
357

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Metaheuristic Particle Swarm Optimization
Approach to Nonlinear Model Predictive Control

Julian Mercieca and Simon G. Fabri
Department of Systems and Control Engineering

University of Malta
Msida MSD 2080, Malta

Email: julianmercieca@gmail.com, simon.fabri@um.edu.mt

Abstract—This paper commences with a short review on
optimal control for nonlinear systems, emphasizing the Model
Predictive approach for this purpose. It then describes the Parti-
cle Swarm Optimization algorithm and how it could be applied
to nonlinear Model Predictive Control. On the basis of these
principles, two novel control approaches are proposed and anal-
ysed. One is based on optimization of a numerically linearized
perturbation model, whilst the other avoids the linearization step
altogether. The controllers are evaluated by simulation of an
inverted pendulum on a cart system. The results are compared
with a numerical linearization technique exploiting conventional
convex optimization methods instead of Particle Swarm Opti-
mization. In both approaches, the proposed Swarm Optimization
controllers exhibit superior performance. The methodology is
then extended to input constrained nonlinear systems, offering a
promising new paradigm for nonlinear optimal control design.

Keywords-particle swarm optimization; model predictive control;
optimal control; nonlinear control; computational intelligence;
swarm intelligence; evolutionary intelligence; artificial intelligence;
metaheuristic algorithms

I. INTRODUCTION

This paper discusses the use of Particle Swarm Optimization
for optimal control of nonlinear systems. It proposes two novel
control schemes in this regard and presents a more detailed
perspective on earlier work by the same authors [1]. In the
case of systems exhibiting linear dynamics, optimal and robust
control theory offer well-developed tools to optimize a number
of performance indices that embody desirable objectives and
ensure performance robustness. These range from classical and
fundamental robust control approaches [2] to more advanced,
theoretically elegant and computationally tractable solutions
[3], [4].

In contrast to linear optimal and robust control, its nonlinear
counterpart (namely optimization constrained by a nonlinear
dynamical system) is still a developing field. Its roots were laid
down in the 1950s with the introduction of the Pontryagin
maximum principle (a generalization of the Euler-Lagrange
equations derived from the calculus of variations [5]) and dy-
namic programming, leading to the Hamilton-Jacobi-Bellman
partial differential equations [6]. These were more theoreti-
cal contributions than practical design techniques. Numerous
design methodologies have now been developed for nonlinear
optimal control, often following different paths and techniques.
The problem is attacked on several different fronts including

extensions of linear theory, utilizing generalizations of the
Lyapunov methodology, and brute force computation to name
a few [7].

The advent of the microprocessor and the subsequent com-
puter revolution opened up an entirely new possibility for
optimal control: obtaining solutions directly through numerical
computations. While the solution of the Hamilton-Jacobi-
Bellman equation remains intractable in all but the simplest of
cases, Euler-Lagrange type trajectory optimizations provide an
alternative, more computationally feasible approach. Comput-
ers are able to provide relatively efficient solutions by solving
trajectory optimizations that produce open-loop control trajec-
tories as a function of time (as opposed to a state-feedback
law). Feedback can then be incorporated by the repeated on-
line solution of these trajectory optimizations, an approach
known as receding or moving horizon. A heavy exploitation
of the receding horizon methodology spawned the technique of
Model Predictive Control [8]. Plants with slow dynamics were
among the first candidate applications of this approach because
on-line inter-sample computation of a sequence of manipulated
variable adjustments in order to optimize the future behaviour
of a controlled process using minimal control effort became
feasible [9]. Additionally, the receding horizon strategy was
a natural approach to constrained systems because constraints
could be directly incorporated into the optimizations, enabling
plant operators to run the plant near constraint boundaries,
which can increase productivity and reduce product quality
variation [10], [11]. Furthermore, Model Predictive Control
seems extremely powerful for processes with dead-time or
if the set-point is programmed. This is evidenced by its
successful implementation in industrial process applications
[8]–[13].

However, despite being an attractive control scheme for
manipulating the behaviour of complex systems [14] and
exhibiting excellent dynamic performance in both industrial
applications and theoretical studies [15]–[17], the application
of Model Predictive Control to nonlinear systems, known as
Nonlinear Model Predictive Control (NMPC), is complicated
largely due to the optimization method that has come to
be used in these controllers. A fundamental difficulty of
the NMPC approach is the requirement to solve nonconvex
constrained optimization problems. Most existing works are
based on nonlinear programming methods [18] that only

CORE Metadata, citation and similar papers at core.ac.uk

Provided by OAR@UM

https://core.ac.uk/display/155235618?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

358

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

yield local optimum values, with the latter depending on the
selection of the starting point. For this purpose, Alaniz [19]
developed a particular numerical linearization technique to
obtain a convex constrained optimization problem, albeit at the
cost of performance deterioration. Other attempts to solve the
nonconvex optimization problems exploit Genetic Algorithm
(GA) optimizers [20]. However these face many challenges,
including enormous computational effort due to its natural
genetic operations [21], [22]. Although this may be reduced
by using a real-value representation in the GA [21], [23], [24],
some deficiencies in GA performance have been highlighted
in recent research. Applications governed by highly epistatic
objective functions [25], [26] reveal shortfalls in performance,
which is further worsened by the GA’s premature convergence
[25].

This paper presents and analyses in depth two novel NMPC
controllers based on a powerful optimization paradigm called
Particle Swarm Optimization (PSO). PSO was first developed
by Kennedy and Eberhart in 1995 [27]. This metaheuristic
algorithm has been found to be robust in solving continuous
nonlinear optimization problems [23], [26]–[28] and capable
of generating high quality solutions with more stable conver-
gence characteristics and shorter calculation times than other
stochastic methods [23], [26], [29]. The salient feature of
PSO lies in its learning mechanism, distinguishing it from
other computational intelligence techniques, such as genetic
algorithms, where PSO has been shown to have more attractive
properties [30], [31]. PSO is governed by less tunable parame-
ters and is notably easy to program and implement using basic
logic and mathematical operations. The swarm intelligence
algorithm stands in clear contrast with many optimization
techniques for being derivative-free, being less sensitive to the
objective function’s nature, namely continuity and convexity,
and not requiring good initial solutions for the iteration process
to start. Furthermore, its flexibility enables its integration
with other optimization techniques, forming hybrid tools [32].
Its ability to avoid local minima and to cater for stochastic
objective functions, as is the case of representing a random
optimization variable, further strengthens PSO’s capacity to
achieve superior optimization performance [32]. Owing to its
simple concept and high efficiency, PSO has become a widely
adopted optimization technique and has been successfully
applied to many real-world problems [33]–[40]. Moreover,
PSO’s superiority is confirmed when compared with other
optimization algorithms in various application areas [41]–[45].
Also, in the process of validating new global optimization
techniques, researchers have proven that PSO performs well
in several benchmark optimization problems [46]–[49].

One of the novel controllers presented in this paper is based
on a numerical linearization technique first proposed by Alaniz
in [19] that is based on conventional convex optimization
methods. By contrast, the proposed controller exploits PSO
techniques for optimization. The second novel controller pro-
posed in this paper does away with any form of numerical
linearization to achieve optimization of the cost function. Both
controllers are simulated on an inverted pendulum on a cart

problem and compared with the NMPC controller in [19].
The rest of the paper is organized as follows. Section II

is an explanation of the implemented PSO algorithm, while
Section III outlines the design of the three NMPC controllers
evaluated in this paper. Section IV then presents the simulation
setup, results and analysis, followed by a brief conclusion in
Section V.

