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Abstract

Knowledge bases store structured information about entities or concepts of the world and
can be used in various applications, such as information retrieval or question answering.
A major drawback of existing knowledge bases is their incompleteness. In this thesis, we
explore deep learning methods for automatically populating them from text, addressing
the following tasks: slot filling, uncertainty detection and type-aware relation extraction.

Slot filling aims at extracting information about entities from a large text corpus.
The Text Analysis Conference yearly provides new evaluation data in the context of an
international shared task. We develop a modular system to address this challenge. It was
one of the top-ranked systems in the shared task evaluations in 2015. For its slot filler
classification module, we propose contextCNN, a convolutional neural network based on
context splitting. It improves the performance of the slot filling system by 5.0% micro and
2.9% macro F1. To train our binary and multiclass classification models, we create a dataset
using distant supervision and reduce the number of noisy labels with a self-training strategy.
For model optimization and evaluation, we automatically extract a labeled benchmark for
slot filler classification from the manual shared task assessments from 2012–2014. We
show that results on this benchmark are correlated with slot filling pipeline results with a
Pearson’s correlation coefficient of 0.89 (0.82) on data from 2013 (2014). The combination
of patterns, support vector machines and contextCNN achieves the best results on the
benchmark with a micro (macro) F1 of 51% (53%) on test. Finally, we analyze the results
of the slot filling pipeline and the impact of its components.

For knowledge base population, it is essential to assess the factuality of the statements
extracted from text. From the sentence “Obama was rumored to be born in Kenya”, a sys-
tem should not conclude that Kenya is the place of birth of Obama. Therefore, we address
uncertainty detection in the second part of this thesis. We investigate attention-based
models and make a first attempt to systematize the attention design space. Moreover,
we propose novel attention variants: External attention, which incorporates an external
knowledge source, k-max average attention, which only considers the vectors with the k
maximum attention weights, and sequence-preserving attention, which allows to maintain
order information. Our convolutional neural network with external k-max average atten-
tion sets the new state of the art on a Wikipedia benchmark dataset with an F1 score of
68%. To the best of our knowledge, we are the first to integrate an uncertainty detection
component into a slot filling pipeline. It improves precision by 1.4% and micro F1 by 0.4%.

In the last part of the thesis, we investigate type-aware relation extraction with neural
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networks. We compare different models for joint entity and relation classification: pipeline
models, jointly trained models and globally normalized models based on structured pre-
diction. First, we show that using entity class prediction scores instead of binary decisions
helps relation classification. Second, joint training clearly outperforms pipeline models on
a large-scale distantly supervised dataset with fine-grained entity classes. It improves the
area under the precision-recall curve from 0.53 to 0.66. Third, we propose a model with a
structured prediction output layer, which globally normalizes the score of a triple consisting
of the classes of two entities and the relation between them. It improves relation extraction
results by 4.4% F1 on a manually labeled benchmark dataset. Our analysis shows that
the model learns correct correlations between entity and relation classes. Finally, we are
the first to use neural networks for joint entity and relation classification in a slot filling
pipeline. The jointly trained model achieves the best micro F1 score with a score of 22%
while the neural structured prediction model performs best in terms of macro F1 with a
score of 25%.



Zusammenfassung

Wissensdatenbanken speichern strukturierte Informationen über Entitäten und Konzepte
der Welt und können in verschiedenen Anwendungen eingesetzt werden, wie zum Beispiel
zur Informationssuche oder zum automatischen Beantworten von Fragen. Eine große
Schwachstelle existierender Wissensdatenbanken ist ihre Unvollständigkeit. In dieser Ar-
beit erforschen wir “deep learning” Methoden, um sie automatisch mit Hilfe von Textdaten
zu erweitern. Konkret befassen wir uns mit den folgenden Aufgaben: “Slot Filling”, Erken-
nung von Ungewissheit und Relationsextraktion mit Hilfe von Entitätentypen.

Slot Filling zielt auf die Extraktion von Informationen über Entitäten aus einem großen
Textkorpus ab. Die Text Analysis Conference stellt jährlich neue Evaluationsdaten im
Rahmen eines internationalen Wettbewerbs zur Verfügung. Wir entwickeln ein modulares
System für diese Aufgabe. Es war eines der führenden Systeme in den Wettbewerbs-
bewertungen von 2015. Für sein Relationsklassifikationsmodul schlagen wir contextCNN

vor, ein auf Faltung und Kontextteilung basierendes neuronales Netz. Es verbessert die
Leistung des Slot-Filling-Systems um 5.0% Micro- und 2.9% Macro-F1. Um die binären
und mehrklassigen Relationsklassifikationsmodelle zu trainieren, erstellen wir einen Daten-
satz mit Hilfe von “distant supervision” (entfernter Überwachung) und reduzieren die An-
zahl verrauschter Annotationen mit einer Selbsttrainingsstrategie. Zur Modelloptimierung
und -evaluierung extrahieren wir automatisch annotierte Benchmarkdaten zur Slot-Filling-
Relationsklassifikation aus den manuellen Bewertungen des Wettbewerbs der Jahre 2012–
2014. Wir zeigen, dass Ergebnisse auf diesem Benchmark mit den Ergebnissen der Slot-
Filling-Pipeline auf den Daten von 2013 (2014) mit einem Pearson-Korrelationskoeffizienten
von 0.89 (0.82) korreliert sind. Eine Kombination aus Mustererkennung, Support-Vektor-
Maschinen und contextCNN erreicht auf dem Benchmark die besten Ergebnisse mit einem
Micro-F1-Wert von 51% (beziehungsweise einem Macro-F1-Wert von 53%) auf den Test-
daten. Schließlich analysieren wir die Ergebnisse der Slot-Filling-Pipeline und den Einfluss
ihrer Komponenten.

Für die Erweiterung von Wissensdatenbanken ist die Bewertung der Faktizität einer
Aussage entscheidend. Ein System sollte aus einem Satz wie “Es hieß, dass Obama in Kenia
geboren sei” nicht schließen, dass der Geburtsort von Obama Kenia ist. Daher befassen wir
uns im zweiten Teil dieser Arbeit mit der Erkennung von Ungewissheit. Wir untersuchen
Methoden basierend auf “Attention” (Aufmerksamkeit) und unternehmen einen ersten
Versuch, den Designraum von Attention zu systematisieren. Außerdem schlagen wir neue
Varianten von Attention vor: externe Attention, die eine externe Wissensquelle einbezieht,



xxiv Zusammenfassung

k-max Durchschnittsattention, die nur die Vektoren mit den k höchsten Attentiongewichten
betrachtet, und sequenzerhaltende Attention, die es ermöglicht, Informationen über die
Eingabereihenfolge zu bewahren. Unser faltendes neuronales Netzwerk mit externer k-max
Durchschnittsattention setzt mit einem F1-Wert von 68% den Stand der Technik auf einem
Wikipedia Benchmarkdatensatz neu. Nach unserem besten Wissen sind wir die ersten,
die eine Ungewissheitserkennungskomponente in die Slot-Filling-Pipeline integrieren. Sie
erhöht die Präzision des Systems um 1.4% und den Micro-F1-Wert um 0.4%.

Im letzten Teil der Arbeit untersuchen wir Relationsextraktion mit Hilfe von En-
titätentypen. Wir vergleichen unterschiedliche neuronale Modelle zur gemeinsamen En-
titäten- und Relationsklassifikation: Pipeline-Modelle, gemeinsam trainierte Modelle und
global normalisierte Modelle basierend auf strukturierten Vorhersagen. Zum Einen zeigen
wir, dass es der Relationsextraktion hilft, wenn Wahrscheinlichkeitswerte der Entitäten-
klassen verwendet werden anstatt binärer Entscheidungen. Zum Anderen übertreffen
gemeinsam trainierte Modelle nacheinander trainierte Pipeline-Modelle deutlich auf einem
großen, entfernt überwachten Datensatz mit feinkörnigen Entitätenklassen. Sie verbessern
die Fläche unter der Precision-Recall Kurve (die Präzision und Trefferquote des Systems
zueinander ins Verhältnis setzt) von 0.53 auf 0.66. Zum Dritten schlagen wir ein Modell
vor, das die Bewertung eines Tripels bestehend aus den Klassen zweier Entitäten und der
Relation zwischen ihnen global normalisiert, indem es eine strukturierte Ausgabeschicht
verwendet. Es verbessert die F1-Ergebnisse der Relationsextraktion um 4.4% auf einem
manuell annotierten Benchmarkdatensatz. Unsere Analyse zeigt, dass das Modell korrekte
Korrelationen zwischen Entitäten- und Relationsklassen lernt. Schließlich sind wir die er-
sten, die gemeinsam trainierte und global normalisierte Modelle für Slot Filling verwenden.
Das gemeinsam trainierte Modell erreicht den besten Micro-F1-Wert mit 22%, während das
Modell basierend auf strukturierten Vorhersagen mit 25% am besten bezüglich des Macro-
F1-Wertes abschneidet.
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Chapter 1

Introduction

1.1 Motivation

With the growing amount of unstructured text data, especially on the Internet, the need
for structured representation of knowledge arises. Structured knowledge representations
can be used in various applications, such as information retrieval, question answering or
automatic assistant systems. Given a database containing facts about entities of the world
(a so-called knowledge base), answering a question like “Who founded Apple” requires
only a simple lookup. Similarly, an automatic assistant system can guide a user looking for
popular sights nearby by extracting points of interests and information about them from
that database.

Currently, several large-scale knowledge bases exist. However, they are highly incom-
plete, limiting their applicability in down-stream tasks. For many entities, even fundamen-
tal facts like the place of birth of a person are missing. On the other hand, many of those
missing facts are mentioned in the large amount of unstructured text available through
news or on the Internet. Therefore, this thesis tackles the challenge of automatically ex-
tracting information from text for populating a knowledge base.

When automatically extracting structured information from text data, several natural
language processing (NLP) challenges arise. The following example is an excerpt of the
Wikipedia article about Steve Jobs:1

Steven Paul “Steve” Jobs (February 24, 1955 – October 5, 2011) was an Amer-
ican entrepreneur, business magnate, inventor, and industrial designer. He was
the chairman, chief executive officer (CEO), and co-founder of Apple Inc; . . .

These two sentences contain a variety of information, which can be used to populate
a knowledge base: An alternative name for Steve Jobs (“Steven Paul Jobs”), his date of
birth (February 24, 1955) and date of death (October 5, 2011), his origin (“American”),
several job titles (“entrepreneur”, “business magnate”, “inventor”, “industrial designer”,
“chairman”, “chief executive officer”) as well as the name of a company which he co-founded

1https://en.wikipedia.org/wiki/Steve_Jobs (November 14, 2017).

https://en.wikipedia.org/wiki/Steve_Jobs
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(“Apple Inc“). However, this piece of text poses several challenges to information extraction
systems, such as the recognition that “Steven Paul ‘Steve’ Jobs” and “Steve Jobs” refer to
the same person, the knowledge that “American” is a nationality, the conclusion that the
multi-token expression “chief executive officer” forms a title rather than only the single
token “officer” as it could occur it other contexts, the recognition that “he” refers to “Steve
Jobs”, the recognition that “Apple Inc” is a company, etc.

In this thesis, we focus on different sub-tasks of information extraction for knowledge
base population: slot filling, uncertainty detection and type-aware relation extraction.

Slot filling aims at extracting information about named entities from text by filling pre-
defined slots, such as the place of birth of a person, or the founders of a company. It can
be compared to the task of populating Wikipedia info boxes for a given entity (Wikipedia
page) using textual information. It is annually organized as a shared task by the Text
Analysis Conference (TAC). Even the top-ranked systems only achieve F1 scores around
30%. This indicates the difficulty of the task. In the context of this thesis, we participated
in the official slot filling evaluations in 2014 and 2015.

In the second part of the thesis, we present our work on uncertainty detection. From a
sentence like “He may have died in the accident”, it is not desirable to extract a cause-of-
death fact for a knowledge base since its veracity is not proven. Instead, a knowledge base
population system should recognize the uncertainty and handle it accordingly. It could,
for instance, ignore the extracted values or assign a special marker to them.

In the last part of the thesis, we investigate type-aware relation extraction models
which can jointly predict entity and relation classes. The knowledge of the types of the
relation arguments can guide relation extraction while the knowledge of the relations an
entity participates in can, in turn, improve entity classification results. For example, the
information that the two arguments of a relation are a person and an organization can
reduce the search space of relation classes by excluding particular relations, such as place
of birth, which would require a person and a location as relation arguments. Similarly, the
knowledge that an entity participates in a place-of-birth relation as well as in a founder-of
relation can help conclude that it is most likely a person. Thus, the mutual dependency
between entity and relation classes can help a model correctly classify information from
text.

1.2 Main Contributions

In this thesis, we contribute to the state of the art of knowledge base population research
as described below. More details are given at the end of each chapter.

Slot Filling. We develop a state-of-the-art slot filling system which tackles a variety
of natural language processing challenges. It was ranked third in the official shared task
evaluations 2015. With this system, we are one of the first to successfully apply neural
networks in the relation classification component of a slot filling system. In particular,
we propose contextCNN, a convolutional neural network especially designed for relation
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classification, which is based on context splitting and makes use of a flag indicating the
order of the relation arguments. It improves the results of the slot filling pipeline and
outperforms a state-of-the-art convolutional neural network for relation extraction on slot
filler classification. It can also be applied generally to relation extraction tasks. In order
to facilitate the development and comparison of slot filling systems, we automatically
create a benchmark dataset for slot filler classification from the manual slot filling system
assessments.

Uncertainty Detection. For uncertainty detection, we experiment with attention-based
models. We make a first attempt to systematize the design space of attention and pro-
pose several new attention mechanisms: external attention, k-max average attention and
sequence-preserving attention. Although we investigate them in the context of uncertainty
detection, they are generally applicable in attention-based models independent of the task.
External attention provides the possibility to include external information, such as a lex-
icon of uncertainty cues for uncertainty detection, in order to guide the model during
training. K-max average attention is an extension of traditional average attention which
only averages the weighted vectors with the k largest attention weights. This can be ben-
eficial when the attention weight distribution is not sharp and standard attention would
introduce noise. Sequence-preserving attention tackles another drawback from standard
attention with average: By taking the average, any sequence information from the input is
lost. With sequence-preserving attention, we propose a way to maintain this information,
which might be relevant for many natural language processing tasks. We are the first to
apply convolutional and recurrent neural networks to uncertainty detection and analyze
their different behavior. Our convolutional neural network with external k-max average
attention performs best and sets the new state of the art on a benchmark dataset. When
using it as a component in the slot filling pipeline, it improves precision. To the best of our
knowledge, we are the first to employ an uncertainty detection component for slot filling.

Type-aware Relation Extraction. We investigate different type-aware neural net-
works for relation extraction. On a distantly supervised dataset, we show that jointly
training entity and relation classification models improves results over traditional pipeline
approaches. For pipeline models, computing features from the probabilities of the entity
classifier outperforms features derived from binary decisions. Moreover, we propose a novel
way of modeling the joint task of entity and relation classification as a sequence of predic-
tions. This enables the application of a structured prediction output layer. On a manually
labeled dataset, we compare jointly trained convolutional neural networks with the ones
based on structured prediction and show that structured prediction improves the results.
Finally, we are the first to integrate joint information extraction models into the slot filling
pipeline and show that they improve the final results of the system.
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1.3 Structure

The remainder of this thesis is structured as follows:
Chapter 2 provides background information which is useful for the remaining chapters

of this thesis. Section 2.1 reports on knowledge bases and knowledge base population in
general and the slot filling task in particular. Section 2.2 gives an overview of different
neural network layers and how to train them.

Chapter 3 describes our work around the slot filling task. In particular, Section 3.1
introduces the task and Section 3.2 describes the modular system we have developed for
participating in the shared task. Section 3.3 focuses on the slot filler classification models.
In Section 3.4, we report on the datasets used for the different experiments. Section 3.5
and Section 3.6 show our results and analysis, respectively. Finally, we give an overview
of related work in Section 3.7 and describe our contributions in more detail in Section 3.8.

Chapter 4 presents our experiments in the area of uncertainty detection. After motivat-
ing and introducing the task in Section 4.1, we describe the models we have developed in
Section 4.2. Section 4.3, Section 4.4 and Section 4.5 present the dataset, our experimental
results and our analysis, respectively. Finally, we show in Section 4.6 how the models can
be applied in a slot filling system and report on related work in Section 4.7. Section 4.8
summarizes our contributions.

In Chapter 5, we describe experiments on relation extraction with type-aware neural
networks. After motivating the task in Section 5.1, we explore models which are jointly
trained on fine-grained entity typing and relation classification in Section 5.2. Afterwards,
we propose a model with a structured prediction output layer which globally normalizes a
sequence of predictions of entity and relation classes in Section 5.3. In both sections, we
present our models, the dataset, our experimental results and our analysis. In Section 5.4,
we show how we integrate the models into our slot filling pipeline. Finally, we report on
related work in the field of type-aware relation extraction in Section 5.5 and summarize
our contributions in Section 5.6.

Chapter 6 concludes the thesis and provides an overview of future work for each topic.



Chapter 2

Background

This chapter provides an overview of background relevant to this thesis. The first section
describes knowledge bases, knowledge base population and distant supervision. The second
section introduces neural networks, different types of layers and training with backpropa-
gation, minibatches and regularization.

2.1 Knowledge Bases

Knowledge bases (KBs) store structured information about (real-world) entities, such as
people, places or more abstract concepts like songs or artistic movements. Popular ex-
amples for large-scale knowledge bases are Freebase (Bollacker et al., 2008), Wikidata
(Pellissier Tanon et al., 2016), YAGO (Suchanek et al., 2007; Hoffart et al., 2013; Mahdis-
oltani et al., 2015), DBpedia (Auer et al., 2007; Mendes et al., 2012; Lehmann et al., 2015)
or the Google Knowledge Graph (Singhal, 2012).

Formally, a knowledge base can be defined as a collection of triples (e1, r, e2), also
called facts or statements, with r being the binary relation between the two entities e1

and e2 (Gardner, 2015). These triples can be represented as a graph with entities being
nodes and relations being directed edges between them. To express n-ary relations with
triples, Freebase, for instance, uses mediator instances (abstract entities) which connect
the n arguments. For example, to encode that Barack Obama was US president from
2009 to 2017, Freebase uses a mediator instance, called component value type (CVT) and
six different triples as depicted in Figure 2.1 (Pellissier Tanon et al., 2016). Wikidata, in
contrast, is able to express this n-ary relation as a single statement.

While YAGO and DBpedia automatically extract their facts from Wikipedia, Freebase
and Wikidata are based on a mostly manual, collaborative effort. In contrast to Freebase,
Wikidata statements encode claims rather than true facts from different sources, which
may also contradict each other (Pellissier Tanon et al., 2016). The Google Knowledge
Graph has been built based on the information stored in Freebase, Wikipedia and the CIA
World Factbook, and has been augmented at large scale (Singhal, 2012). Singhal (2012)
reports that it contained 500M entities and 3.5G facts about and relationships between
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CVT
Barack Obama

President of the
United States

2009-01-20

2017-01-20

politician/
government_positions_
held

government_position_held/
office_holder

government_
position_held/

to

government_position_held/
from

government_position_held/
office_position_or_title

government_office_or_title/
office_holders

Figure 2.1: Example for component value type in Freebase (Pellissier Tanon et al., 2016).

them in 2012. However, it only provides a search API for accessing its information but no
data dump. Other projects, such as NELL (The Never-Ending Language Learner) (Carlson
et al., 2010) provide automatic methods with lower precision to automatically read the web
and populate a knowledge base with the extracted information.

Table 2.1 provides statistics about the information stored in different knowledge bases.
As noted by Pellissier Tanon et al. (2016), the numbers of entities (topics, items, instances),
relation instances (facts, statements) or labels (properties) are not directly comparable
since the knowledge bases have, for instance, different notability criteria for which entities
they store and a different handling of inverse relations. Pellissier Tanon et al. (2016) fur-
ther report that Freebase contains almost 3 billion facts out of which only 442 million facts
are useful for integrating them into Wikidata. The other facts include triples about labels,
identifiers, types and descriptions. On the other hand, when representing Wikidata state-
ments as Freebase facts (with reverse facts and compound value types for n-ary relations),
the number increases from 66 million statements to 110 million facts.

Freebase Wikidata YAGO2 DBpedia (en)
# entities 48M 14.5M 9.8M 4.6M
# facts 2997M 66M 447.5M 152.9M
# labels 68M 82M 365.5k 61.8k

Table 2.1: Statistics of different knowledge bases. Sources: Freebase and Wikidata: (Pel-
lissier Tanon et al., 2016), YAGO2: (Hoffart et al., 2013), DBpedia (sum of facts from
different extractors for English): (DBpedia, 2015).

For the experiments in this thesis, we use Freebase for the following reasons: (i) It
contains only true facts with a high precision due to the manual effort; (ii) it covers a
high number of entity and relation instances; (iii) it provided downloadable data dumps
making experiments stable over time and reproducible; (iv) it is one of the most widely
used knowledge bases in NLP research with many datasets depending on it.
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2.1.1 Knowledge Base Population

Despite the large number of entities and relations stored in knowledge bases (see Table 2.1),
they are still incomplete. Min et al. (2013) report that 93.8% of persons from Freebase have
no place of birth, 96.6% no places of living, 78.5% no nationality and 98.8% no parents.
According to West et al. (2014), 99% of persons have no ethnicity in Freebase. Completing
a knowledge base manually is expensive and slow, especially considering the large number
of entities which would need to be updated for existing relations as well as for any newly
introduced relation label. Therefore, research in natural language processing investigates
automatic methods for creating new knowledge bases from scratch or filling missing infor-
mation into an existing knowledge base. There are two main trends: Extending existing
knowledge bases by reasoning over them and inferring missing links, and extracting new
structured information from unstructured text data. The latter is often referred to as
knowledge base population (KBP) (Glass and Gliozzo, 2018). The eponymous shared task
organized by the Text Analysis Conference (TAC)1 consists of the following tasks: entity
discovery and linking, slot filling, event nugget detection and coreference, event argument
extraction and linking, belief and sentiment (from entities towards entities). In this thesis,
we focus on knowledge base population, in particular on the slot filling task.

Slot Filling

In the context of this thesis, we have participated in the slot filling task of the KBP track
of TAC. The goal of this task is the extraction of information about an entity (person,
organization or geo-political entity) from unstructured text data, such as the place of birth
of a person or the founder of a company. A detailed task and system description as well
as our results in the official evaluation in 2015 are provided in Chapter 3.

The participants of the slot filling task are provided with a large set of text documents
from different genres as well as with queries containing the entities and slots their systems
should produce outputs for. Considering a knowledge base with triples (e1, r, e2) as defined
in Section 2.1, the systems are given e1 (the query entity) and r (the relation provided by
the query, also referred to as “slot”) and are supposed to output e2 (the slot filler) along
with a proof sentence that validates that triple. Thus, core components of a slot filling
system are a slot filler candidate extraction and a slot filler classification component, which
need to identify a set of slot filler candidates C and classify whether the triple (e1, r, c),
c ∈ C, is supported by the text or not.

2.1.2 Distant Supervision

One challenge of slot filler classification, or relation extraction in general, is the limited
amount of labeled training examples. This makes supervised learning challenging. Mintz
et al. (2009) propose an alternative approach called “distant supervision” or “weak supervi-
sion” which is similar to the concept of weakly labeled examples introduced by Craven and

1https://tac.nist.gov/2017/KBP.

https://tac.nist.gov/2017/KBP
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Kumlien (1999) for the biomedical domain. Given existing entity pairs from a knowledge
base (such as Freebase), they extract sentences from a large unlabeled corpus containing
those entity pairs and label them with the relation stored in the knowledge base. The
underlying assumption is:

“if two entities participate in a relation, any sentence that contain those two
entities might express that relation” (Mintz et al. (2009), pp. 1006).

Handling Noisy Positive Labels

Obviously, this assumption leads to noisy labels (Mintz et al., 2009; Surdeanu et al., 2012).
Given, for example, the entity pair (Obama, Hawaii) which is connected by the relation
born in, all the following sentences would be considered to express that relation:

1. “Obama was born in Hawaii.” → correct label

2. “Obama gave a speech in Hawaii.” → wrong label

3. “Former President Obama was seen in Hawaii.” → wrong label

Riedel et al. (2010) analyze examples for three relations extracted from the New York
Times (NYT) corpus with distant supervision using Freebase and find that 20–38% of the
extracted examples mention the entity pair but do not express the relation between them.
Training machine learning models on data with noisy labels may lead to wrong decisions
during test time. Therefore, different approaches exist to mitigate the noise from the
distant supervision assumption. In a post-processing step, the noisy labels can be cleaned
based on patterns or rules, e.g., (Wang et al., 2011; Min et al., 2012; Takamatsu et al.,
2012).

Alternative methods relax the distant supervision assumption. Multi-instance learning
collects all instances (sentences) mentioning a certain entity pair in a bag and assigns the
relation label to the bag under the assumption that at least one of the instances actually
expresses the relation (Bunescu and Mooney, 2007; Riedel et al., 2010):

“If two entities participate in a relation, at least one sentence that mentions
these two entities might express that relation” (Riedel et al. (2010), pp. 149).

Originally, multi-instance learning has been proposed in the context of ambiguously labeled
data for predicting drug activity (Dietterich et al., 1997). Bunescu and Mooney (2007) and
Riedel et al. (2010) connect it to weak supervision and apply it for relation extraction.

Following this line of thoughts, Hoffmann et al. (2011) (MultiR) and Surdeanu et al.
(2012) (“Multi-instance multi-label” (MIML)) develop models which allow entity pairs to
participate in multiple relations. Pershina et al. (2014) propose an approach called “guided
distant supervision” which extends the MIML model to make use of a few manually labeled
examples. Grave (2014) learns a classifier based on entity-relation triples in a knowledge
base to assign labels to text mentioning the entity pairs, rather than using the triples
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directly. More recently, Zeng et al. (2015) integrate multi-instance learning into the loss
function of a neural network and Jiang et al. (2016) create a representation for a bag of
instances by cross-sentence max pooling. Lin et al. (2016) propose an attention-based
approach in which a neural network learns to weight multiple instances of a bag in order
to pay more attention to correctly labeled instances than to wrongly labeled ones.

Handling Noisy Negative Labels

While those approaches address the problem of false positive labels, distant supervision
can also lead to false negative labels (Xu et al., 2013b). In distant supervision, all sentences
mentioning an entity pair that does not have a relation according to a knowledge base will
be labeled with an artificial negative relation. However, this leads to false negative labels
due to the incompleteness of knowledge bases (see Section 2.1.1): From the absence of an
entity pair in a knowledge base, it cannot be inferred that no relation between the two
entities exists. Xu et al. (2013b) find through manual analysis that from 1834 sentences
with two entities, sampled from the NYT 2006 corpus, 133 (7.3%) express a Freebase
relation but only 32 (1.7%) of these relation triples are included in Freebase, leading to
101 (5.5%) false negative labels. This number is even higher than the number of false
positive labels introduced by distant supervision (2.7%). This observation emphasizes the
need of knowledge base population. Xu et al. (2013b) propose a passage-retrieval approach
based on pseudo relevance feedback to reduce false negative labels. Zhang et al. (2013)
clean negative labels by using information of other relations the entities participate in.
Min et al. (2013) leave potentially negative instances unlabeled and present an extension
of MIML which can model unlabeled instances. Similarly, Ritter et al. (2013) propose a
latent-variable approach to model missing data in both the knowledge base and the text.

Application in this Thesis

To create training data for our slot filler classification models, we also use distant super-
vision. We clean potentially false negative labels with patterns and apply a self-training
strategy to refine the remaining labels (see Section 3.4.2). We do not apply multi-instance
learning techniques to slot filling since we have many training samples with only one or
a few instances per entity pair. As Takamatsu et al. (2012) mention, the at-least-one
assumption of multi-instance learning fails for those cases.

In our experiments with type-aware relation extraction models, we create training data
with distant supervision and apply multi-instance learning. For a direct comparison with a
state-of-the-art approach, we follow Zeng et al. (2015) and use their loss function for multi-
instance training of neural networks. Similar to them, we do not handle false negative labels
in that setup.
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2.2 Neural Networks

In this section, we describe the neural network layers and training techniques which are
relevant to this thesis.

2.2.1 Notation

Throughout this thesis, we will use capital bold letters to refer to matrices, e.g., W , and
lowercase bold letters to refer to vectors, e.g., x. Indices refer to subelements, e.g., xi
denotes the i-th element of vector x, Wij the element in the i-th row and j-th column of
matrix W , and Wi denotes the i-th row of W .

The sign � as in a� b denotes the element-wise multiplication of the vectors a and b.
For the concatenation of two vectors, we follow Goldberg and Hirst (2017) and use [ ; ] as
shown in the following example: For a, b ∈ Rn, their concatenation is [a; b] ∈ R2n.

2.2.2 Linear Perceptron

The simplest form of a neural network, the linear perceptron (Rosenblatt, 1958), consists
of one layer and has the following output y (Bishop, 1995):

y = g(w>x+ b) (2.1)

with x ∈ Rn being the input, w ∈ Rn a weight vector, b ∈ R a bias term and g a threshold
activation function:

g(a) =

{
−1 a < 0

+1 a ≥ 0
(2.2)

The weight vector and bias term are learned during training. The dimensionality n depends
on the features used to represent the input. The linear perceptron is a linear classifier and
can, thus, only classify linearly-separable data correctly (Bishop, 1995).

2.2.3 Neural Network Layers

In contrast to the linear perceptron, the neural networks which are typically used in NLP
nowadays are non-linear classifiers and consist of several layers: an input layer, one or more
hidden layers with non-linear activation functions and an output layer. Therefore, they
are also called “deep” and training them is called “deep learning” (Bengio and LeCun,
2007; Bengio, 2009). The idea is that higher layers can learn more complex or abstract
representations based on the representations of lower layers (Bengio, 2009; Goodfellow
et al., 2016). In the following subsections, different neural network layers are described. In
particular, we present the standard input layer for NLP (lookup layer), four different hidden
layers (feed-forward layer, convolutional and pooling layer, recurrent layer and attention
layer) and two choices of output layers (softmax layer and conditional random field layer).
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Input Layer: Word Embedding Lookup Layer

The input layer of a neural network represents the input as vectors or matrices. For image
processing, for instance, the input can be a matrix of continuous pixel values. For text pro-
cessing, the choice of an input representation is more challenging since text does not have
a numeric representation. The most common input layer for text is a lookup layer, which
maps each word to a vector, called word embedding. Those word embeddings can be ran-
domly initialized and then updated during training. Alternatively, they can be pre-trained
(Erhan et al., 2010). Previous work, e.g., Kim (2014) or Nguyen and Grishman (2015),
has shown that pre-trained word embeddings lead to a better performance than randomly
initialized embeddings for a variety of sentence classification tasks including relation ex-
traction. In this thesis, we follow those observations and use pre-trained embeddings. The
main advantage of pre-training word embeddings is the possibility to make use of large
text corpora without labels. Since the training set size for many NLP tasks is limited, this
allows exploiting additional resources.

In this thesis, we use the skip-gram model of word2vec (Mikolov et al., 2013) to
train word embeddings on a May-2014 English Wikipedia corpus. The skip-gram model
trains word embeddings based on the idea that similar words occur in similar contexts
(Miller and Charles, 1991; Collobert and Weston, 2008; Erk, 2012; Baroni et al., 2014)
and should therefore get similar embeddings (Mikolov et al., 2013). This goes back to
the “distributional hypothesis” by Harris (1954) and the work by Firth (1957) who has
said “You shall know a word by the company it keeps” (Firth (1957), pp. 179). In NLP,
many methods are based on this intuition, such as Brown clusters (Brown et al., 1992).
In skip-gram, the (randomly initialized) word embedding of each word forms the input
to a log-linear classifier, which predicts the embeddings of the surrounding words, usually
in a window of five words to the left and five words to the right. The embeddings of the
input word and the context words are then updated based on the prediction error. The
skip-gram model is depicted in Figure 2.2.

