7,634 research outputs found

    Retest reliability of individual alpha ERD topography assessed by human electroencephalography

    Get PDF
    Background Despite the immense literature related to diverse human electroencephalographic (EEG) parameters, very few studies have focused on the reliability of these measures. Some of the most studied components (i.e., P3 or MMN) have received more attention regarding the stability of their main parameters, such as latency, amplitude or topography. However, spectral modulations have not been as extensively evaluated considering that different analysis methods are available. The main aim of the present study is to assess the reliability of the latency, amplitude and topography of event-related desynchronization (ERD) for the alpha band (10–14 Hz) observed in a cognitive task (visual oddball). Topography reliability was analysed at different levels (for the group, within-subjects individually and between-subjects individually). Results The latency for alpha ERD showed stable behaviour between two sessions, and the amplitude exhibited an increment (more negative) in the second session. Alpha ERD topography exhibited a high correlation score between sessions at the group level (r = 0.903, p<0.001). The mean value for within-subject correlations was 0.750 (with a range from 0.391 to 0.954). Regarding between-subject topography comparisons, some subjects showed a highly specific topography, whereas other subjects showed topographies that were more similar to those of other subjects. Conclusion ERD was mainly stable between the two sessions with the exception of amplitude, which exhibited an increment in the second session. Topography exhibits excellent reliability at the group level; however, it exhibits highly heterogeneous behaviour at the individual level. Considering that the P3 was previously evaluated for this group of subjects, a direct comparison of the correlation scores was possible, and it showed that the ERD component is less reliable in individual topography than in the ERP component (P3).Ministerio de Economía y Competitividad (España) PSI2016-78133-PAsociación Sanitaria Virgen Macaren

    Human scalp potentials reflect a mixture of decision-related signals during perceptual choices

    Get PDF
    Single-unit animal studies have consistently reported decision-related activity mirroring a process of temporal accumulation of sensory evidence to a fixed internal decision boundary. To date, our understanding of how response patterns seen in single-unit data manifest themselves at the macroscopic level of brain activity obtained from human neuroimaging data remains limited. Here, we use single-trial analysis of human electroencephalography data to show that population responses on the scalp can capture choice-predictive activity that builds up gradually over time with a rate proportional to the amount of sensory evidence, consistent with the properties of a drift-diffusion-like process as characterized by computational modeling. Interestingly, at time of choice, scalp potentials continue to appear parametrically modulated by the amount of sensory evidence rather than converging to a fixed decision boundary as predicted by our model. We show that trial-to-trial fluctuations in these response-locked signals exert independent leverage on behavior compared with the rate of evidence accumulation earlier in the trial. These results suggest that in addition to accumulator signals, population responses on the scalp reflect the influence of other decision-related signals that continue to covary with the amount of evidence at time of choice

    Connecting the Brain to Itself through an Emulation.

    Get PDF
    Pilot clinical trials of human patients implanted with devices that can chronically record and stimulate ensembles of hundreds to thousands of individual neurons offer the possibility of expanding the substrate of cognition. Parallel trains of firing rate activity can be delivered in real-time to an array of intermediate external modules that in turn can trigger parallel trains of stimulation back into the brain. These modules may be built in software, VLSI firmware, or biological tissue as in vitro culture preparations or in vivo ectopic construct organoids. Arrays of modules can be constructed as early stage whole brain emulators, following canonical intra- and inter-regional circuits. By using machine learning algorithms and classic tasks known to activate quasi-orthogonal functional connectivity patterns, bedside testing can rapidly identify ensemble tuning properties and in turn cycle through a sequence of external module architectures to explore which can causatively alter perception and behavior. Whole brain emulation both (1) serves to augment human neural function, compensating for disease and injury as an auxiliary parallel system, and (2) has its independent operation bootstrapped by a human-in-the-loop to identify optimal micro- and macro-architectures, update synaptic weights, and entrain behaviors. In this manner, closed-loop brain-computer interface pilot clinical trials can advance strong artificial intelligence development and forge new therapies to restore independence in children and adults with neurological conditions

