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Abstract
Background: Negation and speculation are critical elements in natural language processing (NLP)-related tasks, such as
information extraction, as these phenomena change the truth value of a proposition. In the clinical narrative that is informal, these
linguistic facts are used extensively with the objective of indicating hypotheses, impressions, or negative findings. Previous
state-of-the-art approaches addressed negation and speculation detection tasks using rule-based methods, but in the last few years,
models based on machine learning and deep learning exploiting morphological, syntactic, and semantic features represented as
spare and dense vectors have emerged. However, although such methods of named entity recognition (NER) employ a broad set
of features, they are limited to existing pretrained models for a specific domain or language.
Objective: As a fundamental subsystem of any information extraction pipeline, a system for cross-lingual and domain-independent
negation and speculation detection was introduced with special focus on the biomedical scientific literature and clinical narrative.
In this work, detection of negation and speculation was considered as a sequence-labeling task where cues and the scopes of both
phenomena are recognized as a sequence of nested labels recognized in a single step.
Methods: We proposed the following two approaches for negation and speculation detection: (1) bidirectional long short-term
memory (Bi-LSTM) and conditional random field using character, word, and sense embeddings to deal with the extraction of
semantic, syntactic, and contextual patterns and (2) bidirectional encoder representations for transformers (BERT) with fine
tuning for NER.
Results: The approach was evaluated for English and Spanish languages on biomedical and review text, particularly with the
BioScope corpus, IULA corpus, and SFU Spanish Review corpus, with F-measures of 86.6%, 85.0%, and 88.1%, respectively,
for NeuroNER and 86.4%, 80.8%, and 91.7%, respectively, for BERT.
Conclusions: These results show that these architectures perform considerably better than the previous rule-based and conventional
machine learning–based systems. Moreover, our analysis results show that pretrained word embedding and particularly
contextualized embedding for biomedical corpora help to understand complexities inherent to biomedical text.
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Introduction
A part of clinical data is often described in unstructured free
text, such as that recorded in electronic health records (EHRs),
medical records, and clinical narrative, which is not analyzed.
Besides, scientific literature databases collect valuable
publications necessary to extract biomedical data, such as drug
or protein interactions, adverse drug effects, disabilities,
diseases, treatments, detection of cancer symptoms, and suicide
prevention. Biomedical experts and clinicians need to access
information and knowledge in their different research areas,
convert research results into clinical practice, accelerate
biomedical research, provide clinical decision support, and
generate data and information in a structured way for
downstream processing and applications, such as those specified
previously [1]. However, identifying all the data in unstructured
documents and translating these data to structured data can be
a complex and time-consuming task. It is impossible for experts
to process all the documents without tools that filter, classify,
and extract information. That is why new techniques are
necessary for the extraction of useful knowledge in a precise
and efficient way.

One of the main tools currently used for text mining is natural
language processing (NLP) and specifically an information
extraction system. Information extraction is devoted to
processing text and detecting relevant information about specific
subjects (for instance, a disease of a patient in a clinical note or
a carcinoma in a radiologic report). In information extraction,
we can identify low-level tasks and high-level tasks (Figure 1).
Low-level tasks are more feasible and affordable processing
tasks, such as sentence segmentation, tokenization, and word
decomposition. High-level tasks are more complex tasks because
they require semantic and contextual knowledge that is provided
by domain-specific resources, such as ontologies, and they
involve disambiguating terms (such as abbreviations that are
highly ambiguous terms) and making inferences with the
extracted knowledge. These high-level tasks are named entity
recognition (NER), relation extraction, and negation and
speculation detection, among others (Tables 1 and 2). For
example, extracting a patient’s current diagnostic information
involves NER, disambiguation, negation and speculation
detection, relation extraction, and temporal inference. Figure 2
provides an example of an annotation generated by a medical
information extraction system [2].

Figure 1. Typical information extraction pipeline. NLP: natural language processing; PoS: part of speech.
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Table 1. Natural language processing low-level tasks.

ChallengeObjectiveTask

High use of abbreviations and titles such as “mg” and “Dr” makes
this task difficult.

Detection limit of a sentence.Sentence segmentation

Terms combining different types of alphanumeric characters and
other signs, such as hyphens, slash, and separators (“10 mg/day”
and “N-acetylcysteine”).

Detection of words and punctuation marks.Tokenization

Use of homographs and gerunds.Assigns a PoS tag to a term.Part-of-speech (PoS) tagging

Many medical terms, such as “nasogastric,” need decomposition
to understand the meaning of the term.

Word stemming by removing suffixes. Very
important for concept normalization.

Decomposition/lemmatization

Inherent complexities from the language (for instance, prepositional
attachment).

Identification of the phrases of a sentence.Shallow parsing

In a clinical report, identify sections, such as patient’s history, di-
agnosis, treatment, etc.

Division of the text into relevant parts, such
as paragraphs, sections, and others.

Text segmentation

Table 2. Natural language processing high-level tasks.

ChallengeObjectiveTask

Multitoken concepts (“acute rhinovirus bronchitis”) and short
concepts (“mg”).

Identification and classification of concepts
of interest, such as diseases, drugs, and
genes.

Named entity recognition

A considerable number of abbreviations with several senses, such
as Pt (patient/physiotherapy) and LFT (liver function test/lung
function test).

Identification of the correct sense of a term
given a specific context.

Disambiguation

They are commonly marked in the clinical narrative by words such
as “not” and “without.”

Inferring whether a named entity is present
or absent.

Negation and speculation detection

Relation between a particular disease and a specific symptom or
drug-drug interaction. For example, pharmacodynamic interaction
between aspirin and ibuprofen (antagonistic interaction).

Identification of relationships between
concepts.

Relation extraction

The most complex task in information extraction. For example,
“asbestos exposure and smoking until a particular genetic mutation
occurs causes lung cancer in 1-3 years with a probability of 0.2.”