The length of the resulting word embeddings is a hyperparameter of the model. In the
following equations, we will use n to denote the dimensions of the word embeddings.

Hidden Layer: Fully-Connected Feed-Forward Layer

A feed-forward layer with a hidden layer size of H modulates the input vector x ∈ Rn by
multiplying it with a weight matrix W ∈ RH×n and adding a bias vector b ∈ RH . After-
wards, a non-linear function f is applied (Bishop, 1995). This is specified in Equation 2.3
and depicted in Figure 2.3.

h = f(Wx+ b) (2.3)

This type of feed-forward layer is often also referred to as “fully-connected layer” since
each input neuron is connected to each hidden neuron, as visualized in Figure 2.3.

Popular non-linear functions are sigmoid σ, hyperbolic tangent tanh or rectified linear
units ReLu (Nair and Hinton, 2010). If not mentioned otherwise in our descriptions or
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Figure 2.2: Skip-gram model for training word embeddings (Mikolov et al., 2013).
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Figure 2.3: Schema of a feed-forward layer with five input and three hidden units.

equations, we apply the hyperbolic tangent as non-linearity, i.e., f = tanh as depicted in
Figure 2.4 and given by Equation 2.4 (Bishop, 1995).

tanh(a) =
exp(a)− exp(−a)

exp(a) + exp(−a)
(2.4)

We apply the sigmoid function, which is given in Equation 2.5, for transforming the output
scores of support vector machines (SVMs) (i.e, the distances to their hyperplanes) to
probability-like values between 0 and 1.

σ(a) =
1

1 + exp(−a)
(2.5)
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Figure 2.4: Hyperbolic tangent (tanh) function.

Hidden Layer: Convolutional and Pooling Layer

Convolutional neural networks (CNNs), i.e., neural networks with convolutional layers are
inspired by the visual system (Bengio, 2009). They can be seen as feed-forward layers with
weight sharing. Instead of connecting each input neuron to each hidden neuron, they use
filters which are slid over the input and apply convolution to calculate the values of the
hidden neurons. Convolutional layers are common in computer vision for creating repre-
sentations for images. They are able to recognize patterns independent of their position
in the input (Goodfellow et al., 2016). They have been applied to phoneme recognition
by Waibel et al. (1989) and digit recognition by LeCun et al. (1989) and LeCun (1989).
Collobert et al. (2011) have applied them to a range of different NLP tasks. Currently,
they are used frequently in the NLP community. Input and filters of the convolutional
layers are usually matrices. Thus, they can be used to create a representation for a phrase
or even a whole sentence s of length |s|, represented as a matrix X ∈ Rn×|s| whose columns
are the embeddings of the words of the sentence.

While for convolving images, the height of the filter matrix is usually much smaller than
the height of the input image, it is common in NLP to use a filter matrix that spans all
dimensions of the word embeddings. Thus, F ∈ Rn×w with n being the height and w being
the width of the filter. The filter width usually spans 2–5 words, depending on whether
bigrams, trigrams, 4-grams or 5-grams should be considered. Some work also applies
filters of multiple lengths to combine the corresponding n-grams (Kim, 2014; Nguyen and
Grishman, 2015; Vu et al., 2016).

Equation 2.6 shows the equation for convolution for the special case in which the first
dimension of the filter matrix matches the first dimension of the input matrix, as explained
above.

hi =
n∑
j=1

w∑
a=1

Xj,i+a−1 · Fj,a (2.6)

Note that a CNN directly learns the flipped version of the filter, thus we do not need to
flip F explicitely in Equation 2.6. For convolving the left and right edges of the input, X
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can be padded with zero vectors or specially trained padding embeddings (Collobert et al.,
2011; Goodfellow et al., 2016). The convolution then results in a vector h ∈ R|s|. Given
the intuition that a single filter learns to recognize only a few specific n-grams which are
relevant for the prediction of the network, there is not only one filter applied but often
hundreds of filters. The number m of filters is another hyperparameter to the model.
Bringing all convolution results together yields a matrix H ∈ Rm×|s|.

The dimensions of this matrix depend on the length |s| of the input sentence. In order
to apply the same network to all sentences of a dataset, a representation independent of
the sentence length is needed. Therefore, pooling is applied after convolution. It also
makes the extracted features invariant to their position in the input (Goodfellow et al.,
2016). Thus, the same n-gram can be recognized independent of where it occurs. This is an
important difference to a feed-forward layer. There are different possible pooling functions,
such as average or maximum. The maximum function has the advantage that it extracts
only the maximum activation from each filter, i.e., only the most important n-gram. Since
pooling is applied along the axis correponding to the sentence length (which corresponds to
the time dimension when processing a speech signal), it is sometimes referred to as “max
pooling over time” (Collobert et al., 2011; Kim, 2014).

Equation 2.7 shows max pooling.

Pmax
i = max

t∈|s|
Hi,t (2.7)

Kalchbrenner et al. (2014) argue that 1-max pooling, i.e., extracting only a single maximum
value per filter, is too restrictive and show that k-max pooling performs better in their
experiments. We follow them in this thesis and apply k-max pooling with k = 3 throughout
our experiments. In particular, k-max pooling extracts the k maximum activations from
each filter in the order of their occurrence in the filter vector, which corresponds to the order
of occurrence of the n-grams in the sentence. We argue that k-max pooling is better suited
to NLP tasks than max pooling since (i) it allows more than one extraction of important n-
grams per filter, and (ii) it preserves a (limited) amount of sequence information. Applying
k-max pooling after convolution yields a matrix P ∈ Rm×k as given in Equation 2.8.

P k−max
i = [Hi,t| rank

t∈|s|
(Hi,t) ≤ k] (2.8)

where rankt∈|s|(Hi,t) is the rank of Hi,t in the i-th row of H in descending order. Thus,
the function extracts the subsequence of the k maximum values for each row in H .

Afterwards, a bias matrix B ∈ Rm×k is added and a non-linear function f is applied.
Again, we use tanh in this thesis.

Equation 2.9 shows the output O ∈ Rm×k of the convolutional and pooling layer. In
the experiments of this thesis, we use P = P k−max

O = f(P +B) (2.9)

In practice, the results are flattened to a vector o ∈ Rm·k and often fed into a fully-
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connected feed-forward layer, which can, for instance, discover patterns across filters. Fig-
ure 2.5 depicts the schema of a convolutional and pooling layer.

|s|

n

∙ ∙

k-max

IN

flatten

OUT

m

Figure 2.5: Schema of a convolutional layer with two filters and 3-max pooling.

Hidden Layer: Recurrent Layer

Another possibility of processing a sentence, i.e., a sequence of words, is feeding the word
embeddings successively into a recurrent layer (recurrent neural network (RNN)). The
recurrent layer updates its hidden state after each input vector – like a memory – with the
information from the input and the previous hidden state. Equation 2.10 shows the hidden
layer update function of a vanilla RNN at time step t, i.e., when processing the t-th word
of the sentence.

ht = f(W xhxt +W hhht−1 + b) (2.10)

MatrixW xh ∈ RH×n weights the current input xt ∈ Rn, matrixW hh ∈ RH×H the previous
hidden state ht−1 ∈ RH and b ∈ RH is a bias vector. Note that, for a fast assessment of
the equations, the superscripts of the weight matrices indicate which parts of the neurons
they connect. For example W xh connects the input neurons x with the hidden neurons h.

Equation 2.10 results in a loop of hidden layer updates as depicted in the left part of
Figure 2.6. For training with backpropagation, which is described in Section 2.2.4, this
loop is unrolled (“backpropagation through time” (Werbos, 1990)), resulting in a deep
neural network with a high number of hidden layers (right part of Figure 2.6).

When propagating an error from the last to the first hidden layer of the unrolled net-
work, the gradients are likely to explode or vanish for long input sequences (Pascanu et al.,
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Figure 2.6: Schema of a vanilla recurrent neural network with five input and two hidden
units.

2013). To overcome this challenge, Hochreiter and Schmidhuber (1997) propose a long
short-term memory (LSTM) architecture and Gers et al. (2000) and Gers et al. (2003)
further refine it. An LSTM introduces a variety of gates (input gate it ∈ RH , forget gate
f t ∈ RH and output gate ot ∈ RH) to the recurrent layer. In the version with peep-
hole connections (Gers et al., 2003), the hidden layer update function from Equation 2.10
becomes:

ht = ot � tanh(ct) (2.11)

ot = σ(W xoxt +W hoht−1 +W coct + bo) (2.12)

ct = f t � ct−1 + it � c̃t (2.13)

c̃t = tanh(W xcxt +W hcht−1 + bc) (2.14)

f t = σ(W xfxt +W hfht−1 +W cfct−1 + bf ) (2.15)

it = σ(W xixt +W hiht−1 +W cict−1 + bi) (2.16)

with t being the index for the current time step, and σ the component-wise sigmoid func-
tion. Without peephole connections, the update functions of the gates (Equations 2.12,
2.15 and 2.16) do not depend on the previous cell states ct−1.

Chung et al. (2014) show that gated recurrent units (GRUs) (Cho et al., 2014) with only
two gates (reset gate rt ∈ RH and update gate zt ∈ RH) perform similar to LSTMs but are
more efficient in training since they introduce fewer additional parameters. The functions
for updating the hidden layer of a GRU are given in Equation 2.17 to Equation 2.20.

ht = zt � ht−1 + (1− zt)� h̃t (2.17)

h̃t = σ(W xhxt +W hh(rt � ht−1)) (2.18)

rt = σ(W xrxt +W hrht−1) (2.19)

zt = σ(W xzxt +W hzht−1) (2.20)
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with t being the index for the current time step, and σ being the component-wise sigmoid
function.
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Figure 2.7: Schema of a single LSTM (left) and GRU (right) cell (Chung et al., 2014).

The update gate zt decides whether the hidden state ht is updated while the reset gate
rt can ignore the previous hidden state ht−1. Figure 2.7 illustrates an LSTM (left) and a
GRU cell (right).

Recurrent neural networks are used for different NLP applications, such as language
modeling (Bengio et al., 2000; Mikolov et al., 2010), machine translation (Cho et al., 2014;
Bahdanau et al., 2015), relation classification (Zhang and Wang, 2015), textual entailment
(Rocktäschel et al., 2016), question answering (Hermann et al., 2015) or sequence labeling
tasks, for example, part-of-speech tagging (Huang et al., 2015; Gillick et al., 2016; Ma
and Hovy, 2016) or named-entity recognition (Huang et al., 2015; Chiu and Nichols, 2016;
Gillick et al., 2016; Lample et al., 2016; Ma and Hovy, 2016). In this thesis, we apply them
to uncertainty detection in comparison with CNNs.

Hidden Layer: Attention Layer

When applying recurrent neural networks for sentence classification or machine translation
tasks, it has been standard to use the last hidden state of the network for the predictions
since it accumulates all information from the whole input sequence. However, it is chal-
lenging or for some tasks arguably impossible to create a fixed-length vector (hidden state)
containing all relevant information for prediction, even when using gates as in LSTMs or
GRUs. To mitigate this problem, it is possible to apply max or average pooling over the
sequence of intermediate hidden states (Zhang and Wang, 2015; Nguyen and Grishman,
2016; Verga et al., 2016). Another possibility, which has been recently introduced, is at-
tention. It assigns weights to the different intermediate hidden states, depending on their
relevance for the prediction. Although first introduced for machine translation with recur-
rent neural networks as a form of automatic alignment (Bahdanau et al., 2015), it has been
successfully integrated into both RNNs and CNNs for a variety of NLP tasks (Bahdanau
et al., 2015; Hermann et al., 2015; Rush et al., 2015; He and Golub, 2016; Rocktäschel
et al., 2016; Yang et al., 2016c; Yin et al., 2016). Similar to pooling, attention is a selec-
tion mechanism that helps the network focus on the most relevant parts of a layer, either
an input or a hidden layer. This is especially beneficial for long input sequences, e.g., long
sentences or entire documents.
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The output a ∈ RA of an attention layer is defined by the following equation:

a =
T∑
i=1

αi ·X>i (2.21)

with X ∈ RT×A being the collection of T vectors over which attention should be applied.
For RNNs, X is usually the collection of intermediate hidden states. For CNNs, X can be
the matrix of convolutional results. In Chapter 4, we show that it can also be beneficial
to define X as the matrix of input word embeddings. Each vector Xi (hidden state, n-
gram representation or word embedding) is assigned one attention weight αi. The attention
weights are typically normalized to sum to one with the softmax function (see Section 2.2.3):

αi =
exp(e(Xi))∑
j exp(e(Xj))

(2.22)

with e being a scoring function that computes the attention score for a given input Xi. As
scoring functions, usually simple neural network layers are applied: Examples are a linear
layer or a fully-connected feed-forward layer. When using a linear layer, the attention
weights are computed using the following scoring function:

e(Xi) = w>X>i (2.23)

with w ∈ RA being parameters that are learned during training. This approach is also
sometimes referred to as “gating” in the literature (Meng et al., 2015). Lin et al. (2017)
apply a similar equation but add a non-linearity and call it “self-attention”:

e(Xi) = v> tanh(WX>i ) (2.24)

with W ∈ Rd×A being a matrix now, v ∈ Rd an additional vector of trainable parameters
and d another hyperparameter of the network. Alternatively, a fully-connected feed-forward
layer can be applied as follows:

e(Xi) = v> tanh(W xaX>i +W cac) (2.25)

This equation is applied, for instance, for neural machine translation (Bahdanau et al.,
2015) with c ∈ RB being the previous decoder state (i.e., the previous hidden state of
the RNN producing the translated output), W xa ∈ Rd×A and W ca ∈ Rd×B. Yang et al.
(2016c) build on this equation for document classification but randomly initialize and learn
c during training.

Output Layer: Softmax Layer

The most commonly used output layer is the softmax layer. The layer first maps its input
h ∈ RH with a linear transformation W hq ∈ RC×H to a vector q ∈ RC of the number
of output classes C and then normalizes the entries to obtain a probability distribution
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over classes. Equation 2.26 and Equation 2.27 show how the probability for class k can be
obtained.

P (y = k) =
exp(qk)∑
j exp(qj)

(2.26)

q = W hqh+ b (2.27)

Output Layer: CRF Layer

For token labeling problems, each token of the input sentence should be labeled with
an output class, such as a part-of-speech tag or a named-entity class. For this setup,
it is possible to train a recurrent neural network with a softmax layer, which computes
output class probabilities after processing each input token. However, the activations
of the softmax output layer are individual decisions for each token without taking into
account the labels of the previous or following tokens. Alternatively, recent work proposes
to replace the softmax layer by a linear-chain conditional random field (CRF) layer, e.g.,
(Collobert et al., 2011; Andor et al., 2016; Lample et al., 2016). CRF models (Lafferty
et al., 2001) calculate and optimize the probabilities of sequences of predictions instead of
individual predictions and have, thus, the ability to correct mistakes in previous decisions
and overcome the label bias problem (Lafferty et al., 2001; Andor et al., 2016). Previous
work has demonstrated that these models, which globally normalize the score of a whole
sequence of predictions, are strictly more expressive than locally normalized ones, which
treat individual predictions independent of each other (Raiman and Miller, 2017). For
more related work on CRF layers for neural networks, see Section 5.5.2.

The CRF output layer first transforms each part of its input sequence (with length
n) linearly to vectors of the number of output classes C (using Equation 2.27) and then
creates a matrix Q ∈ RC×n of all input feature scores. In a linear-chain CRF, the score
for a class depends on the input feature score of the current time step as well as on the
transition score between the class from the previous time step and the current class. These
transition scores T ∈ RC×C are learned during training. Assuming that all variables live
in the log space, the score for a whole sequence s of length n is, therefore, computed as:

score(s) =
n∑
i=0

Tsisi+1
+

n∑
i=1

Qsii (2.28)

where sj, 1 ≤ j ≤ n are the constituting items of sequence s and s0 and sn+1 are padding
symbols for defining start and end transitions.

In contrast to evaluating a softmax layer at each time step, the CRF layer first computes
a score for the whole sequence s and then calculates a sequence probability by normalizing
it with the sum over the scores of all possible label sequences S. Equation 2.29 shows this.

P (y = s) =
exp(score(s))∑
s̃∈S exp(score(s̃))

(2.29)
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Since this normalization is on the global level of sequences and not on the local level of
tokens, we use the term “global normalization” interchangeably to “output layer based
on structured prediction”, following other works (Zhou et al., 2015a; Andor et al., 2016;
Raiman and Miller, 2017; Zhang et al., 2017a). As in traditional CRF models, the forward
and the Viterbi algorithm (Rabiner, 1989) are applied for computing the sum over the
scores of all possible sequences and the score of the best sequence, respectively.

2.2.4 Training

Due to the use of non-linear functions in the network, a closed form solution for optimizing
the network, i.e., minimizing its error on the training set, is not possible (Bishop, 1995).
Therefore, neural networks are commonly trained with (stochastic) gradient descent. Given
a training example or a batch of examples, an objective function is evaluated, which shows
how well the network can deal with this example / batch. Then, the weights of the
network are updated based on the negative gradients of the objective function with respect
to the weights, in order to minimize the error (loss) of the network (Bishop, 1995). In the
following paragraphs, we present the cross-entropy loss function, two possibilities to update
the weights of a neural network and how the error of the network is backpropagated in order
to update the weights of the previous hidden layers. Moreover, we discuss hyperparameter
optimization and regularization.

Objective Function

The objective function is the function which is optimized during training. It measures
how well the network performs, usually by calculating its loss on the training set. The
objective function can consist of one or more loss functions, also called cost functions. In
this thesis, we apply cross-entropy loss, the function given by the negative log-likelihood
between the training data and model distribution (Bishop, 2006; Goodfellow et al., 2016).
The cost function is typically computed as an average over the training set to approximate
the following function:

L = −E(x,t)∼pdata logPθ(t|x) (2.30)

with θ being the parameters of the model, pdata the empirical distribution defined by the
training set, t the true labels and Pθ(t|x) the probability of the model for output t given
input x (Goodfellow et al., 2016).

Parameter Update

For updating the parameters θ of the model, the gradients of the loss function are computed
and an optimization step is taken in the direction of the negative gradients in order to
reduce the value of the loss. The length of the step depends on the value of the gradients
as well as on a learning rate η. Equation 2.31 shows the update step for parameter Wji ∈ θ.

Wji := Wji − η ·
∂L
∂Wji

(2.31)



2.2 Neural Networks 21

Σ

z
1

z
2

z
i

z
m

a
j

...

W
ji

...

forward

z
1

z
n

z
i

δ
j

W
ji

backward

δ
1

δ
n

z
j

W
nj

...
Layer

l

l-1

Layer
l+1

l-1

l

Figure 2.8: Schematic view of a single hidden neuron. Left: forward pass, right: backward
pass. Figure inspired by (Bishop, 1995).

Alternatively, it is possible to apply parameter-specific learning rates. An example is
Adagrad (Duchi et al., 2011), which assigns lower learning rates to frequently updated
parameters and higher learning rates to less frequently updated ones. In particular, the
update equation for the k-th parameter θk ∈ θ becomes:

θk := θk −
η

Gkk

· ∂L
∂θk

(2.32)

with G being a diagonal matrix which stores the l2 norms of the previous gradients g of

θ. To be more specific, for update step t: G
(t)
kk =

√∑t
l=1(g

(l)
k )2.

Backpropagation

In order to calculate ∂L
∂Wji

, i.e., the gradient of the objective function with respect to a

specific parameter Wji, the error of the network is passed backwards through the network
up to parameter Wji by applying the chain rule as shown in Equation 2.33 (Rumelhart
et al., 1986; Bishop, 1995, 2006; LeCun et al., 2012; Goodfellow et al., 2016).

∂L
∂Wji

=
∂L
∂aj
· ∂aj
∂Wji

(2.33)

with aj being the output of the unit which Wji points to, i.e.,

aj =
∑
k

Wjk · zk (2.34)

∂aj
∂Wji

= zi (2.35)

with zk being the activations of the inputs of the unit, c.f., Figure 2.8. (The input activa-
tions for the next layer are derived by applying an activation function f to the outputs aj:
zj = f(aj).)
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The first factor of Equation 2.33, δj := ∂L
∂aj

, is the error of unit aj. Substituting δj and

applying Equation 2.35, then yields:

∂L
∂Wji

= δj · zi (2.36)

Thus, for getting the partial derivatives for the different weights, it is sufficient to calculate
the errors δj and multiply them with the input activations zi. The errors δj can be computed
recursively by applying the chain rule again, starting from the output layer and then going
backwards through the network. This is depicted in the right part of Figure 2.8. For more
details, see (Bishop, 2006). Therefore, the update algorithm is called backpropagation
(Rumelhart et al., 1986).

Minibatch Training

After outlining how the weights of the network can be updated, the question arises when
and how often an update step should be performed. In gradient descent training, the loss
function is evaluated and averaged over the whole training set. This is also referred to as
batch learning since it works on an entire batch of data at once and performs only one
update step of the model parameters θ. In contrast, stochastic gradient descent (online
learning) evaluates the loss function on one training example at a time and updates the
parameters after each step (LeCun et al., 2012). Following common practice in the NLP
community, we take an intermediate approach and perform minibatch training (Bengio,
2012). In particular, we average the loss function over a few training examples – between
10 and 100 – and update the parameters after each of those training batches. The batchsize
is treated as a hyperparameter of our models and optimized on the development set.

Development Set

The development set, also called validation set, is a held-out part of the training set used
to monitor the performance of the model on unseen data during training and estimate its
generalization ability (see below). It can also be used for selecting the best hyperparameter
values.

Hyperparameter Optimization

Hyperparameters are variables which need to be chosen before the model is trained (Bengio,
2012). Examples are hidden layer sizes, learning rates, minibatch sizes or number of
convolutional filters. In order to obtain a good set of hyperparameters, it is common to
perform grid search over a pre-defined set of values. The model is trained on each possible
combination of hyperparameters and then tested on the development set. Based on those
results, the best set of hyperparameters is chosen. In this thesis, we follow previous work
and use grid search for hyperparameter selection. An alternative option is, for example,
random sampling of hyperparameters (Bengio, 2012).
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Regularization

Since neural networks are trained on only a limited amount of data, they tend to get
biased to the regularities occurring in this set of samples from the real world (Bishop,
1995; Domingos, 2012; Srivastava et al., 2014). This means that although the error on
the training set decreases during training, the error on unseen examples starts to increase
again at some point (Prechelt, 1998). In order to avoid or reduce such overfitting to the
training set and improve generalizability to new test data, we employ the following widely
used regularization techniques in this thesis: early stopping on a development set, and l2
regularization of the parameter values.

Training is typically performed in epochs. In one training epoch, the parameters of
the network are updated subsequently on the whole training set (Bengio, 2012). When
performing early stopping, the performance of the model on the development set is moni-
tored during training, for instance after each training epoch. When the performance on the
development set drops, this might indicate overfitting to the training set. In this case, the
learning rate can be reduced for the following epochs. After training for a specific number
of epochs, not the final model is saved but that intermediate model that has performed
best on the development set. The intuition behind this is that this intermediate model has
the best generalization ability to unseen data (Bishop, 1995; Prechelt, 1998; Bishop, 2006;
Bengio, 2012; Goodfellow et al., 2016).

For l2 regularization, the l2 norm of the parameters is added to the objective function
of the neural network (Bishop, 1995, 2006; Bengio, 2012; Goodfellow et al., 2016). This
constrains the network by preventing the parameter values from getting too large and is,
therefore, also called “weight decay” (Krogh and Hertz, 1992). It results in layers that put
weight on fewer of the input features (Goodfellow et al., 2016). The objective function
from Equation 2.30 changes to:

L̃ = L+ λ · θ>θ (2.37)

with θ being the parameters of the model and λ being the weight for the regularization
term.

Other possible regularization techniques are, for instance, dropout (Srivastava et al.,
2014), training with noise (Bishop, 1995) or soft weight sharing (Nowlan and Hinton, 1992).

2.2.5 Implementation of Neural Networks

We implement the neural networks developed in this thesis with Theano (Bergstra et al.,
2010; Theano Development Team, 2016), a widely-used python-based framework for imple-
menting and training neural networks. In particular, we define a computation graph, which
is compiled and can be run either on CPUs or a GPU. Due to internal graph optimization
steps and the generation of optimized C++ or CUDA code during compiling, the network
can be trained efficiently despite the python-based interface. The code for the different
chapters of this thesis is implemented as different projects. However, several modules, such
as input layer, convolutional or feed-forward layers are re-used across tasks.
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Chapter 3

Slot Filling

Erklärung nach §8 Absatz 5 der Promotionsordnung: This chapter cov-
ers work published at the peer-reviewed international conference North Amer-
ican Chapter of the Association for Computational Linguistics (NAACL) in
2016 (Adel et al., 2016), as well as the slot filling system presented at the Text
Analysis Conference (TAC) in 2014 and 2015 (Adel and Schütze, 2014, 2015).
Moreover, some of the coreference resolution investigations are based on (Adel
and Schütze, 2017a), which has been made available on a pre-print server.

For a declaration of co-authorship and attribution, see page xxv and following.

3.1 Task

The TAC KBP slot filling task addresses the challenge of gathering information about en-
tities (persons, organizations or geo-political entities) from a large amount of unstructured
text data (Ji and Grishman, 2011; Surdeanu, 2013; Surdeanu and Ji, 2014). The goal is
to fill the information into an either empty or incomplete knowledge base. As defined in
Section 2.1.1, the formal description of the task is to find e2 for (e1, r, e2) for given entity
e1 and relation r based on evidence in a large text corpus. In this chapter, we will inter-
changeably use the terms “relations” and “slots” and refer to second relation arguments e2

as “slot fillers”. The different relations (slots) which are considered in the slot filling task
are listed in the appendix in Table A.1.

3.1.1 Input

The slot filling task is query-based, i.e., the input to the slot filling systems are queries.
A query consists of the name of the entity (called “query entity” in the remainder of this
chapter), the id of a document in which the query entity appears, as well as begin and end
offsets of the entity in the document. This given document (referred to as “starting point”)
can be used for disambiguating entities with the same name. Moreover, the type of the
entity (PER, ORG or GPE) is provided and the slot which needs to be filled. The official slot
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filling evaluations distinguish between zero-hop and one-hop queries. For zero-hop queries,
one slot is provided and needs to be filled, thus e2 needs to be determined for a triple
(e1, r, e2). One-hop queries consist of two slots. For the first relation r1, e2 with (e1, r1, e2)
needs to be found and for the second relation r2, e3 with (e2, r2, e3) should be filled based
on the previous result e2 of the system. This corresponds to taking one hop, i.e., following
two edges, in the corresponding knowledge graph.

The following one-hop query is an example input for a slot filling system (fictional query
with a random query id and document id):

<query id="CSSF15_ENG_012abc3456">

<name>Apple</name>

<docid>NYT_ENG_20131203.4567</docid>

<beg>222</beg>

<end>226</end>

<enttype>org</enttype>

<slot0>org:founded_by</slot0>

<slot1>per:date_of_birth</slot1>

</query>

To answer this query, a slot filling system needs to access a given document collection and
extract the founders of the organization Apple as well as their dates of birth. The slots
can be single-valued (like per:date of birth: a person has only one date of birth) or
list-valued (like org:founded by: a company might have more than one founder).

3.1.2 Output

The output of the system is a tab-separated string consisting of the following fields:

• query id (the id from the input query)

• slot (the slot from the input query, i.e., in the example above: org:founded by for
the first relation and per:date of birth for the second relation)

• proof (the document id as well as start and end offsets for a text snippet that supports
the slot filler)

• slot filler (i.e., the extracted e2 or e3)

• type of slot filler (can be PER, ORG, GPE or STRING)

• document id as well as start and end offsets for the slot filler

• confidence score of the system

In the official evaluations, the outputs of the participating systems are assessed manually.
Individual results for both hops as well as overall results are reported.
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3.1.3 Challenges

The slot filling task comprises a variety of NLP challenges of various characteristics (Min
and Grishman, 2012; Pink et al., 2014; Surdeanu and Ji, 2014). The most important ones
are given in this subsection.

Alternate Names for the Same Entity

“Cassius Marcellus Clay Jr.”, “Muhammad Ali” and “Mohammad Ali”, for example, all
refer to the American professional boxer. Since the given query only provides one of these
names, the slot filling system needs to access additional sources of background knowledge,
which inform it about possible alternate names.

Ambiguous Names for Different Entities

“Michael Jordan”, for example, may refer to an American professional basketball player, to
an actor, to an English business man, to a professor or to any other person with that name.
In order to avoid filling slots of the professor Michael Jordan with information about the
basketball player, entity disambiguation, such as entity linking, needs to be performed.

Misspellings

Especially in user-generated web documents, misspellings are common. Misspellings of
names may prevent systems from finding the query entity in the document and, therefore,
lead to the disregard of possibly relevant documents or sentences. Misspellings in sentences
expressing the query relation may cause wrong predictions of the slot filler classification
component.

Coreference Resolution

Entities are often referred to with anaphoric pronouns or noun phrases, such as “the 60-
year-old” or “the New York–based company”. For extracting possible slot filler candidates
and correctly classifying whether there is a relation between the filler candidate and the
query entity, those anaphoric mentions need to be resolved.

Location Inference

If the query relation is, for example, per:country of birth, i.e., the country of birth of a
person, but the slot filling system only extracts a proof for the city of birth in the document
collection, it is possible to infer the country of birth. To accomplish this, the slot filling
system needs to extract a proof sentence saying which country the extracted city belongs
to.
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Cross-document Inference

Location inference often happens across documents. There are also other possible cross-
document inferences. For example, one document might mention relevant information
about the current US president while the name of the president is given in another docu-
ment.

Documents from Different Domains

The provided text corpus contains documents from different domains (2009–2014: news,
web documents and discussion forum entries, 2015: news and discussion forum entries).
Domain mismatches pose challenges to machine learning models, as shown for slot filler
classification models in Section 3.5.2.

Pipeline Effects

State-of-the-art slot filling systems consist of a pipeline of different modules (Ji and Grish-
man, 2011). This means that errors from one module are propagated to the next module.
Especially recall losses cannot be recovered in the subsequent modules (Pink et al., 2014).
Errors in sentence boundary detection or named entity recognition might not immediately
lead to losses but might complicate the task of the slot filler classification component.

Relation Extraction

Relation extraction itself is a challenging NLP task since a relation can be expressed in
many different ways. Many slot filling systems rely on pattern matching approaches, which
provide a high precision but cannot cover the large variety of natural language. Apart from
that, relation extraction in the context of slot filling has to deal with additional challenges
coming from different domains from the text documents or from pipeline effects: The
extracted slot filler candidates as well as the extracted possible proof sentences may be in-
complete or too long. Moreover, Zhang and Wang (2015) show that in a TAC KBP–based
dataset, the context lengths are much larger than in two traditional benchmark datasets
for relation extraction (SemEval-2010 task 8 (Hendrickx et al., 2010) and NYT+Freebase
(Riedel et al., 2010)). Huang et al. (2017) further argue that the query entity and filler can-
didate are often separated by more words than in traditional relation extraction datasets.
This makes the extraction task more challenging. Additionally, there is no official training
dataset available and most systems rely on noisy training examples labeled with distant
supervision (see Section 2.1.2).

One-hop Queries

The challenge of one-hop queries can also be seen as a pipeline effect. The query entities
for the second slot are given by the slot fillers from the first slot. Fillers for the second
slot will only be assessed as correct if both the query entity and the slot filler are correct.
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Thus, a wrong answer in the first slot will inevitably lead to errors in the second slot.
This can have negative effects on both the precision and the recall of the system. Recall
decreases when the system fails to find the correct answer for the first slot since it is not
possible to find correct answers for the second slot in that case. Precision decreases when
the system extracts a wrong slot filler for the first slot which can have many (also wrong)
answers in the second slot. Consider a query with the following two slots as an example:
<slot0>org:country of headquarters</slot0> and <slot1>gpe:residents of coun-

try</slot1>. If the correct filler for the first slot is “Iceland” but the system wrongly
extracts “USA”, there is a high chance that it will extract a large number of slot fillers for
the second slot which will all be assessed as wrong because the query entity is wrong.