II. PARTICLE SWARM OPTIMIZATION

The particle swarm optimization algorithm is a population-
based search algorithm inspired by the social behaviour of
birds within a flock [27]. The very simple behaviour followed
by individuals in a flock emulates their own successes and the
success of neighbouring individuals. The emergent collective
behaviour is that of discovering optimal regions of a high
dimensional search space.

In a PSO algorithm, each particle representing a potential
solution is maintained within a swarm. In simple terms, the
particles are therefore “flown” through a multidimensional
search space where the position of each particle is adjusted
according to the experience of itself and its neighbours. Let
xi(t) denote the position of particle i in the search space at
time step t, which denotes discrete time steps unless otherwise
stated. The position of the particle is changed by adding a
velocity vector, vi(t), to the current position i.e.,

xi(t +1) = xi(t)+vi(t +1) (1)

with xi(0) ∼ U(xmin,xmax), where U(xmin,xmax) denotes the
continuous uniform probability distribution within the real-
valued space (xmin,xmax). The optimization process is driven
by the velocity vector, reflecting both the experiential knowl-
edge of the particle (known as cognitive component) and
socially exchanged information from the particle’s neigh-
bourhood (known as social component). In this paper we
implement a particular PSO algorithm know as global best
PSO [50], which exhibits very fast convergence rates much
needed for our predictive control application. For the global
best PSO, or gbest PSO, the neighbourhood for each particle
is the entire swarm, thus employing the social network of the
star topology type. In this situation, the social information is
the best position found by the swarm, referred to as ŷ(t).

For gbest PSO, the velocity of particle i is calculated as

vi j(t +1) = vi j(t)+ c1r1 j(t)[yi j(t)− xi j(t)]+

c2r2 j(t)[ŷ j(t)− xi j(t)] (2)

where xi j(t), yi j(t) and vi j(t) are the position, personal best
position and velocity of particle i in dimension j = 1, . . . ,nx
at time step t respectively, ŷ j(t) is the global best position
in dimension j, c1 and c2 are positive acceleration constants
used to scale the contribution of the cognitive and social com-
ponents respectively, and r1 j(t),r2 j(t) ∼ U(0,1) are random
values in the range [0,1], sampled from a continuous uniform
distribution. These random values introduce a random element
to the algorithm.

The personal best position, yi, associated with particle i is
the best position the particle has visited since the first time

359

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

step. Considering a minimization problem, the personal best
position at the next time step, t +1, is calculated as

yi(t +1) =
{

yi(t) if f (xi(t +1))≥ f (yi(t))
xi(t +1) if f (xi(t +1))< f (yi(t))

(3)

where f : Rnx →R is the fitness function, which is a measure
of how close the corresponding solution is to the optimum,
quantifying the performance, or quality, of a particle (or
solution).

The global best position, ŷ(t), at time step t, is defined as

ŷ(t) ∈ {y0(t) . . .yns(t)}| f (ŷ(t)) = min{ f (y0(t)) . . . f (yns(t))}
(4)

where ns is the total number of particles in the swarm.
Equation 4 therefore states that ŷ(t) is the best position
discovered by any of the particles so far. In this paper, it
is calculated as the best personal-best position. Algorithm 1
summarizes the gbest PSO algorithm.

Further to the basic PSO algorithm just described, the
speed of convergence and quality of solutions are improved
using velocity clamping and inertia weight [51]. The efficiency
and accuracy of our optimization algorithm is governed by
the exploration-exploitation trade-off [52]. Exploitation is the
ability of a search algorithm to concentrate the search around
a promising area in order to refine a candidate solution.
Exploration, on the other hand, is the ability to locate a global
optimum by exploring different regions of the search space.
A good optimization algorithm balances these contradictory
objectives in an optimal manner. For the PSO algorithm, these
objectives are reached using the velocity update equations.

Algorithm 1 gbest PSO [50]

Create and initialize an nx-dimensional swarm
repeat

for each particle i = 1, . . . ,ns do
//set the personal best position
if f (xi)< f (yi) then

yi = xi;
end
//set the global best position
if f (yi)< f (ŷ) then

ŷ = yi;
end

end
for each particle i = 1, . . . ,ns do

update the velocity using Equation (2);
update the position using Equation (1);

end
until stopping condition is true;

The velocity update presented in Equation (2) comprises
three terms that contribute to the step size of particles. The
early applications of basic PSO revealed that the velocity
quickly explodes to large values, especially for particles
located far from the neighbourhood best and personal best

positions. As a consequence, particles have large position
updates resulting in them leaving the boundaries of the search
space and diverging. The global exploration of particles may
be controlled by clamping velocities to stay within boundary
constraints [53]. If a specified maximum velocity is exceeded,
the particle’s velocity is set to the maximum velocity. Let
Vmax, j denote the maximum allowed velocity in dimension j.
Particle velocity is then adjusted prior to the position update
using,

vi j(t +1) =
{

vi j
′
(t +1) if vi j

′
(t +1)<Vmax, j

Vmax, j if vi j
′
(t +1)≥Vmax, j

(5)

where vi j
′

is calculated using Equation (2).
The value of Vmax, j is essential to control the granularity

of the search by clamping escalating velocities. Large values
of Vmax, j facilitate global exploration, while smaller values
encourage local exploitation. Too small values of Vmax, j leads
to insufficient exploration beyond locally good regions, in-
creasing the number of time steps to reach an optimum, with
the risk of the swarm becoming trapped in a local optimum,
with no means of escape. On the other hand, too large values of
Vmax, j risk the possibility of missing a good region, having the
particles possibly jumping over good solutions and continuing
to search in fruitless regions of the search space. Despite
this disadvantage of particles possibly jumping over optima,
particles move faster.

The problem of finding a good value for each Vmax, j still
stands. We require the balance between (a) moving too fast or
too slow, and (b) exploration and exploitation. Here, we select
Vmax, j values to be a fraction of the domain of each dimension
of the search space. That is,

Vmax, j = δ(xmax, j− xmin, j) (6)

where xmax, j and xmin, j are the maximum and minimum values
of the domain of x in dimension j respectively, and δ ∈ (0,1].
In a number of empirical studies it was found that the value
of δ is problem-dependent [54], [55], and the best value for
our situation was therefore obtained empirically.

While velocity clamping exhibits the advantage of a con-
trolled explosion of velocity, it also presents a difficulty
when all velocities are equal to the maximum velocity. If
no precautionary measures are implemented, particles re-
main searching on the boundaries of a hypercube defined by
[xi(t)−Vmax,xi(t)+Vmax]. A particle may stumble upon the
optimum, but in general exploiting this local area is difficult.
This problem is solved in our algorithm by introducing an
inertia weight, a concept introduced by Eberhart and Shi
[28] as a mechanism of controlling the exploitation and
exploration abilities of the swarm, with the original intention
of eliminating the need for velocity clamping [33]. The inertia
weight was successful in addressing the first objective, but
failed to completely eliminate the need for velocity clamping.
The inertia weight, w, controls the particle’s momentum by
weighting the contribution of the previous velocity - in other
words, controlling how much memory of the previous flight

360

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

direction will influence the new velocity. For the gbest PSO,
the velocity equation changes from Equation (2) to

vi j(t +1) = wvi j(t)+ c1r1 j(t)[yi j(t)− xi j(t)]+

c2r2 j(t)[ŷ j(t)− xi j(t)] (7)

The value of w is essential to ensure convergent behaviour
while optimally trading off exploration and exploitation. For
w≥ 1, velocities increase over time, accelerating towards the
maximum velocity (assuming a velocity clamping strategy),
and the swarm diverges. Particles fail to change direction to
return back towards promising areas. For w < 1, particles
undergo a deceleration until their velocities reach zero (de-
pending on the values of the acceleration coefficients). Large
values of w facilitate exploration with increased diversity,
while small w promotes local exploitation. However, very
small values eliminate the exploration ability of the swarm
since little momentum is then preserved from the previous
time step, enabling quick changes in direction. The smaller
w, the more do the social and cognitive components control
position updates.

