128 research outputs found

    Uncertainty Detection as Approximate Max-Margin Sequence Labelling

    Get PDF
    This paper reports experiments for the CoNLL 2010 shared task on learning to detect hedges and their scope in natural language text. We have addressed the experimental tasks as supervised linear maximum margin prediction problems. For sentence level hedge detection in the biological domain we use an L1-regularised binary support vector machine, while for sentence level weasel detection in the Wikipedia domain, we use an L2-regularised approach. We model the in-sentence uncertainty cue and scope detection task as an L2-regularised approximate maximum margin sequence labelling problem, using the BIO-encoding. In addition to surface level features, we use a variety of linguistic features based on a functional dependency analysis. A greedy forward selection strategy is used in exploring the large set of potential features. Our official results for Task 1 for the biological domain are 85.2 F1-score, for the Wikipedia set 55.4 F1-score. For Task 2, our official results are 2.1 for the entire task with a score of 62.5 for cue detection. After resolving errors and final bugs, our final results are for Task 1, biological: 86.0, Wikipedia: 58.2; Task 2, scopes: 39.6 and cues: 78.5

    Recognizing speculative language in biomedical research articles: a linguistically motivated perspective

    Get PDF
    We explore a linguistically motivated approach to the problem of recognizing speculative language (“hedging”) in biomedical research articles. We describe a method, which draws on prior linguistic work as well as existing lexical resources and extends them by introducing syntactic patterns and a simple weighting scheme to estimate the speculation level of the sentences. We show that speculative language can be recognized successfully with such an approach, discuss some shortcomings of the method and point out future research possibilities.

    Recognizing speculative language in research texts

    Get PDF
    This thesis studies the use of sequential supervised learning methods on two tasks related to the detection of hedging in scientific articles: those of hedge cue identification and hedge cue scope detection. Both tasks are addressed using a learning methodology that proposes the use of an iterative, error-based approach to improve classification performance, suggesting the incorporation of expert knowledge into the learning process through the use of knowledge rules. Results are promising: for the first task, we improved baseline results by 2.5 points in terms of F-score by incorporating cue cooccurence information, while for scope detection, the incorporation of syntax information and rules for syntax scope pruning allowed us to improve classification performance from an F-score of 0.712 to a final number of 0.835. Compared with state-of-the-art methods, the results are very competitive, suggesting that the approach to improving classifiers based only on the errors commited on a held out corpus could be successfully used in other, similar tasks. Additionaly, this thesis presents a class schema for representing sentence analysis in a unique structure, including the results of different linguistic analysis. This allows us to better manage the iterative process of classifier improvement, where different attribute sets for learning are used in each iteration. We also propose to store attributes in a relational model, instead of the traditional text-based structures, to facilitate learning data analysis and manipulation

    Combining manual rules and supervised learning for hedge cue and scope detection

    Get PDF
    Hedge cues were detected using a supervised Conditional Random Field (CRF) classifier exploiting features from the RASP parser. The CRF’s predictions were filtered using known cues and unseen instances were removed, increasing precision while retaining recall. Rules for scope detection, based on the grammatical relations of the sentence and the part-of-speech tag of the cue, were manually developed. However, another supervised CRF classifier was used to refine these predictions. As a final step, scopes were constructed from the classifier output using a small set of post-processing rules. Development of the system revealed a number of issues with the annotation scheme adopted by the organisers

    The impact of pretrained language models on negation and speculation detection in cross-lingual medical text: Comparative study