3.2 The CIS Slot Filling System

For answering the input queries, a variety of natural language processing steps needs to
be performed. Our slot filling system addresses most of the challenges mentioned in Sec-
tion 3.1.3 (except for cross-document inference, which we only consider in the context of
location inference). It approaches the slot filling task in a modular way. This has several
advantages, including extensibility, componentwise analyzability (see Section 3.6.2) and
modular development. In the following section, the different components of our system
are described. Figure 3.1 provides an overview of the system. The blue boxes show its
components, the arrows illustrate the information flow between them. Given the input
(the query and the document collection), an alias component extracts aliases for the query
entity and an information retrieval component retrieves documents mentioning the name
of the query entity. The retrieved documents are further filtered by an entity linking
component, limiting the set of documents to documents mentioning the entity from the
query (as opposed to another entity with the same name). Afterwards, the candidate
extraction component selects sentences mentioning the query entity and extracts a set of
slot filler candidates. These candidates are scored by a slot filler classification compo-
nent depending on how likely they fill the slot from the query. Finally, the postprocessing
component selects the best slot fillers for output. We provide the code of our system at
http://cistern.cis.lmu.de/CIS_SlotFilling.

3.2.1 Component Description

Alias Component

In order to address the challenge of multiple names for the same entity, the query is ex-
panded with aliases of the query entity. For this, we use a list of possible aliases, which we
have compiled based on Wikipedia redirects extracted with the Java-based Wikipedia inter-
face JWPL (Ferschke et al., 2011).1 If, for example, a user queries “Barack H. Obama” on

1We use a Wikipedia dump from July 2014.

http://cistern.cis.lmu.de/CIS_SlotFilling
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Figure 3.1: System overview: Basic components of the CIS slot filling system.

Wikipedia, he/she will be redirected to the page of “Barack Obama”. From this informa-
tion, “Barack H. Obama” can be extracted as an alias for “Barack Obama”. Unfortunately,
the data resulting from those redirects can sometimes be noisy. For example, querying for
“Eric Iler” redirects to “Jamie Lee Jones” who is a different entity but related via news
stories. Another example is “Gaynor Holmes” who will be extracted as an alias for “BBC
Scotland”, an entity with even a different type. Therefore, we apply several constraints
for cleaning the list of aliases, such as minimum number of characters of alias names or no
aliases with another named entity type as the given entity.

After expanding the query with possible aliases, we also apply some rules based on the
type of the entity (which is provided by the query): If the query entity is an organization,
we also add various company-specific suffixes to the list of aliases, such as “Corp”, “Co”,
“Inc”. If the query entity is a person, we include nicknames taken from the web2 into the
list of aliases.

A high-level overview of the alias component is depicted in Figure 3.2.

2male nicknames: http://usefulenglishru/vocabulary/mensnames,
female nicknames: http://usefulenglishru/vocabulary/womensnames.

http://usefulenglishru/vocabulary/mensnames
http://usefulenglishru/vocabulary/womensnames
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Information Retrieval Component

Based on the name of the query entity and its aliases, documents mentioning this name
are retrieved to reduce the large search space to a limited number of relevant documents.
For this retrieval, we do not use all extracted aliases since this has led to many false
positive retrievals in initial experiments. Instead, we compute the Levenshtein distances
(Levenshtein, 1966) between the query name and each alias and use only that alias with
the lowest distance to the query name. We call it “IR alias”. This helps to cover spelling
variations and, thus increase recall, while keeping the number of false positives low. Note
that we use the full set of aliases later in the candidate extraction component.

For the document retrieval, we apply the open-source information retrieval (IR) system
Terrier (Ounis et al., 2006). To be able to use it with the corpus provided by the slot
filling task, we clean the corpus, e.g., remove html tags from it, and index the documents
with Terrier. When searching for the query entity in the corpus, we create the following
queries for information retrieval:

• q1 =
∧
i ti, the conjunction of the tokens ti of the query entity name

• q2 =
∧
i ai, the conjunction of the tokens ai of the IR alias

• q3 =
∨
i ti, the disjunction of the tokens ti of the query entity name

For geo-political entities, we only use q1 and q2 (conjunction of tokens). In prior ex-
periments, we have also investigated phrase queries but they have not worked well with
spelling variations, resulting in a considerably lower overall recall of the system. After
retrieval, we instead filter the extracted list of documents by fuzzy string matching with
the whole name and IR alias to skip documents mentioning both the first and the last
name of a person but not in a phrase.

The results of Terrier for q1 and q2, the two queries with conjunction, are merged
and sorted according to the relevance score Terrier assigned to them. Afterwards, they
are restricted to the top 300 documents. If q1 and q2 resulted in less than 300 documents,
the top results from q3 are added. The reason is that we expect the results from q3 to
be noiser than the results from the two conjunction queries. Therefore, we only use them
if necessary to provide the slot filling pipeline with a reasonable number of documents.
Thus, the number of documents which are passed to the next pipeline components is
min(|rq1| + |rq2| + |rq3|, 300) with |rqx| denoting the number of documents which Terrier

returned for query qx.
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Note that we use the term “relevant” to denote those top documents returned by
Terrier. An overview of the information retrieval component is provided in Figure 3.3.

Entity Linking Component

In order to cope with the challenge of ambiguous names, i.e., different entities having the
same name, we apply entity linking (EL). In particular, we use the entity linking system
WAT (Piccinno and Ferragina, 2014), which links entities in a given sentence to Wikipedia
based on co-occurring entities. It outputs the Wikipedia ids of all entities occurring in
the input. We apply WAT to the query entity and the context given by the starting point
and offsets of the query. If the query entity cannot be linked to Wikipedia, we do not
perform entity linking but process all documents mentioning the query entity name. If
WAT extracts a Wikipedia id for the query entity, we apply it to all possible mentions of the
query entity found in the documents extracted by Terrier and compare their Wikipedia
id to the Wikipedia id of the query entity. If they do not match, we delete the document
from the set of documents.

For the following pipeline steps, we limit the set of documents to the top 100 docu-
ments (ordered by the relevance score from Terrier, see Section 3.2.1, and filtered by the
entity linking component). This number has been determined heuristically based on prior
experiments: We have observed that 100 documents are a good trade-off between recall
and processing time.

Figure 3.4 illustrates the entity linking component.

Candidate Extraction Component

The candidate extraction component extracts possible slot fillers (filler candidates) based
on sentences mentioning the query entity. Figure 3.5 provides an overview of the different
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steps performed.

Genre-specific Document Processing. First, the documents are split into sentences
using Stanford CoreNLP (Manning et al., 2014). Then, they are cleaned, e.g., from html
tags.

The TAC 2015 evaluation corpus consists of documents from different genres: news and
discussion forums. Since those genres have different characteristics, our document process-
ing is genre-dependent: For discussion forum documents, we apply additional cleaning
steps, such as ignoring text inside <quote> tags and normalizing casing of strings (e.g.,
mapping “sErVice” to “service”). We also use different CoreNLP flags for the different
genres when performing sentence splitting. An initial analysis has shown that the genre-
specific processing is crucial for the precision of the system since it reduces the noise in the
input to the following pipeline components.

Sentence extraction. In order to find all sentences mentioning the query entity, we
apply two strategies: fuzzy string matching with all the aliases of the query entity name,
and automatic coreference resolution.

For string matching, we compute the Levenshtein distance and apply a heuristical
threshold dependent on the type and length of the string: A string is regarded a mention
of the query entity if it exactly matches one of its aliases in case it is an acronym or if less
than 1

7
of its characters are different to one of the aliases otherwise. Moreover, for a fuzzy

string match, our system still requires the first letters to be the same, with the exception
of K ↔ C, I ↔ Y and F ↔ P , which can be interchanged to cover spelling variations.
Note that fuzzy string matching is more generally applicable to sentence extraction than,
for example, WAT since it also works for rare entities without a Wikipedia page.

For automatic coreference resolution, we apply Stanford CoreNLP. The importance of
coreference resolution for slot filling is widely acknowledged (Min and Grishman, 2012;
Surdeanu and Ji, 2014). In our system, we use coreference resolution not only for the
query entity but also when extracting the filler candidate if the type of the filler candidate
is PER. Since this is the case for 32% of all slots, coreference resolution for filler candidates
can improve the recall of the system considerably. For example, for the slot org:students
and the sentence “He went to University of Munich”, we would extract the referent of the
pronoun “he” as a possible filler candidate. In Section 3.6.4, we show the positive impact
of coreference resolution on the slot filling pipeline.

Errors of automatic coreference resolution affect the final performance of the slot filling
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system. While coreference resolution increases the number of false positive filler candi-
dates,3 we find that almost all of those can be ruled out by the slot filler classification
component of our system. The errors from which the system cannot recover in the subse-
quent modules are recall losses (Pink et al., 2014). In a manual analysis, we found three
common errors of coreference resolution which can lead to recall losses:

• Wrongly linked pronoun chains: The pronoun mentions are linked to the wrong entity.

• Unlinked pronoun chains: The chains only consist of pronouns. Without an explicit
postprocessing, it is, therefore, not possible to determine whether they refer to the
query entity or to another entity.

• No recognition of nominal anaphora: Phrases like “the 30-year-old” are often not
recognized as being coreferent to an entity.

To cope with the last error category, our system employs the following heuristic: If the
entity from the query occurs in sentence t and sentence t+ 1 starts with a phrase like “the
XX-year-old”, “the XX-based company”, “the XX-born” and this phrase is not followed
by another entity, this phrase is considered to be coreferent to the query entity.

Filler candidate extraction. Filler candidates are extracted based on a manually
compiled mapping of slots to expected named entity types of the fillers. First, CoreNLP is
applied to tag the words of the extracted sentences with named entity tags. The 7-class
tag list is PER, ORG, LOC, DATE, NUMBER, MISC, O (Finkel et al., 2005).

Second, the system extracts possible filler candidates based on the mapping. For ex-
ample, the slot per:date of birth can only have DATE fillers, thus, the system considers
all words and phrases tagged with DATE as filler candidates. A slot like org:members, in
contrast, can have organizations, locations and persons as fillers. Therefore, the system
considers all words and phrases tagged with either PER, ORG or LOC as filler candidates.

The candidate extraction step is different for slots with string fillers, namely per:title,
per:charges, per:religion, org:political religious affiliation and per:cause

of death. For them, we automatically compile lists of possible fillers from Freebase (Bol-
lacker et al., 2008) and manually clean them in order to improve their precision. Another
exception is the slot org:website for which we apply a regular expression which matches
URLs.

Finally, the candidate extraction component filters out impossible filler candidates, such
as floating point numbers for org:number of employees or per:age.

Slot Filler Classification Component

The extracted filler candidates are classified into valid and invalid slot fillers based on their
textual context. This is a relation classification task but poses the additional challenges
that no official training data is available and that the classifier inputs are the results from

3Pink et al. (2014) even argue that the higher precision without coreference resolution might lead to
better overall results than the higher recall with coreference.
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previous pipeline steps and can, thus, be noisy (e.g., due to wrong coreference resolution,
wrong named entity recognition or insufficiently cleaned text snippets from discussion
forum documents) or consist of too long or incomplete sentences (due to erroneous sentence
splitting).

For classifying a filler candidate with its context as correct or wrong, we use the distantly
supervised patterns published by Roth et al. (2013), and train support vector machines
(SVMs) as well as convolutional neural networks (CNNs). The scores of those models are
combined by linear interpolation. The interpolation weights are tuned based on previous
TAC evaluation data.

An overview of the slot filler classification component is given in Figure 3.6. Section 3.3
provides more information on this module, which can be considered as one of the most
important parts of the slot filling system since it directly influences the output.

Postprocessing Component

The last step of the slot filling pipeline is a postprocessing of the results. Afterwards, the
valid filler candidates are output along with their confidence scores from the slot filler classi-
fication component and their supporting contexts. Figure 3.7 illustrates the postprocessing
component.

Filtering of Filler Candidates. The classification module assigns scores to each
filler candidate, which indicate how likely it is a valid filler for the query slot given its
surrounding context. The postprocessing component discards all filler candidates with a
score below a specific threshold. We tune slot-specific thresholds in order to maximize the
slot filling system performance on previous TAC evaluation data. For the second slot (hop
1) of one-hop queries, we increase the thresholds by 0.1 in order to mitigate the challenge
of many false positive answers as described in Section 3.1.3.
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Location Disambiguation. In our slot filler classification module, we do not distin-
guish between cities, states or provinces, and countries (see Section 3.3.1). For the system
output, however, the extracted locations need to be disambiguated. To decide to which
category a location belongs, we employ city, state and country lists.4

Location Inference. If the system has extracted a city or state while the slot given
in the query is a state or country, the postprocessing module automatically infers the
corresponding state or country based on city-to-state, city-to-country and state-to-country
mappings extracted from Freebase.

Date Normalization. The expected output format for dates is YYYY-MM-DD.
Therefore, the extracted fillers for date slots are normalized to match this format.

Ranking of Filler Candidates. Finally, the classification score of the filler candidates
is used to rank the extracted slot fillers. For single-valued slots, only the top filler candidate
is output. For list-valued slots, the top N filler candidates are output. The threshold N is
slot-dependent and has been determined heuristically on previous evaluation data in order
to balance precision and recall of the system.

3.3 Models for Slot Filler Classification

In this section, the models used for slot filler classification are described: Those are a
pattern matcher based on distantly supervised patterns, support vector machines and
convolutional neural networks. Afterwards, we explain how we combine the outputs of the
different models.

3.3.1 General Remarks

In general, we apply all three models to each slot filler candidate and its context, and merge
their results afterwards by linear interpolation with slot-dependent weights. However, there
are slots for which only little training data (less than 100 positive examples, see Table A.3)
could be extracted. Those slots are per:charges, per:other family, per:religion,
org:number of employees members, org:date dissolved, org:shareholders, org:pol-
itical religious affiliation. For them, we do not train classifiers but only apply
pattern matching.

Label List

We do not use the whole slot list as labels for the classification models. In particular,
we use only one label for each slot and its inverse to avoid redundant training. To model
inverse slots, we reverse the two relation arguments in the input. We also merge the “city”,
“country” and “state-or-province” labels to one “location” label since we expect their fillers
to appear in the same contexts.

4from Freebase, http://www.listofcountriesoftheworld.com, and Wikipedia (http://en.
wikipedia.org/wiki/List_of_U.S._state_abbreviations).

http://www.listofcountriesoftheworld.com
http://en.wikipedia.org/wiki/List_of_U.S._state_abbreviations
http://en.wikipedia.org/wiki/List_of_U.S._state_abbreviations
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binary multiclass
input class-specific data data from all classes
output 2 classes (yes or no) |C|+1 classes (one negative class)
negative examples negative only for current class negative for all classes
number of models |C| 1

Table 3.1: Comparison of binary and multiclass models. |C| denotes the number of positive
classes.

Input for the Models

As input, we only use information which is directly available from the input context, i.e.,
words and combinations of words, but no hand-crafted features like part-of-speech tags or
dependency paths. Thus, the models can learn which input words or phrases are relevant.
With this, we want to avoid additional noise in the inputs due to wrong tags or wrong
dependency paths. For the support vector machine and the convolutional neural network,
we split the input context at the relation arguments (query entity and slot filler candidate)
into three parts: left of the arguments (left context), between the arguments (middle
context) and right of them (right context). The relation arguments are not part of the
input to prevent the models from overfitting to entities of the training dataset. We expect
this to be useful especially for slot filling since many queries include rare or unseen entities.

Binary Models vs. Multiclass Models

Having binary models, i.e., one model per slot, facilitates extensions of the slot list with
more slots since the existing models do not need to be re-trained. However, the more slots
there are, the more models need to be optimized, maintained and evaluated. Also, com-
parisons of confidence scores across the individual models might not always be justifiable
theoretically since there is no objective across slots which correlates their scores to each
other. Therefore, we train both binary and multiclass models and compare their results in
our experiments. Table 3.1 provides a direct comparison of the most important differences
of binary and multiclass models.

3.3.2 Distantly Supervised Patterns

Pattern matchers can provide high precision judgements for slot filler classification. How-
ever, they suffer from coverage problems, especially when they are manually created. Thus,
they provide only low recall results. Roth et al. (2013) publish distantly supervised pat-
terns, which consist of the token sequences between two relation arguments found by distant
supervision (see Section 2.1.2) using Freebase relations and the TAC source corpus. Due
to the distant supervision, we expect their recall to be higher than with manual patterns
but their precision to be lower. To increase precision, Roth and Klakow (2013) apply noise
reduction methods, which reduce the number of false positive matches. We use the result-
ing pattern set for a pattern matching component in our slot filling system. Table A.2 in
the appendix provides statistics about the pattern set.
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3.3.3 Support Vector Machines

Support vector machines (SVMs) are maximum-margin classifiers. This means that they
try to find a linear decision boundary between two classes which maximizes the distance
(“margin”) to both classes and should, thus, be able to generalize better to unseen data
(Vapnik, 1995; Bishop, 2006). The decision boundary can be unambiguously defined by
a subset of data points, so-called “support vectors”, which are located at the boundaries
of the maximum-margin hyperplane. In order to discriminate data which is not linearly
separable in the original feature space, SVMs with non-linear kernels can be applied that
move the data into a higher-dimensional space in which the data points might be linearly
separable (Bishop, 2006). In this thesis, we apply linear support vector machines since
they are often sufficient for natural language processing tasks. The main reason is that
bag-of-word text representations have a high number of features and, therefore, mapping
the data to a higher dimensional space does not improve performance (Hsu et al., 2003).

Input Features

For the SVMs, we use the following set of features:

• 1-gram, 2-gram and 3-gram bag-of-word vector of the left context

• 1-gram, 2-gram and 3-gram bag-of-word vector of the middle context

• 1-gram, 2-gram and 3-gram bag-of-word vector of the right context

• skip 3-gram, skip 4-gram, skip 5-gram bag-of-word vector of the middle context

• flag indicating whether the query entity or the filler candidate appears first in the
sentence

A skip n-gram keeps only the first token and the last token of an n-gram and wildcards
the tokens in the middle. For example, “founder of” would be a possible skip 4-gram of
the context “founder and director of”.

Implementation

The SVMs are implemented with liblinear (Fan et al., 2008) by using LinearSVC from scikit
learn.5 For training the multiclass SVM, we apply automatically adjusted class weights
and the one-vs-rest training strategy. To extract confidence values from the SVMs, we
apply the sigmoid function (cf., Equation 2.5), which maps the distances of the examples
to the decision hyperplane to a value v ∈ [0, 1].

5For documentation, see http://scikit-learn.org/stable/modules/generated/sklearn.svm.

LinearSVC.html.

http://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
http://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
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3.3.4 Convolutional Neural Networks

Convolutional neural networks (CNNs, see Section 2.2.3) are successfully applied to several
NLP tasks (Collobert et al., 2011; Kalchbrenner et al., 2014), including relation classifi-
cation (Zeng et al., 2014; dos Santos et al., 2015). We propose to integrate them into a
slot filling pipeline. In contrast to prior work, we train them on noisy distantly supervised
training data and use them in a pipeline, which can provide them with noisy or wrong
inputs. Our results show that they are still able to classify the relations and improve the
final performance of the system.

CNNs are promising models for slot filler classification because of the following reasons:

(i) They recognize n-gram patterns independent of their position in the sentence.

(ii) They recognize similar words or phrases since they use word embeddings as input
and create internal phrase and sentence representations.

This section describes contextCNNs, the convolutional neural networks we have de-
signed for the slot filler classification component. Source code and implementation details
are provided at http://cistern.cis.lmu.de/CIS_SlotFilling.

Input

For the contextCNNs, we split the sentence at the positions of the relation arguments into
three contexts (left, middle and right) and extract the following inputs:

• embeddings of the words of the left context

• embeddings of the words of the middle context

• embeddings of the words of the right context

• flag indicating whether the query entity or the filler candidate appears first in the
sentence

The words of the input sentence are represented with word embeddings trained with
word2vec (Mikolov et al., 2013) on English Wikipedia (cf., Section 2.2.3).

Model Architecture

The network applies convolution to each of the three contexts individually with convolu-
tional filter weights shared across them. The number of filter matrices m ∈ {100, 300, 1000}
is tuned on the development set. The hyperparameters of all models are provided in the
appendix in Section A.5. After convolution, 3-max pooling (Kalchbrenner et al., 2014) is
applied. For equations of the convolutional layer and k-max pooling, see Section 2.2.3.

After 3-max pooling, the results are concatenated to one large vector and extended with
a flag v indicating whether the entity or the filler candidate appears first in the sentence.

http://cistern.cis.lmu.de/CIS_SlotFilling
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The final vector is passed to a multi-layer perceptron with one hidden layer, which creates
a sentence representation s ∈ RH by combining the results of the different convolutional
filters.

Finally, a softmax layer is applied to compute the probabilities P (r|c) of the relation
labels r given the initial split context c. For binary models, one model per output label is
trained and the softmax layer classifies whether the sentence expresses the slot (output 1)
or not (output 0). For multiclass models, there is only one model in total and the softmax
layer classifies which of the output labels (the slots plus an artificial negative relation)
best matches the sentence. For inverse relations, e.g., per:parents and per:children,
there is only one output label in the softmax layer. By reversing the relation arguments
in the input sentence and adapting the flag v, examples for per:parents can be cast into
examples for per:children (or vice versa). This avoids redundant training.

The architecture of contextCNN with the context splitting at the relation arguments
and the weight sharing among the convolutional filters is specifically designed for relation
classification. The input flag is added for handling inverse relations. Figure 3.8 depicts the
structure of the CNN.

3.3.5 Combination

Finally, we combine the results of pattern matching, support vector machines and context-

CNN. In particular, we compute the linear combination of the scores of the different models:

scorecmb =
∑
m∈M

αm · scorem (3.1)

with M = {PAT, SVM, CNN} and αm denoting a weight tuned on previous slot filling evalua-
tion data. For the pattern matching module PAT, we create scores by mapping the result
(match or no-match) to 1 or 0. For the support vector machine SVM, we apply the sig-
moid function as described in Section 3.3.3. For the convolutional neural network CNN, we
directly take the softmax probability of the positive class as the score.

3.4 Datasets

The datasets we use for training, optimizing and evaluating our slot filler classification
models are automatically labeled on the sentence level. The reason is to reflect the scenario
the models will be exposed to in the slot filling pipeline: The proof for the slot filler which
needs to be provided by the pipeline is a single sentence, thus, the models need to score
each sentence with respect to how likely it expresses the relation from the query.
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source corpus evaluation corpus
news documents 1,000,257 8,938
web documents 999,999 -
discussion forum documents 99,063 40,186

Table 3.2: Statistics of TAC source and evaluation corpora (2015).

3.4.1 Official Slot Filling Source and Evaluation Corpus

TAC and LDC (Linguistic Data Consortium)6 provide the participants of the slot filling
shared task with two corpora: A source corpus which was also used as the evaluation corpus
from 2009 until 2014, as well as an additional evaluation corpus for each year since 2015.
Table 3.2 shows statistics for the English source corpus (LDC2013E45) and the English
evaluation corpus 2015 (LDC2015E77).

The news documents have been selected from English Gigaword Fifth Edition.7 The
web documents are from GALE web collections.8 The discussion forum documents are
taken from the BOLT Phase 1 discussion forum source data.9

The domain mismatch between source and evaluation corpus is obvious from Table 3.2
and justifies our genre-dependent document pre-processing.

3.4.2 Training Data

Creation

TAC provides the source and evaluation corpus but only very few annotated examples
which can be used for training. Therefore, most participants create their own corpora,
mainly using distant supervision (see Section 2.1.2). We follow them and extract a large
set of training examples with distant supervision over Freebase relation instances from the
following corpora:

• TAC source corpus10

• NYT corpus11

• Subset of ClueWeb12

• Wikipedia13

• Freebase description fields (Bollacker et al., 2008)

6https://www.ldc.upenn.edu.
7LDC2011T07.
8LDC2009E93, LDC2009E14, LDC2008E54, LDC2008E41, LDC2007E102.
9LDC2012E04, LDC2012E16, LDC2012E21, LDC2012E54.

10LDC2013E45.
11LDC2008T19.
12http://lemurproject.org/clueweb12.
13Wikipedia dump from May 2014.

https://www.ldc.upenn.edu
http://lemurproject.org/clueweb12
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For creating negative examples for the different relations, we extract sentences with entity
pairs with the correct named entity tags for the given slot but without the given relation
according to Freebase. The resulting negative examples are similar to the negative examples
our system will be given as input during evaluation since the filler candidates are also
extracted based on their named entity tags. However, due to the incompleteness of Freebase
it is not sure that a relation does not exist between two entities if it is not stored in Freebase
(cf., Section 2.1.2). Therefore, we clean the negative examples with short patterns, such
as “born in” for the relation per:location of birth: If a pattern of the given relation
appears in the sentence, we do not include it into the set of negative examples.

Selection by Self-Training

With distant supervision and a large collection of text data, it is possible to extract a large
number of training instances. However, due to the distant supervision assumption, the
labels contain noise (cf., Section 2.1.2). To reduce the number of wrong labels, we perform
an automatic training data selection process, similar to self-training strategies, which are
used for bootstrapping additional training examples (Mihalcea, 2004; Rosenberg et al.,
2005; McClosky et al., 2006a,b; Angeli et al., 2015).14 The general process is depicted in
Figure 3.9. Algorithm 1 shows the selection procedure in more detail. First, the extracted
training samples are divided into k batches B. While in theory, each extracted sample could
be processed individually, this is not efficiently feasible in practice given the large amount of
instances which are extracted by distant supervision. Then, we train one SVM per slot on
the annotated slot filling dataset released by Stanford (Angeli et al., 2014b). This dataset
is not very large but it has been labeled using crowdsourcing. Thus, we expect the labels
to be correct in most cases. As a result, the initial classifiers are trained on presumably
clean data and should, therefore, be able to help in the process of selecting additional
data. For each batch of training samples, we use the classifiers to predict labels for the
samples e and select those samples for which the distantly supervised label corresponds to
the predicted label with a high confidence of the classifier. The confidence thresholds are
chosen heuristically: For positive examples, the confidence should be high to create clean
examples (see line 5 and 17 of Algorithm 1) while for negative examples it should not get
too low to include not only easy examples (line 6 and 15). Those selected samples are,
then, divided into ten chunks (line 19) and successively added to the training data. The
goal is to add as many examples as possible without decreasing the performance of the
classifier on the development set too much (line 22). The resulting training set T is then
used to train the SVMs and CNNs of the slot filler classification component.

Note that we do not train models on the dataset before selection by self-training. The
reason is that for many relations the large number of extracted instances does not allow
an efficient training of neural network models. Thus, we cannot assess the impact of
self-training on the final performance of the model. Instead, we manually assess random

14In difference to co-training (Blum and Mitchell, 1998), which could be used for this setup as well, we
have decided to train only one classifier since our initial set of labeled examples is not large. Nigam and
Ghani (2000) refer to self-training as a hybrid of co-training and expectation maximization (EM).
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examples which are deleted by self-training and find that the number of false positive
labels is reduced considerably. Table A.3 in the appendix provides statistics of the training
dataset after selection by self-training.

Algorithm 1 Selection by self-training.
1: procedure Selection
2: T ← Stanford SF corpus
3: B ← batches of extracted training examples
4: classifier ← support vector machine
5: θ+ ← (0.6, 1.0]
6: θ− ← (0.25, 0.3)
7: while |B| > 0 do
8: B next← B.pop()
9: classifier.train(T )

10: T next← []
11: for each e ∈ B next do
12: distant label← e.label
13: predicted label, conf ← classifier.predict(e)
14: if distant label = predicted label then
15: if distant label = − and conf ∈ θ− then
16: T next← T next ∪ {e}
17: else if distant label = + and conf ∈ θ+ then
18: T next← T next ∪ {e}
19: T chunks← split(T next)
20: for each chunk ∈ T chunks do
21: classifier next.train(T ∪ chunk)
22: if classifier next.F1 >= 0.95 · classifier.F1 then
23: T ← T ∪ chunk
24: return T

3.4.3 Development Data

The resulting training set is less noisy than before the selection process but still contains
wrong labels. For optimizing the hyperparameters of our models, it would be beneficial
to use a dataset which has correct labels and is as similar as possible to the examples the
models will be exposed to during the slot filling evaluation. Therefore, we leverage the
existing manually labeled system outputs from the previous slot filling evaluations: We
extract the sentences from the system outputs and automatically determine the position of
the query entity and the filler. Then, we label each sentence as correct or wrong according
to the manual assessment. Due to differences in the offset calculation of some systems,
we cannot use all available data. However, the resulting dataset still has a reasonable
number of examples with presumably clean labels. Table A.4 in the appendix provides
statistics. We assign the manual assessments from 2012 and 2013 to a development set
and the assessments from 2014 to a test set. In Section 3.5.2 and Section 3.5.3, we report
classification results on those two sets. For tuning our models for the official evaluation
from 2015, however, we use both sets in order to exploit all available resources. In the
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dev test
news 87.5% 73.4%
web+forum 12.5% 26.6%

Table 3.3: Genre (domain) distribution in the slot filling benchmark dataset.

following sections, we will refer to this dataset as “slot filling benchmark dataset”. In
order to assess its quality and usefulness for tuning slot filler classification models, we
compute the correlation between results on the benchmark dataset and results of the
whole slot filling pipeline. The Pearson’s correlation coefficient when using the data from
the slot filling evaluations 2013 is 0.89, the correlation coefficient when using 2014 slot
filling data is 0.82. Because of these positive correlations, this dataset will be beneficial
for everyone working on slot filling. It provides possibilities for tuning models outside of
the slot filling pipeline and comparing the quality of slot filler classification components
independent of other pipeline components. This has not been possible so far given only
the manual assessments of slot filling pipeline outputs. Therefore, this benchmark dataset
opens the possibility to assess and improve the quality of slot filler classification components
more effectively and more efficiently. We publish the scripts to reproduce the dataset at
http://cistern.cis.lmu.de/SFbenchmark.

When looking at the genres (domains) in the development and test dataset (see Ta-
ble 3.3), it can be seen that the distribution of genres is quite different. Therefore, we also
provide genre-specific splits of the dataset. The statistics can be found in Table A.5 in the
appendix.

3.4.4 Data for Multiclass Models

The training and development datasets described above are designed for binary models:
For each relation, they contain positive and negative examples specific to this relation. For
the multiclass setting, a set of negative instances, which do not belong to any of the pre-
defined relations, is needed. However, a negative instance for the slot per:date of birth

http://cistern.cis.lmu.de/SFbenchmark
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category number
number of chains (total) 53,929,525
chains per document: min 0
chains per document: max 2061
chains per document: avg 26.18
chains per document: median 15
number of mentions (total) 197,566,321
mentions per chain: min 1
mentions per chain: max 3428
mentions per chain: avg 3.66
mentions per chain: median 2
words per mention: min 1
words per mention: max 900
words per mention: avg 3.05
words per mention: median 2
pronoun mentions 51,139,283
singletons 13,189
chains with identical mentions 16,016,935

Table 3.4: Statistics of coreference resource.

is not automatically a negative instance for the slot per:date of death. Therefore, the
negative examples for each slot are postprocessed: We filter them with the same pattern
lists we used for the binary classification data: A negative instance that includes a trigger
for any of the positive slots is deleted from the set. The remaining negative instances
are labeled with an artificial class N. This process might filter too many examples (for
example if a sentence contains both the place of birth and the place of death of a person).
However, the resulting set of negative examples is still reasonably large for training the
classifier. Note that a simple intersection of all the negative data for binary classification
would lead to less negative instances in total since the entities do not necessarily overlap
across relations.