As with the maximum velocity, the optimal value for the
inertia weight is problem-dependent [55]. Here, we make use
of dynamically changing inertia values, starting with large
inertia values that decrease over time to smaller values. This
way, particles are allowed to explore in the initial search steps,
while favouring exploitation as time increases.

The inertia weight is dyamically varied using the linear
decreasing method, where an initially large inertia weight (usu-
ally 0.9) is linearly decreased to a small value (usually 0.4).
Following Yoshida et al. [56], Suganthan [57], Ratnaweera et
al. [58], Naka et al. [59], we set

w(t) = (w(0)−w(nt))
(nt − t)

nt
+w(nt) (8)

where nt is the maximum number of time steps that the
algorithm is executed, w(0) is the initial inertia weight, w(nt)
is the final inertia weight, and w(t) is the inertia at time step
t. Note that w(0)> w(nt).

III. NONLINEAR MODEL PREDICTIVE CONTROL

A nonlinear dynamic system may be represented by a set
of nonlinear differential equations [60] that may be discretized
for computational purposes using Euler’s method, where Ts is
the sampling period and k is the sample index in discrete-time,
as follows:

x(k+1) = x(k)+Ts f (x(k),u(k),v(k),k) (9)
y(k) = g(x(k),u(k),v(k),k) (10)

Arguments of the nonlinear function f include a state vector
x(k), a control input u(k), and a disturbance input v(k). The
set of physical quantities that can be measured from the
system constitute the output, y(k), which is also a nonlinear
function g of the same arguments. More accurate discretization
approximations, such as the Runge-Kutta methods, can be used
if the system dynamics are highly nonlinear or the sampling
period is large.

The Model Predictive Control (MPC) design methodology
is characterized by three main features: an explicit model
of the plant, computation of control signals by optimizing
predicted plant behaviour, and a receding horizon [10]. MPC’s
receding horizon strategy can be explained using Figure 1. An
internal model predicts how the plant will react, starting at
the current time k, over a discretized prediction interval. The
letter l denotes the number of discrete steps in this interval.
Each discrete step spans a time of Ts seconds, therefore the
prediction interval lasts lTs seconds. The predicted behaviour
is governed by the present state x(k), an estimated disturbance
history v, and a control history u that is to be applied. The
objective is to select the control history that yields the best
predicted behaviour with respect to a reference trajectory and
optimization parameters.

All the rest of the simulation figures presented in this paper shall retain the same format.

PAST FUTURE

Reference Trajectory

Prediction Horizon

Time

O
u

tp
u

t

k k + l

Control Horizon

Time

C
o

n
tr

o
l
In

p
u

t

k k + l k + m k+1

Ts

PAST FUTURE

Fig. 1. Nonlinear Model Predictive Control: A receding horizon strategy

MPC solves for the control history, which is a sequence of
m vector values. Two adjacent control values are separated by
a time step of Ts, therefore having a control history spanning
mTS seconds. During each time step, the control values are held
constant and the values are assumed to change instantaneously
as soon as a new time step is started. After the control
history has ended, the control signal is held constant until
the prediction interval is over.

Once the optimal control history has been computed, the
first N time steps of the solution are applied to the plant and

361

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the rest are discarded. After these N time steps have passed,
the cycle of forming predicted behaviours and computing the
control history is repeated. In this paper, we choose N to be
unity, however this number can be increased to reduce the rate
of production of solutions.

The cost function used in our performance evaluation is
given by Equation (11) having a quadratic structure comprising
two terms. The first term, weighted by a symmetric weighting
matrix Q(k), penalizes the deviations from a reference trajec-
tory that occur throughout the prediction interval. A specific
value of the reference is denoted by ỹ(k). The second term,
weighted by a symmetric weighting matrix R(k), penalizes the
magnitude of each control value in the control history.

J =
l−1

∑
i=0
||(y(k+ i)− ỹ(k+ i))||2Q(k+i)+

m−1

∑
i=0
||u(k+ i)||2R(k+i)

(11)
As previously described, if m is in the range 1≤ m≤ l, then
the last value in the control history is held constant for the
final (l −m) time steps. The value of R(k +m− 1) should
therefore have a different magnitude to compensate for the
added duration of u(k+m−1).

Control and output constraints are considered in their in-
equality form, with the constraints being enforced at each
discretized point in the control history and output trajectory,
as shown in equations (12) and (13).

u(k)min ≤ u(k)≤ u(k)max (12)

y(k)min ≤ y(k)≤ y(k)max (13)

The MPC problem in this setting is to minimize J by choosing
u, subject to the constraints in equations (12) and (13) and the
dynamics of equations (9) and (10). We will now describe the
three nonlinear model predictive controllers considered in this
paper, two of them representing the novel contributions of this
work.

A. A numerical linearization method

This method, proposed by Alaniz in [19], centres around a
particular numerical linearization technique for generating the
predicted output trajectory y. A nominal control history ū is
first chosen, then the corresponding nominal output trajectory
ȳ is computed through numerical integration. Typically ū is
the previous optimal solution, but it can be set equal to zero if
none exist. The predicted output is then based on linearizing
the control perturbation ∆u about the nominal trajectory as
follows:

y(k) = ȳ(k)+α0∆u(k)
y(k+1) = ȳ(k+1)+α1∆u(k)+β0∆u(k+1)
y(k+2) = ȳ(k+2)+α2∆u(k)+β1∆u(k+1)+

γ0∆u(k+2)
... (14)

The coefficients αi, βi, γi, . . . are produced by computing
a perturbed trajectory for each ∆u(k + i) and finding the

subsequent deviation from the nominal trajectory. Perturbed
trajectories are the result of adding a pulse of magnitude one
to the nominal control history at time (k+ i). Each trajectory
is formed by propagating the present state x(k) over a fixed
interval of time while applying an associated control history.
The prediction interval and control history are divided into l
and m discrete steps, respectively, of length Ts where m ≤ l.
After the control history has ended, it is held constant for the
final (l−m) time steps.

The MPC problem is to solve for the optimal control per-
turbation ∆u∗ by minimizing a cost function with respect to a
reference trajectory and optimization parameters. The optimal
control history is then the sum of the nominal control history
and the optimal control perturbation [19]. By rearranging
and simplifying the form of Equation (11), a set of matrices
is obtained that leads to the unconstrained and constrained
optimization problems. For the unconstrained case, Alaniz
[19] presents a solution by using an equivalent least squares
technique, while for the constrained case, the problem is
reinterpreted so as to obtain the standard form handled by
quadratic programming solvers.

Once the optimal control history is chosen, the first N
time steps of the solution are applied to the plant. The cycle
of forming predicted behaviours and solving for the optimal
control perturbations is then repeated using the most recent
feedback from the plant. The interested reader is referred to
[19] for further detail about this technique.

B. A novel numerical linearization technique using PSO

A novel application of PSO proposed here exploits the
aforementioned numerical linearization technique used in con-
junction with the PSO algorithm, where the convex least
squares or quadratic programming optimization methods are
now replaced by the global best PSO algorithm. The evaluation
function is the cost given by Equation (11), so that PSO
searches for the optimal perturbed control history of Equation
(14), denoted by ∆u(k)∗, in order to obtain the optimal control
history u(k)∗ that minimizes J. For this purpose we require
an m-dimensional PSO, with each particle’s position defined
by K, an m-dimension column vector equal to ∆U(k)∗, which
is a column vector having ∆u(k+ i)∗ as its elements.