    Individual EEG differences in affective valence processing in women with low and high neuroticism

    Get PDF
    Objective: In this study, individual differences in brain electrophysiology during positive and negative affective valence processing in women with different neuroticism scores are quantified. Methods: Twenty-six women scoring high and low on neuroticism participated on this experiment. A support vector machine (SVM)-based classifier was applied on the EEG single trials elicited by high arousal pictures with negative and positive valence scores. Based on the accuracy values obtained from subject identification tasks, the most distinguishing EEG channels among participants were detected, pointing which scalp regions show more distinct patterns. Results: Significant differences were obtained, in the EEG heterogeneity between positive and negative valence stimuli, yielding higher accuracy in subject identification using negative pictures. Regarding the topographical analysis, significantly higher accuracy values were reached in occipital areas and in the right hemisphere (p < 0:001). Conclusions: Mainly, individual differences in EEG can be located in parietooccipital regions. These differences are likely to be due to the different reactivity and coping strategies to unpleasant stimuli in individuals with high neuroticism. In addition, the right hemisphere shows a greater individual specificity. Significance: An SVM-based classifier asserts the individual specificity and its topographical differences in electrophysiological activity for women with high neuroticism compared to low neuroticism

    VIOLA - A multi-purpose and web-based visualization tool for neuronal-network simulation output

    Full text link
    Neuronal network models and corresponding computer simulations are invaluable tools to aid the interpretation of the relationship between neuron properties, connectivity and measured activity in cortical tissue. Spatiotemporal patterns of activity propagating across the cortical surface as observed experimentally can for example be described by neuronal network models with layered geometry and distance-dependent connectivity. The interpretation of the resulting stream of multi-modal and multi-dimensional simulation data calls for integrating interactive visualization steps into existing simulation-analysis workflows. Here, we present a set of interactive visualization concepts called views for the visual analysis of activity data in topological network models, and a corresponding reference implementation VIOLA (VIsualization Of Layer Activity). The software is a lightweight, open-source, web-based and platform-independent application combining and adapting modern interactive visualization paradigms, such as coordinated multiple views, for massively parallel neurophysiological data. For a use-case demonstration we consider spiking activity data of a two-population, layered point-neuron network model subject to a spatially confined excitation originating from an external population. With the multiple coordinated views, an explorative and qualitative assessment of the spatiotemporal features of neuronal activity can be performed upfront of a detailed quantitative data analysis of specific aspects of the data. Furthermore, ongoing efforts including the European Human Brain Project aim at providing online user portals for integrated model development, simulation, analysis and provenance tracking, wherein interactive visual analysis tools are one component. Browser-compatible, web-technology based solutions are therefore required. Within this scope, with VIOLA we provide a first prototype.Comment: 38 pages, 10 figures, 3 table

    How Visual Stimuli Evoked P300 is Transforming the Brain–Computer Interface Landscape: A PRISMA Compliant Systematic Review

    Get PDF
    Non-invasive Visual Stimuli evoked-EEGbased P300 BCIs have gained immense attention in recent years due to their ability to help patients with disability using BCI-controlled assistive devices and applications. In addition to the medical field, P300 BCI has applications in entertainment, robotics, and education. The current article systematically reviews 147 articles that were published between 2006-2021*. Articles that pass the pre-defined criteria are included in the study. Further, classification based on their primary focus, including article orientation, participants’ age groups, tasks given, databases, the EEG devices used in the studies, classification models, and application domain, is performed. The application-based classification considers a vast horizon, including medical assessment, assistance, diagnosis, applications, robotics, entertainment, etc. The analysis highlights an increasing potential for P300 detection using visual stimuli as a prominent and legitimate research area and demonstrates a significant growth in the research interest in the field of BCI spellers utilizing P300. This expansion was largely driven by the spread of wireless EEG devices, advances in computational intelligence methods, machine learning, neural networks and deep learning

    Aerospace Medicine and Biology: A continuing bibliography with indexes (supplement 314)

    Get PDF
    This bibliography lists 139 reports, articles, and other documents introduced into the NASA scientific and technical information system in August, 1988
    • …
    corecore