Further note that we only modify the training set and still use the original dev and
test sets for our experiments in order to compare the multiclass models with the binary
models. For assessing the performance of the multiclass models on the binary dev and test
sets, we take the maximum prediction and map all relations except for the one from the
given binary data to the negative class.

3.4.5 Coreference Resource

For a more efficient processing of the slot filling source corpus, we have pre-processed all the
documents by computing their coreference chains using Stanford CoreNLP (Manning et al.,
2014). Since this can be an important resource for researchers working on the slot filling
task (see Section 3.1.3 and Section 3.6.4), we make it available to other participants at
http://cistern.cis.lmu.de/corefresources. Although CoreNLP is publicly available,
our resource can save researchers much time and resources, given the large size of the slot
filling source corpus. Table 3.4 lists statistics about the extracted coreference chains and

http://cistern.cis.lmu.de/corefresources
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their mentions. In addition to the minimum, maximum, average and median numbers
of chains per document, mentions per chain and words per mention, we also report the
number of mentions which are pronouns, the number of singletons (chains consisting of
only one mention) and the number of chains with only identical mentions.

3.5 Results

In the following subsections, we present the results of our binary and multiclass slot filler
classification models using the slot filling benchmark dataset described in Section 3.4.3
as well as the overall performance of our system in the official 2015 slot filling evalua-
tions. The hyperparameters of all models are tuned on the development part of the slot
filling benchmark dataset using grid search. The resulting values as well as the applied
regularization techniques are provided in the appendix in Section A.5.

3.5.1 Evaluation Measures

For the classification results, we calculate per-slot F1 scores as well as an average F1 score
over all slots (“macro F1”). For the models we use in our slot filling system, we also report
the “micro F1” score, which is an average over all individual decisions, since the whole slot
filling pipeline is also evaluated with micro F1. As a result, the micro F1 score is biased
towards classes with more instances while the macro F1 score treats all classes equally
and can, thus, also indicate the performance of the model on classes with few instances
(Sokolova and Lapalme, 2009).

The slot filling system scores are calculated using the official shared task scoring scripts.
We report the official measures “CSLDC max micro”, which is the micro precision, recall
and F1 score over all queries (thus, “micro”), and “CSLDC max macro”, which is the
average F1 score over all slots (thus, “macro”). If the hop 0 sub-query occurred several
times in the query set (with different hop 1 sub-queries), that answer to the hop 0 sub-query
is scored which leads to the maximum results over both hops (thus, “max”).15

3.5.2 Slot Filler Classification: Binary Results

Model Choices

Table 3.5 shows a comparison of different model choices. First, we compare patterns created
with distant supervision (PATdist) (Roth et al., 2013) to patterns extracted from phrases
found with universal schema (Riedel et al., 2013) (PATuschema) (Roth et al., 2014b). The
distantly supervised patterns outperform the patterns from universal schema. When we
use patterns in the following experiment, we, therefore, use distantly supervised patterns.

Second, we compare support vector machines with and without skip n-gram features
as input (SVMskip and SVMbow, respectively). Skip n-gram features perform better on the

15For more details, see https://tac.nist.gov/2015/KBP/ColdStart/tools/README.md.

https://tac.nist.gov/2015/KBP/ColdStart/tools/README.md
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model dev test
PATuschema .33 .33
PATdist .35 .36
SVMbow .59 .44
SVMskip .62 .48
PCNN .52 .39
PCNNext .55 .42
contextCNN .60 .46

Table 3.5: Macro F1 results of different model choices on slot filling benchmark dataset.

development set and can also generalize better to an unseen test set. In the official slot
filling evaluations 2015, we used SVMbow in the slot filler classification module. In all other
experiments, we use SVMskip because of their superior performance. In Section 3.5.5, we
also show the slot filling pipeline results when using SVMskip on the 2015 evaluation data.

Finally, Table 3.5 shows that contextCNN, which splits the sentence into three contexts
before convolution, outperforms the state-of-the-art piecewise CNN model (PCNN) (Zeng
et al., 2015), even if we extend PCNN with a fully-connected hidden layer and k-max pooling
(PCNNext) to make the number of parameters more comparable to our model. Approxi-
mating the PCNN architecture to our architecture (PCNNext) improves the results on both
dev and test set but does not reach the results of contextCNN. This confirms that both
our CNN model architecture and input representation are effective and can outperform a
state-of-the-art neural network for relation extraction.

Slot-wise results for the different model choices can be found in the appendix in Ta-
ble A.6 and Table A.7.

Final Models vs. Baselines

Table 3.6 provides slot-wise results of the three models which perform best on dev (PATdist,
SVMskip, contextCNN), their combination (CMB, as described in Section 3.3.5) and two
baseline systems: Mintz++ and MIMLRE. Mintz++ is a model based on the Mintz features
(lexical and syntactic features for relation extraction) (Mintz et al., 2009). It has been
implemented by Surdeanu et al. (2012), who also use it as a baseline model. MIMLRE

(Surdeanu et al., 2012) is a graphical model designed to cope with multiple instances
and multiple labels in distantly supervised data (see Section 2.1.2). It is trained with
Expectation Maximization (Dempster et al., 1977). For both Mintz++ and MIMLRE, we use
the implementations by Surdeanu et al. (2012).

Note that all models in Table 3.6 are trained on the same training data, namely the
data described in Section 3.4.2 (except for PATdist whose patterns are kept unchanged).

The SVM and CNN models outperform the baseline models as well as the pattern
matcher. This shows that our approaches of creating training data for slot filler classifi-
cation and representing the contexts are effective. The CNN, for example, outperforms
patterns on test for about 67% of all slots. Overall, the CNNs perform slightly worse but
comparable to the SVMs: The results of the CNNs on test are better than the results of the
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Mintz++ MIMLRE PATdist SVMskip contCNN CMB

dev test dev test dev test dev test dev test dev test
per:age .84 .71 .83 .73 .69 .80 .86 .74 .83 .76 .86 .77
per:alternate names .29 .03 .29 .03 .50 .50 .35 .02 .32 .04 .50 .50
per:cause of death .76 .42 .75 .36 .44 .11 .82 .32 .77 .52 .82 .31
per:children .76 .43 .77 .48 .10 .07 .81 .68 .82 .61 .87 .76
per:date of birth 1.0 .60 .99 .60 .67 .57 1.0 .67 1.0 .77 1.0 .67
per:date of death .67 .45 .67 .45 .30 .32 .79 .54 .72 .48 .79 .54
per:empl memb of .38 .36 .41 .37 .24 .22 .42 .36 .41 .37 .47 .39
per:location of birth .56 .22 .56 .22 .30 .30 .59 .27 .59 .23 .74 .36
per:loc of death .65 .41 .66 .43 .13 .00 .64 .34 .63 .28 .70 .35
per:loc of residence .14 .11 .15 .18 .10 .03 .31 .33 .20 .23 .31 .31
per:origin .40 .48 .42 .46 .13 .11 .65 .64 .43 .39 .65 .59
per:parents .64 .59 .68 .65 .27 .38 .65 .79 .65 .78 .72 .71
per:schools att .75 .78 .76 .75 .27 .26 .78 .71 .72 .55 .79 .71
per:siblings .66 .59 .64 .59 .14 .50 .60 .68 .63 .70 .65 .70
per:spouse .58 .23 .59 .27 .40 .53 .67 .32 .67 .30 .78 .57
per:title .49 .39 .49 .40 .48 .42 .54 .48 .57 .46 .59 .46
org:alternate names .49 .46 .50 .48 .70 .71 .62 .62 .65 .66 .72 .67
org:date founded .41 .71 .42 .73 .47 .40 .57 .70 .64 .71 .68 .68
org:founded by .60 .62 .70 .65 .39 .62 .77 .74 .80 .68 .85 .77
org:loc of headqu .13 .19 .14 .20 .39 .30 .43 .42 .43 .45 .50 .46
org:members .58 .06 .55 .16 .03 .29 .70 .13 .65 .04 .76 .13
org:parents .32 .14 .36 .17 .31 .18 .37 .20 .41 .16 .52 .21
org:subsidiaries .32 .43 .35 .35 .32 .56 .38 .37 .36 .44 .42 .49
org:top memb empl .35 .44 .37 .46 .53 .46 .43 .55 .43 .53 .58 .51
micro F1 .32 .37 .46 .39 .39 .39 .53 .48 .52 .44 .62 .51
macro F1 .53 .41 .54 .42 .35 .36 .62 .48 .60 .46 .68 .53

Table 3.6: F1 results of binary models on slot filling benchmark dataset. contCNN is short
for contextCNN, CMB denotes the combination of PATdist, SVMskip and contextCNN.
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train on NEWS train on WEB
SVM CNN SVM CNN

dev test dev test dev test dev test

te
st

o
n

n
ew

s per:age .79 .80 .88 .87 .78 .76 .85 .83
per:children .85 .86 .78 .78 .75 .80 .00 .07
per:spouse .74 .64 .76 .71 .77 .65 .73 .67
org:alt names .22 .32 .69 .67 .65 .70 .66 .66
org:loc headqu .51 .50 .53 .51 .51 .53 .53 .50
org:parents .30 .32 .29 .34 .26 .33 .30 .34

te
st

on
w

eb

per:age .33 .73 .57 .83 .00 .67 .57 .83
per:children .59 .33 .70 .33 .63 .57 .00 .00
per:spouse .52 .50 .60 .57 .56 .57 .67 .62
org:alt names .27 .19 .51 .37 .60 .49 .56 .38
org:loc headqu .39 .46 .43 .44 .44 .48 .36 .47
org:parents .09 .08 .11 .07 .10 .08 .15 .08

Table 3.7: Genre specific F1 scores. Genre specific training data (of the same sizes). Top:
news results. Bottom: web results.

SVMs for only 42% of all slots. One reason for that might be limited training data for some
slots. The SVM is more robust against this than the CNN. More possible explanations for
the performance difference between patterns, SVMs and CNNs are given in Section 3.6.3.

The combination of pattern matcher, SVM and CNN yields the best results for most of
the slots and overall (macro and micro F1). This confirms our intuition that the different
models provide complementary information, which can be combined for a more effective
classification.

Domain Effects

As mentioned before (see Section 3.4.1 and Section 3.4.3), the distribution of genres/
domains in the slot filling evaluations has changed over the years. Since most teams
train their systems on previous evaluation data, their systems face a domain adaptation
challenge during the official evaluations. To quantify the effect of different domains on our
models, we split our datasets according to genres (news and web). For a fair comparison,
we further adapt the training sets to have the same size by subsampling the larger one (the
news dataset for most slots).

Table 3.7 shows the results of the genre-specific models on data from the same genre
as well as from the other genre. For a better overview and comparison, we only present
numbers for a subset of the slots here. The results for the other slots follow the same trends
and are given in the appendix in Table A.13 and Table A.14. In all cases, the results on
dev and test set differ much and seem to be not correlated to each other (especially for slot
filling on web — bottom part of Table 3.7). Models trained on news (left part) show higher
performance in the within-genre evaluation than cross-genre. This is different, however,
for models trained on web (right part). Since web data is much noisier, we assume that
it is less predictable even for models trained on web. In general, our results confirm that
domain differences are an important challenge of slot filling.
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macro F1 micro F1
SVM CNN SVM CNN

dev test dev test dev test dev test
binary .62 .48 .61 .45 .54 .47 .52 .43
multi #N ≈ #non-N .51 .37 .52 .40 .50 .43 .27 .21
multi #N ≈ 2· #non-N .46 .32 .49 .38 .47 .37 .24 .18
multi #N ≈ 4· #non-N .41 .30 .45 .36 .41 .34 .22 .18

Table 3.8: Macro F1 scores for binary vs. multiclass classification. #N denotes the number
of negative instances in the training data, #non-N is the number of non-negative instances,
i.e., instances with a relation.

3.5.3 Slot Filler Classification: Multiclass Results

Table 3.8 provides the macro and micro F1 results of multiclass models in comparison to
the previously presented binary models. As described in Section 3.4.4, we use the same
development and test data for evaluating both model types. Slot-wise results can be found
in the appendix in Table A.15. In particular, we investigate the impact of the number of
negative instances (with label N) in the training dataset on the multiclass models.

In general, the binary models perform better than the multiclass models. In contrast
to the results of the binary models (see Table 3.6), the multiclass CNN outperforms the
multiclass SVM in terms of macro F1, especially on test. However, the SVM performs
considerably better in terms of micro F1. This shows again that SVM and CNN have
complementary strengths and weaknesses. If the micro F1 score is considerably lower than
the macro F1 score, this indicates that the model identifies classes with lower frequency
better than classes with higher frequency.

A reason for the lower performance of both multiclass models in comparison to the
binary models might be the high number of output classes. The models need to recognize
and distinguish much more patterns than in the binary case since they are trained to
jointly disambiguate all classes. We assume that this is especially challenging for sentences
containing several relations.

Note that the aggregated scores for the binary models reported in Table 3.6 and Ta-
ble 3.8 are slightly different. This is because we use only one label per inverse slot pair
in the multiclass models to avoid redundant training, thus, we do not evaluate it for
per:children and per:parents but only for per:children (same for org:parents and
org:subsidiaries). For a fair comparison, we also omit those slots for the binary models
in Table 3.8.

While it has not been necessary to change the ratio of positive and negative instances
for the binary classification models,16 we find that limiting the number of negative instances
(with label N) is beneficial for multiclass classification. However, we only limit them until
they have the same number as the positive instances since the number of negative instances

16Changing the ratio of positive and negative instances might further improve the results also for the
binary case. We have chosen not to do that for the binary classification dataset and to adapt the ratio for
the multiclass classification dataset only slightly in order to keep the datasets more realistic.
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micro macro
setup P R F1 F1

hop 0 baseline 19.11 22.32 20.59 29.06
hop 0 + CNN 31.67 23.97 27.29 32.38
hop 0 + CNN + EL 31.71 24.13 27.41 32.67
hop 1 baseline 5.08 4.11 4.54 5.25
hop 1 + CNN 10.46 6.33 7.89 7.53
hop 1 + CNN + EL 11.82 7.00 8.79 7.78

all baseline 14.48 14.76 14.62 20.54
all + CNN 23.99 16.65 19.66 23.48
all + CNN + EL 24.63 17.02 20.13 23.76

Table 3.9: CSLDC max micro/macro scores from 2015 assessments, SVM without skip
n-gram features.

(i.e., wrong filler candidates) in the slot filling pipeline is very high as well. Note that again
the dev and test sets remain unchanged. In Section 3.5.5, we present the results of the
multiclass models when applied in the slot filling pipeline.

3.5.4 Official Assessment Results 2015

In this section, we provide the official results for our system in the 2015 slot filling evalua-
tions. We report results for three runs here:

(i) a baseline run using only patterns and support vector machines without skip n-gram
features for slot filler classification;

(ii) a run which combines the baseline classification models with the CNNs presented in
Section 3.3.4;

(iii) a run which also includes an entity linking component in the slot filling pipeline.

The baseline run can be seen as a “traditional” slot filling system. The comparison
of the baseline run and baseline + CNN shows the impact of contextCNN on slot filler
classification. Table 3.9 shows that the CNNs can improve the slot filling pipeline results
by a large margin, even though they have been trained on noisy (distantly supervised)
training data. In general, all performance trends are consistent across hops: Adding CNNs
helps to improve the final results and adding entity linking leads to further performance
gains. We provide slot-wise evaluation results of the best model (baseline + CNN + EL)
in the appendix (Table A.16 and Table A.17).

Comparison to State of the Art

Compared to other slot filling systems, our system achieved rank three in the official 2015
evaluation (Adel and Schütze, 2015). Table 3.10 provides the scores of the top five systems.
The performance difference of our system to rank two is quite small, only the top-ranked
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rank team micro F1
1 Stanford 31.06
2 UGENT 22.38
3 Our (baseline+CNN+EL) 20.13
4 UMass 17.20
5 UWashington 16.44

Table 3.10: CSLDC max micro F1 scores for top five systems in 2015 evaluations.

system performs considerably better. We assume that the main reason is their manually
labeled training data (see Section 3.7). Thus, our system is one of the state-of-the-art
systems for distantly supervised slot filling.

3.5.5 Additional Slot Filling System Results

In the official evaluation 2015, we have participated with a system using only binary models
and no skip n-gram features for the SVMs. In order to evaluate skip n-gram features and
multiclass models, we run our system again on the 2015 evaluation data. Since we do
not assess the results manually, the comparability to the official results from Table 3.9 is
limited: If the system finds a new slot filler which is correct but not provided in the pool
of correct assessments, it will be scored as wrong (Chaganty et al., 2017). Nevertheless,
this is the usual way of assessing slot filling system results outside of the official shared
task evaluations.

Table 3.11 provides the scores of our system with different classification models: SVM
with skip n-gram features (in both binary and multiclass variants) and the multiclass
version of contextCNN. Note that we only report results for comparing pure binary to
pure multiclass classification modules. We have also experimented with combinations,
e.g., combining binary skip n-gram SVMs with the multiclass CNN, but have not obtained
additional performance gains. Similar to the models we used in the official slot filling
evaluations 2015 (see Section 3.5.4), we combine the machine-learning models with the
pattern module and regard a combination of patterns and SVMs as the traditional system,
which we then enrich with the scores from the CNNs.

The results in Table 3.11 again show a discrepancy between micro and macro scores:
While the binary models lead to the best macro F1 scores, which is compatible to the
slot filler classification macro F1 results in Table 3.8, the multiclass models perform com-
parable or even better when considering micro precision and F1. This could indicate
that the multiclass models have a low performance for some slots which are infrequent
in the evaluations. Hence, their impact on the macro F1 score is higher than on the mi-
cro F1 score. When comparing the binary and multiclass CNN (without named entity
recognition (NER) features) in Table 5.6, there are indeed some slots for which the mul-
ticlass models perform significantly worse, such as per:cause of death, per:origin or
org:location of headquarters. Note that until 2014, micro F1 scores have been the
only evaluation measure for slot filling (Surdeanu and Ji, 2014).

The comparable performance of multiclass models to binary models confirms their
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micro macro
SVM CNN P R F1 F1

hop 0 binary skip – 29.12 26.18 27.57 32.50
hop 0 binary skip binary 31.79 28.23 29.91 34.20
hop 0 multi skip – 25.25 12.07 16.33 18.44
hop 0 multi skip multi 34.42 26.66 30.04 32.82

hop 1 binary skip – 7.36 4.78 5.80 6.13
hop 1 binary skip binary 9.80 7.00 8.17 8.28
hop 1 multi skip – 7.11 3.67 4.84 4.34
hop 1 multi skip multi 12.59 3.89 5.94 7.78

all binary skip – 21.75 17.30 19.27 23.06
all binary skip binary 23.80 19.42 21.39 24.92
all multi skip – 17.38 8.58 11.49 13.39
all multi skip multi 29.60 17.20 21.76 23.86

Table 3.11: CSLDC max micro/macro scores for SVMs with skip n-gram features and
multiclass models.

usefulness and indicates their generalizability to unseen data despite their poor performance
on the slot filling benchmark dataset (see Table 3.8). It might further indicate that the
decision threshold is an important hyperparameter when working with multiclass models.
Following the same paradigm as we have used for the binary models, we have not tuned the
threshold on the slot filling benchmark dataset but have optimized the output thresholds
in the slot filling pipeline (see Section 3.2.1). For multiclass models, output thresholds
in the range [0.2, 0.55] lead to better performance than higher thresholds as used for the
binary models.

3.6 Analysis

For analyzing the slot filling system, we perform a recall analysis, a manual error analysis
and several ablation studies. Furthermore, we analyze contextCNN and the weights for
combining the different models for slot filler classification.

3.6.1 Recall Analysis

Our first analysis investigates the recall of the different components and is similar to the
analysis by Pink et al. (2014). In particular, we evaluate the components of our system
before the slot filler classification module. Thus, we measure which recall our system could
achieve with a perfect slot filler classification module that does not lose any recall.

Table 3.12 shows the results on the slot filling assessment data from 2015 for hop 0:
The information retrieval component is able to achieve a recall of 78.82% with aliases
and 74.54% without aliases, respectively. Unexpectedly, the IR alias rather hurts recall
on this test set instead of improving it as on previous TAC slot filling evaluations (from
2013 and 2014). A possible reason could be misleading aliases, which introduce false
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component recall ∆
Terrier IR (300 documents) 83.21% -16.79%
- IR alias 83.58% -16.42%
fuzzy string match 78.82% -4.39%
- alias 74.54% -8.67%

entity linking 76.82% -2.00%
top 100 documents 71.96% -4.86%

sentence extraction 65.01% -6.95%
- coreference 62.77% -9.19%
- alias 58.64% -13.32%

candidate extraction 59.64% -5.37%
- coreference 56.23% -6.54%
- alias 53.69% -4.95%

Table 3.12: Analysis of recall after the application of the different pipeline components.

positive retrievals and change the ranking of the correct retrievals. Similar, the entity
linking component hurts recall a bit. However, it also increases precision and leads to
better overall results (cf., Table 3.9). Evaluating only the top 100 documents instead of
all extracted documents from Terrier (maximum 300), leads to a recall loss of almost
5%. Thus, allowing the slot filling system a longer run time for processing all extracted
documents could lead to a higher final recall (but potentially also to more false positive
extractions and, thus, a lower precision). As mentioned before, choosing only the 100 most
relevant documents has led to the best time-performance trade-off on data from previous
evaluations (2013 and 2014). The sentence extraction component extracts the relevant
sentences quite successfully with an additional recall loss of only 6.95%. Evaluating this
component in more detail shows the importance of coreference resolution and aliases: The
recall loss without coreference resolution is almost 10%, the recall loss without aliases is
more than 13%. Finally, the candidate extraction component is able to extract most of
the relevant candidates, yielding an overall recall of 59.64% before slot filler classification.
Without coreference resolution for sentence extraction, the overall recall is 56.23%, without
alias information for sentence extraction, the overall recall is 53.69%. Assuming a perfect
slot filler classification component with P = 100% and R = 100%, the maximum F1 score
of the whole slot filling system would be 74.72%. This number is more than twice as high
as the performance of the best slot filling system 2015 (Angeli et al., 2015) but still low
compared to other NLP tasks. This illustrates the difficulties of the slot filling task and
the importance of all individual components of the pipeline since especially recall losses
cannot be recovered by subsequent components.

3.6.2 Error Analysis

We manually analyze 120 false positive predictions of our system, randomly picked from
the output for the official 2015 evaluation. Table 3.13 shows which pipeline component is
responsible for how many errors. The numbers do not sum to 100% since for 7% of the
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error category ratio
alias component 9%
entity linking component 2%
candidate extraction component 21%
classification component 61%

Table 3.13: Error analysis of the pipeline.

cases, we could not unambiguously identify a single component as the error source. This
analysis is complementary to the one before (in Section 3.6) since we analyze the wrong
predictions of our system, thus, we analyze precision loss rather than recall loss.

The alias component especially struggles with acronyms which can refer to several
entities. In the candidate extraction component, most errors (16% of 21%) are due to
wrong named entity recognition despite using a state-of-the-art NER tool (Manning et al.,
2014). This is in line with the analysis by Ji et al. (2011) and Min and Grishman (2012),
who have identified named entity recognition as one of the key sources of error. For some
instances (4% of 21%), the sentence splitting of the document is incorrect. In the remaining
cases (1% of 21%), coreference resolution fails. The classification component has to cope
with very challenging input data since most extracted filler candidates are false positives.
Thus, it has to establish precision while keeping as much recall as possible. Based on a
manual inspection of errors, the most important challenge for the classification component
is long contexts which mention multiple relations between several entity pairs.

3.6.3 Analysis of Slot Filler Classification

Contributions of the Different Models

For CMB (see Section 3.5.2), we compute the linear interpolation of the scores of PATdist,
SVMskip and contextCNN. The interpolation weights are optimized with grid search on the
development set. Figure 3.10 shows the distribution of weights for the three different mod-
els. All three models contribute to CMB for most of the slots. The contextCNN, for instance,
is included in the combination for 14 of 24 slots. The results of the slot filling pipeline
system with and without the contextCNN show that this effect generalizes to another test
dataset as well as to a pipeline evaluation scenario (see Table 3.9 and Table 3.11).

Analysis of CNN Pooling

To investigate which n-grams the CNN considers to be most important, we extract which
n-grams are selected by its five most representative filters. To rank the filters according to
their influence on the final classification score, we compute the correlation of the activations
of each filter with the final score of the positive class. Then, we take the five filters with the
highest correlation and extract to which n-grams they give the highest values. Figure 3.11
shows the result for an example sentence expressing the relation org:parents. The height
of each bar corresponds to the number of times the 3-gram around the corresponding word
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Figure 3.10: Distribution of combination weights.
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Figure 3.11: Analysis of CNN pooling.

is selected by 3-max pooling. The bar above “newest”, for example, shows the result for
the trigram “its newest subsidiary”. As shown by the Figure, the convolutional filters are
able to assign high weights to phrases that trigger a relation, e.g., “its subsidiary”. An
advantage of CNNs over patterns and SVMs is that they do not rely on exact matches.
First, they are able to cope with insertions, similar to the skip n-gram features we use in
the SVMs. An example is “newest” which is not important for recognizing the relation.
Second, they use embeddings to represent the inputs. Since similar words have similar
embeddings, they are able to recognize synonyms and phrases that are similar but not
exactly the same as the phrases seen during training. For patterns and SVMs, this type of
generalization is more difficult.
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entity linking P R F1 ∆F1
+ 31.71 24.13 27.41
– 31.67 23.97 27.29 -0.12

Table 3.14: Impact of entity linking on hop 0 performance.

coreference P R F1 ∆F1
+ 31.67 23.97 27.29
– 19.33 22.40 20.75 -6.54

Table 3.15: Impact of coreference resolution on hop 0 performance.

3.6.4 Ablation Studies

In the following paragraphs, we show the impact of different system components (entity
linking, coreference, contextCNN) on the final slot filling performance with ablation studies
on the hop 0 results.

Impact of Entity Linking

Table 3.14 compares the slot filling system performance with (+) and without (–) the
entity linking component. The system performance is slightly reduced when omitting
entity linking. However, the difference of the F1 scores is rather small. This shows that
the main challenges of the system lie in other components and ambiguous names play a
rather small role for the final results of the system.

Impact of Coreference

Table 3.15 shows the results of the overall system with (+) and without (–) coreference
resolution in the candidate extraction component. The number of true positives is reduced
considerably (from 361 to 321) when the system does not use coreference information.
The number of false positives is also lower, but the final results show that the impact of
the number of true positives is larger: The F1 score drops by more than six points when
omitting coreference resolution.

The impact of coreference resolution for slot filling is also highlighted in (Surdeanu
and Ji, 2014): The authors identify coreference resolution as the most important error
source in the overall slot filling results and even vote for a specific coreference evaluation
in the context of KBP and the development of additional resources. In this context,
the coreference resource we make available for the KBP community (see Section 3.4.5) is
especially useful for teams who participate in the TAC KBP shared tasks for the first time
since it saves them a lot of computational efforts.

Impact of Neural Networks

Table 3.16 provides the results for the slot filling system with (+) and without (–) CNNs
in the slot filler classification component when using SVMs with or without skip n-gram
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SVM CNN P R F1 ∆F1
no skip + 31.67 23.97 27.29
no skip – 19.11 22.32 20.59 -6.70
skip + 33.87 28.39 30.89
skip – 31.39 26.34 28.64 -2.25

Table 3.16: Impact of neural networks on hop 0 performance.

features. Adding CNNs to the slot filler classification component improves performance
in both cases. When using no skip n-gram features in the SVM models, the performance
difference with and without CNNs is considerably higher than when using skip n-gram
features. This confirms the strength of skip n-gram features compared to simple bag-of-
word n-grams. Similar to CNNs, they are more robust in the case of word insertions.
Since training methods for word embeddings assign similar vectors to similar words (see
Section 2.2.3), we expect the CNN to detect phrases which are similar to the ones seen
during training. If, for example, the CNN has learned that the context “is based in”
indicates the relation location of headquarters, it can also identify “is located in” as
a trigger for this relation if the embeddings for “based” and “located” are similar. The
SVMs, on the other hand, rely on bag-of-word vectors and, thus, do not know that those
two phrases have a similar meaning, especially if the phrase “is located in” does not occur
in the training set. Therefore, the CNNs improve the overall system performance, even
when using the SVMs with skip n-gram features. In particular, they improve both precision
and recall.

3.7 Related Work

3.7.1 Slot Filling

The slot filling shared task has been organized since 2009. There are about 20 teams
participating each year (Surdeanu and Ji, 2014). Most systems apply a modular pipeline
structure and combine multiple approaches, such as machine learning with distant super-
vision and manual or automatic patterns (Ji and Grishman, 2011; Surdeanu and Ji, 2014),
as we also do in this thesis. In 2015, we were one of the first teams using neural networks
(Adel and Schütze, 2015; Angeli et al., 2015; Roth et al., 2015).

In this subsection, different approaches for realizing the slot filling pipeline are de-
scribed, followed by a more detailed description of two systems that are most relevant to
our work: the top-ranked system from 2013 (Roth et al., 2013) since we use their distantly
supervised patterns and similar features in our support vector machines; and the winning
system from 2015 (Angeli et al., 2015) since we evaluate our system on the assessment data
from 2015. When describing different slot filling pipelines, we use participant identifiers
for a better overview. A mapping from identifiers to system description papers is given in
Table 3.17.

With only a few exceptions, slot filling systems consist of an information retrieval–
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team id reference
ARPANI (Rawal et al., 2013)
AUSTIN (Bentor et al., 2013, 2014)
BIT (Xu et al., 2013a)
CIS (Adel and Schütze, 2014, 2015)
CMU (Kisiel et al., 2013, 2014, 2015; Yang et al., 2016a)
COMP (Xu et al., 2012)
DCD (Zhang et al., 2015a, 2016a)
GDUFS (Qiu et al., 2012)
GEOL (Amaral, 2014)
IBCN (Feys et al., 2014; Sterckx et al., 2015)
INDIANA (Wazalwar et al., 2014; Viswanathan et al., 2015)
IRT (Rahman et al., 2016)
LSV (Roth et al., 2012, 2013)
NAIST (Sudo et al., 2016)
NYU (Min et al., 2012; Nguyen et al., 2014)
OpenKN (Lin et al., 2014)
PAPELO (Malon et al., 2012)
PRIS (Li et al., 2012, 2013; Zhang et al., 2014; Qin et al., 2015; Bao et al., 2016)
RPI (Hong et al., 2014; Yu et al., 2016)
SAIL (Lim et al., 2016)
SOOCHOW (Hong et al., 2016)
STANFORD (Angeli et al., 2013, 2014a, 2015; Zhang et al., 2016c)
SWEAT (Liu and Zhao, 2012)
SYDNEY (Pink and Curran, 2014)
TALP (Gonzàlez et al., 2012; Ageno et al., 2013)
THU (Zhang et al., 2015b)
UCD (Byrne and Dunnion, 2012; Byrne et al., 2013, 2014)
UMASS (Singh et al., 2013b; Roth et al., 2014b, 2015; Chang et al., 2016)
UNED (Garrido et al., 2013)
USC (Chalupsky, 2013, 2014)
UW (Soderland et al., 2013, 2015)

Table 3.17: Mapping from participant identifier to system description papers. Note that
this table does not include all participants and all years of participation but only those
systems mentioned in this section.
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based pipeline of different modules. Exceptions are UNED2013 and UW2013 who retrieve
sentences from an entity mention index and entity-linked corpus, respectively. Other ex-
ceptions are STANFORD2014–2015 as well as the system of INDIANA2014 which rely
on relational databases consisting of one table storing all sentences from the corpus and
another table storing all entity mentions. STANFORD2014 and INDIANA2014 use the
data management system “Deep Dive” for this.17 All the other slot filling systems apply
information retrieval systems on the evaluation corpus either using only the query entity
name, or expanding the query with aliases. Table 3.18 provides information about which
systems apply which design choices.