C. A novel PSO-based nonlinear MPC strategy

The second novel controller makes use of the PSO search
algorithm for obtaining the optimal control history that min-
imizes directly the cost function J given by Equation (11)
without resorting to numerical linearization as represented by
Equation (14). In this manner we simply use Equation (11) as
the evaluation function to be minimized using global best PSO,
thereby avoiding any linearization technique or mathematical
result for minimization, albeit at an increased computational
complexity. Each particle’s position in the swarm represents
the m-dimension column vector defining the optimal control
history, U(k)∗.

As we shall see, this remarkably straightforward approach
produces the best results for the controllers studied in this

362

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

paper in terms of the performance index obtained. The block
diagram in Figure 2 illustrates the structure of the proposed
predictive control loop. A particle swarm optimizer uses the
reference input and predicted output trajectories to minimize
the quadratic cost function given by Equation (11) and com-
pute the optimal control history that is then applied to the
plant. The proposed controller is further enhanced by actively
correcting the weighting matrix R in an adaptive manner, so
that the chattering effect of the control input observed about
the equilibrium point is reduced.

Physical Plant

Model of
Physical Plant

Cost Function

Particle Swarm Optimizer

PSO-based NMPC controller

Reference Output
Control
Action

Fig. 2. PSO-based nonlinear MPC loop

IV. PERFORMANCE EVALUATION: INVERTED PENDULUM
ON CART

The performance of the proposed controllers is evaluated
by analyzing the results from simulation experiments. The
plant chosen for simulation is an inverted pendulum on a
cart and two types of controllers are generated for the three
methods presented in the previous section; an unconstrained
and constrained version. The latter problem shall only consider
a single constraint that restricts the input as per the inequality
given by Equation (12). Hence, no penalty functions are
required. The pendulum is initially at the stable equilibrium
point and the purpose of each controller is to invert the pendu-
lum. Since the dynamics at the stable and unstable equilibrium
points are very different, this is a good problem to demonstrate
the effectiveness of our nonlinear MPC controllers.

A. Plant Model

The nonlinear model of the plant is derived by applying
Newton’s Laws of Motion to the free body diagrams in Figure
3. The resulting equations of motion are given by equations
(15) and (16). A complete derivation is given in [19].

(a) (b) (c)

Fig. 3. (a) Inverted Pendulum on a Cart; (b) Free body diagram 1 (cart); (c)
Free body diagram 2 (pendulum).

ẍ =
1

M+m
[u−bẋ−mlθ̈cos(θ)+mlθ̇2 sin(θ)] (15)

θ̈ =
3

4ml2 [mgl sin(θ)−mlẍcos(θ)−hθ̇] (16)

M represents the mass of the cart that slides along a surface,
m is the uniformly distributed mass of an ideal pendulum, 2l
is the length of the ideal pendulum, b is the surface friction
damping constant, h is the rotational friction damping coeffi-
cient, u is the force applied to the block, θ is the clockwise
angle between the normal and the pendulum (as shown in
Figure 3(c)), and x is the cart’s horizontal displacement from
its equilibrium position. To allow the model to be numerically
integrated, equations (15) and (16) are expressed in terms of
the state variables x, ẋ, θ, and θ̇. The second-order differential
equations have the form given by Equation (17), where χ is
a vector variable. A vector field g is also created to combine
the states into one state vector. The second-order differential
equations are then discretized using the fourth-order Runge-
Kutta method [19].

χ̈= f (χ̇,χ,u),

x
ẋ
θ

θ̇

= g(χ̇,χ), χ=

[
x
θ

]
(17)

B. Controller Layout

The simulation experiments were run on the Simulink
software package [61]. The layout shown in Figure 4 is the
simulated realization of the control loop given in Figure 2. It
makes use of Matlab S-Functions that implement constrained
or unconstrained versions of the PSO-based NMPC controller.

Fig. 4. Nonlinear MPC Simulink layout

C. Controller Parameters

The MPC controller rate is 1
NTs

, where N is the number of
controls in the control history that are applied to the plant.
N = 1 is used in the controller since this is the typical value
selected in MPC [10]. The computational load of MPC can
be reduced if N is increased, but a disadvantage to having
N > 1 is that some of the controls applied to the plant are
based on old feedback. The fourth-order Runge-Kutta method
is tested using different values for Ts, and it is established that
the response with Ts = 0.1s is almost indistinguishable from
the actual response, thus using this value for the controller.

Since this controller is very computationally intensive, it
is not feasible to have a long prediction length or control
history. A value of l = m = 20 is chosen as a balance between

363

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

performance and computation time. This results in a controller
capable of predicting for 2 seconds.

The two novel PSO-based controllers use the following
PSO parameters, which were derived empirically through
successive simulations:
• Each particle consists of 20 members, corresponding

to the 20 elements that make up the optimal control
perturbation history column vector, ∆U(k)∗, for the PSO-
based numerical linearization method, or the optimal
control history column vector, U(k)∗, for the PSO-based
NMPC controller.

• Swarm size, ns = 30.
• Inertia weight w is set by Equation (8), where w(0) = 0.9

and w(nt) = 0.4.
• Velocity clamping is governed by equations (5) and (6),

with δ = 0.5.
• Search space is limited to real-valued variables between
−300N (xmin, j) and 300N (xmax, j) for the unconstrained
case.

• Acceleration coefficients c1 = 2 and c2 = 2.
• Number of iterations = 30.
Both weighting matrices Q and R given in Equation (11) are

set equal to the values shown in Equation (18), which includes
a vector showing the order of the outputs. The objective of this
controller is to invert the pendulum. Hence the penalty on θ

is increased relative to the other states so that the controller
focuses more on decreasing angular deviations than other state
deviations. Initially, the cart must move back and forth until the
pendulum gains enough momentum to swing up. Increasing
the θ penalty would reduce the time required for the pendulum
to swing up. Through successive simulation trials, a value
of 100 was finally chosen as the penalty on the θ state by
comparing the time required to achieve pendulum inversion.

y =

x
ẋ
θ

θ̇

 , Q =

1 0 0 0
0 1 0 0
0 0 100 0
0 0 0 1

 , R = 1 (18)

Deviations are measured from the reference trajectory that
is set equal to a zero column vector, as given by Equation
(19). In this example, we set each reference state variable to
zero at each time step of the prediction interval. This reference
remains constant for the duration of the simulation.

Ỹ =
[

0 0 · · · 0
]T (19)

D. Simulation Results

The responses of the unconstrained controller, using the
three control schemes described in sections IIIA, IIIB, and
IIIC, are shown in Figure 5 as blue, green and red curves
respectively. The pendulum is initially set at the stable equi-
librium point (180 degrees), hanging straight down. The per-
formance index graph plots the value of the cost function
J for each time step as calculated by the control law using
Equation (11). The cart’s position moves back and forth so that
the pendulum gains momentum. This continues until there is

enough momentum to swing up and invert the pendulum in the
0 degree position. Table I shows typical performance results
obtained in this unconstrained control case. The performance
index values quoted in the table are obtained from Equation
(11) but this time using the actual output trajectory, instead of
the predicted one, and the actual control inputs applied, instead
of the computed control history. The summation is calculated
for a sufficiently large amount of time ensuring that the system
has settled into steady state. Table I therefore reveals the
true performance index for the whole control action in the
unconstrained case, demonstrating the typically superior per-
formance of the proposed PSO-based NMPC controller. The
results show that when PSO is used in conjunction with the
numerical linearization technique, only a minimal advantage
is obtained over the least squares method (an improvement
in J of only 1.46%), as expected for the convex optimization
problem being solved. On the other hand, the second proposed
nonlinear PSO controller gives a significant improvement in
J of 8.04% over the numerical linearization (least squares)
counterpart.

