial were conducted for 10 

000 iterations. 



Figure 14 shows that both HAS and HMMAS have a better performance compared to 

its base algorithm in terms of best cost found in each of the 25 independent trials for 

eil51.tsp. HAS has a lower median and lower inter-quartile (IQR) values compared to 

AS. Furthermore, HMMAS has a worst cost larger than MMAS, but more of the best 

costs are at the optimum of 426 for eil51.tsp. 

 

Figure 15: Boxplot of best cost for 25 independent trials of 4 different algorithms for 

AS, HAS, MMAS and HMMAS for kroA100.tsp. 

Figure 15 shows the boxplot for the best cost found by all 4 algorithms in test in each 

of the 25 trials. It can be seen that HAS has a better performance compared to AS in 

terms of best cost with a lower median as well. On the other hand, HMMAS has a 

slightly higher median compared to MMAS. It can also be observed from Figure 14 that 

both HAS and HMMAS have a larger IQR and this can be attributed to the variance in 

terms of best cost found caused by the heterogeneous approach introduced. 

 

Figure 16: Boxplot of best cost for 25 independent trials of 4 different algorithms 

namely AS, HAS, MMAS and HMMAS for d198.tsp. 

Figure 16 shows the improvement of HAS and HMMAS over its base algorithms. Both 

heterogeneous algorithms have a lower median compared to AS and MMAS. In both 

cases, the improvements are statistically significant thus the algorithms clearly 

benefitting from the heterogeneous approach.  

 

 

 



Table 10: p-values and z-values of Wilcoxon rank sum test for best cost of HAS and 

HMMAS against its respective base algorithm.  

 

TSP HAS vs AS HMMAS vs MMAS 

eil51 0.0143 0.8796 

kroA100 2.03E-0.6 0.3078 

d198 2.87E-08 1.27E-04 

 

A two-tailed Wilcoxon rank sum test with confidence level of 95% was conducted for 

HAS against AS and HMMAS against MMAS with p < 0.05 as the threshold level 

where the difference is significant. The table above shows that the best cost found by 

HAS for the 25 trials are significantly better when compared to AS for all the three 

instances. The test shows that the best cost of HMMAS is not significant over its base 

algorithm for eil51 and kroA100. First of all, these two tsp instances fall under the 

category of small instance problem where even the base algorithm performs moderately. 

Secondly, the effect of individual variance or heterogeneity is limited in HMMAS due 

to algorithm’s limitation of only a single agent to modify the pheromone limiting the 

overall heterogeneity advantage. Furthermore the performance of the base algorithm 

MMAS is clearly superior to that of AS meaning that it is also more difficult to for 

heterogeneity to show an improvement. However, despite this, HMMAS is statistically 

significant when compared to MMAS in terms of best cost found for d198.tsp.  

7         Discussion, Conclusion & Future Work 

             In summary, a heterogeneous ACO has been introduced which implements 

artificial ants that have different ‘behavioural traits’ compared to the traditional 

homogeneous approach. This computational work in ACO is in relation to the biological 

aspect of real ants where ants are known to have diversity in their population. The results 

clearly show that the heterogeneous approach in ACO produce improved performance 

over the standard, parameter tuned algorithms on which they are based.  The 

performance difference was particularly marked when implemented on Ant System.  

This is likely to be due to the greater contribution of each ant to the pheromone trail, 

highlighting the effect of diversity.  The smaller gains made with HMMAS can be 
explained by the increased performance of the base algorithm, locating solutions closer 

to the optimum and also that only the best ant contributes to the pheromone update 

reducing the effect of population diversity on algorithm progression. 

             The implemented approach, by varying the alpha and beta values shows that 
even though prior work [3] suggests a range of optimal α and β values to choose from, 

determining a certain value is not easy as the parameters are problem-dependant. The 

results here show that the heterogeneous approach is able to overcome this problem by 

being robust to parameter settings by effectively exploring the parameter space in 

conjunction with optimising the problem. Having a variety of ‘behavioural traits’ rather 

than a single behaviour   shows the advantage in the performance of the algorithm. 

Recording the best performing alpha and beta values provides some support for the 

parameter values suggested by both Dorigo [3] and Stützle [6], but also highlighted 

instances where these parameter settings were not optimal.  The discovery of distinct 

distributions of parameter settings for alpha and beta is interesting and demonstrates the 

algorithms’ sensitivity to these parameters. These distributions remained stable despite 
being tested on multiple problem sizes.  The work here has explored the hypothesis that 

heterogeneity is able to improve the performance of an algorithm and the results have 

gone some way to showing that heterogeneity applied to ACO can improve performance 

on the TSP and robustness to parameter settings. The next focus is on implementing 

Gaussian distribution towards heterogeneity and greater biological plausibility. 
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