Given temporal expressions or temporal
relationships, inferences are made about
probable events in another temporal space.

Temporal inferences

Figure 2. Information extraction pipeline annotation result [2].

Consequently, information extraction tools must address many
inherent natural language challenges, such as ambiguity, spelling
variations, abbreviations, speculation, and negation. In this
work, we address the negation and speculation problems.
Negation and speculation expressions are extensively used both
in spoken and written communications. Negation converts a
proposition represented by a linguistic unit (sentence, phrase,
or word) into its opposite, for instance, the existence or absence
of medical conditions in a clinical narrative. It is marked by
words (such as “not” and “without”), suffixes (such as “less”),
or prefixes (such as “a”). Around 10% of the sentences in
MEDLINE abstracts include negation phenomena [3]. The

BioScope corpus contains more than 20,000 sentences, among
which almost 2000 (11.4%) are negated or uncertain sentences
[4]. In the general domain, the SFU ReviewSP-NEG corpus is
composed of approximately 9455 sentences, among which
nearly a third are negated or uncertain sentences [5]. Different
works have shown the importance of dealing with negations,
for instance, during the analysis of EHRs [1] or in information
retrieval tasks on rare disease patient records related to Crohn
disease, lupus, and NPHP1 from a clinical data warehouse [6].
In relation to speculation (or modality), both are referred to as
expressing facts that are not known with certainty (such as
hypotheses and conjectures). There are different types of
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expressions that have speculation meanings as follows: modal
auxiliaries (must/should/might/may/could be), judgment verbs
(suggest), evidential verbs (appear), deductive verbs (conclude),
adjectives (likely), adverbs (perhaps), nouns (there is a
possibility), conditional words, etc.

These phenomena have a scope, that is, affect a part of the text
denoted by the presence of negation or speculation cues. Cues
usually occur in the context of some assumption, which works
to deny or counteract that assumption. These cues can be single
words, simple phrases, or complex verb phrases, which may
precede or succeed the words that are within their scope [7].
According to grammar, the scope of the negation or speculation
corresponds to the totality of words affected by it. In NLP,
negation or speculation cues act as operators that can change
the meaning of the words in their scope. Thus, they establish
what is a fact and what is not, owing to the ability to affect the
truth value of a phrase or sentence [8]. However, negation
detection is a complex task owing to the multiple forms in which
it can appear as follows: (1) syntactic (ie, negation in sentences,
clauses, and phrases that include words expressing negation,
such as no/not, never/ever, and nothing), (2) lexical negation
(eg, “lack of”), and (3) morphological negation (eg, illegal and
impossible) [5].

Negation processing can be divided into two phases. First,
keywords/cues indicating negation or speculation are detected,
and second, definition of the linguistic scope of these cues is
made at the sentence level. In English, negation and speculation
detection is a well-studied phenomenon. However, in other
languages, such as Spanish, it is an underaddressed and even
more complicated task owing to the limited number of annotated
corpora and the inherent complexities of the language, such as
double negation (eg, the hospital will not allow no more
visitors). NegEx [9], one of the most popular rule-based
algorithms for negation detection in English, is a simple regular
expression-based algorithm that uses negation cue words without
considering the semantics of a sentence. Some recent works
also exploit this algorithm for negation detection in other
languages, such as French, German, and Swedish [10], Swedish
[11], and Spanish [12]. Machine learning methods have been
applied to cope with the negation detection task, using mainly
a conditional random field (CRF) algorithm with dense vector
features, such as character or word embedding [13,14]. More
recently, deep learning approaches using recurrent neural
networks (RNNs), convolutional neuronal networks (CNNs),
and encoder-decoder models have also been exploited to solve
this task [15-17].

In this work, we addressed the negation and speculation
detection tasks as named entity recognition (NER) tasks that
solve the identification of cues and scope of this phenomena in
a single step. We present two deep learning approaches. First,
we implemented two bidirectional long short-term memory
(Bi-LSTM) layers with a CRF layer based on the NeuroNER
model proposed previously [18]. Specifically, we extended
NeuroNER by adding context information to the character and
word-level information, such as part-of-speech (PoS) tags and
information about overlapping or nested entities. Moreover, in
this work, we used several pretrained word-embedding models
as follows: (1) word2vec model (Spanish Billion Word

Embeddings [19]), which was trained on the 2014 dump of
Wikipedia, (2) pretrained word2vec model of word embedding
trained with PubMed and PubMed Central articles [20], and (3)
sense-disambiguation embedding model [21], where different
word senses are represented with different sense vectors. To
the best of our knowledge, no previous work has exploited a
sense embedding model for the negation detection task. Finally,
we implemented the bidirectional encoder representations for
transformers (BERT) model with fine tuning using a BERT
multilingual pretrained model.

Since the health care system has started adopting cutting-edge
technologies, there is a vast amount of data collected mainly in
unstructured formats, such as clinical narratives, electronic
reports, and EHRs. Therefore, there is a high amount of
unstructured data. All of these data involve relevant challenges
for information extraction and utilization in the health care
domain through various applications of NLP in health care,
such as clinical trial matching [22], automated registry reporting,
clinical decision support [23], and predicting health care
utilization [24]. However, all these applications must deal with
inherent NLP challenges, with negation and speculation
detection being highly crucial owing to the abuse of negation
and speculation particles in the clinical narrative and clinical
records.