TABLE I
UNCONSTRAINED NMPC: TRUE PERFORMANCE INDEX VALUES

Method Numerical
Linearization
(Least Squares)
[19]

Numerical
Linearization
(PSO)

PSO

True
Performance
Index J (×106)

1.4538 1.4326 1.3369

Figure 6 shows the response plots of the constrained con-
troller when a single constraint, restricting the control input
of the cart to be within −45N and 45N, is made active. In
Figure 6, the final angular deflection is either 0◦ or 360◦.
Note that both these angles correspond to the same inverted
position of the pendulum. For the novel PSO-based NMPC
controller, the cart is noted to move a much smaller distance
to achieve swing-up. In real-world terms, this translates to a
more efficient process, with less work being done by the cart to
achieve swing-up and equilibrium. This is further evidenced by
Table II, which indicates that the novel PSO-based nonlinear
MPC controller has the edge over the numerical linearization
technique that uses quadratic programming, a method known
to have problems in getting stuck at local minima [62]. We
record a 14.78% improvement in J, accompanied by a very
low standard deviation when the experiment is repeated over

TABLE II
CONSTRAINED NONLINEAR MPC: TRUE PERFORMANCE INDEX VALUES

Method Numerical
Linearization
(Quadratic
Programming)
[19]

PSO (mean J) PSO
(standard
deviation)
(×106)

True
Performance
Index J (×106)

2.8534 2.4316 0.02396

364

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0 5 10 15
0

0.5

1

1.5

2 x 104

time (s)

P
er

fo
rm

an
ce

 In
de

x

0 5 10 15
-100

0

100

200

300

time (s)

A
ng

le
 (d

eg
re

es
)

0 5 10 15
-150

-100

-50

0

50

100

time (s)

C
on

tro
l I

np
ut

 (N
)

0 5 10 15
-1.5

-1

-0.5

0

0.5

1

1.5

time (s)

P
os

iti
on

 (m
)

Numerical Linearization (PSO) Numerical Linearization (Least Squares) PSO

Fig. 5. Unconstrained nonlinear MPC: A comparison

0 10 20 30
0

0.5

1

1.5

2 x 104

time (s)

P
er

fo
rm

an
ce

 In
de

x

0 10 20 30
-100

0

100

200

300

400

time (s)

A
ng

le
 (d

eg
re

es
)

0 10 20 30
-50

0

50

time (s)

C
on

tro
l I

np
ut

 (N
)

0 10 20 30
-1

0

1

2

3

time (s)

P
os

iti
on

 (m
)

PSO Numerical Linearization (Quadratic Programming)

Fig. 6. Constrained nonlinear MPC: Restricting control input to within −45N and 45N (10 independent trials)

365

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

10 trials indicating PSO’s repeatable nature despite being a
metaheuristic optimization method. Note that for the con-
strained case, using the numerical linearization technique in
conjunction with PSO is computationally inefficient since
every particle must be checked for its corresponding optimal
control history, doubling the workload of its unconstrained
counterpart, rendering it practically useless to investigate for
this purpose.

The advantage of the novel PSO-based NMPC controller
is even more evident in Figure 7, where the proposed active
correction for the chattering effect of the control input is
implemented for the same constrained NMPC problem by
dynamically changing R appearing in Equation (11). The
control input is being more heavily penalized when the angle
approaches the equilibrium point by increasing R from 1 to
30. In other words, we are telling the system that in the close
neighbourhood of the equilibrium point, minimal control effort
is required, mitigating the effect of metaheuristic stochasticity.
This reduces the true performance index even further, giving
an improvement in J of 16.65% (see Table III), making the
process even more efficient.

TABLE III
TRUE PERFORMANCE INDEX VALUE COMPARISON FOR ACTIVE R

CORRECTION

Method Numerical Linearization
(Quadratic Programming)
[19]

PSO

True Performance In-
dex J (×106)

2.8534 2.3810

The system’s robustness to model uncertainty is best illus-
trated by the simulation results of Figure 8. This is tested by
randomly increasing or decreasing each of the plant model’s
parameters by 5% (all parameters are changed for every trial).
Thus, the constrained NMPC controller is using a severely
inaccurate model for its predictions and we are not actively
controlling the control input weight R (to consider the worst
case). Despite these adverse conditions, the results of Figure
8 show excellent performance and the pendulum swings up
normally except for a larger distance now required. Table IV
shows the corresponding changes implemented in the model
parameters of one particular trial picked up at random in the
simulation results of Figure 8. The corresponding performance
index values are given in Table V, where although both
controllers manage swing-up and equilibrium similarly as for
the results shown in Figure 6, the novel PSO-based NMPC
controller exhibits an improvement in J of 12.07%.

Repeatability is tested by performing several trials with
different constraints, as shown in Table VI. The novel PSO
nonlinear controller shows consistently better performance,
with a mean improvement in J of 8.73%.

E. Scalability and Constraints

The inverted pendulum considered in these simulation ex-
periments is a non-trivial example of a control engineering
problem. It is characterized by nonlinear dynamics of an

TABLE IV
ACTUAL PLANT AND MODEL PARAMETERS (FOR A PARTICULAR TRIAL)

Parameter Units Actual Plant Model
M Kg 14.6 15.33
m Kg 7.3 6.935
2l m 2.4 2.52
b Kg/s 14.6 15.33
h Kgm2/s 0.0136 0.0129

TABLE V
TRUE PERFORMANCE INDEX VALUES OBTAINED FOR THE ROBUSTNESS

TEST

Method Numerical Linearization
(Quadratic Programming)
[19]

PSO

True Performance In-
dex J (×106)

2.7369 2.4065

TABLE VI
SIMULATION RESULTS FOR DIFFERENT CONSTRAINTS (10 INDEPENDENT

TRIALS WITH CONSTANT R)

Constraint Numerical Linearization
(Quadratic Programming)
[19]

PSO

−30N ≤U ≤ 30N 2.7182 2.4026
−35N ≤U ≤ 35N 2.5374 2.3947
−40N ≤U ≤ 40N 2.4590 2.3880
−45N ≤U ≤ 45N 2.8534 2.4316

overall order of four, dynamic interaction between the state
variables, and under-actuation (one control input and two
controlled outputs). Nevertheless, there do exist more complex
plants having higher order and/or more inputs and outputs
which would require a scale up of the proposed PSO-based
controllers to higher dimensions. Current literature indicates
that the PSO’s performance remains robust even when applied
to relatively high dimensions as typically found in control
applications (in the order of tens). Indicative of this is Engel-
brecht’s work [63], which reveals the gbest PSO algorithm’s
superior performance with respect to all other homogeneous
PSO algorithms considered therein. This is investigated for
several benchmark unimodal and multimodal functions, and
the issue of scalability for the gbest PSO algorithm starts
becoming increasingly pronounced only for dimensions of
order hundred or above. Following this empirical analysis,
the heterogeneous PSO algorithm proposed by Engelbrecht
in [64] is shown to be significantly more scalable to higher
dimensions when compared with other algorithms [63], [65].
The foregoing analysis is further confirmed by Piccand et al.
[66], who show how the gbest PSO algorithm employed in
this paper exhibits a unity success rate for all the benchmark
unimodal and multimodal functions considered therein, up to
several tens of dimensions. Increasing the swarm size may
sometimes be necessary to handle higher dimensions, however
such tuning is also problem dependent [66]. In view of this
published evidence, we envisage that for systems governed
by increased state variables and/or inputs and outputs, the
proposed PSO controllers are not expected to perform less

366

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0 10 20 30
0

0.5

1

1.5

2 x 104

time (s)

P
er

fo
rm

an
ce

 In
de

x

0 10 20 30
-100

0

100

200

300

400

time (s)

A
ng

le
 (d

eg
re

es
)

0 10 20 30
-50

0

50

time (s)

C
on

tro
l I

np
ut

 (N
)

0 10 20 30
-1

0

1

2

3

time (s)

P
os

iti
on

 (m
)

PSO Numerical Linearization (Quadratic Programming)

Fig. 7. Actively controlling control input weight R for reduced chattering.