Our system is also based on information retrieval and uses query expansion to cover
alternate name and spelling variations. For query expansion, the shared task participants
use redirect information from Wikipedia as we also do, Wikipedia link anchor texts, aliases
obtained from Freebase or mentions of entities in an entity linked corpus, such as given by
the FACC ClueWeb annotations. For document retrieval, most participants apply Lucene

(Hatcher and Gospodnetic, 2004), except for us and, e.g., UCD2012–2014 who use Terrier
(Ounis et al., 2006).

For sentence extraction, only a subset of systems use coreference information. In all
our experiments and analysis, coreference information improves the final results though.
Similar to us, STANFORD2016 add hyphenated location expressions explicitly to the set
of coreferent mentions. Even fewer systems apply entity linking or another form of dis-
ambiguating different entities with the same name. Also, our results with entity linking
are mixed: Although it slightly improves the final pipeline results, it leads to recall losses
due to wrong links. Candidate extraction based on named-entity tags, as we do it, is also
implemented by a variety of other systems (see Table 3.18).

Especially in 2012 and 2013, many systems relied only on pattern matching for iden-
tifying slot fillers. Now, more and more teams use machine learning models for slot filler
classification, such as Naive Bayes, logistic regression classifiers, conditional random fields
or support vector machines. Mintz and MIML, our baseline systems in Section 3.5.2, are
used by a few systems as well. More recently, participants also train neural networks, such
as bidirectional GRUs, bidirectional LSTMs or CNNs as we do. PAPELO2012 already
trained a CNN for slot filling in 2012 but did not submit it to the official evaluation.
Other approaches, which are more rarely used, are open information extraction systems,
universal schema, MultiR, community graph–based relation validation (IRT2016), Page-
Rank (RPI2016), Bayesian Logic Programs (AUSTIN2013–2014) or Markov Logic Net-
works (INDIANA2014–2015).

Most of the teams applying machine learning models use a combination of different
models, mostly also integrating patterns. We follow this line of work since combining
different models considerably improves the final results. With the exception of IBCN2014–
2015, NYU2014, STANFORD2014–2016 and CMU2016, who use human labels or manual
cleaning of noisy labels, e.g., in connection with active learning, the machine-learning
models are trained with distant supervision. UMASS2016 clean noisy labels by querying the

17http://deepdive.stanford.edu.

http://deepdive.stanford.edu
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design choice slot filling system
no IR UNED2013, UW2013, INDIANA2014, STANFORD2014–2015
IR with query entity name only COMP2012, PAPELO2012, CMU2013–2016, SYDNEY2014, SOO-

CHOW2016
IR with aliases GDUFS2012, LSV2012–2013, NYU2012/2014, PRIS2012–2016,

SWEAT2012, TALP2012–2013, AUSTIN 2013, BIT2013, STAN-
FORD2013, UMASS2013/2016, USC2013–2014, IBCN2014–2015,
OpenKN2014, RPI2014, DCD2015–2016, THU2015, NAIST2016

aliases from Wiki redirects GDUFS2012, NYU2012, IBCN2014–2015, USC2014, UMASS2016
aliases from Wiki anchor texts LSV2012–2013
aliases from Freebase DCD2015–2016
aliases from FACC ClueWeb CMU2013–2016
entity linking TALP2012, STANFORD2015
coreference resolution PAPELO2012, PRIS2012–2015, CMU2013–2016, STANFORD2013/

2015–2016, UMASS2013, UNED2013, USC2013–2014, UW2013,
GEOL2014, NYU2014, SYDNEY2014, DCD2015–2016, IBCN2015,
RPI2016

candidate extraction with NER LSV2012–2013, OpenKN2014, SYDNEY2014, UCD2014, IBCN2015,
PRIS2015–2016, IRT2016, NAIST2016, RPI2016, SAIL2016, SOO-
CHOW2016

pattern matching GDUFS2012, PRIS2012/2014, SWEAT2012, TALP2012/13, UCD
2012–2014, ARPANI2013, USC2013, GEOL2014, SYDNEY2014,
SOOCHOW2016

Naive Bayes UCD2014
logistic regression PAPELO2012, IBCN2014–2015, NYU2014, USC2014, STANFORD

2015–2016, THU2015, CMU2016
conditional random fields CMU2013–2015, OpenKN2014, PRIS2014
support vector machines COMP2012, LSV2012–2013, BIT2013, UNED2013, IBCN2014,

UMASS2015, STANFORD2016
Mintz STANFORD2014/16, IRT2016
MIMLRE STANFORD2013–2014, NYU2014, DCD2015, SAIL2016
bidirectional GRU PRIS2016
bidirectional LSTM PRIS2015, STANFORD2015–2016, CMU2016, RPI2016, SAIL2016,

UMASS 2016
CNN IBCN2014, UMASS2015, DCD2016, NAIST2016, PRIS2016, STAN-

FORD2016
open IE systems UW2013/2015, CMU2014, STANFORD2015
universal schema UMASS2013–2016
MultiR UW2015, IRT2016
combination of models COMP2012, LSV2012–2013, NYU2012/2014, BIT2013, STAN-

FORD2013–2016, UCD2013, UNED2013, CMU2014–2015, IBCN
2014–2015, OpenKN2014, USC2014, THU2015, UMASS2015,
NAIST2016, SAIL2016

binary models LSV2012–2013, BIT2013, UCD2013, UNED2013, IBCN2014–2015,
USC2014, THU2015, UMASS2015, PRIS2016

multiclass models CMU2013–2016, STANFORD2013–2015, IBCN2014, DCD2015,
UMASS2015

Table 3.18: Design choices of different slot filling systems.
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web for relation patterns and argument candidates. In contrast, we approach the problem
of noisy labels by an automatic self-training procedure. While some of the participants use
binary models, others train multiclass models. We use binary models for our entry in the
slot filling evaluation 2015 but compare them with multiclass models in Section 3.5.3 and
Section 5.4 of this thesis.

Similar to us, USC2014 merge the three different location relations into one place-of-X
relation for classification and disambiguate the extracted location afterwards. CMU2013–
2015 validate fillers by querying the web as a post-processing step.

The top-ranked system in 2013, LSV2013 by Roth et al. (2013), follows the main
trends in slot filling and applies a modular system based on distant supervision, which is
called RelationFactory (Roth et al., 2014a). Its pipeline is similar to ours except that it
uses neither entity linking nor coreference resolution. It is also applied by other groups,
e.g., AUSTIN2014, UMASS2015–2016. LSV2013 achieves the best results by combining
patterns and support vector machines. Therefore, we follow them and use their distantly
supervised patterns and add skip n-gram features to the feature set of our support vector
machines. An important difference to their work, however, is that we also integrate neural
networks and train not only binary models but also multiclass models. For training their
models, they apply aggregate training and global parameter optimization. In contrast, we
use our slot filling benchmark dataset for tuning our models and show that results on this
dataset are correlated with the slot filling pipeline results.

The top-performing system in 2015, STANFORD2015 by Angeli et al. (2015), uses
manually labeled training data (Angeli et al., 2014b) as well as a bootstrapped self-training
strategy in order to avoid distant supervision. The idea behind their self-training is similar
to the way we clean the distantly supervised labels. However, they do not use it to clean
labels from distant supervision but rather to infer labels on an unlabeled corpus. In
contrast to most other slot filling systems, they do not apply an information retrieval–
based system but store pre-processed versions of all sentences and entity mentions from
the source corpus in a relational database, which they access during evaluation. As relation
extractors, they apply a combination of patterns, an open information extraction system,
logistic regression, a bidirectional long short-term memory network and special extractors
for website and alternate-names slots. In contrast to their system, we apply a traditional
slot filling pipeline based on information retrieval and train convolutional neural networks.
In 2016, the successor system STANFORD2016 applies a combination of CNNs and LSTMs
and finds that this model performs better than a model only based on LSTMs. They
hypothesize that the phrasal information which a CNN is able to capture is highly relevant
for slot filling relation extraction, which is in line with our findings. In CIS2015 (Adel
and Schütze, 2015), we also combine convolutional and recurrent neural networks and
find that adding recurrent neural networks increases the performance only little while it
increases both training and testing time considerably. We assume that the main reason for
STANFORD’s better performance in 2015 is less noise in the labels of their training data.

In 2016, the slot filling task was changed to a multilingual challenge: Teams can now
build systems for English, Spanish and Chinese or a cross-lingual combination of those
languages. However, only a few teams participated in more than one language in 2016,
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namely RPI2016, STANFORD2016 and UMASS2016.
The following paragraph summarizes the most recent developments to date in slot

filling research: Yu and Ji (2016) present a method based on trigger extraction from
dependency trees which does not require (distantly) supervised labels and can work for any
language as long as named entity recognition, part-of-speech tagging, dependency parsing
and trigger gazetteers are available. Huang et al. (2017) follow our work in extracting
training and development data and in using convolutional neural networks for slot filler
classification. In contrast to our work, they input dependency paths into the network and
apply attention in order to account for the larger middle contexts in slot filler classification.
Zhang et al. (2017c) propose position-aware attention, which calculates attention weights
based on the current hidden state of their LSTM, the output state of the LSTM and the
position embeddings, which encode the distance of the current word to the two relation
arguments. Moreover, they publish a supervised relation extraction dataset, obtained by
crowdsourcing, for training slot filler classification models. Chaganty et al. (2017) address
the issue of evaluating new slot filling systems outside of the official shared task evaluations.
They build an evaluation method based on importance sampling and crowdsourcing and
make it publicly available.

3.7.2 Neural Models for Relation Extraction

In this section, we describe neural models applied to standard relation extraction (not in
the context of slot filling). In particular, we focus on methods relying only on text and do
not report work about combining relation extraction from text with inference in knowledge
bases since this is beyond the scope of this thesis. For related work on type-aware relation
extraction models, see Section 5.5.

Datasets

A popular benchmark for traditional relation classification is the SemEval2010-task 8
dataset (Hendrickx et al., 2010). It contains manually labeled sentences with nine semantic
relations between pairs of nominals: Cause-Effect, Instrument-Agency, Product-Pro-
ducer, Content-Container, Entity-Origin, Entity-Destination, Component-Whole,
Communication-Topic and Member-Collection. The relations are directed and there is
also an artificial negative relation label, which makes it a 19-class classification task. In
contrast to named-entity relation extraction, the entity pairs are general noun phrases. As
a result, the relations are also semantically different. It is used by many recent studies,
such as (Socher et al., 2012; Hashimoto et al., 2013; dos Santos et al., 2015; Ebrahimi and
Dou, 2015; Gormley et al., 2015; Hashimoto et al., 2015; Liu et al., 2015; Nguyen and
Grishman, 2015; Xu et al., 2015a,b; Zhang and Wang, 2015; Cai et al., 2016; Nguyen and
Grishman, 2016; Vu et al., 2016; Wang et al., 2016a; Yang et al., 2016b; Zhou et al., 2016).

A manually labeled dataset which includes relations between named entities is ACE
2005 (Automatic Content Extraction) (Walker et al., 2006). Its relations can be divided into
six major types, namely geo-political-entity affiliation, physical, person-social,
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employment-organization, agent-artifact, part-whole. In the last years, the dataset
has been used by, e.g., (Gormley et al., 2015; Nguyen and Grishman, 2015; Yu et al., 2015;
Nguyen and Grishman, 2016). For a more detailed description, see Section 5.5.

Datasets which better reflect the relations in a knowledge base are mostly automatically
created based on distant supervision since human annotations are expensive and time-
consuming. A widely used dataset which applies distant supervision with Freebase relations
to the New York Times corpus (Sandhaus, 2008) has been created by Riedel et al. (2010).
Recently, for instance, Chen et al. (2014), Fan et al. (2014), Grave (2014), Nagesh et al.
(2014), Zeng et al. (2015), Jiang et al. (2016), Lin et al. (2016) and Wu et al. (2017) have
experimented with that dataset. We have created our training set for slot filler classification
in a similar way since clean (manually cleaned or labeled) large-scale training sets were
not available at the time of our participation in slot filling. Recently, Zhang et al. (2017c)
have announced to publish a large-scale training set for slot filler classification which has
been labeled via crowdsourcing.

Models

While the SemEval2010-task 8 shared task winning system was a support vector machine
(Rink and Harabagiu, 2010), the current state-of-the-art systems for the different relation
extraction datasets are neural networks. Some groups train convolutional neural networks,
e.g., (dos Santos et al., 2015; Liu et al., 2015; Nguyen and Grishman, 2015; Xu et al.,
2015a; Cai et al., 2016; Lin et al., 2016; Nguyen and Grishman, 2016; Vu et al., 2016;
Wang et al., 2016a; Yang et al., 2016b), while other groups use variants of recurrent neural
networks (vanilla RNNs, GRUs or LSTMs) (Xu et al., 2015b; Cai et al., 2016; Nguyen and
Grishman, 2016; Verga et al., 2016; Vu et al., 2016; Zhou et al., 2016; Wu et al., 2017).
Sometimes model variations, e.g., a recurrent layer followed by a max-pooling layer, are
applied (Zhang and Wang, 2015; Nguyen and Grishman, 2016; Verga et al., 2016) and
some studies integrate attention layers into CNNs, e.g., (Wang et al., 2016a) and RNNs,
e.g., (Zhou et al., 2016). One of the current state-of-the-art models on the SemEval2010-
task 8 dataset is a CNN-based model with two layers of attention. Only a few groups
train both convolutional and recurrent neural networks for a direct comparison: Vu et al.
(2016) and Nguyen and Grishman (2016) conclude that a CNN outperforms an RNN on the
SemEval2010-task 8 dataset and a combination of both models by voting performs best.
While the results of Xu et al. (2015b) also support this performance ranking of models,
Zhang and Wang (2015), on the other hand, find an RNN outperforming a CNN model
on the same dataset. On the ACE 2005 dataset, Nguyen and Grishman (2016) find the
performance of CNN and RNN to be comparable. In this thesis, we use CNN models for
relation classification since they are better suited for extracting phrasal patterns of relations
(cf., Zhang et al. (2016c)). Moreover, in our experiments for (Adel and Schütze, 2015), we
have found CNNs outperforming RNNs on our slot filling benchmark and RNNs adding only
little performance gains to the final slot filling results when comparing them with CNNs. In
Chapter 4, we compare CNNs with RNNs for the task of uncertainty detection and also find
CNNs outperforming RNNs. The main differences of our contextCNN compared to other
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CNNs for relation extraction are the splitting of the context at the positions of the relation
arguments and the flag indicating the order of the relation arguments for distinguishing
inverse relations.

Zeng et al. (2015) present a network called piecewise CNN (PCNN) which is especially
designed for the relation classification task. After applying convolution, it splits the sen-
tence representation into three parts around the two relation arguments. Then, it performs
max pooling over the three parts individually. Sudo et al. (2016) apply it to slot filler clas-
sification, Wu et al. (2017) and Jiang et al. (2016) apply it to relation extraction on the
NYT+Freebase dataset created by Riedel et al. (2010). In contrast, we propose to split
the sentence even earlier and apply the convolutional filters to each part separately. This
leads to a cleaner context split since the convolutional filters are not applied across context
boundaries as they are in the PCNN. Because of its state-of-the-art performance for rela-
tion extraction, we use PCNN as a baseline model for our experiments in Section 3.5.2 and
Section 5.2.3. In both sections, our contextCNN outperforms PCNN on different distantly
supervised datasets.

Other state-of-the-art models for relation extraction are recursive neural networks
(Hashimoto et al., 2013; Ebrahimi and Dou, 2015; Liu et al., 2015), as proposed by Socher
et al. (2012), or models based on matrix factorization (Fan et al., 2014; Rocktäschel et al.,
2015; Verga et al., 2016), for instance Universal Schema (Yao et al., 2012; Riedel et al.,
2013). In Universal Schema, a matrix is built consisting of entity pairs as rows and rela-
tions (either from a knowledge base or textual patterns) as columns. After learning latent
features with a ranking objective, new facts can be inferred by reasoning over the matrix.
Recently, Ye et al. (2017) have presented a model which learns correlations between rela-
tional classes and Wu et al. (2017) have proposed adversarial training to train more robust
models.

Model Input

While many studies directly use the sequence of words, represented by word embeddings,
as input to the neural network models, several groups create the model input from con-
stituency parse trees, e.g., (Socher et al., 2012; Hashimoto et al., 2013), or dependency
parse trees, e.g., (Ebrahimi and Dou, 2015; Liu et al., 2015; Xu et al., 2015a,b; Cai et al.,
2016; Yang et al., 2016b). Models relying on word sequences are often provided with po-
sition embeddings (Nguyen and Grishman, 2015; Lin et al., 2016; Nguyen and Grishman,
2016; Vu et al., 2016) or position indicators (Zhang and Wang, 2015; Vu et al., 2016; Zhou
et al., 2016) as additional input. Position indicators are special tokens which mark the
position of the two relation arguments while position embeddings encode the distance of
each word to the two relation arguments. Especially for the SemEval2010-task 8 dataset,
most studies also use a variety of linguistic features as input, such as part-of-speech tags,
hypernyms, etc.
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3.8 Summary of Contributions

In this chapter, we described the modular system we built for the slot filling shared task
evaluations. It tackles several natural language processing challenges, such as alternate or
misspelled names, ambiguous entity names, coreference resolution, location inference and
domain-specific characteristics of documents. Ranked on third position in the official slot
filling evaluation 2015, it is one of the state-of-the-art systems for that task. We provide
its source code at http://cistern.cis.lmu.de/CIS_SlotFilling.

Moreover, we proposed contextCNN, a convolutional neural network with context split-
ting for the slot filler classification module and showed that it outperforms PCNN, a state-
of-the-art CNN architecture for relation extraction. Its implementation is provided at
http://cistern.cis.lmu.de/CIS_SlotFilling. When adding it to the slot filler clas-
sification module and combining it with traditional models for slot filling (patterns and
support vector machines), it improves the classification as well as the overall pipeline re-
sults. With this system, we were one of the first to successfully apply neural networks to
slot filler classification in the context of challenging model inputs (long contexts which are
potentially skewed due to pipeline effects) and noisy distantly supervised training data.

In order to enable a faster system development and a better comparison of individual
components among participating teams, we created a benchmark development and test set
for slot filler classification based on the manual assessments from the previous years. This
dataset also includes a genre-based split of documents in order to investigate and improve
the genre-dependent performance of models. We publish our scripts for reproducing the
dataset at http://cistern.cis.lmu.de/SFbenchmark.

Moreover, we empirically validated the importance of coreference resolution for the slot
filling task and made the result of our coreference pre-processing of the slot filling source
corpus available at http://cistern.cis.lmu.de/corefresources.

http://cistern.cis.lmu.de/CIS_SlotFilling
http://cistern.cis.lmu.de/CIS_SlotFilling
http://cistern.cis.lmu.de/SFbenchmark
http://cistern.cis.lmu.de/corefresources
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Chapter 4

Uncertainty Detection

Erklärung nach §8 Absatz 5 der Promotionsordnung: This chapter
covers work published at the peer-reviewed international conference European
Chapter of the Association for Computation Linguistics (EACL) in 2017 (Adel
and Schütze, 2017c).

For a declaration of co-authorship and attribution, see page xxv and following.

4.1 Task and Motivation

When using knowledge bases or knowledge graphs as world knowledge sources, e.g., in
question answering or information-retrieval systems, it is essential that the information
stored in the knowledge base is correct. When populating knowledge bases automatically,
as described in Chapter 3, the precision of the extractions is important. Another factor,
which needs to be considered carefully, is factuality. In this chapter, we will use the term
uncertainty to refer to speculation, opinion, vagueness and ambiguity. Uncertainty can, for
example, stem from missing information (Vincze, 2014b; Zhou et al., 2015b). An example
relation which often appears in non-factual contexts is the cause of death of a person.
Consider sentences like “X apparently died of Y”, “X may have died of Y”, “X likely died of
Y” or “X who reportedly died of Y”.1 For knowledge base population, we need to be able to
distinguish between facts (certain information) und uncertain information. For example, we
want to add the fact Basque(X) to a knowledge base only if it is extracted from a sentence
like “X is Basque” but not if it is extracted from “X may be Basque” or “X was rumored to
be Basque”. Besides knowledge base population, the distinction between uncertain (non-
factual) and certain (factual) information is also important for many other natural language
processing tasks, such as information extraction, question answering, medical information
retrieval, opinion detection or sentiment analysis (Karttunen and Zaenen, 2005; Vincze,
2014a; Dı́az et al., 2016).

We conduct our experiments on the dataset from the CoNLL2010 hedge cue detec-
tion task (Farkas et al., 2010). It consists of two medium-sized corpora from different

1Examples from the TAC slot filling shared task assessments.
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corpus label sentence
Wiki u Aganju is heavily associated with Shango, with some stat-

ing that he is Shango’s father, if not at least his brother.
Wiki c Formerly, both the A50 Leicester to Stoke-on-Trent road

and the A453 Birmingham to Nottingham road passed
through the town centre.

Wiki u Their style of music may be described as post-punk with
the elements of ska, Latin American music and funk.

Wiki c The total lung capacity (TLC) may be reduced through
alveolar wall thickening; however this is not always the case.

Bio u In human disease, the mRNA levels of both IL-23p19 and
IL-12p40 were shown to be increased in skin lesions of pso-
riatic patients (24), suggesting that elevated IL-23 con-
tributed to the pathogenesis of psoriasis.

Bio c It was of interest in this regard that the Th17 cells were
found to selectively produce IL-21 (35-38).

Bio u As O-GlcNAcylation appears to have a yin-yang relation-
ship with phosphorylation, the same may apply for O-
GlcNAcylation.

Bio c But it has to be emphasized that O-GlcNAcylation of Sp1
does not generally inhibit transcription.

Table 4.1: Examples from the CoNLL2010 hedge cue detection dataset, u: uncertain, c:
certain.

domains (Wikipedia and Biomedical) that allow us to run a large number of comparative
experiments with different neural networks and investigate different architectural choices.

4.1.1 Hedge Cues

Farkas et al. (2010) mention the following categories of triggers for uncertainty (“hedge
cues”):

• auxiliaries (examples: “may”, “might”, “can”, “would”)

• verbs with speculative content (examples: “suggest”, “presume”, “seem”)

• adjectives or adverbs (examples: “probable”, “likely”)

• more complex phrases (example: “raises the question of”)

Table 4.1 shows randomly picked examples from the Wikipedia and Biomedical test sets
and their sentence-level labels. Annotators have manually labeled the sentences with hedge
cues (and their scopes in the Biomedical datasets). For all sentences containing at least
one cue, “uncertain” is chosen as the sentence-level label (Farkas et al., 2010). Note that
negation is not part of the uncertain category (see last row of Table 4.1). The examples
from Wikipedia show that recognizing keywords is not enough for accurately predicting
the uncertainty label. For instance, the modal “may” can occur both in an uncertain and
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a certain sentence. The examples from the Biomedical domain show that the language is
very specific with many technical terms, which may pose challenges to statistical models.

4.2 Attention-based Models

Since uncertainty is often expressed by specific trigger patterns (hedge cues, see Sec-
tion 4.1.1), such as “may have”, “probably”, “hardly” or “has been suggested”, we in-
vestigate attention-based models for uncertainty detection. In particular, we train CNNs
and RNNs with gated recurrent units (GRU) and integrate different attention layers.

Although attention layers have been quite successful in NLP (see Section 2.2.3 or Sec-
tion 4.7), the design space of architectures with attention layers has not been fully explored.
Therefore, we investigate different dimensions of attention in this thesis and develop novel
ways to calculate attention weights and integrate them into neural networks. In particu-
lar, we make a first attempt to systematize the design space of attention and investigate
three dimensions of this space: weighted vs. unweighted selection, sequence-agnostic vs.
sequence-preserving selection, and internal vs. external attention. Our models are moti-
vated by the characteristics of the uncertainty detection task. However, we believe that
they can be useful for other NLP tasks as well since, for example, weighting can increase
the flexibility and expressivity of a neural network, and external resources can add infor-
mation which can be essential for good performance. Moreover, word order is often critical
for meaning and can, therefore, be an important feature for different NLP tasks.

4.2.1 Overview of Model

Figure 4.1 depicts a high-level view of our model. The input sentence is tokenized using
Stanford CoreNLP (Manning et al., 2014) and each token is represented by a word embed-
ding. As before, we use word embeddings trained on Wikipedia (see Section 2.2.3). The
resulting word embedding matrix is then either processed by a CNN+3-max-pooling layer
or by a bidirectional gated RNN (RNN-GRU) with gradient clipping to avoid exploiding
gradients. Then, attention is applied, either on the word embedding matrix or on the
CNN/RNN-GRU output (indicated by dashed lines in Figure 4.1; cf., Section 4.2.2). Since
k-max pooling (CNN) and recurrent hidden layers with gates (RNN-GRU) have strengths
complementary to attention, we experiment with concatenating the attention information
a ∈ RA to the neural sentence representations r ∈ Rm which is either the CNN pool-
ing result or the last hidden state of the RNN-GRU. The final hidden layer then has the
following form:

h = tanh(W aha+W rhr + b) (4.1)

with W ah ∈ RH×A and W rh ∈ RH×m being weight matrices and b ∈ RH being the bias
vector learned during training.



72 4. Uncertainty Detection

 w
1
   w

2
   …               w

c-1
 w

c

input sentence

project into
embedding space

a r

attention CNN/GRU

WrhWah

h

0 | 1

Figure 4.1: Network overview: combination of attention and CNN/RNN-GRU output. For
details on attention, see Figure 4.2.

4.2.2 Dimensions of Attention Design Space

In this section, we identify three dimensions of the design space of attention. Furthermore,
we propose new architectures along those dimensions.

Weighted vs. Unweighted Selection

Pooling, as widely applied in CNN models, can be seen as unweighted selection: it extracts
the average or maximum values without applying any weights to them. In contrast, atten-
tion can be thought of as a weighted selection mechanism: The input elements are weighted
by the attention weights, which allows the model to focus on a few highly weighted elements
and ignore other elements, which have received weights close to zero. The advantage of
weighted selection is that the model learns to decide based on the input how many values
it should select. In contrast, pooling either selects all values (average pooling) or k values
(k-max pooling). Thus, if we apply pooling to uncertainty detection and there are more
than k uncertainty cues in a sentence, k-max pooling is not able to focus on all of them.

Sequence-agnostic vs. Sequence-preserving Selection

Attention is generally implemented as a weighted average of input vectors:

a =
∑
i

ai (4.2)

with ai ∈ RA being the weighted input vectors: ai = αi ·X>i (see Equation 2.21). As
in Equation 2.21, αi denotes the attention weight and Xi is the vector which should be
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weighted by attention. We call this sum an average because the αi are normalized to sum
to 1 (see Equation 2.22) and the standard term for this is “weighted average”. In this
work, we introduce a variant of this: k-max average attention:

a =
∑

rankj(αj)≤k

aj (4.3)

where rankj(αj) is the rank of αj in the list of attention weights α in descending order.
This type of averaging may be more robust than the normal average over all elements
because elements with low weights (which may just be noise) will be ignored. Note that
the weights α are still normalized to sum to 1 for the whole sequence, not just for the k
selected values.

Taking an average of input values implies that all ordering information from the input
is lost and cannot be recovered by the next layer. Average pooling or max pooling is
also sequence-agnostic. However, we argue that order information is needed for some
NLP classification tasks. An example is when negation or uncertainty scopes need to
be considered. For uncertainty detection, for instance, the order of the input can help
distinguish phrases like “it is not uncertain that X is Basque” and “it is uncertain that
X is not Basque”. For pooling, there exists a variant which is (at least partly) sequence-
preserving: k-max pooling (Kalchbrenner et al., 2014) (see Section 2.2.3). It outputs
the subsequence with the highest elements of the input sequence in their original order.
Similarly, we propose two sequence-preserving ways of attention. The first one is k-max
sequence:

a = [aj| rank
j

(αj) ≤ k] (4.4)

where [aj|P (aj)] denotes the subsequence of sequence A = [a1, . . . ,aJ ] from which mem-
bers not satisfying predicate P have been removed. Note that the resulting sequence
a ∈ RA×k is in the original order of the input, i.e., not sorted by value. The second
sequence-preserving attention method is k-max pooling. It ranks each dimension of the
vectors individually, thus the resulting values can stem from different input positions.
This is the same as standard k-max pooling in CNNs except that each vector element in
aj has been weighted (by its attention weight αj), whereas in standard k-max pooling it
is considered as is. Below, we also refer to k-max sequence as “per-pos” (since it selects
all values of the k positions with the highest attention weights) and to k-max pooling as
“per-dim” (since it selects the k largest weighted values per dimension) to distinguish it
from k-max pooling done by the CNN. Note that CNNs and RNNs capture some infor-
mation of sequence as well in their outputs: The length of sequences CNNs are able to
handle is limited to the width of their filters. RNNs can theoretically capture information
of longer sequences as well, however all information gets conflated in their hidden state
with a limited storage capacity. In contrast, sequence-preserving attention explicitly stores
the most relevant inputs in their order of appearance.

Internal vs. External Attention

When designing the attention layer, we distinguish between focus and source of attention.
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The focus of attention is that layer of the network which is reweighted by attention
weights, corresponding to X in Equation 2.21. We investigate two options in this thesis:
focus on the input, i.e., the matrix of word vectors, and focus on the hidden representation,
i.e., the output of the convolutional layer of the CNN or the hidden layers of the RNN-
GRU. For focus on the input, we first apply tanh to the word vectors to improve results
(see Figure 4.2).

The source of attention is the information source used to compute the attention weights,
corresponding to the input of e in Equation 2.22.

Note that source and focus of attention are slightly related to keys and values used
in memory networks (Miller et al., 2016): Similar to sources, keys are used to calculate
weights. Similar to focuses, values are weighted and passed to the next layer of the network.
However, while there is only one key for each memory cell, our conceptualization allows
several sources. Moreover, we do not group specific sources and focuses to pairs like key-
value pairs. In contrast, sources and focuses are independent of each other. Finally, there
is no need of storing focus vectors in a memory.

For attention in the literature, both focus and source are based only on information
internally available to the network (through input or hidden layers). We call this internal
attention.2 This is also formalized by Equation 2.23 and Equation 2.24 with X being
the internal information used for focus and source of attention. Attention in machine
translation or question answering, for example, computes attention weights by comparing
two vectors, namely the source sentence to the previously translated target representation
or the document to the question representation (see Equation 2.25). In this case, the
source of attention (X and c) contains more information than the focus (X), however, all
those information are given by the intermediate hidden or output representations (previous
translations) or the task input (question). We, therefore, also categorize this as internal
attention.

In this work, we investigate increasing the scope of the source beyond the input and,
thus, making the attention mechanism more powerful. We refer to an attention layer
as external attention if its source includes an external resource. For uncertainty detec-
tion, for instance, it can be beneficial to give the model a lexicon of seed cue words or
phrases. Thus, we provide the network with additional information to bear on identi-
fying and summarizing features. This can simplify the training process by guiding the
model to recognizing uncertainty cues. The specific external-attention scoring function we
use for uncertainty detection is similar to the one used, e.g., in machine translation (see
Equation 2.25) with c := Cj being an additional input from an external source. It is
parameterized by U 1 ∈ Rd×A, U 2 ∈ Rd×E and v ∈ Rd and defined as follows:

e(Xi,C) =
∑
j

v> tanh(U 1X>i +U 2Cj) (4.5)

where Cj ∈ RE is a vector representing a cue phrase j of the training set. We compute Cj

as the average of the embeddings of the constituting words of j.

2Gates, e.g., the weighting of ht−1 in Equation 2.17, can also be viewed as internal attention mechanisms.
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Figure 4.2: Internal attention on (1) input and (2) hidden representation. External at-
tention on (3) input and (4) hidden representation. For the whole network structure, see
Figure 4.1.