Work in negation detection has focused on the following two
subtasks: (1) cue detection to identify negation terms and (2)
scope resolution to determine the coverage of a cue in a phrase
or sentence. However, in previous research, negation detection
has focused on the straight detection of negated entities [17].
Early negation detection work has relied on rule-based
approaches. Rule-based approaches have been shown to be
effective in NLP challenges. They use hand-crafted rules based
on grammatical patterns and keyword matching. Some
token-based systems are NegEx [25], NegFinder [26],
NegHunter [27], and NegExpander [28]. DepNeg [29] uses
syntactic parsing. Among rule-based approaches, the most used
negation detection tool in English is NegEx [13], which employs
an exact match to a list of medical entities and negation triggers
(eg, “NO history of exposure” and “DENIES any nausea”).
NegEx was adapted to address negation detection for other
languages, such as Swedish [11], French [30], German [12],
and Spanish [31]. Light et al [3] used a hand-crafted list of
negation cues to identify speculation sentences in MEDLINE
abstracts. Likewise, several biomedical NLP studies have used
rules to identify the speculation of extracted information [32-35].
An analysis of a set of Spanish clinical notes from a hospital
[36] reported some statistics of several groups of patterns
considering the groups defined in the NegEx algorithm [25] as
follows: morphologically negates, adverbs, prenegative phrases,
postnegative phrases, and pseudonegative phrases. These
patterns were applied to the data set, and only the more frequent
patterns were inspected (about 100 contexts per pattern). Figure
3 shows the frequencies of the set of negation patterns in the
studied corpus, where negation patterns using adverbs (“no,”
“ni,” and “sin”) are the more productive patterns, followed by
adverbs together with evidential and perception verbs (eg, “no
se evidencia” + symptom). There are other negation words, such
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as “nadie” (nobody) and “negative” (negative), which do not appear in the data set.

Figure 3. Statistics of the set of negation patterns [30].

Approaches to speculation and negation detection that exploit
semisupervised or supervised machine learning models require
manually labeled corpora. Medlock [37] used spare word
representation features as inputs to classify sentences from
biological articles (included in the molecular biology database
FlyBase) as certain or uncertain based on semiautomatically
collected training examples. Vincze et al [4] extended this
approach [37] incorporating n-gram features and a
semisupervised selection of keyword features. Morante and
Daelemans [38] created a negation cue and scope detection
system in biomedical text. This system identifies negation cues
using the compressed decision tree (IGTREE) algorithm. It uses
a meta-learner based on memory-based learning, a support
vector machine, and conditional random fields (CRFs) for
determining the scope of the negation. The system was evaluated
on the BioScope data set [4], with an F-measure of 98.74% for
cue detection and 89.15% for scope determination. Cruz et al
[39] focused on negation cue detection in the BioScope corpus
using the C4.5 and naive bayes algorithms, with the top
F-measure of 86.8% for biomedical articles. Other studies have
incorporated POS tag information [40] or different classifiers
[41] that followed the two-step approach. Zou et al [42]
proposed a tree kernel–based method for scope identification,
based on structured syntactic parse features. The system was
evaluated on the BioScope corpus, achieving a valuable
improvement compared with the state-of-the-art approach, with
an F-measure of 92.8% for negation detection.

In previous years, negation and speculation detection was being
addressed as a sequence-labeling task. One of the most used
algorithms for negation detection is CRF. White et al [43]
proposed a CRF-based model with a set of lexical, structural,
and syntactic features for scope detection. Kang et al [14]
incorporated character-level and word-level dense
representations (embeddings) in a CRF algorithm. The best

F-measure was 99% for cue detection and 94% for scope
detection in Chinese text, and it was concluded that embedding
features can help to achieve better performance. Santiso et al
[13] proposed a similar system using spare and dense word
feature representations and a CRF algorithm to detect only
negated entities in Spanish clinical text. The system obtained
F-measures of 45.8% and 81.2% for the IxaMed-GS corpus [44]
and the IULA corpus [45], respectively.

However, more recently, deep learning approaches are getting
more attention, specifically RNNs and CNNs. Lazib et al [46]
proposed a hybrid RNN and CNN system with a feature set of
word embedding and a syntactic path (the shortest syntactic
path from the candidate token to the cue in both constituency
and dependency parse trees) to treat this task, and it proved to
be very powerful in capturing the potential relationship between
the token and the cue. Later, Lazib et al [47] proposed various
RNN models to automatically find the part of the sentence
affected by a negation cue. They used an automatically extracted
word embedding representation of the terms as the only feature.
Their Bi-LSTM model achieved an F-measure of 89.38% for
the SFU review corpus [48], outperforming all previous
hand-encoded feature-based approaches.

Similarly, Fancellu et al [49] used a Bi-LSTM model to solve
the task of negation scope detection, and it outperformed the
best result of Sem shared task 2012 [50]. Some approaches were
proposed to rely on syntactic parse information to automatically
extract the most relevant features [51]. Qian et al [15] designed
a CNN-based model with probabilistic weighted average pooling
to address speculation and negation scope detection. Evaluation
of the BioScope corpus showed that their approach achieved
substantial improvement. Finally, Bathia et al [17] proposed an
end-to-end neural model to jointly extract entities and negations
based on the hierarchical encoder-decoder NER model. The
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system was evaluated on the 2010 i2b2/VA challenge data set,
obtaining an F-score of 90.5% for negation detection.

Motivated by the recent success of machine learning and deep
learning approaches in solving various NLP issues, in this paper,
we proposed the following two methods: (1) a machine and
deep learning model combining two Bi-LSTM networks and a
last CRF network, and (2) a BERT model with fine tuning to
solve negation and speculation detection issues in multidomain
text in both English and Spanish. Negation processing in the
Spanish clinical narrative has been little addressed in previous
years. Moreover, to the best of our knowledge, sense or context
embedding has not been exploited for the negation detection
task.

Methods
Overview
We addressed the task of negation and speculation detection as
a sequence-labeling task, where we classified each token in a
sentence as being part of the negation or speculation cue or

negation scope. We have presented the data sets used for
training, validating, and evaluating our systems. We have
presented a deep network with a preprocessing step, a learning
transfer phase, two recurrent neural network layers, and the last
layer with a CRF classifier. Moreover, to compare our system
performance, we used a baseline model based on a multilayer
bidirectional transformer encoder.