0 10 20 30
0

0.5

1

1.5

2 x 104

time (s)

P
er

fo
rm

an
ce

 In
de

x

0 10 20 30
-100

0

100

200

300

400

time (s)

A
ng

le
 (d

eg
re

es
)

0 10 20 30
-50

0

50

time (s)

C
on

tro
l I

np
ut

 (N
)

0 10 20 30
-2

-1

0

1

2

time (s)

P
os

iti
on

 (m
)

PSO Numerical Linearization (Quadratic Programming)

Fig. 8. Robustness Test: Model’s parameters are significantly different from the actual plant parameters (constrained NMPC problem results shown).

367

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

reliably than the presented example. The process will neces-
sarily be more computationally expensive, however this is an
implementation issue which goes beyond the current scope of
this work.

This paper has only considered the control input constrained
problem for the NMPC case. Implementing PSO-based con-
trollers for both control and output constraints, as given by
equations (12) and (13), would require an elegant constraint
handling approach. As with most applications of PSO, this
could include the use of penalty methods to penalize those
particles that violate constraints [67]–[69]. Other solutions,
as reported by Shi and Krohling [70] and Laskari et al.
[71], convert the constrained problem to an unconstrained
Lagrangian. Also, repair methods, which allow particles to
roam into feasible space, may be implemented by applying
repairing operators to change infeasible particles to represent
feasible solutions. A few examples include the work of Hu
and Eberhart [72] that developed an approach where particles
are not allowed to be attracted by infeasible particles, and that
of El-Gallad et al. [73], which replaced infeasible particles
with their feasible personal best positions. Other works by
Venter and Sobieszczanski-Sobieski [74], [75] proposed a
way of repairing infeasible solutions. Such methods may be
investigated to determine the most efficient way of dealing
with both input and output constraints.

V. CONCLUSION AND FUTURE WORK

This paper has addressed the use of PSO for the design
of model predictive control as applied to nonlinear systems.
Following a detailed description of PSO and MPC theory,
two novel controllers were proposed for the receding horizon
model predictive strategy when applied to nonlinear dynamic
systems. Both controllers exploit the well-known desirable
properties of PSO. One makes use of a numerical linearization
technique where, instead of convex optimization methods, we
employed a PSO strategy. As expected, when simulated on
an inverted pendulum on cart problem, this technique only
yielded a minor improvement in performance over its convex
optimization counterpart. By contrast, the second proposed
controller proved superior to both, approaching up to 16% less
performance cost at best. In addition, we proposed a further
enhancement for this novel scheme by actively controlling
the control input weight R to reduce the chattering effect of
the control signal that is often observed in nonlinear model
predictive control. This framework was also shown to be
extensible to input constrained systems, thereby providing a
foundation to include other advances in control theory as they
become available.

This work may be further extended by an investigation on
the use of PSO to obtain the much needed connection between
the selection of Q and R (the two weighting matrices) and
the performance specifications; possibly through some time-
domain performance criterion. A similar investigation may
be carried out for other control schemes, including linear
quadratic optimal control strategies. Another interesting idea
for future work is to run two optimizers in parallel. One

strategy could employ a random search algorithm [76]–[78]
running in parallel with PSO. Their possible collaboration
could yield the right answer faster, whilst also being more
robust to pathological cases. Furthermore, different variations
of the PSO algorithm could be implemented, comparing their
performance in the process, and also addressing scalability
issues.

Having successfully implemented PSO for an NMPC prob-
lem, one should note that in certain circumstances when the
problem is very well known, gradient-based methods may
solve the NMPC problem more efficiently than PSO, albeit
not as accurately. This calls for a detailed comparison between
a PSO-based implementation and, for instance, one using a
state-of-the-art NMPC solver such as the SQP-based method
in ACADO [79], [80], or ICLOCS in combination with the
interior point solver IPOPT [81]–[83].

All these issues may be investigated in future work for the
purpose of establishing more effective ways of optimizing the
NMPC problem.

REFERENCES

[1] J. Mercieca and S. G. Fabri, “Particle swarm optimization for nonlinear
model predictive control,” in Proceedings of the Fifth International
Conference on Advanced Engineering Computing and Applications in
Science - ADVCOMP 2011, Lisbon, Portugal, November 2011, pp. 88–
93.

[2] B. Anderson and J. Moore, Optimal control: linear quadratic methods.
Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1990.

[3] M. Dahleh and J. Pearson, J., “I-optimal feedback controllers for
mimo discrete-time systems,” IEEE Transactions on Automatic Control,
vol. 32, no. 4, pp. 314–322, Apr 1987.

[4] J. Doyle, K. Glover, P. Khargonekar, and B. Francis, “State-space
solutions to standard H2 and H∞ control problems,” IEEE Transactions
on Automatic Control, vol. 34, no. 8, pp. 831–847, Aug 1989.

[5] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and
E. Mishchenko, The mathematical theory of optimal processes (In-
ternational series of monographs in pure and applied mathematics).
Interscience Publishers, 1962.

[6] R. Bellman, “On the Theory of Dynamic Programming,” in Proceedings
of the National Academy of Sciences, vol. 38, 1952, pp. 716–719.

[7] L. D. Berkovitz and N. G. Medhin, Nonlinear Optimal Control Theory,
ser. Applied Mathematics and Nonlinear Science Series. Chapman &
Hall/CRC, 2012.

[8] C. E. Garcia, D. M. Prett, and M. Morari, “Model predictive control:
theory and practice - a survey,” Automatica, vol. 25, pp. 335–348, May
1989.

[9] J. Richalet, “Industrial applications of model based predictive control,”
Automatica, vol. 29, no. 5, pp. 1251–1274, 1993.

[10] J. Maciejowski, Predictive control: with constraints. Prentice-Hall,
Harlow, UK, 2002.

[11] S. J. Qin and T. A. Badgwell, “A survey of industrial model predictive
control technology,” Control Engineering Practice, vol. 11, no. 7, pp.
733–764, 2003.

[12] C. Cutler and B. Ramaker, “Dynamic matrix control-a computer control
algorithm,” in Proceedings of the Joint Automatic Control Conference,
1980.

[13] J. Richalet, A. Rault, J. Testud, and J. Papon, “Model predictive heuristic
control: Applications to industrial processes,” Automatica, vol. 14, no. 5,
pp. 413–428, 1978.

[14] D. Mayne, J. B. Rawlings, C. Rao, and P. Scokaert, “Constrained model
predictive control: Stability and optimality,” Automatica, vol. 36, no. 6,
pp. 789–814, June 2000.

[15] E. F. Camacho and C. A. Bordons, Model Predictive Control in the
Process Industry. Secaucus, NJ, USA: Springer-Verlag, New York,
1997.

[16] D. W. Clarke, Advances in Model-Based Predictive Control. Oxford
University Press, 1994.

368

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[17] K. R. Muske and J. B. Rawlings, “Model predictive control with linear
models,” AIChE Journal, vol. 39, no. 2, pp. 262–287, 1993.

[18] S. Shin and S. Park, “GA-based predictive control for nonlinear pro-
cesses,” Electronics Letters, vol. 34, no. 20, pp. 1980–1981, Oct 1998.