Thus, the attention layer consists of a feed-forward hidden layer of size d, which com-
pares the input word Xi to each cue vector Cj and then sums the results. The weights U 1,
U 2 and v are learned during training. When applying this function e in Equation 2.22, the
attention weights αi show how important each input Xi is for uncertainty detection given
the external knowledge about possible cue phrases Cj. The underlying intuition is similar
to attention for machine translation, which learns alignments between source and target
sentences. Instead, we learn “alignments” between the input and external cue phrases.
Since we use embeddings to represent words and cues, uncertainty-indicating phrases that
did not occur in training but are similar to training cue phrases can also be recognized.
For using external attention with the proposed scoring function e to another task, only a
set of vectors Cj needs to be created which can be used to determine the relevance of the
input embeddings to the task at hand.

Note that external attention is not the only way of incorporating prior knowledge
into a neural network model. (An alternative could be the extension of the input word
embeddings with flags indicating whether the word is part of a cue phrase or not.) It has
rather been designed to improve and speed up the training of the attention module of a
neural network. Typically, the attention module is fully unsupervised. In contrast, the cue
vectors of external attention provide additional signals to guide the training of the network
in the desired direction.

Figure 4.2 shows the four settings arising from our distinction between source and
focus of attention: (1) internal attention on the input, (2) internal attention on the hidden
representation, (3) external attention on the input, and (4) external attention on the hidden
representation. A schematic view of internal and external attention as defined via source
and focus is given in Figure 4.3.
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domain train test
Wikipedia 11,111 9634
Biomedical 14,541 5003

Table 4.2: Statistics of CoNLL2010 hedge cue detection datasets.

4.3 Dataset

We evaluate our neural networks and attention architectures on the datasets from the
CoNLL 2010 shared task “Learning to Detect Hedges and their Scope in Natural Language
Text” (Farkas et al., 2010). The shared task provides two datasets from different domains:
one from Wikipedia and one from the Biomedical domain. The hedge cue detection task is
a binary sentence classification task: For each sentence, the model has to decide whether it
contains uncertain information (a hedge cue) or not. The sentences have been annotated
manually, making use of so-called Weasel words3 for Wikipedia, which go beyond the hedge
cue categories provided in Section 4.1.1 since they also include, for example, numerically
vague expressions, such as “many”, “one group of”, “more than 60%”. In the annotations,
not only the sentence-level labels are given but also the hedge cues are marked. An example
is the following training instance:

Earths and clays <ccue>may</ccue> have provided prehistoric peoples with
<ccue>some of their first medicines</ccue>.

The hedge cues are marked with the xml tag <ccue>. We use those marked hedge
cues from the training set to build the lexicon of hedge cues for the external attention
mechanism.

The statistics provided in Table 4.2 show that the datasets are medium-sized. Thus,
neural networks might not have a per-se advantage over non-neural models. On the other
hand, training the models does not take a long time, which allows conducting experiments
with different architectural choices. For hyperparameter tuning, we split the training
set into core-train (80%) and dev (20%) sets. Table B.1 in the appendix provides the
hyperparameters for the different models.

For evaluation, we apply the official shared task measure: F1 of the uncertain class.

3http://en.wikipedia.org/wiki/Weasel_word.

http://en.wikipedia.org/wiki/Weasel_word
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model Wiki Bio
(1) baseline SVM 62.01? 78.64?
(2) baseline RNN-GRU 59.82? 84.69
(3) baseline CNN 64.94 84.23

Table 4.3: F1 results for uncertainty detection. Baseline models without attention. ?
indicates significantly worse than best model (in bold).5

model Wiki Bio
(2) baseline RNN-GRU 59.82? 84.69
(4) RNN-GRU attention-only 62.02? 85.32
(5) RNN-GRU combined 58.96? 84.88
(3) baseline CNN 64.94? 84.23
(6) CNN attention-only 53.44? 82.85
(7) CNN combined 66.49 84.69

Table 4.4: F1 results for uncertainty detection. Attention-only vs. combined architectures.
Sequence-agnostic weighted average for attention. ? indicates significantly worse than best
model (bold).

4.4 Results

In this section, we present the results of our models on the uncertainty detection task and
compare them with previously published state-of-the-art results.

4.4.1 Baselines without Attention

To be able to assess the impact of our attention architectures on the classification results,
we implement a standard CNN model as well as a standard RNN-GRU model without
attention. Those architectures correspond to the right branch of the model shown in
Figure 4.1. Moreover, we re-implement the top-ranked system on Wikipedia in the CoNLL-
2010 shared task (Georgescul, 2010). It uses bag-of-word feature vectors with only hedge
cues from the training set as vocabulary. Although we follow the instructions provided
by Georgescul (2010) carefully and also set the SVM parameters to their values, our re-
implementation is slightly better than the published result: 62.01 vs. 60.20 on Wiki, 78.64
vs. 78.50 on Bio.

The results of the baselines are given in Table 4.3. The CNN (line 3) outperforms the
SVM (line 1) on both datasets, presumably because it considers all words in the sentence
– instead of only pre-defined hedge cues – and makes effective use of this additional infor-
mation. The RNN-GRU (line 2) performs better than the SVM and CNN on Biomedical
data, but worse on Wikipedia. In Section 4.5.2, we investigate possible reasons for the
different performance of CNN and RNN-GRU on the different datasets.

5randomization test with p<0.05.
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4.4.2 Experiments with Attention Mechanisms

In this section, we investigate the different attention architectures which can be derived
from the dimensions of attention we described in Section 4.2.2.

Weighted vs. Unweighted Selection

For the first set of experiments, we follow the standard approach in NLP and use the
sequence-agnostic weighted average for attention (see Equation 4.2). We compare the
weighted attention average (weighted selection) against k-max pooling in CNNs (unweight-
ed selection) as well as against the gating mechanism in RNN-GRUs. Moreover, we compare
attention-only architectures against combining the attention output with the CNN/RNN-
GRU output. Table 4.4 shows the resulting F1 scores. An attention-only model works well
for attention on the RNN-GRU hidden states but not for attention on the CNN hidden
representation. This indicates that attention is more powerful than the gating mechanism
of RNN-GRUs alone. Attention makes the task of the RNN-GRU – remembering the
entire sentence over long distances and focusing on the relevant parts for classification –
much easier. For CNNs, however, pooling (unweighted selection) outperforms attention
(weighted selection). This indicates that k-max pooling is already effective for focusing on
the key parts of the sentence. The CNNs achieve the best results when the pooling output
is combined with the attention output. This shows that attention (weighted selection)
extracts complementary information. Therefore, we combine the RNN-GRU/CNN hidden
representations with the attention layer for all of the following experiments, as depicted in
Figure 4.1. Thus, we explore the benefits of adding attention to existing architectures in
the following, as opposed to developing attention-only architectures.

Internal vs. External Attention

As depicted in Figure 4.2, we investigate four different configurations with different sources
(S) and focuses (F) of attention: internal attention on the word embeddings (S=I, F=W),
internal attention on the RNN-GRU/CNN hidden representation (S=I, F=H), external
attention on the word embeddings (S=E, F=W) and external attention on the RNN-
GRU/CNN hidden representation (S=E, F=H). Table 4.5 provides the results.

For both RNN-GRU (line 8 of Table 4.5) and CNN (line 13), the best result is obtained
by focusing attention directly on the word embeddings.6 These results suggest that it is
best to optimize the attention mechanism directly on the input, so that information can
be extracted that is complementary to the information extracted by a standard RNN-
GRU/CNN.

For the CNN, external attention (13) is significantly better than internal attention (11)
when focusing on the input word embeddings (F=W). This shows that by designing an
architectural element – external attention – that simplifies the identification of hedge cue

6The small difference between the RNN-GRU results on Bio on lines (5) and (8) is not significant.
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model S F Wiki Bio
(2) baseline RNN-GRU - - 59.82? 84.69
(5) RNN-GRU combined I H 58.96? 84.88
(8) RNN-GRU combined I W 62.18? 84.81
(9) RNN-GRU combined E H 61.19? 84.62
(10) RNN-GRU combined E W 61.87? 84.41
(3) baseline CNN - - 64.94? 84.23?
(7) CNN combined I H 66.49 84.69
(11) CNN combined I W 65.13? 84.99
(12) CNN combined E H 64.14? 84.73
(13) CNN combined E W 67.08 85.57

Table 4.5: F1 results for uncertainty detection. Focus (F) and source (S) of attention:
Internal (I) vs. external (E) attention; attention on word embeddings (W) vs. on hidden
layers (H). Sequence-agnostic weighted average for attention. ? indicates significantly worse
than best model (bold).

properties of words, the whole learning problem is apparently made easier. For the RNN-
GRU, however, external attention on the input (line 10) is not better than internal attention
on the input (line 8). The results are roughly tied for both domains. External attention on
the RNN-GRU hidden representation (line 9) is better than internal attention (line 5) on
Wikipedia and roughly tied on Biomedical. We assume that the combination of an external
resource with the more indirect sentence representation as produced by the RNN-GRU is
more difficult. The RNN-GRU accumulates the information from the entire sentence in its
hidden representation while the CNN creates representations of n-gram phrases in order
to recognize hedge cue patterns in them. Those short-phrase representations of the CNN
might be combined more effectively with external attention: If there is, for example, a
strong external-attention evidence for uncertainty, then the effect of a hedge cue pattern
(hypothesized by a convolutional filter) on the final decision can be boosted. As a result,
the CNN with external attention achieves the best results overall. It is significantly better
than the standard CNN using only pooling, both on Wikipedia and Biomedical texts.
Thus, the CNN can make effective use of external information – a lexicon of uncertainty
cues in our case.

Sequence-agnostic vs. Sequence-preserving Selection

As described in Section 4.2.2, we expect that sequence information is important for many
NLP tasks. Since commonly used attention mechanisms simply average the vectors in
the focus of attention and, thus, lose sequential information (sequence-agnostic), we pro-
pose two possibilities of sequence-preserving attention: “per-dim” and “per-pos” (see Sec-
tion 4.2.2). Sequence-preserving attention is similar to k-max pooling, which also selects
an ordered subset of inputs. While traditional k-max pooling is unweighted, our sequence-
preserving ways of attention still make use of the attention weights.

Table 4.6 compares standard attention (“average all”) with the two sequence-preserving
ways of attention as well as with a hybrid design (“k-max average”), as described in
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average k-max sequence
all k-max per-dim per-pos

Wiki 67.08 67.52 66.73 66.50
Bio 85.57 84.36 84.05 84.03

Table 4.6: F1 results for uncertainty detection. Model: CNN, S=E, F=W (13). Sequence-
agnostic vs. sequence-preserving attention.

Section 4.2.2. For these experiments, we use the CNN with external attention focused on
word embeddings (Table 4.5, line 13), the best performing configuration in the previous
experiments.

When “sharpening” attention and only considering the values with the top k atten-
tion weights, the performance of the model increases on Wikipedia (from 67.08 to 67.52)
and decreases on Biomedical (from 85.57 to 84.36). In general, we do not expect large
performance differences since attention values tend to be peaked, so for common values of
k (k ≥ 3 in most prior work on k-max pooling) we are effectively comparing two similar
weighted averages, one in which most summands get a weight of 0 (k-max average) and one
in which most summands get weights close to 0 (average over all, i.e., standard attention).
Only for attention weight distributions which are not clearly peaked, the impact of k-max
average can be higher.

The sequence-preserving architectures in Table 4.6 are slightly worse than standard at-
tention (sequence-agnostic averaging of all vectors), but not significantly: The performance
is different by about half a point. This shows that k-max sequence and attention can sim-
ilarly be used to select a subset of the information available, a parallel that has not been
highlighted and investigated in detail before. Our motivation for introducing sequence-
preserving attention is that the semantic meaning of a sentence can vary depending on
where an uncertainty cue occurs. However, the core of uncertainty detection is keyword
and keyphrase detection. Thus, the overall sentence structure might be less important for
this task. For tasks with a stronger natural language understanding component, such as
summarization or relation extraction, on the other hand, we expect sequences of weighted
vectors to outperform averaged vectors. For sentiment analysis, sequence-preserving at-
tention can help for detecting the scope of negation and sentiment words. In (Adel and
Schütze, 2017c), we show that sequence-preserving attention indeed improves results on a
sentiment analysis benchmark dataset.

4.4.3 Comparison to State of the Art

Table 4.7 compares our models to the state of the art on the uncertainty detection bench-
mark datasets. On Wikipedia, our CNN outperforms the state of the art by more than
three points. On the Biomedical domain, the best model is a structured prediction model
(conditional random field) using a large number of manually designed features (i.a., lem-
mas, chunks, part-of-speech tags) based on an exhaustive corpus pre-processing (Tang
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model Wiki Bio
SVM (Georgescul, 2010) 62.01 78.64
HMM (Li et al., 2014) 63.97 80.15
CRF + ling (Tang et al., 2010) 55.05 86.79
our CNN with external attention 67.52 85.57

Table 4.7: Comparison of our best model with the state of the art.

et al., 2010). Our models still achieve comparable results without pre-processing7 or fea-
ture engineering.

4.5 Analysis

In this section, we analyze the attention layer and provide comparisons of CNNs and RNNs
for uncertainty detection.

4.5.1 Analysis of Attention

Advantages of Attention

We manually look at examples for which pooling (i.e., the baseline CNN) fails but attention
correctly detects an uncertainty. From this analysis, two patterns emerge: First, we find
that there are many cues that have more words than the filter size (which was 3 in our
experiments), e.g., “it is widely expected”, “it has also been suggested”. The convolutional
layer of the CNN is not able to detect phrases longer than the filter size while for attention
there is no such restriction. Second, some cues are spread over the whole sentence, as in
the following example from the Wikipedia dataset: “Observations of the photosphere of
47 Ursae Majoris suggested that the periodicity could not be explained by stellar activity,
making the planet interpretation more likely”. We have set the uncertainty cues that are
distributed throughout the sentence in italics. To see which words of this sentence get
the highest attention weights using external attention, we extract and plot the attention
weight distribution in Figure 4.4. With attention, the model focuses the most on the three
words/phrases “suggested”, “not” and “more likely” that correspond almost perfectly to
the true uncertainty cues. K-max pooling of standard CNNs, on the other hand, can only
select the k maximum values per dimension, i.e., it can pick at most k uncertainty cues per
dimension. Since k is a hyperparameter to the model, it needs to be chosen with a hard
decision before model training. With attention, on the other hand, the model can choose
the optimal number of words to attend to for each sentence individually.

7We only tokenize the input sentences as described before.
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Figure 4.4: External attention weight heat map.
A
lte

rn
at
iv
el
y ,

th
e

is
la
nd

w
as

so
m
et
im

es
kn

ow
n as

B
ra

zi
l ,

an
d so

m
ig
ht

re
pr

es
en

t
th
e

sa
m
e

is
la
nd as th
e

B
ra

zi
l

of
f

th
e

w
es

t
co

as
t of

Ire
la
nd
.

external
internal
pooling

Figure 4.5: Pooling vs. internal vs. external attention.

Pooling vs. Internal vs. External Attention

For a qualitative analysis of the different selection mechanisms (pooling, internal attention,
external attention), we randomly pick sentences from the Wikipedia test set and extract
which parts of the input they select. For internal and external attention, this is straight-
forward since we can directly plot the attention weights αi. For pooling, we calculate the
relative frequency that a value from an n-gram centered around a specific word is picked.
In particular, we divide the absolute frequency by the total number of pooling results (for
k-max pooling, this is k times the number of convolutional filters). Figure 4.5 shows the
results of the three mechanisms for an exemplary sentence. We provide figures for more
sentences in the appendix (Section B.2). The observable patterns are similar across all
sentences we have randomly picked: Pooling forwards information from different parts all
over the sentence. It has minor peaks at relevant n-grams (e.g., “was sometimes known as”
or “so might represent”) but also at non-relevant parts (e.g., “Alternatively” or “the same
island”). There is no clear focus on uncertainty cues. Internal attention is more focused
on the relevant words for uncertainty detection. External attention finally has the clearest
focus since its training is guided by prior knowledge of cue phrases.

4.5.2 Analysis of CNN vs. RNN-GRU

The behavior of CNN and RNN-GRU is different on the two domains Wikipedia and
Biomedical. While the results of the CNN and the RNN-GRU are comparable on Biomed-
ical, the CNN clearly outperforms the RNN-GRU on Wikipedia. Table 4.8 shows a com-
parison of characteristics of the two datasets that might affect model performance.

Although the Wikipedia dataset has a richer vocabulary (almost twice as many different
words as the Biomedical dataset), it is better covered by our word embeddings, probably
because they have also been trained on Wikipedia. Thus, the average number of out-of-



4.5 Analysis 83

Wikipedia Biomedical
average sentence length8 21 27
size of vocabulary 45,100 25,300
average #OOVs per sentence 4.5 6.5

Table 4.8: Differences of Wikipedia and Biomedical dataset.
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Figure 4.6: F1 results for different sentence lengths.

vocabulary (OOV) words per sentence is lower. Also, the sentences are shorter on average.
All of those features can influence model performance, especially because of the different
way of sentence processing: While the RNN-GRU merges all information into a single
vector, the CNN extracts the most important phrases and ignores all the rest. In the
following paragraphs, we analyze the behavior of the two models with respect to sentence
length, number of OOVs and precision and recall scores.

Sentence Lengths

Figure 4.6 shows the F1 scores on Wikipedia of the CNN and the RNN-GRU with external
attention for different sentence lengths. For a better overview, we discretize the lengths to
intervals of 10, i.e., index 50 on the x-axis includes the scores for all sentences of length
l ∈ [50, 60). Most sentences (96.2%) have lengths l < 50. Only 0.1% of sentences have
length l > 100. The CNN outperforms the RNN consistently across sentence lengths, with
larger differences for longer sentences.

Number of Out-of-Vocabulary Words

Figure 4.7 shows a similar plot for F1 scores depending on the number of OOVs per sen-
tence. Again, the CNN consistently outperforms the RNN-GRU independent of the number
of OOVs. This indicates that the uncertainty detection task seems to be more challenging
for the RNN-GRU in general, not depending on the number of out-of-vocabulary words.

8after tokenization with Stanford CoreNLP.



84 4. Uncertainty Detection

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100  120  140

F
1

 s
co

re

Number of OOVs

CNN
GRU

Figure 4.7: F1 results for different number of OOVs per sentence.

model P R
CNN 52.5 85.1
CNN + external attention 58.6 78.3
RNN-GRU 75.2 49.6
RNN-GRU + external attention 76.3 52.0

Table 4.9: Precision and recall scores of CNN and RNN-GRU on Wikipedia.

Precision and Recall

So far, we have only compared F1 scores of the different models. In this paragraph, we
investigate precision and recall of the CNN and the RNN-GRU. Table 4.9 provides the
values for four models on the Wikipedia dataset: CNN and RNN-GRU with and without
external attention.

The scores show a very important difference between the two models: The CNN models
offer high-recall predictions while the predictions of the RNN-GRU models have higher
precision. This suggests that the RNN-GRU predicts uncertainty more reluctantly than
the CNN. The same analysis on Biomedical reveals that the precision and recall values
are almost the same for both models. This might be a reason why the performance of the
models is similar on Biomedical but different on Wikipedia. A reason for that might be the
different characteristics of the two corpora as shown in Table 4.8. The larger vocabulary
of the Wikipedia dataset, for example, might pose more challenges to the RNN than to
the CNN in identifying uncertain sentences. As a result, its recall is considerably lower on
the Wikipedia dataset.

Note that F1 scores can be optimized by tuning the prediction thresholds for the dif-
ferent classes. However since the classification task is binary, we do not tune them here
but decide for the uncertain or certain class depending on which output score is higher.
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uncertainty micro macro
detection P R F1 F1

hop 0 – 31.79 28.23 29.91 34.20
hop 0 + 33.15 28.00 30.35 33.72
hop 1 – 9.80 7.00 8.17 8.28
hop 1 + 10.63 6.89 8.36 8.35

all – 23.80 19.42 21.39 24.92
all + 25.21 19.23 21.82 24.64

Table 4.10: CSLDC max micro/macro scores with and without uncertainty detection.

4.6 Application to Slot Filling

We apply uncertainty detection as an additional component in the slot filling pipeline
between the slot filler classification and the postprocessing component. In particular, we
run the best uncertainty detection network trained on Wikipedia (with external attention
on the input word embeddings and k-max average) on the middle contexts of the slot
filling candidates. If it detects an uncertainty cue, we do not consider the filler candidate
for output. We choose the network trained on Wikipedia since we expect Wikipedia texts
to be more similar to news and discussion forum texts than Biomedical texts. We decide
to only consider uncertainty cues in the middle contexts in order to reduce the possibility
of detecting an uncertainty cue which is not in the scope of the relation. An example is
the following sentence (taken from the slot filling dataset, LDC2015E77):

While the world is convinced that Barack Obama, the US’ liberal, Democratic
president, is a tech-savvy politician who...

The phrase “while the world is convinced” indicates that the statement “Barack Obama
is a tech-savvy politician” is an opinion rather than a proven fact. However, the triple
(Barack Obama, per:title, president) is still a fact. By considering only the middle
context between Barack Obama and president for uncertainty detection (i.e., “, the US’
liberal, Democratic”), the model is not distracted by the phrase indicating uncertainty.
On the other hand, consider the following sentence (also taken from the slot filling dataset,
LDC2015E77):

... Abubakar Shekau, may have died of gunshot wounds some weeks after a
clash...

By considering the middle context between Abubakar Shekau and gunshot wounds, it
is possible to recognize that the per:cause of death relation does not necessarily hold
between the entity and the phrase because of the modal verb “may”. Several studies on
relation classification, e.g., (Zeng et al., 2014), even classify relations considering only the
middle contexts. Thus, the assumption that most relation specific context is contained in
the middle context is reasonable.

Table 4.10 provides the results of the slot filling system using patterns, binary support
vector machines with skip n-gram features and binary contextCNNs with and without
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integrating the uncertainty detection module. The uncertainty detection module leads to
higher precision values with only slightly reduced recall values. As a result, it can improve
the micro F1 scores of the slot filling pipeline.

For example, the uncertainty detection module correctly filters the context “e1 is be-
lieved to have been born in Connemara in e2” and, thus, improves precision of the final
system. However, by wrongly identifying uncertainty in “e1 who is considered one of the
world’s foremost Legal e2”, it prevents the system from detecting a possibly correct slot
filler and, thus, reduces recall.

4.7 Related Work

4.7.1 Uncertainty Detection

The concept of uncertainty has been extensively studied in linguistics, e.g., (Kiparsky and
Kiparsky, 1970; Karttunen, 1973; Lakoff, 1975; Karttunen and Zaenen, 2005). Different
terms used in linguistics which may denote slightly different but still similar linguistic
phenomena are, i.a., modality (Palmer, 2001; Szarvas et al., 2012), factuality (Sauŕı and
Pustejovsky, 2012) or veridicality (Karttunen and Zaenen, 2005; De Marneffe et al., 2012).
Another related concept is negation. Although its semantics is different since it might refer
to certain information which is not true, it is often studied in combination with speculation
or modality (Baker et al., 2012; Velldal et al., 2012). See (Vincze, 2014b) for more detailed
elaborations on the linguistic background.

Domains and Datasets

In natural language processing, many studies on uncertainty detection have focused on the
Biomedical domain, e.g., (Friedman et al., 1994; Light et al., 2004; Farkas and Szarvas,
2008; Kilicoglu and Bergler, 2008; Vincze et al., 2008; Kim et al., 2009; Morante and
Daelemans, 2009; Özgür and Radev, 2009; Uzuner et al., 2009). Other studied domains
include news (Sauri, 2008; Sauŕı and Pustejovsky, 2009), Wikipedia (Ganter and Strube,
2009; Farkas et al., 2010) or social media (Wei et al., 2013). Recently, uncertainty detection
has been applied in the review domain (Pang and Lee, 2004; Wilson et al., 2005; Cruz et al.,
2016), for political statements (Štajner et al., 2016) and tweets (Reichel and Lendvai,
2016). Szarvas et al. (2012), Vincze (2014b) and Zhou et al. (2015b) conduct cross-domain
experiments. Benchmark corpora include FactBank (Sauŕı and Pustejovsky, 2009), used
by, e.g., (Sauri, 2008; Sauŕı and Pustejovsky, 2009, 2012; Szarvas et al., 2012; Zhou et al.,
2015b), WikiWeasel (Ganter and Strube, 2009), used by, e.g., (Ganter and Strube, 2009;
Szarvas et al., 2012; Zhou et al., 2015b; Jean et al., 2016), BioScope (Vincze et al., 2008),
used by, e.g., (Morante and Daelemans, 2009; Özgür and Radev, 2009; Szarvas et al., 2012;
Zhou et al., 2015b; Jean et al., 2016), or datasets prepared for shared task evaluations, such
as the BioNLP’09 Shared Task on Event Extraction (Kim et al., 2009) or the CoNLL 2010
shared task on detecting hedge cues (Farkas et al., 2010). The annotation of FactBank, for
instance, includes perspective, level of factuality and polarity. De Marneffe et al. (2012)
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extend FactBank by crowdsourcing. In this work, we use the CoNLL 2010 shared task
dataset instead since it provides larger train/test sets and its annotation consists of only
two labels (certain/uncertain) instead of various perspectives and degrees of uncertainty.
Sauŕı and Pustejovsky (2012) categorize related work into two main approaches: identifying
speculative cues (and their scope) vs. determining the factuality values from the identified
cues. In this work, we contribute to the first category. We consider this a reasonable first
step when aiming at applying uncertainty detection to information extraction tasks like
KBP slot filling.

Models and Features

Early systems on uncertainty detection apply rules with hand-crafted lexicons of uncer-
tainty cues (Friedman et al., 1994; Light et al., 2004; Farkas and Szarvas, 2008; Sauri,
2008; Conway et al., 2009; MacKinlay et al., 2009; Uzuner et al., 2009; Van Landeghem
et al., 2009; Sauŕı and Pustejovsky, 2012; Štajner et al., 2016) or algorithms based on
linguistic knowledge (Sauri, 2008; Sauŕı and Pustejovsky, 2012). Other studies train ma-
chine learning models, such as Naive Bayes classifiers (Štajner et al., 2016), decision trees
(Morante and Daelemans, 2009), generalized linear models (Reichel and Lendvai, 2016),
maximum entropy models (MacKinlay et al., 2009; Sauŕı and Pustejovsky, 2009; Clausen,
2010; Szarvas et al., 2012; Štajner et al., 2016), support vector machines (Light et al., 2004;
Özgür and Radev, 2009; Uzuner et al., 2009; Georgescul, 2010; Velldal, 2010; Cruz et al.,
2016; Jean et al., 2016; Štajner et al., 2016) or conditional random fields (Li et al., 2010; Rei
and Briscoe, 2010; Tang et al., 2010; Szarvas et al., 2012). To the best of our knowledge,
we are the first to use neural networks for uncertainty detection. (In the CoNLL shared
task evaluations, there was only one team using average perceptrons (Ji et al., 2010) but
no multi-layer neural network.)

In contrast to our model, most models represent the input by a variety of features,
such as, but not limited to, stems, lemmas, prefixes and suffixes, part-of-speech tags,
grammatical relations, document position features or features derived from chunking or
dependency parsing. Also effective are dictionaries of possible hedge cues or modal verbs.
Table 4.11 shows which studies use which features. Sauŕı and Pustejovsky (2009) emphasize
the importance of context and world knowledge for uncertainty detection.

Several systems treat uncertainty detection as a token-labeling task instead of a sentence
classification task and derive a label on the sentence level by aggregating the token labels.
In the official CoNLL 2010 shared task evaluations, this approach has often performed
better than the sentence classification approach (Farkas et al., 2010). In contrast, our
experimental results show that treating uncertainty detection as a sentence classification
task can also be effective. Velldal (2010) and Özgür and Radev (2009), for instance, take a
third approach and directly classify each uncertainty keyword whether or not it expresses
uncertainty in its current context.
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feature example studies

stems (Özgür and Radev, 2009; Szarvas et al., 2012; Zhou et al., 2015b)
lemmas (Morante and Daelemans, 2009; Sauŕı and Pustejovsky, 2009; Clausen,

2010; Li et al., 2010; Rei and Briscoe, 2010; Tang et al., 2010; Velldal,
2010; Jean et al., 2016)

prefixes, suffixes (Tang et al., 2010; Szarvas et al., 2012)

part-of-speech tags (Kilicoglu and Bergler, 2008; Morante and Daelemans, 2009; Özgür and
Radev, 2009; Clausen, 2010; Li et al., 2010; Rei and Briscoe, 2010; Tang
et al., 2010; Velldal, 2010; Szarvas et al., 2012; Zhou et al., 2015b; Jean
et al., 2016)

grammatical relations (Rei and Briscoe, 2010)

document position features (Özgür and Radev, 2009)
chunking (Morante and Daelemans, 2009; Li et al., 2010; Tang et al., 2010; Szarvas

et al., 2012; Zhou et al., 2015b)

dependency parsing (Kilicoglu and Bergler, 2008; Sauri, 2008; MacKinlay et al., 2009; Özgür
and Radev, 2009; Rei and Briscoe, 2010; Velldal, 2010; Sauŕı and Puste-
jovsky, 2012)

dictionaries (Sauŕı and Pustejovsky, 2009; Georgescul, 2010; Tang et al., 2010; Jean
et al., 2016; Štajner et al., 2016)

Table 4.11: Example studies for features used in uncertainty detection.

Applications

Uncertainty detection can be helpful in various natural language processing task, such as
information extraction, c.f., Karttunen and Zaenen (2005), sentiment analysis (Pang and
Lee, 2004; Wilson et al., 2005; Benamara et al., 2012; Cruz et al., 2016), textual entailment
or question answering (Benamara et al., 2012).

4.7.2 Attention

As described in Section 2.2.3, attention is mainly used in recurrent neural networks to allow
the network to focus on relevant parts of the input (Bahdanau et al., 2015; Hermann et al.,
2015; Peng et al., 2015; Rush et al., 2015; Rocktäschel et al., 2016; Yang et al., 2016c). Some
studies in vision also integrate attention into CNNs (Stollenga et al., 2014; Chen et al., 2015;
Xiao et al., 2015) as we do in this thesis while this is not common in NLP so far. Exceptions
are, e.g., Meng et al. (2015), Wang et al. (2016a) and Yin et al. (2016). Meng et al. (2015)
use several layers of local and global attention in a complex machine translation model
with a large number of parameters. We have re-implemented their network to compare our
models with it but it performs poorly for uncertainty detection (F1 score is 51.51/66.57
on Wiki/Bio). One reason for that might be our limited amount of training data. The
dataset used by Meng et al. (2015) is an order of magnitude larger. However, our results
show that our CNN architectures with attention are effective even with a smaller training
set. Yin et al. (2016) compare attention-based input representations and attention-based
pooling. In contrast, we keep the convolutional and pooling layers unchanged and combine
their strengths with attention. Allamanis et al. (2016) apply a convolutional layer to
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compute the attention weights (instead of the linear or feed-forward layer in Equation 2.23
and Equation 2.25). Experimenting with such an attention layer in combination with our
attention architectures would be an interesting direction for future work.

4.8 Summary of Contributions

In this chapter, we presented our work on attention mechanisms for uncertainty detection.
We experimented with different neural architectures (CNN and RNN-GRU) and made a
first attempt to systematize the design space of attention. Attention is currently a popular
architectural component of models for different NLP tasks. We identified three dimensions
of the design space of neural selection mechanisms: weighted vs. unweighted selection,
sequence-agnostic vs. sequence-preserving selection, and internal vs. external attention.
Along those axes, we proposed several new attention mechanisms: external attention, k-
max average attention and sequence-preserving attention. External attention allows the
incorporation of external (task-specific) resources in the attention mechanism, such as a
lexicon of uncertainty cues for uncertainty detection or a sentiment dictionary for sentiment
analysis. K-max average attention uses only the vectors with the k maximum attention
weights to compute the attention result. This can help the model to focus on the most
relevant parts of the input when the distribution of attention weights is not sharp, i.e.,
if some weight is also put on unimportant input vectors. Sequence-preserving attention
maintains the order information from the input sequence, which is lost by standard atten-
tion with average. This can be beneficial whenever word order is crucial for the correct
prediction. Our models are motivated by the characteristics of the uncertainty detection
task but can be easily applied to other NLP tasks as well.