NER Architecture
We have address the NER task as a sequence-labeling task. In
order to train our model, first, text must be preprocessed to
create the input for the deep network. Sentences were split and
tokenized using Spacy [52], an open-source library for advanced
NLP with support for 26 languages. The output from the
previous process was formatted to BRAT format [53]. BRAT
is a standoff format where each line represents an annotation
(such as entity, relation, and event). We used the information
from the BRAT format (example in Figure 4) to annotate each
token in a sentence using BMEWO-V extended tag encoding
(entity tags used in Table 3), which allowed us to capture
information about the sequence of tokens in the sentence.

Figure 4. Examples of annotations in BRAT format over a sentence extracted from the IULA Spanish Clinical Record corpus (translation to English:
soft, depressible abdomen, no masses or megalias, not painful).

Table 3. Entity tags for BMEWO-V tag encoding in the IULA Spanish Clinical Record corpus.

TagsEntity

B/M/E/W/V-NegMarkerNegMarkera

B/M/E/W/V-NegPolItemNegPolItemb

B/M/E/W/V-NegPredMarkerNegPredMarkerc

B/M/E/W/V-PROCPROCd

B/M/E/W/V-DISODISOe

B/M/E/W/V-PHRASEPHRASEf

B/M/E/W/V-BODYBODYg

B/M/E/W/V-SUBSSUBSh

OOthers

aNegMarker: no, tampoco, sin [4].
bNegPolItem: ni, ninguno, ... [4].
cNegPredMarker: negative verbs, nouns, and adjectives [4].
dPROC: procedure.
eDISO: clinical finding.
fPHRASE: nonmedical text spans.
gBODY: body structure.
hSUBS: substance pharmacological/biological product.
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In BMEWO-V encoding, the B tag indicates the start of an
entity, the M tag represents the continuity of an entity, the E
tag indicates the end of an entity, the W tag indicates a single
entity, and the O tag represents other tokens that do not belong
to any entity. The V tag allows representation of overlapping

entities. BMEWO-V is similar to other previous encodings [54];
however, it also allows the representation of discontinuous
entities and overlapping or nested entities. As a result, we
obtained the sentences annotated in CoNLL-2003 format (Table
4).

Table 4. Tokens annotated in the ConLL-2003 format.

TagTagEnd offsetStart offsetFileToken

OOa70negation_iac_3_corrAbdomen

OO148negation_iac_3_corrblando

OO1514negation_iac_3_corr,

OO2616negation_iac_3_corrdepresible

OO2726negation_iac_3_corr,

W-NegMarkerW-NegMarkerb3028negation_iac_3_corrno

W-DISOdV-Phrasec3631negation_iac_3_corrmasas

W-NegPolIteneV-Phrase3937negation_iac_3_corrni

W-DISOV-Phrase4840negation_iac_3_corrmegalias

OO4948negation_iac_3_corr,

W-NegMarkerW-NegMarker5250negation_iac_3_corrno

W-DISOW-DISO6153negation_iac_3_corrdoloroso

OO6261negation_iac_3_corr.

aO: other (no entity annotation).
bNegMarker: no, tampoco, sin [4].
cPhrase: nonmedical text spans.
dDISO: clinical finding.
eNegPolItem: ni, ninguno, ... [4].

Unlike other detection approaches that detect negation or
speculation cues in the first stage and recognize the scope of
both of them in the second stage (two-stage system), we
proposed a one-stage approach (threaten cue entities within
scope entities as nested entities, recognizing both entities [cues
and scopes] in a single stage).

Bi-LSTM CRF Model: NeuroNER Extended
Our proposal involves the adaption of a state-of-the-art NER
model named NeuroNER [18] based on deep learning to identify

entities as negation and speculation. The architecture of our
model consists of an initial Bi-LSTM layer for character
embedding. In the second layer, we concatenate the output of
the first layer with word embedding and sense-disambiguate
embedding for the second Bi-LSTM layer. Finally, the last layer
uses a CRF to obtain the most suitable labels for each token.
An overview of the system architecture can be seen in Figure
5.
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Figure 5. The architecture of the hybrid Bi-LSTM CRF model for negation and speculation recognition. Bi-LSTM: bidirectional long short-term
memory; CRF: conditional random field.

To facilitate training of our model, we first performed a learning
transfer step. Learning transfer aims to perform a task on a data
set using knowledge learned from a previous data set [55]. As
is shown in many studies, speech recognition [56], sentence
classification [57], and NER [58] learning transfer improves
generalization of the model, reduces training time on the target
data set, and reduces the amount of labeled data needed to obtain
high performance. We propose learning transfer as input for
our model using the following two different pretrained
embedding models: (1) word embedding and (2)
sense-disambiguation embedding. Word embedding is an
approach to represent words as vectors of real numbers, which
has gained much popularity among the NLP community because
it is able to capture syntactic and semantic information among
words.

Although word embedding models are able to capture syntactic
and semantic information, other linguistic information, such as
morphological information, orthographic transcription, and POS
tags, are not exploited in these models. According to a previous
report [59], the use of character embedding improves learning

for specific domains and is useful for morphologically rich
languages (as is the case of the Spanish language). For this
reason, we decided to consider the character embedding
representation in our system to obtain morphological and
orthographic information from words. We used a 25-feature
vector to represent each character. In this way, tokens in
sentences are represented by their corresponding character
embeddings, which are the inputs for our Bi-LSTM network.