[19] A. Alaniz, “Model predictive control with application to real-time hard-
ware and a guided parafoil,” Master’s thesis, Department of Aeronautics
and Astronautics, Massachusetts Institute of Technology, Cambridge,
MA, USA, 2004.

[20] X. Blasco, M. Martinez, J. Senent, and J. Sanchis, “Generalized pre-
dictive control using genetic algorithms (GAGPC): an application to
control of a non-linear process with model uncertainty,” in Methodology
and Tools in Knowledge-Based Systems, ser. Lecture Notes in Computer
Science. Springer, 1998, pp. 428–437.

[21] T. Kawabe and T. Tagami, “A real coded genetic algorithm for matrix
inequality design approach of robust PID controller with two degrees
of freedom,” in Proceedings of the 1997 IEEE International Symposium
on Intelligent Control, Jul 1997, pp. 119–124.

[22] R. Krohling, H. Jaschek, and J. Rey, “Designing PI/PID controllers for
a motion control system based on genetic algorithms,” in Proceedings
of the 1997 IEEE International Symposium on Intelligent Control, Jul
1997, pp. 125–130.

[23] P. Angeline, “Using selection to improve particle swarm optimization,”
in Proceedings of the 1998 IEEE International Conference on Evolution-
ary Computation, IEEE World Congress on Computational Intelligence.,
May 1998, pp. 84 –89.

[24] R. Krohling and J. Rey, “Design of optimal disturbance rejection PID
controllers using genetic algorithms,” IEEE Transactions on Evolution-
ary Computation, vol. 5, no. 1, pp. 78–82, Feb 2001.

[25] D. B. Fogel, Evolutionary computation: toward a new philosophy of
machine intelligence. Piscataway, NJ, USA: IEEE Press, 1995.

[26] R. C. Eberhart and Y. Shi, “Comparison between genetic algorithms and
particle swarm optimization,” in Proceedings of the 7th International
Conference on Evolutionary Programming VII, ser. EP ’98. London,
UK: Springer-Verlag, 1998, pp. 611–616.

[27] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceed-
ings of the IEEE International Conference on Neural Networks, vol. 4,
nov/dec 1995, pp. 1942–1948.

[28] Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in
Proceedings on Evolutionary Computation, IEEE World Congress on
Computational Intelligence., May 1998, pp. 69–73.

[29] H. Yoshida, K. Kawata, Y. Fukuyama, S. Takayama, and Y. Nakanishi,
“A particle swarm optimization for reactive power and voltage control
considering voltage security assessment,” IEEE Transactions on Power
Systems, vol. 15, no. 4, pp. 1232–1239, Nov 2000.

[30] D. W. Boeringer and D. H. Werner, “Particle swarm optimization versus
genetic algorithms for phased array synthesis,” IEEE Transactions on
Antennas and Propagation, vol. 52, no. 3, pp. 771–779, March 2004.

[31] R. Hassan, B. Cohanim, O. de Weck, and G. Venter, “A comparison of
particle swarm optimization and the genetic algorithm,” in 46th AIAA,
ASME, ASCE, AHS, ASC Structures, Structural Dynamics and Materials
Conference, Austin, USA, April 18-21 2005.

[32] M. R. AlRashidi and M. E. El-Hawary, “A survey of particle swarm
optimization applications in electric power systems,” Evolutionary Com-
putation, IEEE Transactions on, vol. 13, no. 4, pp. 913 –918, aug. 2009.

[33] R. Eberhart and Y. Shi, “Particle swarm optimization: developments,
applications and resources,” in Proceedings of the 2001 Congress on
Evolutionary Computation, vol. 1, 2001, pp. 81–86.

[34] X. Hu, Y. Shi, and R. Eberhart, “Recent advances in particle swarm,” in
Congress on Evolutionary Computation, CEC2004, vol. 1, June 2004,
pp. 90–97.

[35] Y. del Valle, G. Venayagamoorthy, S. Mohagheghi, J.-C. Hernandez,
and R. Harley, “Particle swarm optimization: Basic concepts, variants
and applications in power systems,” IEEE Transactions on Evolutionary
Computation, vol. 12, no. 2, pp. 171–195, April 2008.

[36] M. Wachowiak, R. Smolikova, Y. Zheng, J. Zurada, and A. Elmaghraby,
“An approach to multimodal biomedical image registration utilizing
particle swarm optimization,” IEEE Transactions on Evolutionary Com-
putation, vol. 8, no. 3, pp. 289–301, June 2004.

[37] L. Messerschmidt and A. Engelbrecht, “Learning to play games using
a PSO-based competitive learning approach,” IEEE Transactions on
Evolutionary Computation, vol. 8, no. 3, pp. 280–288, June 2004.

[38] N. Franken and A. Engelbrecht, “Particle swarm optimization ap-
proaches to coevolve strategies for the iterated prisoner’s dilemma,”

IEEE Transactions on Evolutionary Computation, vol. 9, no. 6, pp. 562–
579, Dec. 2005.

[39] X. Li and A. P. Engelbrecht, “Particle swarm optimization: an introduc-
tion and its recent developments,” in Proceedings of the 2007 GECCO
conference companion on Genetic and evolutionary computation, ser.
GECCO ’07. New York, USA: ACM, 2007, pp. 3391–3414.

[40] C. Coello, G. Pulido, and M. Lechuga, “Handling multiple objectives
with particle swarm optimization,” IEEE Transactions on Evolutionary
Computation, vol. 8, no. 3, pp. 256–279, June 2004.

[41] Z.-L. Gaing, “Particle swarm optimization to solving the economic
dispatch considering the generator constraints,” Power Systems, IEEE
Transactions on, vol. 18, no. 3, pp. 1187 – 1195, aug. 2003.

[42] B. Zhao, C. X. Guo, and Y. J. Cao, “Improved particle swam optimiza-
tion algorithm for OPF problems,” in Power Systems Conference and
Exposition, 2004. IEEE PES, oct. 2004, pp. 233 – 238 vol.1.

[43] C.-M. Huang, C.-J. Huang, and M.-L. Wang, “A particle swarm opti-
mization to identifying the armax model for short-term load forecasting,”
Power Systems, IEEE Transactions on, vol. 20, no. 2, pp. 1126 – 1133,
may 2005.

[44] J.-B. Park, K.-S. Lee, J.-R. Shin, and K. Y. Lee, “A particle swarm
optimization for economic dispatch with nonsmooth cost functions,”
Power Systems, IEEE Transactions on, vol. 20, no. 1, pp. 34 – 42,
feb. 2005.

[45] W. Zhang and Y. Liu, “Reactive power optimization based on PSO in a
practical power system,” in Power Engineering Society General Meeting,
2004. IEEE, june 2004, pp. 239 – 243 Vol.1.

[46] M. Clerc and J. Kennedy, “The particle swarm - explosion, stability,
and convergence in a multidimensional complex space,” Evolutionary
Computation, IEEE Transactions on, vol. 6, no. 1, pp. 58 –73, feb 2002.

[47] G. Coath and S. Halgamuge, “A comparison of constraint-handling
methods for the application of particle swarm optimization to con-
strained nonlinear optimization problems,” in Evolutionary Computation,
2003. CEC ’03. The 2003 Congress on, vol. 4, dec. 2003, pp. 2419 –
2425.

[48] A. I. El-Gallad, M. E. El-Hawary, and A. A. Sallam, “Swarming of
intelligent particles for solving the nonlinear constrained optimization
problem,” International Journal of Engineering Intelligent Systems,
vol. 9, no. 3, pp. 155–163, 2001.

[49] K. Yasuda, A. Ide, and N. Iwasaki, “Stability analysis of particle swarm
optimization,” in Proceedings of The Fifth Metaheuristics International
Conference, 2003, pp. 341–346.