We are the first to apply convolutional neural networks and recurrent neural networks
with gated recurrent units to uncertainty detection. Moreover, we analyzed the different
behavior of CNNs and RNN-GRUs by comparing their performance with respect to dif-
ferent input lengths, different numbers of out-of-vocabulary words in the input, as well as
their precision and recall results. Our CNN models with external attention on the input
embeddings set the new state of the art on the Wikipedia uncertainty detection dataset.
In an analysis, we showed that internal and external attention provide a better focus on
relevant input words or phrases than pooling, with external attention having the clear-
est focus. We publish the source code of the CNNs and RNN-GRUs with the different
attention mechanisms at http://cistern.cis.lmu.de/attentionUncertainty.

Finally, we added an uncertainty detection module to the slot filling system and showed
that it improves results, especially precision. To the best of our knowledge, we are the first
to use such a module in the slot filling pipeline.

http://cistern.cis.lmu.de/attentionUncertainty
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Chapter 5

Type-Aware Relation Extraction

Erklärung nach §8 Absatz 5 der Promotionsordnung: This chapter
covers work published at two peer-reviewed international conferences, namely
(Yaghoobzadeh et al., 2017) at European Chapter of the Association for Com-
putational Linguistics (EACL) in 2017 and (Adel and Schütze, 2017b) at Em-
pirical Methods in Natural Language Processing (EMNLP) in 2017.

For a declaration of co-authorship and attribution, see page xxv and following.

5.1 Task and Motivation

As motivated in Chapter 3, relation extraction is a key component of slot filling or knowl-
edge base population in general. In order to extract a triple like (Bill Gates, live in,
Medina) from text, a relation extraction model needs to determine that the live in re-
lation holds in a given context between the two entities Bill Gates and Medina. While
we have presented various relation extraction models in Section 3.3, we now argue that
knowledge about the types of the involved entities can improve their results. Thus, in this
chapter, we consider type-aware relation extraction, i.e., joint entity classification (EC)
and relation extraction (RE).

In slot filling pipelines but also in many other NLP systems, the two tasks are treated
as a sequential pipeline: First, a named entity recognition tool is applied, and then the
relations between named entity pairs are extracted. However, named entity types and
relations are mutually dependent (Roth and Yih, 2004; Yao et al., 2010; Singh et al.,
2013a; Li and Ji, 2014). Knowledge of the classes (types) of the relation arguments can
help relation extraction, e.g., by reducing the search space of possible relations. Moreover,
results from relation extraction can guide entity classification, for instance, in the case of
ambiguities. The mention Medina, for example, can refer to, i.a., a person, a location, a
music album or a board game, depending on its context. If the model can extract from
the given context that it is the second argument for the relation live in, it can conclude
that the given entity is most likely a location.
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Figure 5.1: Type-aware relation extraction models. The blue dashed lines indicate the
propagated loss. Left: pipeline model, middle: jointly trained model, right: globally
normalized model with structured prediction output layer. Lent, Lrel and Lseq denote the
loss of entity classification, relation classification and the loss of the sequence of entity and
relation predictions, respectively.

Therefore, we develop type-aware relation extraction neural networks, i.e., single neu-
ral networks for both tasks as depicted in Figure 5.1. In the first part of this chapter
(Section 5.2), we propose a network which is trained jointly on (fine-grained) entity and
relation classification and uses the entity classification results as additional input features
for relation classification (cf., middle part of Figure 5.1). We compare this model against
traditional pipeline approaches, which first evaluate EC and then RE (left part of Fig-
ure 5.1). In the second part (Section 5.3), we propose a network with a structured predic-
tion output layer, which optimizes a sequence consisting of the (coarse-grained) types of
two candidate entities and the relation between them (right part of Figure 5.1). Both pre-
sented approaches consider EC and RE together in a single model. Their main difference
is two-fold:

(i) In the jointly trained model, the integration of the entity type classes is below the
output level of the relation classes, thus, the entity type classes form an additional
input to the relation classification model. With this, we expect relation classification
to benefit from entity classification. On the other hand, entity classification cannot
directly benefit from relation classification. In the model with structured predic-
tion, in contrast, the classification of entity and relation classes is at the same level,
thus they directly share the underlying layers for computing the context and entity
representations. Given our design of the output sequence, the relation prediction is
directly influenced by the predicted class of the first entity and the classification of
the second entity is directly influenced by the predicted relation.

(ii) The objective functions handle the combination differently: While the objective func-
tion of the jointly trained model is a weighted average of the two task-specific loss
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functions, the objective function of the model with structured prediction handles the
combination more explicitly and optimizes a sequence of entity and relation classes.

For our experiments, we cannot use the datasets described in Section 3.4.2 and Sec-
tion 3.4.3 because they do not provide entity class annotations. Therefore, we create a
new distantly supervised dataset for training and evaluating the joint model based on au-
tomatic entity linking annotations of ClueWeb. These annotations have also been used
for entity classification by Yaghoobzadeh and Schütze (2015). The dataset is described
in detail in Section 5.2.2. Note that ClueWeb is also one of the datasets we use in Sec-
tion 3.4.2. For the structured prediction model, we use a manually labeled dataset instead
(see Section 5.3.2). This dataset is of a smaller scale than the distantly supervised datasets
but does not include noisy labels. Moreover, it provides the possibility of investigating a
fine-grained table filling evaluation scenario, which would be considerably more difficult
with noisy labels. In order to directly compare the two models for joint entity and relation
classification, we finally evaluate them on the same slot filling datasets in Section 5.4.

5.2 Jointly Trained Model

In this section, we describe a relation classification model which uses entity classes as
additional input features. Both the entity and the relation classification model are neural
networks which can be trained jointly using a weighted sum of the task-specific costs.

5.2.1 Model

We design a neural network based on contextCNN, which has been introduced in Sec-
tion 3.3.4, for the joint entity and relation classification task.

Task-individual Model Parts

Entity Classification Part. For EC, we split the context into two parts (left and right
of the entity) and apply a convolutional layer to each of them. Note that the two parts
do not contain the entity itself, forcing the model to focus on the context only in order to
generalize better to unseen entities in the test set. After convolution, we use max pooling
to get context representations ue1 ∈ RmEC and ue2 ∈ RmEC for the two entities e1 and e2.
The context representations are then fed into a fully-connected hidden layer and a sigmoid
layer to identify the classes of the entities. We use a sigmoid instead of a softmax layer to
model that an entity can have several of the fine-grained FIGER classes (Ling and Weld,
2012) we use in this study, such as POLITICIAN and PERSON.

Relation Classification Part. For RE, we apply contextCNN as proposed in Sec-
tion 3.3.4. Thus, we split the input into three contexts (left, middle and right). To give
the model information about the relation arguments, we explicitly model them with entity
embeddings (as described in Section 5.2.2). The entity embeddings are included into the
contexts, i.e., the left context also includes the first entity, the right context includes the
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second entity and the middle context includes both entities. Thus, the contexts “overlap”
(cf., Figure 5.2). After 3-max pooling, we concatenate the three context representations
to a sentence representation u ∈ R3·3·mRE for relation classification. Since the dataset
we use for our experiments (see Section 5.2.2) does not include inverse relations, we do
not include a flag for the order of the relation arguments to the sentence representation.
The sentence representation is then fed into a fully-connected hidden layer, followed by a
softmax layer to identify the relation between the two entities. By using the softmax, we
assume that only one relation holds between two entities. This is not generally true but a
valid assumption for most of the relations considered in our dataset (see Table 5.1).

In this study, we use distantly supervised data without cleaning or selecting the data as
in Section 3.4.2. Therefore, we apply multi-instance learning for relation classification. In
particular, we use the loss function proposed by Zeng et al. (2015). Given a pair of entities
(ei, ej), it computes the probabilities for the different relations r based on all available
contexts c ∈ C. Then it selects the highest probability for each relation to compute the
loss of the network. Thus, the loss function is as follows:

L = −E((ei,ej),r)∼pdata logPθ(r|ei, ej) (5.1)

Pθ(r|ei, ej) = max
c∈C

Pθ(r|ei, ej, c) (5.2)

Joining the Model Parts

For the convolutional and hidden layers of the entity and relation classification parts as
described above, we use different parameters. This is intentional to investigate the impact
of joint training vs. pipeline models. With the pipeline models, the entity classification
part is trained first. Then, its predictions are used as additional input features for the last
hidden layer of the relation classification model. With the jointly trained model, we use
the same combined architecture but train both model parts at the same time. Thus, in
both cases the input to the last hidden layer of the relation classification model becomes:

u′ = [u; te1 ; te2 ] (5.3)

with tek ∈ RHT being the entity type representation of entity ek with dimensionality HT .
After applying the fully-connected hidden layer of size HR, the context representation
h ∈ RHR is:

h = tanh(W ru′ + br) (5.4)

where W r ∈ RHR×(3·3·mRE+2·HT ) is a weight matrix and br ∈ RHR a bias term. The models
we describe in the following paragraphs only differ in their computation of tek . The general
equation for tek is:

tek = f(W t[P (t1|ek, c); . . . ;P (tT |ek, c)]) (5.5)

with c being the context of ek. The different approaches we propose in the following apply
different choices for f and W t.
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Pipeline Approaches.

• PREDICTED-HIDDEN: f is tanh and W t ∈ RHT×T is a weight matrix learned during
training. T is the number of types. Thus, a fully-connected hidden layer learns
representations tek based on the predictions [P (t1|ek, c); . . . ;P (tT |ek, c)].

• BINARY-HIDDEN: f and W t are defined as in PREDICTED-HIDDEN but the prediction
probabilities P (tj|ek, c), 1 ≤ j ≤ T are binarized:

B(tj|ek, c) =

{
1, P (tj|ek, c) ≥ 0.5

0, otherwise
(5.6)

• BINARY: tek is the binary vector itself, i.e., B(tj|ek, c), 1 ≤ j ≤ T , as in Equation 5.6.
Thus, HT = T , W t ∈ RT×T is the identity matrix and f is the identity function.

Using entity classes as binary information is a standard approach in related work
(see Section 5.5). Therefore, we use it as a baseline approach here.

• WEIGHTED: The columns ofW t ∈ RHT×T are distributional embeddings of types (with
dimensionality HT ) trained on our corpus (see Section 5.2.2). They are pre-trained
and stay fixed during classifier training. Thus, the WEIGHTED model computes a
weighted average of entity class embeddings with entity class probabilities as weights.
f is the identity function.

Joint Training. For jointly training the entity and relation classification model (JOINT),
we use the architecture from PREDICTED-HIDDEN with the key difference that P (t|ek, c) and
P (r|ei, ej, c) are learned jointly. The objective function of JOINT is a weighted average of
the task-specific loss functions:

L = LT1 + LT2 + γ · LR (5.7)

with LR being the loss of relation classification and LTi , i ∈ {1, 2}, the loss of entity
classification. For the entity classification part with its sigmoid output layer, we use the
binary cross entropy between the predictions and the distantly supervised labels as in
(Yaghoobzadeh and Schütze, 2017). For relation classification, we use the standard cross-
entropy loss (see Section 2.2.4) based on Equation 5.2. The combination weight γ is tuned
on the development set. As described before, we integrate multi-instance learning to the
loss function (Zeng et al., 2015) to alleviate the distant supervision assumption.

Figure 5.2 depicts the resulting network for joint training. The source code is provided
at http://cistern.cis.lmu.de/noise-mitigation.

5.2.2 Dataset and Evaluation Measure

For training the entity classification models, we use CF-FIGMENT,1 a dataset based on
distant supervision with Freebase and a version of ClueWeb2 in which Freebase entities

1http://cistern.cis.lmu.de/figment.
2http://lemurproject.org/clueweb12.

http://cistern.cis.lmu.de/noise-mitigation
http://cistern.cis.lmu.de/figment
http://lemurproject.org/clueweb12
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Figure 5.2: Architecture for joint entity typing and relation extraction.

GOV.GOV agency.jurisdiction PPL.PER.children

GOV.us president.vice president PPL.PER.nationality

PPL.deceased PER.place of death PPL.PER.religion

ORG.ORG.place founded PPL.PER.place of birth

ORG.ORG founder.ORGs founded N (no relation)
LOC.LOC.containedby

Table 5.1: Selected relations for relation extraction; PPL = people, GOV = government.

are annotated using FACC13 (Gabrilovich et al., 2013). CF-FIGMENT contains 200,000
Freebase entities mapped to 102 FIGER types (Ling and Weld, 2012). Yaghoobzadeh
and Schütze (2015) have published that mapping as well as a split into train (50%), dev
(20%) and test (30%). When assigning contexts to the entities in those different sets, it
is ensured that entities from the test set do not occur in the sentences of the train or dev
set. Thus, a sentence from the train set includes only train entities. The resulting dataset
is subsampled for each type in train and each entity in dev/test and contains 4,300,000
sentences (contexts).

For training the relation extraction part, we select the ten most frequent relations (plus
N for no relation according to Freebase) of the entity pairs occurring in CF-FIGMENT
with at least one context. This results in 5815, 3054 and 6889 unique entity pairs for

3http://lemurproject.org/clueweb12/FACC1.

http://lemurproject.org/clueweb12/FACC1
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train, dev and test using the same splits as in CF-FIGMENT.4 This results in a dev set
of 124,462 and a test set of 556,847 instances. As the train set, we take a subsample of
135,171 sentences.

Note that when training the entity classification models for the pipeline approaches, we
use the whole CF-FIGMENT training set while for training the joint model, we only use the
derived relation extraction dataset. Thus, the entity classification part of the joint model
is trained with less examples than the entity classification part of the pipeline models.
The larger training set is, in fact, an advantage for the pipeline models and increases the
challenge of the joint model when evaluating all of them on the same test data.

Embeddings

Motivated by the challenge of domain mismatch for relation classification (see Section 3.5.2),
we do not use Wikipedia embeddings for our experiments on ClueWeb data but embed-
dings trained on ClueWeb by Yaghoobzadeh and Schütze (2015) and Yaghoobzadeh and
Schütze (2017). In particular, they use the FACC1 annotations (Gabrilovich et al., 2013)
to extend ClueWeb as follows: Each sentence is replaced with three variants: (i) the sen-
tence itself, (ii) the sentence with entities replaced by their Freebase ids, and (iii) the
sentence with (train and dev) entities replaced by their notable type in Freebase. Then,
word2vec (Mikolov et al., 2013) is applied to train embeddings on the extended corpus.
We use the resulting word embeddings to represent the context words in our models, the
entity embeddings as extended input for our relation classification models (as described in
Section 5.2.1) and the entity type embeddings in our WEIGHTED pipeline architecture.

Evaluation with Precision-Recall Curves

The evaluation setup of this section is similar to general relation extraction. Therefore,
we follow related work on relation extraction and use precision-recall (PR) curves for
evaluating our models. To create a precision-recall curve, the model outputs are sorted in
descending order according to the confidence of the model and then precision and recall
values are computed for each position in the sorted list of results. For example, to compute
precision and recall for the fifth item of the list, only the results of the five items with highest
model confidence are considered. The resulting precision-recall pairs are then plotted. In
order to compare results not only visually but also quantitatively by a number, we follow
Ritter et al. (2013) and compute the area A under the PR curve as an additional evaluation
measure.

Note that our PR curves are calculated on the corpus level and not on the sentence
level, i.e., after aggregating the predictions for each entity pair following Zeng et al. (2015).

4We only assign those entity pairs to test (resp. dev, resp. train) for which both constituting entities
are in the CF-FIGMENT test (resp. dev, resp. train) set.
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Figure 5.3: PR curves: relation extraction models.

5.2.3 Results

Comparison with Baselines

First, we again compare contextCNN (see Section 3.3.4) against the state-of-the-art piece-
wise CNN (PCNN) (Zeng et al., 2015), similar to Section 3.5.2. In contrast to before, we
use multi-instance learning for both models with the loss function proposed by Zeng et al.
(2015) to mitigate the noise from distant supervision. Another baseline we use is a model
that does not learn context features but only uses the embeddings of the relation arguments
(as described in Section 5.2.2) as input for a fully-connected feed-forward layer (EntEmb).
The precision-recall (PR) curves in Figure 5.3 show that contextCNN outperforms all base-
line models. The results of the EntEmb baseline model show that the pre-trained entity
embeddings contain information relevant for relation extraction. However, adding contex-
tual information (with the PCNN or the contextCNN) clearly improves the performance,
especially the recall. While the PCNN model has a better recall than the contextCNN when
evaluated on the whole dataset, the curve of the contextCNN is much more smooth and has
a considerably higher precision, especially in the first part of the curve. The areas under
the PR curves confirm these performance differences: EntEmb: A = 0.34, PCNN: A = 0.48,
contextCNN: A = 0.49. The area of PCNN is close to the area of contextCNN because of
the higher overall recall of the first.

Type-aware Relation Extraction Results

For the type-aware relation extraction models, we use contextCNN and integrate the entity
class representations as described in Section 5.2.1. Figure 5.4 shows that the relation
extraction performance increases when entity class information is integrated. The main
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Figure 5.4: PR curves: type-aware relation extraction models.

trend of the PR curves and the areas under them show the following order of model
performances: JOINT (A = 0.66) > WEIGHTED (A = 0.53) > PREDICTED-HIDDEN (A = 0.49)
> BINARY-HIDDEN (A = 0.49) > BINARY (A = 0.46).

BINARY and BINARY-HIDDEN can be seen as baseline entity class integration mod-
els since adding entity classes as binary information is a standard approach in related
work (e.g., (Ling and Weld, 2012), see also related work in Section 5.5). However, the
performance increases when using the predictions directly (without binarization), as in
PREDICTED-HIDDEN. Although the areas under the PR curves of BINARY-HIDDEN and PRED-

ICTED-HIDDEN are almost the same, the actual curves show that BINARY-HIDDEN only out-
performs PREDICTED-HIDDEN for very low recall values. When considering the remaining
curve, PREDICTED-HIDDEN is clearly superior to BINARY-HIDDEN. This suggests that proba-
bilistic predictions of an entity classification system can be a valuable resource for relation
extraction. We assume that the main reason is information loss due to binarization: With
binary types, it is not possible to tell whether one of the selected types had a higher
probability than another or whether a type whose binary value is 0 just barely missed
the threshold. Probabilistic representations, on the other hand, preserve this information.
Thus, by using probabilistic representations, the relation extraction model can learn to
compensate possible noise in entity class predictions.

WEIGHTED has access to entity class embeddings learned from a large corpus in an
unsupervised way. Integrating a weighted average of those embeddings, i.e., combining the
entity class predictions with another resource works better than learning embedding-like
weights during training (as in PREDICTED-HIDDEN).

Joint training, finally, performs better than all pipeline models. This result is even
stronger since the entity classification part of the pipelines has been trained on more data
than the joint model (see Section 5.2.2). A possible reason is the mutual dependency of
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Figure 5.5: Variants of joint training.

the two tasks from which a joint model can benefit. Note that we do not report entity
classification results since we consider it as an additional input to help relation extraction
here. However, joint training also improves entity classification: On the joint dataset, the
mean average precision scores for entity classification increase by about 20%. Another
possibility of jointly modeling EC and RE is described in Section 5.3.

5.2.4 Analysis

In the following analyses, we investigate the impact of context modeling on joint training
and present relation-wise results of the different models.

Impact of Context Modeling on Joint Training

In this paragraph, we investigate joint training in more detail. In particular, we are inter-
ested in the impact of the context representations on the final performance. In Figure 5.3,
we have already shown that relation extraction benefits from contextual information. In
this section, we compare the results when using EntEmb as entity classification model to
convolving the contexts for entity classification.

Figure 5.5 shows that the results of combining entity classification with EntEmb and
relation classification with EntEmb are the worst. This emphasizes the importance of mod-
eling the context for relation classification (cf., Figure 5.3), even in combination with joint
training. The performance of using context representations from convolutional layers for
relation extraction but only entity embeddings for entity classification comes close but
is still worse than the performance of the model presented in Section 5.2.1, which uses
convolution for both model parts.
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Thus, it is important which models are trained together in joint training. The areas un-
der the PR curves show the following model trends: JOINT original with EC/RE=context-

CNN (A = 0.66) > JOINT with EC=EntEmb and RE=contextCNN (A = 0.64) > JOINT with
EC=EntEmb and RE=EntEmb (A = 0.35).

Relation-wise Results

We identify the relations for which the performance of the model is improved the most
when entity class information is added. For this, we compare the relation specific F1 scores
of contextCNN with the scores of WEIGHTED (the best pipeline model) and JOINT. With
WEIGHTED, the relations PPL.deceased PER.place of death and LOC.LOC.containedby

are improved the most (from 36.13 to 53.73 and 49.04 to 64.19 F1, resp.). JOINT has the
most positive impact on PPL.deceased PER.place of death, GOV.GOV agency.jurisdic-

tion and ORG.ORG.place founded (those relations are improved from 36.13 to 67.10, 62.26
to 70.41 and 42.38 to 58.51, resp.). Figure 5.6 gives a graphical overview of a relation-wise
comparison of contextCNN, the different pipeline models and the jointly trained model.
The corresponding numbers are provided in the appendix in Table C.2 and Table C.3. The
analysis shows that the improvements by joint training are not consistent across relations
and again confirms that different relations pose different challenges to the models. Recall
that the performance trends of different models on the slot filling relations have not been
consistent, either (see Table 3.6). It might also be a side effect of training the entity clas-
sification part of the joint model on less data than in the pipeline setting, which might
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Anderson , 41 , was the chief Middle East correspondent for The Associated Press

   
   PER     O O O O    O     O         LOC                O           O              ORG

work_for

live_in based_in

Model inputs (query entity pairs) ⇒ Model outputs:
(“Anderson”, “,”) ⇒ PER – N – O
(“Anderson”, “41”) ⇒ PER – N – O
...
(“Anderson”, “chief”) ⇒ PER – N – O
(“Anderson”, “Middle East”) ⇒ PER – live in – LOC
...
(“was”, “for”) ⇒ O – N – O
...
(“for”, “The Associated Press”) ⇒ O – N – ORG

Figure 5.7: Examples of the task and model inputs/outputs.

result in more confident entity class predictions within the pipeline models.

5.3 Neural Structured Prediction Model

Most studies on joint training and multitask learning optimize a weighted average of task-
wise costs. In Section 5.2, we have proposed and investigated a joint model for entity and
relation classification, which follows this line of research. In this section, we introduce
a joint classification layer based on structured prediction, which optimizes a sequence of
outputs from both tasks instead. Specifically, this model treats both entity and relation
classes as output classes instead of using the entity classification results as an additional
input for relation classification, as presented in Section 5.2. Thus, there is no hierarchy
between entity and relation classification and both tasks can benefit from each other by
design.

5.3.1 Model

First, we identify candidate entities (either by prior knowledge about entity boundaries or
by treating each token as a potential entity) and then predict their classes (coarse-grained
types) as well as the relation between them by creating a length-three prediction sequence:
class of the first entity, relation between the entities, class of the second entity.

Figure 5.7 shows an example of how we model the task: Each sentence can contain
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Figure 5.8: Model overview; the colors/shades show which model parts share parameters.

multiple named entities as well as multiple relations between them. In order to identify
all possible entity classes and relations, we compute the set of all possible combinations of
candidate entities. Each of those combinations (called query entity pair in the remainder
of this section) then forms an input to our model, which predicts the output sequence of
entity and relation classes.

Figure 5.8 illustrates our model. It is based on CNNs for creating context and entity
representations and a CRF (Lafferty et al., 2001) output layer which finds the best output
sequence of entity and relation classes. Its source code is available at http://cistern.

cis.lmu.de/globalNormalization.

Sentence Representation

As shown in Figure 5.7, the inputs to our model are the sentence and two query entities
(tokens or phrases of the sentence) for which the classes and relation should be identified.
The tokens of the input sentence are represented by word embeddings. In this study, we use
the Wikipedia word2vec embeddings again (see Section 2.2.3). The sentence is then split
into different parts at the positions of the query entities, building on our positive results
with the contextCNN described in Section 3.3.4 and Section 5.2.1. For identifying the class
of an entity ek, the model uses three parts: the context left of ek, the words constituting
ek and the context to its right. For classifying the relation between two query entities ei
and ej, the sentence is split into six parts: left of ei, ei, right of ei, left of ej, ej, right of ej.
For the example sentence in Figure 5.7 and the query entity pair (“Anderson”, “chief”),
the context split is: [] [Anderson] [, 41 , was the chief Middle ...] [Anderson , 41 , was the]
[chief] [Middle East correspondent for ...] Note that the dataset we use (see Section 5.3.2)
provides boundaries for entities to concentrate on the classification task (Roth and Yih,
2004). In two of our evaluation setups, which are described in Section 5.3.3, we use these
boundaries, thus, the query entities can be constituted by several tokens. In our third

http://cistern.cis.lmu.de/globalNormalization
http://cistern.cis.lmu.de/globalNormalization
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evaluation setup, we assume no prior knowledge about the boundaries and, therefore, all
query entities are single tokens.

For representing the different parts of the input sentence, we use convolutional neural
networks. In particular, we train one CNN layer for convolving the entities and one for
the contexts. Using two CNN layers instead of one gives our model more flexibility. Since
entities are usually shorter than contexts, the filter width for entities can be smaller than for
contexts. Furthermore, Yaghoobzadeh and Schütze (2017) show that character-based entity
representations add useful information to the entity classification task. Our architecture
simplifies changing the entity representation from words to characters in future work.

After convolution, we apply k-max pooling for both the entities and the contexts and
concatenate the results. The concatenated vector uz ∈ RUz with z ∈ {EC,RE} is for-
warded to a task-specific hidden layer of size Hz, which can learn patterns across the
different input parts:

hz = tanh(V zuz + bz) (5.8)

with weights V z ∈ RHz×Uz and bias bz ∈ RHz .
To compute scores vz for the different entity or relation classes, we apply a linear

mapping from the context representations hz ∈ RHz as follows:

vz = W zhz (5.9)

with W z ∈ R(NEC+NRE)×Hz and NEC and NRE being the number of entity and relation
classes, respectively.

Structured Prediction Layer

We propose to model the joint entity and relation classification task with the following
sequence of scores:

q = [vECe1 ;vREr12
;vECe2 ] (5.10)

with vECek , k ∈ 1, 2 being the score for the class of entity ek and vRErij being the score for the
relation between ei und ej. This is also shown in Figure 5.8. We use a linear-chain CRF
layer to model this sequence, thus, we approximate the joint probability of entity types
Te1 , Te2 and relation Re1e2 as follows:

P (Te1 , Re1e2 , Te2)

≈P (Te1) · P (Re1e2 |Te1) · P (Te2 |Re1e2)
(5.11)

Our intuition is that the dependency between relation and entities is stronger than the de-
pendency between the two entities and that, therefore, this approximation makes sense. To
the best of our knowledge, this is the first work to model the joint entity and relation clas-
sification task with a sequence of predictions. Before, CRF layers for neural networks have
been mainly used for token-labeling tasks like NER or part-of-speech tagging (Collobert
et al., 2011; Andor et al., 2016; Lample et al., 2016).
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For implementation, we adopt the linear-chain CRF layer by Lample et al. (2016).5

The input sequence from Equation 5.10 is padded with begin and end tags to a sequence
of length n + 2 (n = 3 in our case) and fed into a CRF layer as defined in Equation 2.28
and Equation 2.29 of Section 2.2.3. The matrix of transition scores T ∈ R(N+2)×(N+2) with
N = NEC + NRE is learned during training. In order to compute the probability of a
label sequence as in Equation 2.29, all possible label sequences need to be calculated. To
avoid redundant computations, the forward algorithm, a dynamic programming technique,
is applied for this (Rabiner, 1989). At each step of the label sequence, it sums over the
scores of all possible previous label sub-sequences. When predicting the best label sequence
(without its probability) during testing, the Viterbi algorithm is used (Rabiner, 1989). It
uses a similar dynamic programming technique as the forward algorithm but computes
and stores the maximum scores (instead of the sum) of the previous label sub-sequences.
Even for length-three sequences, dynamic programming reduces the number of necessary
computations considerably. For longer sequences, as they might be necessary for other
applications, computations without this technique might not be feasible.

Relationship to Other Joint Models

The components of the model described in this section are similar to the components of the
jointly trained model described in Section 5.2.1 (context splitting, convolution and pooling,
etc.). However, since the outputs of entity and relation classification are designed to be on
the same level now, the entity classes cannot be used as features for relation classification
any more. While the joint model in Section 5.2.1 consists of two different model parts (one
for entity and one for relation classification) which interact only through the entity type
features for relation classification, the model in this section aims at exchanging information
between the two tasks already at the level of context representation. Therefore, the sentence
representation layer is slightly changed with the goal of sharing as much parameters as
possible between the two tasks.

Instead of applying a structured prediction output layer on the sequence of entity and
relation classes, joint inference would also be possible by using, for example, an RNN
decoder network with a local softmax layer for each item of the output sequence. However,
this would introduce additional parameters depending on the size of the RNN hidden layer.
Moreover, it would be prone to the label bias problem, a challenge which is solved by global
normalization in CRFs (Lafferty et al., 2001; Andor et al., 2016).

5.3.2 Dataset and Evaluation Measure

The “entity and relation recognition” (ERR) dataset from (Roth and Yih, 2004)6 provides
5925 sentences from newspaper articles from TREC,7 which have been manually annotated
with entity classes (Peop, Org, Loc, Other, O) and relations between entities (Located in,

5https://github.com/glample/tagger.
6https://cogcomp.org/page/resource_view/43.
7http://trec.nist.gov.

https://github.com/glample/tagger
https://cogcomp.org/page/resource_view/43
http://trec.nist.gov
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Work for, OrgBased in, Live in, Kill). It, therefore, provides an interesting evaluation
option for our models which is different and complementary to the automatically created
(Section 3.4.3) and distantly supervised datasets (Section 3.4.2, Section 5.2.2) we use in
the other chapters of this thesis.

Following previous work, we focus on the 1441 sentences of the ERR dataset with at
least one relation between entities. We use the train-test split published by Gupta et al.
(2016) to be able to compare with their results. For parameter tuning, we further split train
into a core training set and a dev set. Table 5.2 provides statistics of the data composition
in our different setups, which are described in Section 5.3.3. Similar to the O class for
candidate entities which do not belong to one of the named entity classes, we use the label
N for entity pairs without one of the pre-defined relations. Note that we subsample the N

class in the training and development set of setup 2 and setup 3 to speed up training and
to avoid that the model learns to only predict this dominant class. The three evaluation
setups are described in Section 5.3.3.

train dev test
# sentences 911 242 288
Peop 1146 224 321
Org 596 189 198
Loc 1204 335 427
Other 427 110 125
O 20338 5261 6313
Located in 243 66 94
Work for 243 82 76
OrgBased in 239 106 105
Live in 342 79 100
Kill 203 18 47
N (setup 1) 10742 2614 3344
N (setup 2/3) 123453 30757 120716

Table 5.2: Dataset statistics. The number of N differs for our different experimental setups.

For evaluation, we follow previous work on the ERR dataset and compute F1 of the
individual classes for EC and RE, as well as a task-wise macro F1 score. We also report
the average of scores across tasks (Avg EC+RE).

5.3.3 Experimental Setups

In this section, we describe the three setups we consider in our experiments. The first and
last setups follow two different lines of related work on the ERR dataset. The second setup
is designed to provide an intermediate step and better analyze the additional difficulties
setup 3 poses in contrast to setup 1.

Setup 1: Entity Pair Relations. In the first setup, relation classification is applied
only to named entity pairs. Moreover, the entity boundary information is used for entity
and relation classification. This setup is used by, e.g., Roth and Yih (2004), Roth and Yih
(2007) and Kate and Mooney (2010). Note that when we only input named entity pairs
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Figure 5.9: Entity-relation table.

as query entity pairs into our model, the entity classification part is simplified because the
model can learn to omit the O class. This is different to related work which regard entity
and relation classification in different models and use them in a pipeline or combine their
results.