We used the Spanish Billion Words model [19], which is a
pretrained model of word embedding trained on different text
corpora written in Spanish (such as Ancora Corpus [60] and
Wikipedia). Furthermore, we used a pretrained word embedding
model induced from PubMed and PubMed Central texts and
their combination using the word2vec tool [20]. PubMed text
considers abstracts of scientific articles as of the end of
September 2013, with a total of 22 million records. PubMed
Central text considers full-text articles as of the end of
September 2013 and constitutes a total of 600,000 articles. These
resources were derived from the combination of abstracts from
PubMed and full-text documents from the PubMed Central
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Open Access subset written in English. We also experimented
with Google word2vec embedding [61] trained on 100 billion
words from Google News [62].

We also integrated the sense2vec [21] model, which provides
multiple embeddings for each word based on the sense of the
word. This model is able to analyze the context of a word and

then assign a more adequate vector for the meaning of the word.
In particular, we used the Reddit Vector, a pretrained model of
sense-disambiguation representation vectors introduced
previously [21]. This model was trained on a collection of
comments published on Reddit (corresponding to the year 2015).
The details of pretrained embedding models are shown in Table
5.

Table 5. Details of the pretrained embedding models.

RedditPubMed and PubMed CentralGoogle NewsSpanish Billion WordsDetail

MultilingualEnglishEnglishSpanishLanguage

2 billion6 trillion100 billion1.5 billionCorpus size

1 million2 million3 million1 millionVocab size

128200300300Array size

Sense2VecSkip-gram BOWSkip-gram BOWSkip-gram BOWAlgorithm

The output of the first layer was concatenated with word
embedding and sense-disambiguation embedding obtained from
pretrained models for each token in a given input sentence. This
concatenation of features was the input for the second Bi-LSTM
layer. The goal of the second layer was to obtain a sequence of
probabilities corresponding to each label of the BMEWO-V
encoding format. In this way, for each input token, this layer
returned six probabilities (one for each tag in BMEWO-V). The
final tag should be with the highest probability for each token.

To improve the accuracy of predictions, we also used a CRF
[63] model, which takes as input the label probability for each
independent token from the previous layer and obtains the most
probable sequence of predicted labels based on the correlations
between labels and their context. Handling independent labels
for each word shows sequence limitations. For example,
considering the drug sequence-labeling problem, an
“I-NEGATION” tag cannot be found before a “B-NEGATION”
tag or an “I- NEGATION” tag cannot be found after a
“B-NEGATION” tag. Finally, once tokens have been annotated
with their corresponding labels in the BMEWO-V encoding
format, the entity mentions must be transformed into the BRAT
format. V tags, which identify nested or overlapping entities,
are generated as new annotations within the scope of other
mentions.

Multilayer Bidirectional Transformer Encoder: BERT
The use of word representations from pretrained unsupervised
methods is a crucial step in NER pipelines. Previous models,
such as word2vec [62], Glove [64], and FastText [65], focused

on context-independent word representations or word
embedding. However, in the last few years, models have focused
on learning context-dependent word representations, such as
ELMo [66], CoVe [67], and the state-of-the-art BERT model
[68], and then fine tuning these pretrained models on
downstream tasks.

BERT is a context-dependent word representation model that
is based on a masked language model and is pretrained using
the transformer architecture [69]. BERT replaces the sequential
nature of language modeling. Previous models, such as RNN
(LSTM & GRU), combine two unidirectional layers (ie,
Bi-LSTM), and as a replacement for the sequential approach,
the BERT model employs a much faster attention-based
approach. BERT is pretrained in the following two unsupervised
tasks: (1) masked language modeling that predicts randomly
masked words in a sequence and hence can be used for learning
bidirectional representations by jointly conditioning both left
and right contexts in all layers and (2) next sentence prediction
to train a model that understands sentence relationships. A
previous report [70] provides a detailed description of BERT.

Owing to the benefits of the BERT model, we adopted a
pretrained BERT model with 12 transformer layers (12 layers,
768 hidden, 12 heads, 110 million parameters) and an output
layer with SoftMax to perform the NER task. The transformer
layer has the following two sublayers: a multihead self-attention
mechanism, and a position-wise, fully connected, feed-forward
network, followed by a normalization layer. An overview of
the BERT architecture is presented in Figure 6.
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Figure 6. BERT pretraining and fine-tuning architecture overview [62]. BERT: bidirectional encoder representations from transformers.

Data Sets
The proposed systems are evaluated for the following three data
sets: (1) the BioScope corpus introduced in the CoNLL-2010
Shared Task [7] for the detection of speculation cues and their
linguistic scope [4], (2) the SFU ReviewSP-NEG corpus used
in Task 2 in the 2018 edition of the Workshop on Negation in
Spanish (NEGES 2018) [71], and (3) the IULA Spanish Clinical
Record corpus [72]. Therefore, we evaluated the proposed
system in two different languages (English and Spanish) and
different text types (clinical narrative, biomedical literature, and
user reviews). Spanish, contrary to other languages such as
English, does not have enough corpora, data sets, pretrained
models, and resources. Furthermore, research on Spanish

negation and speculation detection is insufficient, and this is
even more in the biomedical domain. Being aware of this
setback, in this particular study, we used the scarce Spanish
resources available.

The BioScope corpus is a widely used and freely available
resource consisting of medical and biological texts written in
English annotated with speculative and negative cues and their
scopes. BioScope includes the following three different
subcorpora: (1) clinical free texts (clinical radiology records),
(2) full biological papers from Flybase and the BMC
Bioinformatics website, and (3) biological abstracts from the
GENIA corpus [73]. The corpus statistics are shown in Table
6.

Table 6. BioScope corpus details.