[50] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm
theory,” in Proceedings of the 6th IEEE International Symposium on
Micro Machine and Human Science (MHS ’95), Nagoya, Japan, October
1995, pp. 39–43.

[51] R. C. Eberhart, Y. Shi, and J. Kennedy, Swarm Intelligence, 1st ed.,
ser. The Morgan Kaufmann Series in Evolutionary Computation. San
Francisco, USA: Morgan Kaufmann, 2001.

[52] A. P. Engelbrecht, Computational Intelligence: An Introduction, 2nd ed.
Wiley Publishing, 2007.

[53] R. Eberhart, P. Simpson, and R. Dobbins, Computational intelligence
PC tools. San Diego, CA, USA: Academic Press Professional, Inc.,
1996.

[54] M. Omran, A. Salman, and A. Engelbrecht, “Image classification using
particle swarm optimization,” in Proceedings of the Fourth Asia-Pacific
Conference on Simulated Evolution and Learning, 2002, pp. 370–374.

[55] Y. Shi and R. C. Eberhart, “Parameter selection in particle swarm
optimization,” in Proceedings of the 7th International Conference on
Evolutionary Programming VII, ser. EP ’98. London, UK: Springer-
Verlag, 1998, pp. 591–600.

[56] H. Yoshida, Y. Fukuyama, S. Takayama, and Y. Nakanishi, “A particle
swarm optimization for reactive power and voltage control in electric
power systems considering voltage security assessment,” in Proceedings
of the IEEE International Conference on Systems, Man, and Cybernetics,
vol. 6, 1999, pp. 497–502.

[57] P. Suganthan, “Particle swarm optimiser with neighbourhood operator,”
in Proceedings of the Congress on Evolutionary Computation CEC 99.,
vol. 3, 1999, pp. 3 vol. (xxxvii+2348).

[58] A. Ratnaweera, S. Halgamuge, and H. Watson, “Particle swarm opti-
mization with self-adaptive acceleration coefficients,” in Proceedings of
the First International Conference on Fuzzy Systems and Knowledge
Discovery, 2003, pp. 264–268.

[59] S. Naka, T. Genji, T. Yura, and Y. Fukuyama, “Practical distribution state

369

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

estimation using hybrid particle swarm optimization,” in IEEE Power
Engineering Society Winter Meeting, vol. 2, 2001, pp. 815–820.

[60] J. J. E. Slotine and W. Li, Applied Nonlinear Control. Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1991.

[61] The MathWorks, Inc. (2012, Dec) Simulink - sim-
ulation and model-based design. [Online]. Available:
http://www.mathworks.com/products/simulink/

[62] S. Boyd and L. Vandenberghe, Convex Optimization. New York, USA:
Cambridge University Press, 2004.

[63] A. P. Engelbrecht, “Scalability of a heterogeneous particle swarm
optimizer,” in Swarm Intelligence (SIS), 2011 IEEE Symposium on, april
2011, pp. 1 –8.

[64] A. Engelbrecht, “Heterogeneous particle swarm optimization,” in Swarm
Intelligence, ser. Lecture Notes in Computer Science, vol. 6234.
Springer Berlin Heidelberg, 2010, pp. 191–202.

[65] B. J. Leonard and A. P. Engelbrecht, “Scalability study of particle
swarm optimizers in dynamic environments,” in Swarm Intelligence, ser.
Lecture Notes in Computer Science, M. Dorigo, M. Birattari, C. Blum,
A. L. Christensen, A. P. Engelbrecht, R. Gross, and T. Stützle, Eds., vol.
7461. Springer Berlin Heidelberg, 2012, pp. 121–132.

[66] S. Piccand, M. O’Neill, and J. Walker, “On the scalability of particle
swarm optimisation,” in Evolutionary Computation, 2008. CEC 2008.
(IEEE World Congress on Computational Intelligence). IEEE Congress
on, june 2008, pp. 2505 –2512.

[67] K. E. Parsopoulos and M. N. Vrahatis, “Particle swarm optimization
method for constrained optimization problems,” in Intelligent Technolo-
gies – Theory and Applications: New Trends in Intelligent Technologies.
IOS Press, 2002, pp. 214–220.

[68] V. Tandon, H. El-Mounayri, and H. Kishawy, “NC end milling optimiza-
tion using evolutionary computation,” International Journal of Machine
Tools and Manufacture, vol. 42, no. 5, pp. 595–605, 2002.

[69] F. Zhang and D. Xue, “An optimal concurrent design model using dis-
tributed product development life-cycle databases,” in Sixth International
Conference on Computer Supported Cooperative Work in Design, 2001,
pp. 273–278.

[70] Y. Shi and R. Krohling, “Co-evolutionary particle swarm optimization
to solve min-max problems,” in Proceedings of the 2002 Congress on
Evolutionary Computation, CEC ’02., vol. 2, 2002, pp. 1682–1687.

[71] E. Laskari, K. Parsopoulos, and M. Vrahatis, “Particle swarm opti-
mization for integer programming,” in Proceedings of the Congress on
Evolutionary Computation, CEC ’02., vol. 2, 2002, pp. 1582–1587.

[72] X. Hu and R. Eberhart, “Solving constrained nonlinear optimization
problems with particle swarm optimization,” in Proceedings of the Sixth
World Multiconference on Systemics, Cybernetics and Informatics, 2002.

[73] A. El-Gallad, M. El-Hawary, A. Sallam, and A. Kalas, “Enhancing the
particle swarm optimizer via proper parameters selection,” in Canadian
Conference on Electrical and Computer Engineering, IEEE CCECE,
vol. 2, 2002, pp. 792–797.

[74] G. Venter and J. Sobieszczanski-Sobieski, “Multidisciplinary optimiza-
tion of a transport aircraft wing using particle swarm optimization,”
Structural and Multidisciplinary Optimization, vol. 26, pp. 121–131,
2004.

[75] G. Venter and J. Sobieszczanski-Sobieski, “Particle swarm optimiza-
tion,” Journal for the American Institute of Aeronautics and Astronau-
tics, vol. 41, no. 8, pp. 1583–1589, 2003.

[76] J. C. Spall, “Stochastic optimization,” in Handbook of Computational
Statistics, J. Gentle, W. Härdle, and Y. Mori, Eds. Springer-Verlag,
New York, 2004, ch. II.6, pp. 169–197.

[77] T. G. Kolda, R. M. Lewis, and V. Torczon, “Optimization by direct
search: New perspectives on some classical and modern methods,” SIAM
Review, vol. 45, pp. 385–482, 2003.

[78] D. C. Karnopp, “Random search techniques for optimization problems,”
Automatica, vol. 1, pp. 111–121, 1963.

[79] B. Houska and H. J. Ferreau. (2012, Dec) ACADO toolkit:
Automatic control and dynamic optimization. [Online]. Available:
http://www.mathworks.com/products/simulink/

[80] B. Houska, H. J. Ferreau, and M. Diehl, “ACADO toolkit - an open-
source framework for automatic control and dynamic optimization,”
Optimal Control Applications and Methods, vol. 32, no. 3, pp. 298–
312, 2011.

[81] Paola Falugi, Eric Kerrigan and Eugene van Wyk. (2012, Dec) Imperial
College London, optimal control software (ICLOCS). [Online].
Available: http://www.ee.ic.ac.uk/ICLOCS/

[82] A. Wächter, “An interior point algorithm for large-scale nonlinear op-
timization with applications in process engineering,” Ph.D. dissertation,
Carnegie Mellon University, 2002.

[83] A. Wächter and L. Biegler. (2012, Dec) IPOPT - an interior point
optimizer. [Online]. Available: https://projects.coin-or.org/Ipopt