    Get PDF
    Background: Negation and speculation are critical elements in natural language processing (NLP)-related tasks, such as information extraction, as these phenomena change the truth value of a proposition. In the clinical narrative that is informal, these linguistic facts are used extensively with the objective of indicating hypotheses, impressions, or negative findings. Previous state-of-the-art approaches addressed negation and speculation detection tasks using rule-based methods, but in the last few years, models based on machine learning and deep learning exploiting morphological, syntactic, and semantic features represented as spare and dense vectors have emerged. However, although such methods of named entity recognition (NER) employ a broad set of features, they are limited to existing pretrained models for a specific domain or language. Objective: As a fundamental subsystem of any information extraction pipeline, a system for cross-lingual and domain-independent negation and speculation detection was introduced with special focus on the biomedical scientific literature and clinical narrative. In this work, detection of negation and speculation was considered as a sequence-labeling task where cues and the scopes of both phenomena are recognized as a sequence of nested labels recognized in a single step. Methods: We proposed the following two approaches for negation and speculation detection: (1) bidirectional long short-term memory (Bi-LSTM) and conditional random field using character, word, and sense embeddings to deal with the extraction of semantic, syntactic, and contextual patterns and (2) bidirectional encoder representations for transformers (BERT) with fine tuning for NER. Results: The approach was evaluated for English and Spanish languages on biomedical and review text, particularly with the BioScope corpus, IULA corpus, and SFU Spanish Review corpus, with F-measures of 86.6%, 85.0%, and 88.1%, respectively, for NeuroNER and 86.4%, 80.8%, and 91.7%, respectively, for BERT. Conclusions: These results show that these architectures perform considerably better than the previous rule-based and conventional machine learning-based systems. Moreover, our analysis results show that pretrained word embedding and particularly contextualized embedding for biomedical corpora help to understand complexities inherent to biomedical text.This work was supported by the Research Program of the Ministry of Economy and Competitiveness, Government of Spain (DeepEMR Project TIN2017-87548-C2-1-R)

    Deep learning methods for knowledge base population

    Get PDF
    Knowledge bases store structured information about entities or concepts of the world and can be used in various applications, such as information retrieval or question answering. A major drawback of existing knowledge bases is their incompleteness. In this thesis, we explore deep learning methods for automatically populating them from text, addressing the following tasks: slot filling, uncertainty detection and type-aware relation extraction. Slot filling aims at extracting information about entities from a large text corpus. The Text Analysis Conference yearly provides new evaluation data in the context of an international shared task. We develop a modular system to address this challenge. It was one of the top-ranked systems in the shared task evaluations in 2015. For its slot filler classification module, we propose contextCNN, a convolutional neural network based on context splitting. It improves the performance of the slot filling system by 5.0% micro and 2.9% macro F1. To train our binary and multiclass classification models, we create a dataset using distant supervision and reduce the number of noisy labels with a self-training strategy. For model optimization and evaluation, we automatically extract a labeled benchmark for slot filler classification from the manual shared task assessments from 2012-2014. We show that results on this benchmark are correlated with slot filling pipeline results with a Pearson's correlation coefficient of 0.89 (0.82) on data from 2013 (2014). The combination of patterns, support vector machines and contextCNN achieves the best results on the benchmark with a micro (macro) F1 of 51% (53%) on test. Finally, we analyze the results of the slot filling pipeline and the impact of its components. For knowledge base population, it is essential to assess the factuality of the statements extracted from text. From the sentence "Obama was rumored to be born in Kenya", a system should not conclude that Kenya is the place of birth of Obama. Therefore, we address uncertainty detection in the second part of this thesis. We investigate attention-based models and make a first attempt to systematize the attention design space. Moreover, we propose novel attention variants: External attention, which incorporates an external knowledge source, k-max average attention, which only considers the vectors with the k maximum attention weights, and sequence-preserving attention, which allows to maintain order information. Our convolutional neural network with external k-max average attention sets the new state of the art on a Wikipedia benchmark dataset with an F1 score of 68%. To the best of our knowledge, we are the first to integrate an uncertainty detection component into a slot filling pipeline. It improves precision by 1.4% and micro F1 by 0.4%. In the last part of the thesis, we investigate type-aware relation extraction with neural networks. We compare different models for joint entity and relation classification: pipeline models, jointly trained models and globally normalized models based on structured prediction. First, we show that using entity class prediction scores instead of binary decisions helps relation classification. Second, joint training clearly outperforms pipeline models on a large-scale distantly supervised dataset with fine-grained entity classes. It improves the area under the precision-recall curve from 0.53 to 0.66. Third, we propose a model with a structured prediction output layer, which globally normalizes the score of a triple consisting of the classes of two entities and the relation between them. It improves relation extraction results by 4.4% F1 on a manually labeled benchmark dataset. Our analysis shows that the model learns correct correlations between entity and relation classes. Finally, we are the first to use neural networks for joint entity and relation classification in a slot filling pipeline. The jointly trained model achieves the best micro F1 score with a score of 22% while the neural structured prediction model performs best in terms of macro F1 with a score of 25%
    • …
    corecore