Clinical narrativesFull papersAbstractsVariable

Total

127391954Number of documents

11,87226246383Number of sentences

Speculation

8555192101Number of sentences

11126722659Number of scopes

Negation

8653391597Number of sentences

8703761719Number of scopes

Concerning negation and speculation, the CoNNLL-2010 Shared
Tasks divide the BioScope data set into three subtasks. The first
two subtasks are as follows: (1) Task 1B sentence speculation
detection for biological abstracts and full articles and (2) Task
1W sentence speculation detection for paragraphs from
Wikipedia, possibly containing weasel information. Both tasks
consist of a binary classification problem for detecting

speculation cues and speculation at the sentence level and the
final task (Task 2), which aims the in-sentence hedge scope to
distinguish uncertain information from facts in general and
biomedical domains. The BioScope corpus includes a different
data set for each subtask. Detailed information about these data
sets can be seen in Table 7.
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Table 7. BioScope subtask data sets.

Number of scopesNumber of cuesNumber of sentencesNumber of documentsTask and subset

Task 1B

N/Aa254010,806966Training

N/A8363735316Validation

N/AN/A500315Testing

Task 1W

N/A236383431646Training

N/A7702768540Validation

N/AN/A96342346Testing

Task 2

2519255611,009966Training

8088203533316Validation

N/AN/A500315Testing

aN/A: not applicable.

The IULA Spanish Clinical Record corpus consists of 300
manually annotated and anonymized clinical records from
several services of one of the main hospitals in Barcelona. These
clinical records are written in Spanish. The corpus contains
annotations on syntactic and lexical negation markers and their

respective scopes. Morphological negation was excluded. There
are 3194 sentences, and of these, 1093 (34.22%) were annotated
with negation cues. IULA Spanish Clinical Record corpus details
and its entity distribution can be found in Tables 8 and 9,
respectively.

Table 8. IULA Spanish Clinical Record corpus details.

Clinical narrative, nItem

300Documents

3194Sentences

1093Annotated sentences

1456Negated entities
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Table 9. IULA Spanish Clinical Record corpus entity distribution.

Total, nEntity

1007NegMarkera

86NegPredMarkerb

114NegPolItemc

7BODYd

14SUBSe

1064DISOf

93PROCg

278Phraseh

aNegMarker: no, tampoco, sin [4].
bNegPredMarker: negative verbs, nouns, and adjectives [4].
cNegPolItem: ni, ninguno, ... [4].
dBODY: body structure.
eSUBS: substance pharmacological/biological product.
fDISO: clinical finding.
gPROC: procedure.
hPHRASE: nonmedical text spans.

To the best of our knowledge, the IULA Spanish Clinical Record
corpus has not been used in any task or challenge. Therefore,
we randomly split the data set into training, validation, and

testing data sets. Details about the data sets can be seen in Table
10.

Table 10. IULA Spanish Clinical Record data sets.

Number of entitiesNumber of sentencesSubset

28391774Training

924701Validation

920719Testing

The SFU ReviewSP-NEG corpus is the first Spanish corpus
that includes event negation as part of the annotation scheme,
as well as the annotation of discontinuous negation markers.
Moreover, it is the first corpus where the negation scope is
annotated. The corpus also includes syntactic negation, scope,
and focus. However, neither lexical nor morphological negation
is included. Annotations on the event and on how negation
affects the polarity of the words within its scope are also
included. The Spanish SFU Review corpus consists of 400
reviews from the Ciao website [74] from the following eight

different domains: cars, hotels, washing machines, books,
phones, music, computers, and movies. It is composed of 9455
sentences, and of these, 3022 (31.97%) contain at least one
negation cue. SFU ReviewSP-NEG corpus text distribution can
be found in Table 11. The SFU ReviewSP-NEG corpus was
used in Task 2 of NEGES 2018 for identifying negation cues
in Spanish. The data set was randomly divided into training,
validation, and testing data sets. Details about the data sets can
be seen in Table 12.

Table 11. SFU ReviewSP-NEG corpus details.

Reviews, nItem

400Comments

9455Sentences

3022Annotated sentences

3941Negated entities
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Table 12. SFU ReviewSP-NEG data sets.

Negated entities, nSentences, nReviews, nSubset

6061774264Training

20970156Validation

28571980Testing

Negation cues and scope are annotated in each corpus (the IULA
corpus does not include the subject within the scope). Regarding
the negation in coordinated structures, the corpora also show
differences. In the SFU ReviewSP-NEG corpus, a distinction
is made between the coordinated negative structures. Each
negation cue is independent and has its own scope. Moreover,
the scopes of those negative structures with discontinuous
negation cues consider the whole coordination. The IULA
Spanish Clinical Record always includes coordination within
the scope. Furthermore, we found that double negation (eg, “No
síntoma de disnea NI dolor torácico” [No symptoms of dyspnea
or chest pain]) and negation locutions, which are multiword
expressions that express negation (eg, “con AUSENCIA DE
vasoespasmo” [with absence of vasospasm]) were only
addressed in the SFU ReviewSP-NEG corpus. Additionally,
speculative expressions and uncertain annotations (eg, “Earths
and clays MAY have provided prehistoric peoples”) were only
addressed in the BioScope corpus.

Results
We evaluated the negation detection system using the training,
validation, and testing data sets provided by the task organizers
for the CoNLL-2010 Shared Task (BioScope) and for Task 2
of NEGES 2018 (SFU ReviewSP-NEG). The IULA Spanish

Clinical Record corpus has not been previously applied to any
task or competition. Therefore, we split the corpus randomly
into training and testing data sets to evaluate the proposal in the
clinical domain.

The Bi-LSTM CRF model was trained using available pretrained
word and sense embedding models on general and biomedical
domains for Spanish, English, and multilingual texts. We
evaluated the use of multidomain and multilanguage pretrained
embedding models (general domain word and sense embeddings
and multilanguage NLP tools) on the BioScope Task 1W data
sets (biomedical domain and English text), with a precision,
recall, and F-score of 86.2%, 87%, and 86.6%, respectively.
Based on our experiments, we found that the use of specific
domain (biomedical) and specific language (English)
embeddings highly improved the negation and speculation
detection task (Table 13). Moreover, to evaluate the performance
impact, we evaluated each of our proposed features and made
comparisons with base NeuroNER implementation with PubMed
and PubMed Central word embeddings on the BioScope Task
1W test data set. As shown in Table 14, sense feature
representation and the BIOES-V tag encoding format improved
each token representation, which implies that features play
different roles in capturing token-level features for NER tasks,
thus making improvements in their combination.

Table 13. Pretrained word embedding model evaluation on the BioScope Task 1W test data set.

F-score (%)Recall (%)Precision (%)Name–embedding

79.380.478.3NeuroNER–Google News

81.482.180.8NeuroNER–PubMed and PubMed Central

81.783.280.2NeuroNER Extended–Google News

86.687.086.2NeuroNER Extended–PubMed and PubMed Central

Table 14. Feature evaluation on the BioScope Task 1W test data set.

F-score (%)Recall (%)Precision (%)Name–feature

81.480.478.3NeuroNER–Base

85.486.284.7NeuroNER–Sense

82.683.581.7NeuroNER–BIOES-V

86.687.086.2NeuroNER–Sense and BIOES-V

Moreover, we used the pretrained BERT multilingual general
domain model with 12 transformer layers (12 layers, 768 hidden,
12 heads, 110 million parameters) trained on the general domain
Wikipedia and Bookcorpus corpora, and fine-tuned for NER
using a single output layer based on the representations from
its last layer to compute only token-level BIOES-V probabilities.

BERT directly learns WordPiece embeddings during the
pretraining and fine-tuning steps.

Precision, recall, and the F-score were used to evaluate the
performance of our system. The parameters of the sets and the
hyperparameters for our Bi-LSTM CRF model are summarized
in Table 15. The hyperparameters were optimized on each
validation data set.
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Table 15. NeuroNER system hyperparameters for each task.

SFU ReviewSP-NEGIULABioScopeParameter

SpanishSpanishEnglishLanguage

Spanish Billion Words + RedditSpanish Billion Words + RedditPubMed and PubMed Central +
Reddit

Pretrained word embedding

128128128Sense-disambiguation embedding
dimension

300300200Word embedding dimension

505050Character embedding dimension

100100100Hidden layers dimension (for each
LSTM)

Stochastic gradient descentStochastic gradient descentStochastic gradient descentLearning method

0.50.50.5Dropout rate

0.0050.0050.005Learning rate

100100100Epochs

The CoNLL-2010 Shared Task [75] considers two different
evaluation criteria. Task 1 is made at the sentence level, and
cue annotations in the sentence are not considered. However,
it is optionally evaluated. The F-measure of the speculation
class is employed as the chief evaluation metric. Task 2 involves
the annotation of “cue” + “xcope” tags in sentences. The
scope-level F-measure is used as the chief metric where true
positives are scopes that match the gold standard clue words
and gold standard scope boundaries assigned to the clue words.

Tables 16 to 20 compare the results obtained by the participating
systems in the CoNLL-2010 Shared Task and our deep learning
approach using pretrained embedding models and the
BMEWO-V encoding format. Our extended version of
NeuroNER achieved similar results to the best work presented
in this task. In particular, our system achieved the highest
precision (83.2%), with lower recall.

For subtask 1 (identification speculation at the sentence level
and cue annotations), our system obtained the top F-score for
speculation and cue detection (see Tables 16 to 18).

Table 16. Task 1B Wikipedia sentence-level speculation detection (BioScope).

F-score (%)Recall (%)Precision (%)Name

60.251.772.0Georgescul [76]

58.755.362.7Ji et al [77]

57.449.768.0Chen et al [78]

61.448.583.7BERT

54.941.083.2NeuroNER Extended

Table 17. Task 1B Wikipedia cue-level detection (BioScope).

F-score (%)Recall (%)Precision (%)Name

36.525.763.0Tang et al [79]

33.721.676.1Li et al [80]

19.514.728.9Özgür et al [81]

43.633.263.7BERT

36.525.763.0NeuroNER Extended
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Table 18. Task 1W biological sentence-level speculation detection (BioScope).

F-score (%)Recall (%)Precision (%)Name

86.487.785.0Tang et al [79]

85.885.186.5Zhou et al [82]

85.481.090.4Li et al [80]

86.487.385.5BERT

86.687.086.2NeuroNER Extended

Table 19. Task 1W biological cue-level detection (BioScope).

F-score (%)Recall (%)Precision (%)Name

81.381.081.7Tang et al [79]

80.978.883.1Zhou et al [82]

79.873.487.4Li et al [80]

80.179.580.7BERT

80.379.281.4NeuroNER Extended

Table 20. Task 2 cue-level detection and scope determination (BioScope).

F-score (%)Recall (%)Precision (%)Name

57.355.259.6Morante et al [83]

55.654.656.7Rei et al [6]

55.354.056.7Velldal et al [84]

50.455.646.1BERT

44.840.350.4NeuroNER Extended

Table 21 shows the results for the IULA corpus. Furthermore,
we compared our results with the work presented previously
[85]. We used the evaluation criteria presented in this work;

however, the subsets were different. As can be seen, our system
outperformed the results obtained previously [85], with a
difference of nearly 4 points for the F-measure.

Table 21. Results of cue level and scope detection for the IULA Clinical Record data set.

F-score (%)Recall (%)Precision (%)Name

81.283.579.1Santiso et al [85]

80.884.377.8BERT

85.085.984.2NeuroNER Extended

The NEGES 2018 Task 2 negation cue detection uses the
evaluation script proposed in the SEM 2012 Shared
Task–Resolving the Scope and Focus of Negation [50]. Table
22 shows the results for the different domains included in the
data set. It can be observed that the F-score was always over
80%. We compared our results with the participating systems
presented in this task. A detailed description of the evaluation
has been provided previously [71]. As can be seen in Table 23,
our system outperformed the rest of the participating systems.

Furthermore, we compared NeuroNER Extended and BERT
implementations in terms of resources and time consumption
on the IULA Clinical Record training and validation subsets.
As shown in Table 24, the training time was slightly higher in
NeuroNER Extended. However, training implies the generation
of character and token level embeddings, unlike the BERT
implementation that obtains word vector representations directly
from the pretrained model. In terms of hardware resource
consumption, we found that BERT implementation had a high
use of resources, especially RAM and GPU.
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Table 22. NeuroNER Extended results of negation detection for the SFU ReviewSP-NEG data set.

F-score (%)Recall (%)Precision (%)Domain

80.4674.4787.5Cars

85.4677.0595.92Hotels

83.9575.5694.44Washing machines

91.387.595.45Books

93.8490.8397.06Phones

92.3192.3192.31Music

87.580.7795.45Computers

89.8684.5595.88Movies

Table 23. Results of negation cues and scope detection for the SFU ReviewSP-NEG data set.

F-score (%)Recall (%)Precision (%)Name

68.059.679.5Fabregat et al [86]

81.283.579.1Loharja et al [87]

91.790.892.6BERT

88.182.994.3NeuroNER Extended

Table 24. Training parameters for the deep learning models.

BERTNeuroNER ExtendedSpecificationsTraining parameter

30%50%Intel Core i7 7700 at 3.60 GHzCPU

80%40%16 GB DDR4RAM

80%40%GeForce RTX 2060 SUPER 16 RAMGPU

13 min15 minMinutesTraining time

Discussion
Principal Findings
We used different pretrained models and investigated their
effects on performance. For NeuroNER Extended, we used
general and domain-specific pretrained word embedding models,
and likewise, we used pretrained multilanguage and
language-specific models. We found that the use of specific
domain (biomedical) and specific language pretrained models
highly improved the negation and speculation detection.
Moreover, to the best of our knowledge, there is no pretrained
biomedical Spanish model for context-dependent word
representations (pretrained BERT). The low performance of the
BERT model is mainly attributed to the use of a general domain
and multilingual pretrained model. However, the BERT model
outperformed the NeuroNER Extended model and other
state-of-the-art approaches in general domain data sets, such as
SFU ReviewSP-NEG, and the specific domain BioScope (Task
1B data set corpus obtained from Wikipedia text).

Moreover, we presented the analysis of the most frequent false
negatives and false positives for negation and speculation cues
and scope detection. Negation and speculation cues, such as
“would,” “apenas” (“barely”), “ni” (“neither” or “nor”),
“except,” “could,” “idea,” “notion,” and “may,” are half of the
time labeled as negation and speculation cues. This ambiguity

led our system to classify some tokens as false positive or
inversely as false negative, causing a drop in performance.
Furthermore, some multitoken negation and speculation cues,
such as “ni siquiera” (“not even”), “ni tan siquiera” (“not even”),
“ni si quiera” (“not even”), and “en ningún momento” (“not at
any moment”), are sometimes labeled as a single token word
(ie, “ni_siquiera,” “ni_tan_siquiera,” “ni_si_quiera,” and
“en_ningún_momento”), and some others are labeled as
multitoken cues. Long multitoken negation and speculation
cues, such as “remains to be determined” and “raising the
intriguing possibility,” are not detected or partially matched.
This proves that shorter sentences, with shorter scopes and
shorter negation and speculation cues, are easier to process. A
longer sentence has a more complex syntactic structure and is
tougher to be processed by the system. It should be noted that
clinical text is undoubtedly distinct from biomedical text. It is
characterized by short sentences (usually phrases) and
misspellings, with abuse of negation particles and abbreviations,
among other important features.

Furthermore, in the context of real medical applications,
negation and speculation detection is a fundamental task in any
information extraction system. For instance, in cohort selections
for a clinical trial, patients with a specific condition are required,
and it is essential to know if a term representing a disease or
any other feature is negated or not in a clinical note in order to
get the right answer to the query (Is the variable V valid for
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patient P?). An additional example would be the detection of
adverse drug reactions, that is, the extraction of causal relations
between drugs and diseases. It is a crucial step to discard the
absence of adverse drug reactions early and thus prevent medical
applications from analyzing them or providing wrong
information.

Conclusions
In this work, we proposed a system for the detection of negated
entities, negation cues, negation scope, and speculation in
multidomain text in English and Spanish. We addressed the
speculation and negation detection task as a sequence-labeling
task. Although previous studies have already applied deep
learning to this task, our approach is the first to exploit sense
embedding as the input of the deep network. In a sense
embedding model, each meaning word is represented with a
different vector. Therefore, sense embedding models can help
to solve ambiguity, which is one of the most critical challenges
in NLP.

Our experiments show that the use of dense representation of
words (word-level embedding, character-level embedding, and
sense embedding) provides good results in detecting negated

entities, negation cues, and negation scope determination.
Compared with previous work, our system achieved an F-score
performance of over 85%, outperforming most current
state-of-the-art methods for negation and speculation detection.
Moreover, our work is one of the few that addressed the task
for Spanish text and different domains using
context-independent and context-dependent pretrained models.

In future work, we plan to test whether other supervised
classifiers, such as Markov random fields and optimum path
forest, would obtain more benefits from dense vector
representation. That is to say, we would use the same continuous
representations with the Markov random fields and optimum
path forest classifiers. Moreover, we plan to train word
context-dependent and independent embeddings obtained from
multiple Spanish biomedical corpora to enhance word
representations using different models, such as FastText and
pretrained BERT. Furthermore, we plan to explore different
models for embeddings that combine in a single representation
not only words but also semantic information contained in
domain-specific resources, such as UMLS [88] and
SNOMED-CT [89].
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