Setup 2: Table Filling. Miwa and Sasaki (2014) introduce a novel way to model
the joint task of EC and RE: as a table filling problem. For each sentence with length
m, a quadratic table is created, as shown in Figure 5.9 for the example sentence from
Figure 5.7. The diagonal cells (k, k) contain the classes of the corresponding entities. The
non-diagonal cells (i, j) contain the relation between word i and word j (N for no relation).
Following previous work, we only predict classes for half of the table, i.e., for m(m+ 1)/2
cells. When using this setup with our model, each cell (i, j) forms a separate input query
with the query entities being formed by the row i and the column j of the cell. As described
in Section 5.3.1, our model predicts not only the relation rij but also the classes of entities
ei and ej. Thus, the class of entity ei, for example, is predicted m− 1 times from different
perspectives. To fill the corresponding entity class cell (i, i), we aggregate the results
from all those predictions using majority vote. This is a common strategy for combining
different predictions, for example in the context of model ensembling (Breiman, 1996; Vu
et al., 2016). In Section 5.3.5, we verify that the individual predictions agree with the
majority vote in almost all cases.

Setup 3: Table Filling Without Entity Boundaries. The table from setup 2
includes one row/column per multi-token entity, utilizing the given entity boundaries of
the ERR dataset. The table filling setup used in related work (Miwa and Sasaki, 2014;
Gupta et al., 2016) does not include this prior information but assigns a table row/column
to each token of the input sentence. We follow this approach in our third setup. For
evaluation, we follow Gupta et al. (2016) and score a multi-token entity as correct if at
least one of its comprising cells has been classified correctly.



108 5. Type-Aware Relation Extraction

setup 1 setup 2 setup 3
softmax CRF softmax CRF softmax CRF

Peop 95.24 94.95 93.99 94.47 91.46 92.21
Org 88.94 87.56 78.95 79.37 67.29 67.91
Loc 93.25 93.63 90.69 90.80 85.99 86.20
Other 90.38 89.54 73.78 73.97 62.67 61.19
Avg EC 91.95 91.42 84.35 84.65 76.85 76.88
Located in 55.03 57.72 51.03 55.13 44.96 52.29
Work for 71.23 70.67 52.89 61.42 52.63 65.31
OrgBased in 53.25 59.38 56.96 59.12 46.15 57.65
Live in 59.57 58.94 64.29 60.12 64.09 61.45
Kill 74.70 79.55 69.14 74.73 82.93 75.86
Avg RE 62.76 65.25 58.86 62.10 58.15 62.51
Avg EC+RE 77.36 78.33 71.61 73.38 67.50 69.69

Table 5.3: F1 results for entity classification and relation extraction in the three setups.

Comparison. There are two important differences between setup 1 and setup 2/3:
First, when only entering combinations of named entities in setup 1, our model can basically
omit the O class of entity classification which simplifies setup 1. Second, the number of
entity pairs with no relation (N) is significantly different in setup 1 and the table filling
setups 2/3: In the test set, there are about 3k entity pairs with no relation in setup 1
while there are about 121k entity pairs with no relation in setup 2/3. This makes the table
filling setups 2/3 considerably more challenging. To better cope with this, we randomly
subsample negative instances in the training set of setup 2 and 3. Finally, setup 3 is the
most challenging setup since it splits multi-token entities into their comprising tokens and,
thus, considers the most query entity/word pairs in total. On the other hand, setup 3 is
also the most realistic scenario of the three setups since in most cases, entity boundaries
cannot be assumed to be given. Setup 1 or 2 can only be applied to datasets without
entity boundaries if a pre-processing step, such as entity boundary detection or chunking
is applied first. Setup 3, however, is directly applicable to any other dataset. When
comparing the results of setup 2 and setup 3, it is possible to investigate the impact of the
prior knowledge of entity boundaries on the classification results.

5.3.4 Results

For all three experimental setups, we compare our CNN+CRF model as described in
Section 5.3.1 with a CNN-based model that uses softmax layers instead of a CRF layer
for entity and relation classification. Thus, it does not learn transition scores between the
classes and optimizes the entity and relation classes independent from each other instead
of their sequence. For training, the losses of entity classification and relation classification
are averaged, as in joint training (see Section 5.2). Table 5.3 shows the results.

The CRF layer performs comparable or better than the softmax layer across experi-
mental setups. Especially for the more challenging table filling setups (setup 2 and 3),
the improvements are apparent. When comparing setup 2 and setup 3, it is visible that
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model S feats EC RE EC+RE
R & Y 2007 1 yes 85.8 58.1 72.0
K & M 2010 1 yes 91.7 62.2 77.0
Ours (CNN+CRF) 1 no 92.1 65.3 78.7

Ours (CNN+CRF) 2 no 88.2 62.1 75.2

M & S 2014 3 yes 92.3 71.0 81.7
G et al. 2016 (1) 3 yes 92.4 69.9 81.2
G et al. 2016 (2) 3 no 88.8 58.3 73.6
Ours (CNN+CRF) 3 no 82.1 62.5 72.3

Table 5.4: Comparison to state of the art (S: setup, feats shows whether the models use
additional hand-crafted features).

entity classification suffers when no entity boundaries are given (in setup 3). One reason
for that might be that the convolutional layer cannot extract features from multi-token
entity surface forms any more since it only gets single tokens as potential entities in setup
3 (context B and D in Figure 5.8). This might be mitigated by using character-level entity
representations instead. Interestingly, the relation classification performance is not affected
from the missing entity boundaries: The average relation classification results are compa-
rable in setup 2 and setup 3. This shows that the model part for relation classification can
internally account for potentially wrong entity classification results due to missing entity
boundaries.

To sum up, the CRF layer leads to better overall results (Avg EC+RE) in all three
setups. Thus, joint EC and RE benefits from structured prediction and our way of creating
the input sequence for the CRF layer for joint EC and RE is effective.

Comparison to State of the Art

In Table 5.4, we set our results in the context of state-of-the-art results: (Roth and Yih,
2007), (Kate and Mooney, 2010), (Miwa and Sasaki, 2014), (Gupta et al., 2016).8 Since
all reported prior results are based on different setups and different train-test splits, they
can only give a hint about model rankings but are not directly comparable. Our results
are best comparable with (Gupta et al., 2016) since we use the same setup and train-test
splits. The model presented in (Gupta et al., 2016) is quite complicated and uses hand-
crafted features and various iterations of modeling dependencies among entity and relation
classes. In contrast, we only use pre-trained word embeddings and train our model end-to-
end with only one iteration for both entity and relation classification per entity pair and
epoch. When we compare with their model without additional features (G et al. 2016 (2)),
our model performs worse for EC but better for RE and comparable for Avg EC+RE.

8We only show results of single models, no ensembles. Following previous studies, we omit the entity
class “Other” when computing the EC score.
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Table 5.5: Heat map of positive correlations between entity types and relations according
to scores in CRF transition matrix: the darker the cell, the higher is the transition score.

5.3.5 Analysis

Analysis of Entity Type Aggregation

As described in Section 5.3.3, we aggregate the EC results by majority vote. Therefore,
we analyze the disagreement in order to assess how stable these aggregated results are.
For the structured prediction model of setup 2, there are only nine entities (0.12%) with
disagreement in the test data. For those, the max, min and median disagreement with the
majority label is 36%, 2%, and 8%, respectively. Thus, the disagreement is negligibly small
and we can consider the entity classification results stable, i.e., we would get approximately
the same results with a different aggregation scheme.

Analysis of CRF Transition Matrix

In this paragraph, we analyze the CRF layer. In contrast to the task-individual softmax
layers, it learns transition scores T between the entity and relation classes (cf., Equa-
tion 2.28). In Table 5.5, we show which transitions have positive scores, i.e., which entity
and relation classes are positively correlated with each other. The color intensity visualizes
the value of the score. It is obvious that the layer has learned correct correlations between
entity types and relations, such as the relation Work for is a relation between a person
(Peop) and an organization (Org) or a location (Loc) can be an argument of the relations
Based in, Live in and Located in.

5.4 Application to Slot Filling

In standard slot filling systems, a pipeline approach of entity and relation classification is
applied: Based on named entity classes (obtained with a NER tool), possible filler candi-
dates are identified which are then classified by relation classification models. As a result,
the inputs of our binary models (see Section 3.5.2) all have named entity types correspond-
ing to the expected types of the slots. The model for the relation per:date of birth, for
example, only classifies sentences with one relation argument being a PERSON and the other
relation argument being a DATE. When preparing our training data, we also ensure this
constraint, by only extracting entities with the correct type as negative examples (see
Section 3.2.1). When using multiclass models (as in Section 3.5.3), the relation classifica-
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tion models do not know about the input types. Although the filler candidate extraction
process is still based on named entity classes, the slot filler classification module uses the
same multiclass model for all slots. This complicates the relation classification task for the
model. A context for the relation per:date of birth, for example, might be similar to a
context for the relation per:location of birth. Although it is possible to only consider
the output probabilities for relations which are consistent with the predicted named entity
classes, we do not want to apply such a hard constraint as this would suffer from error
propagation. Instead, our approaches of jointly modeling entity and relation classification
allow our model to compensate for errors in the named entity classification of the candi-
date extraction module. While some other systems use (binary) entity types as additional
input features for slot filler classification, e.g., (Angeli et al., 2014a; Rahman et al., 2016;
Zhang et al., 2016c), we are not aware of a system using neural models for joint entity and
relation classification.

5.4.1 Model

In this section, we describe how we integrate jointly trained models (Section 5.2) and
neural structured prediction models (Section 5.3) into the slot filling pipeline. For all
models, we use the same coarse-grained types we use in the slot filling system: PERSON,

ORGANIZATION, LOCATION, DATE, NUMBER, O.9

Pipeline Approach and Joint Training

First, we investigate two different settings for augmenting the input of the multiclass model
with named entity types: a pipeline approach and a jointly trained model. The architecture
of the model we use for this is similar to the architecture illustrated in Figure 5.2.

We input the scores for the types (either binary or probabilistic scores) as a vector
pek ∈ RT of the size of the type vocabulary T and create type embeddings tek ∈ RHT with
a hidden layer of size HT :

tek = tanh(V pek + d) (5.12)

with V ∈ RHT×T being the weight matrix and d ∈ RHT the bias of the hidden layer.
Then, the type embeddings tek are concatenated with the three context representations

of the slot filling CNN (see Figure 3.8). Thus, the sentence representation s ∈ RH is now
computed as follows:

s = tanh(W 1u+W 2te1 +W 3te2 + b) (5.13)

with te1 being the embedding for the type of the first relation argument and te2 being the
embedding for the type of the second relation argument. Figure 5.10 depicts this.

For obtaining type scores pek , we evaluate two different settings: slotNER and jointNER.

9We omit MISC since there is no slot correlated with that entity class.
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Figure 5.10: Integration of entity type information into multiclass CNN.

In slotNER, we create binary type scores based on the slot of the input sentence. For the
slot per:employee or member of, for example, the type score vector for the first relation
argument would consist of only one 1 at the position of PERSON and 0 otherwise (like a
one-hot vector). The type score vector for the second relation argument would consist of
a 1 at the position of ORGANIZATION and a 1 at the position of LOCATION since a person
can be employed by either an organization or a geo-political entity. The model slotNER,
thus, applies a pipeline by using the predictions of the named entity recognition system in
the filler candidate extraction component as features for slot filler classification.

In jointNER, we predict probabilities P (t|ek, c) for the different types using a CNN over
the left and right contexts of the relation arguments, similar to the entity classification
model from Section 5.2.1. This is depicted in Figure 5.11. We then use the predicted
probabilities as type scores pek . The CNN for entity classification is trained jointly with
the CNN for slot filler classification. Similar to Equation 5.7, the objective function is a
weighted average of the task-specific losses:

L = (1− α) · LR +
α

2
· LT1 +

α

2
· LT2 (5.14)

The weight α controls the ratio between the relation classification loss and the entity type
classification loss and is tuned on dev.

Neural Structured Prediction Model

Second, we describe how we apply the structured prediction output layer to slot filling.
Given a sentence with the query entity and the slot filler candidate, we adapt the model
structure from Figure 5.8 to the architecture we have developed for slot filling relation
classification. In particular, we do not represent the relation arguments but only the
three contexts and integrate a flag to the sentence representation for relation classification,
which indicates the order of the relation arguments. As a result, the context representation
used to classify the first relation argument is the left and middle context: uECe1 = [A;C]
(using the variable names from Figure 5.8), the context representation for classifying the
relation is the left, middle and right context as well as the flag: uREr12

= [A;C;E; v] and
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Figure 5.11: Convolutional neural network for entity type classification.

the representation for identifying the class of the second relation argument is the middle
and right context: uECe2 = [C;E]. The remaining layers including the structured prediction
CRF layer are left unchanged. For computing probabilities for the different relation classes
(slots), we apply the forward-backward algorithm (Rabiner, 1989).

5.4.2 Results on Slot Filling Benchmark

Table 5.6 provides slot-wise results for the different CNN setups on the slot filling bench-
mark dataset for relation classification (see Section 3.4.3): binary CNNs (from Table 3.6),
a multiclass CNN without entity type information (noNER, cf., Section 3.5.3), a multiclass
CNN with slot-based entity types (slotNER) following a pipeline approach, a multiclass
CNN with entity type probabilities jointly trained with the relation classification CNN
(jointNER) and a multiclass CNN with a structured prediction output layer, which is
globally normalized on joint entity and relation classification (global).

Binary CNNs provide the best results, even when using entity type information in the
multiclass models. Adding binary entity types based on the slot type does not improve
the macro F1 score of the multiclass CNN. Joint training and structured prediction lead to
slightly better macro F1 results on the development set. The structured prediction model
has a better generalization ability to an unseen evaluation set than the other multiclass
models: It outperforms slotNER and jointNER by 3 F1 points and, therefore, comes closer
to the performance of the binary CNN. In terms of micro F1, the pipeline approach slotNER

provides the best results of the multiclass models but still performs considerably worse than
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binary multiclass
contCNN noNER slotNER jointNER global

dev test dev test dev test dev test dev test
per:age .83 .76 .70 .68 .84 .72 .71 .66 .75 .67
per:alternate names .32 .04 .22 .00 .25 .00 .10 .00 .04 .00
per:cause of death .77 .52 .53 .11 .77 .29 .42 .00 .40 .06
per:children .82 .61 .71 .48 .70 .44 .69 .44 .75 .36
per:date of birth 1.0 .77 .93 .80 1.0 .80 .98 .73 .90 .73
per:date of death .72 .48 .64 .51 .69 .46 .68 .39 .72 .59
per:empl memb of .41 .37 .37 .28 .42 .29 .34 .25 .36 .28
per:location of birth .59 .23 .68 .36 .71 .20 .74 .34 .71 .35
per:loc of death .63 .28 .62 .28 .54 .19 .60 .25 .61 .21
per:loc of residence .20 .23 .06 .15 .04 .06 .15 .22 .16 .25
per:origin .43 .39 .09 .11 .26 .30 .13 .13 .15 .17
per:schools att .72 .55 .65 .45 .59 .47 .70 .56 .65 .68
per:siblings .63 .70 .58 .73 .58 .54 .63 .63 .60 .68
per:spouse .67 .30 .66 .39 .64 .49 .69 .36 .64 .30
per:title .57 .46 .51 .42 .50 .43 .53 .44 .53 .48
org:alternate names .65 .66 .55 .58 .54 .55 .47 .50 .60 .58
org:date founded .64 .71 .54 .63 .58 .65 .59 .74 .63 .69
org:founded by .80 .68 .62 .71 .34 .43 .70 .74 .65 .73
org:loc of headqu .43 .45 .25 .24 .37 .42 .21 .21 .34 .34
org:members .65 .04 .64 .17 .42 .07 .66 .17 .72 .11
org:parents .41 .16 .37 .14 .17 .09 .38 .12 .32 .10
org:top memb empl .43 .53 .48 .55 .39 .49 .49 .58 .45 .58
micro F1 .52 .43 .28 .22 .35 .28 .28 .22 .30 .23
macro F1 .61 .45 .52 .40 .52 .38 .53 .38 .53 .41

Table 5.6: F1 results on slot filling benchmark dataset for different CNN setups. contCNN
is short for contextCNN.

the binary models.
Slots for which entity type information seems to help the most are, e.g., per:date of

birth and per:location of birth, i.e., two slots with similar contexts. Although the
binary CNNs have the best results on dev for almost all the slots, multiclass models with
entity class information have a better generalization ability to unseen test data for some
slots, such as per:date of death, per:schools attended or per:spouse. Reasons could
be long contexts mentioning different relations between different entities. In theses cases,
the classes of the two given relation arguments can help to disambiguate which context
words are relevant for identifying the relation between the two arguments.

5.4.3 Results of Slot Filling Pipeline

Finally, we evaluate the different multiclass setups in the context of the slot filling pipeline.
Table 5.7 shows that the multiclass model which has been jointly trained with entity
classification achieves the highest overall micro F1 scores. The scores are higher than using
binary models and higher than using multiclass models without entity class information.
This confirms that type-aware relation classification models are beneficial and that joint
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micro macro
SVM CNN P R F1 F1

hop 0 binary skip binary 31.79 28.23 29.91 34.20
hop 0 multi skip multi, noNER 34.42 26.66 30.04 32.82
hop 0 multi skip multi, slotNER 23.58 28.55 25.83 30.91
hop 0 multi skip multi, jointNER 32.42 27.84 29.95 33.14
hop 0 multi skip multi, global 33.33 27.68 30.25 33.98
hop 1 binary skip binary 9.80 7.00 8.17 8.28
hop 1 multi skip multi, noNER 12.59 3.89 5.94 7.78
hop 1 multi skip multi, slotNER 6.62 3.00 4.13 4.66
hop 1 multi skip multi, jointNER 13.47 5.00 7.29 8.15
hop 1 multi skip multi, global 12.24 5.22 7.32 9.24

all binary skip binary 23.80 19.42 21.39 24.92
all multi skip multi, noNER 29.60 17.20 21.76 23.86
all multi skip multi, slotNER 20.02 17.94 18.92 21.51
all multi skip multi, jointNER 27.97 18.36 22.17 24.20
all multi skip multi, global 27.70 18.36 22.08 25.12

Table 5.7: Final results for type-aware relation classification models.

training works better than pipeline-based approaches, also in the context of slot filling. The
neural structured prediction model performs comparable with the jointly trained model.
When looking at macro F1 scores, the neural structured prediction model performs best. In
total, Table 5.7 reveals that multiclass models outperform binary models in most evaluation
measures.

5.5 Related Work

5.5.1 Type-aware Relation Extraction

While we have given an overview of related work on relation extraction with neural networks
in general in Section 3.7.2, we now focus on type-aware relation extraction.

Models

Named entity tags are widely used as features for relation extraction. Table 5.8 provides
references. Most works include coarse-grained entity types (as we do in Section 5.3) while
others use fine-grained entity types (as in Section 5.2). Some studies include binary entity
types (i.e., the predicted or given labels), others include the outputs (e.g., in the form of
probabilities) from an entity classifier. In Section 5.2.3, we show that our model performs
better when using probabilistic types, most probably because it can draw conclusions
from the confidence of the entity classifier and learn to cope with its errors. Similar to our
WEIGHTED scheme, which represents an entity using type embeddings which are weighted by
the probabilities of each type belonging to that entity, Das et al. (2017) represent an entity
by adding up embeddings of its Freebase types. In contrast to our work, they do not predict
the types though and do not use a weighted sum but learn the type embeddings during
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choice of named entity information example studies
coarse-grained entity types (Kambhatla, 2004; Roth and Yih, 2004; Zhou et al., 2005; Roth

and Yih, 2007; Zhou et al., 2007; Mintz et al., 2009; Kate and
Mooney, 2010; Riedel et al., 2010; Yu and Lam, 2010; Hoffmann
et al., 2011; Singh et al., 2013a; Li and Ji, 2014; Miwa and Sasaki,
2014; Yu et al., 2015; Gupta et al., 2016; Kirschnick et al., 2016;
Miwa and Bansal, 2016; Pawar et al., 2017; Zhang et al., 2017a)

fine-grained entity types (Yao et al., 2010; Ling and Weld, 2012; Zhang et al., 2013; Liu
et al., 2014; Augenstein et al., 2015; Du et al., 2015; Das et al.,
2017; Ren et al., 2017)

binary entity types (Kambhatla, 2004; Roth and Yih, 2004; Zhou et al., 2005; Roth
and Yih, 2007; Zhou et al., 2007; Mintz et al., 2009; Riedel et al.,
2010; Hoffmann et al., 2011; Ling and Weld, 2012; Zhang et al.,
2013; Liu et al., 2014; Vlachos and Clark, 2014; Yu et al., 2015;
Gupta et al., 2016; Kirschnick et al., 2016; Miwa and Bansal, 2016;
Das et al., 2017)

probabilities from entity classifier (Kate and Mooney, 2010; Yao et al., 2010; Yu and Lam, 2010;
Singh et al., 2013a; Li and Ji, 2014; Miwa and Sasaki, 2014; Pawar
et al., 2017; Zhang et al., 2017a)

Table 5.8: Example studies for different choices of using named entity information as
features for relation extraction.

training instead. As a result, they cannot represent entities which are not in Freebase while
our approach could achieve that.

Especially early studies often apply pipeline approaches by first recognizing named enti-
ties and their classes and then extracting relations using the named entity tags as features.
Pipeline approaches, however, have several disadvantages, such as accumulation of errors,
no interaction between layers and no modeling of dependencies across tasks (cf., Li and
Ji (2014)). Moreover, the information flow is uni-directional: when using entity classes as
features for relation classification, relation classification can benefit from entity classifica-
tion but not vice versa (cf., Singh et al. (2013a)). As a result, related work shows that joint
entity and relation classification outperforms pipeline models, e.g., (Yao et al., 2010; Miwa
and Sasaki, 2014). In Section 5.2.3, our results with neural models and a large number of
fine-grained entity types are in line with those findings. Examples for work on joint entity
and relation classification without neural networks use structured prediction, integer linear
programming, card-pyramid parsing, probabilistic graphical models, imitation learning or
Markov Logic. Table 5.9 provides references for example studies. However many of those
works still train different models for entity and relation classification and only combine
their outputs across tasks (second part of Table 5.9). Underlying task-specific models are,
for example, support vector machines (Zhou et al., 2005; Kate and Mooney, 2010), MultiR
(Liu et al., 2014), CRF (Ling and Weld, 2012) or perceptrons (Ling and Weld, 2012). Only
a few studies use a single model for both tasks (last row of Table 5.9).

Recent studies consider joint entity and relation classification in neural models: Miwa
and Bansal (2016) train bidirectional LSTM networks on dependency trees and text se-
quences and update their parameters using both the entity and relation classification loss.
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model example studies
structured prediction (Yao et al., 2010; Li and Ji, 2014; Miwa and Sasaki, 2014)
integer linear programming (Roth and Yih, 2004, 2007; Yang and Cardie, 2013)
card-pyramid parsing (Kate and Mooney, 2010)
probabilistic graphical models (Yu and Lam, 2010; Singh et al., 2013a)
imitation learning (Vlachos and Clark, 2014; Augenstein et al., 2015)
Markov Logic (Riedel et al., 2009)
different models for EC and RE (Roth and Yih, 2004, 2007; Kate and Mooney, 2010; Yang and

Cardie, 2013; Vlachos and Clark, 2014; Augenstein et al., 2015)
single model for EC and RE (Riedel et al., 2009; Yao et al., 2010; Yu and Lam, 2010; Li and Ji,

2014; Miwa and Sasaki, 2014)

Table 5.9: Example studies for different modeling choices of joint entity and relation clas-
sification.

However, they only connect the entity predictions as input to the relation classifier (as we
do in Section 5.2) but the entity classifier cannot directly benefit from the relation predic-
tions (in contrast to our model in Section 5.3). Gupta et al. (2016) train recurrent neural
networks for entity and relation classification. They iterate training the two tasks and use
the outputs from one task as input features for the other task. In contrast, we use CNNs
for representing the input and do not apply an iterative training scheme but train both
tasks at the same time. Furthermore, we are the first to adopt neural structured prediction
output layers to directly model the triples from a knowledge base. This layer allows the
model to automatically learn typical relation-entity class correlations (see Section 5.3.5),
information which has been used as prior hard constraints by other works, such as by
Li and Ji (2014) and Kirschnick et al. (2016). Zhang et al. (2017a) also apply a neural
network with a CRF layer but globally normalize the sequence of table filling predictions.
Pawar et al. (2017) train an LSTM-based neural network for entity and relation extraction
in a multi-task way and then combine the local task-specific outputs in a postprocessing
step using a Markov Logic Network. Zheng et al. (2017) convert the relation extraction
task into a sequence tagging problem by predicting not the entity classes for each entity
but the relation it participates in. They also apply a CRF layer on this tagging task but
do not get improvements. In a postprocessing step, they convert the predicted sequence
into entity-relation triples. However, their tagging schema does not allow an entity to
participate in more than one relation.

We use only word embeddings as input to our models in contrast to many previous
works, which use a variety of linguistic features, such as part-of-speech tags or dependency
path features, e.g., (Kambhatla, 2004; Roth and Yih, 2004; Zhou et al., 2005; Giuliano
et al., 2007; Roth and Yih, 2007; Mintz et al., 2009; Kate and Mooney, 2010; Riedel et al.,
2010; Yao et al., 2010; Hoffmann et al., 2011; Ling and Weld, 2012; Li and Ji, 2014; Liu
et al., 2014; Miwa and Sasaki, 2014; Augenstein et al., 2015; Yu et al., 2015; Gupta et al.,
2016; Kirschnick et al., 2016; Miwa and Bansal, 2016; Pawar et al., 2017; Ren et al., 2017;
Zhang et al., 2017a).
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dataset example studies
ACE (Zhou et al., 2005, 2007; Singh et al., 2013a; Li and Ji, 2014; Yu et al., 2015; Miwa and

Bansal, 2016; Pawar et al., 2017; Zhang et al., 2017a)
ERR (Roth and Yih, 2004; Giuliano et al., 2007; Roth and Yih, 2007; Kate and Mooney,

2010; Miwa and Sasaki, 2014; Gupta et al., 2016; Zhang et al., 2017a)
own datasets (Yao et al., 2010; Ling and Weld, 2012; Liu et al., 2014; Augenstein et al., 2015; Ren

et al., 2017)

Table 5.10: Datasets and example studies using them.

Datasets

There exist a few manually labeled benchmark datasets suitable for joint entity and relation
extraction, for instance ACE 2004, ACE 2005 and ERR. Table 5.10 shows example studies
using them.

The ACE datasets (Doddington et al., 2004; Walker et al., 2006), which have already
been briefly introduced in Section 3.7.2, label the data with seven coarse-grained en-
tity types (person, organization, geo-political entity, location, facility, weapon
and vehicle) and seven vs. six (2004 vs. 2005 version) coarse-grained relation types
({physical, person-social, employment-organization, agent-artifact, discourse,
person/organization affiliation, geo-political-entity affiliation} vs. {phys-
ical, person-social, employment-organization, agent-artifact, geo-political-en-
tity affiliation, part-whole}).

The entity and relation recognition (ERR) dataset (Roth and Yih, 2004, 2007), which
we use in Section 5.3, focuses on entity and relation classes which are more related to the
slot filling task. Therefore, we use it in this thesis (for a dataset description and statistics,
see Section 5.3.2). Modeling the joint entity and relation extraction task as a table filling
problem is introduced by Miwa and Sasaki (2014) and mostly applied to the ERR dataset.
Pawar et al. (2017) also apply it to the ACE dataset.

Other studies on joint entity and relation classification apply distant supervision for
building their own datasets, as we do in Section 5.2.

5.5.2 CRF Layers for Neural Networks

Conditional random field models (Lafferty et al., 2001) have been proposed for sequence
labeling, i.e., for assigning an output tag to each token of an input sequence. However,
more general variants also exists, such as Semi Markov CRFs (Sarawagi and Cohen, 2005),
which segment the input tokens and assign tags to each segment. Traditional CRF models
are non-neural models with hand-crafted input features. Training neural networks based
on a sequence of predictions was already proposed in the 1990s (Bottou et al., 1997; LeCun
et al., 1998). Other works add non-linear or RNN layers to CRFs (Peng et al., 2009; Yao
et al., 2014) or Markov networks (Do and Artieres, 2010).

Nowadays, CRF output layers are becoming popular in neural networks to obtain glob-
ally normalized output sequences. They are used for a variety of tasks as shown in Ta-
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task example studies
named entity tagging (Huang et al., 2015; Lample et al., 2016; Ma and Hovy, 2016)
part-of-speech tagging (Huang et al., 2015; Andor et al., 2016; Ma and Hovy, 2016; Zhang

et al., 2017b)
dependency parsing (Zhou et al., 2015a; Andor et al., 2016; Wiseman and Rush, 2016;

Cai et al., 2017)
CCG parsing (Lee et al., 2016)
constituency parsing (Durrett and Klein, 2015)
word segmentation (Zhang et al., 2016b)
sentence compression (Andor et al., 2016)
aspect-based sentiment analysis (Wang et al., 2016b)
question answering (Raiman and Miller, 2017)
community question answering (Xiang et al., 2016)
semantic slot filling (Xu and Sarikaya, 2013; Yao et al., 2014)
word ordering (Wiseman and Rush, 2016)
machine translation (Wiseman and Rush, 2016)

Table 5.11: Example studies for using CRF output layers for different tasks.

neural network type example studies
feed-forward network (Durrett and Klein, 2015; Zhou et al., 2015a; Andor et al., 2016)
LSTM (Lample et al., 2016; Lee et al., 2016; Ma and Hovy, 2016; Xiang et al.,

2016; Zhang et al., 2016b; Raiman and Miller, 2017; Zhang et al., 2017b)
RNN (Yao et al., 2014)
encoder-decoder models (Sountsov and Sarawagi, 2016; Wiseman and Rush, 2016)
recursive neural networks (Wang et al., 2016b)
CNN (Ma and Hovy, 2016; Xiang et al., 2016)

Table 5.12: Example studies for integrating CRF output layers into different neural network
types.

ble 5.11. In most cases, those are sequence labeling tasks or tasks for which models typically
output a sequence of tags. In this study, we apply a CRF output layer to joint entity and
relation extraction, both sentence classification tasks which output a single class. Neural
and non-neural CRFs have been applied to information extraction tasks before with the
task being cast as a token-labeling problem (Sarawagi and Cohen, 2005; Zhu et al., 2005;
Culotta et al., 2006; Peng and McCallum, 2006; Sutton and McCallum, 2007; Zheng et al.,
2017). In contrast, we propose a simpler linear-chain CRF model which directly connects
entity and relation classes instead of assigning a label to each token of the input sequence.
This is more similar to the table filling optimization by Zhang et al. (2017a) or the factor
graphs by Yao et al. (2010) and Singh et al. (2013a) but computationally simpler. Since
our tag set is rather small and the sequence we optimize has only length three, we do
not need to apply beam search with early updates (Collins and Roark, 2004) to make the
model more efficient as in other neural networks with CRF layers, such as (Zhou et al.,
2015a; Andor et al., 2016; Sountsov and Sarawagi, 2016; Wiseman and Rush, 2016; Zhang
et al., 2016b; Raiman and Miller, 2017; Zhang et al., 2017a).

CRF output layers are integrated into a variety of neural networks, such as feed-forward
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networks, LSTMs, RNNs, encoder-decoder models, recursive neural networks or CNNs.
Table 5.12 provides references to example studies. CRF layers are also used in the encoder
of neural autoencoders (Zhang et al., 2017b) or in the attention layer of a network (Kim
et al., 2017). In this thesis, we add them to CNN-based neural networks, building on the
promising results of CNNs in the previous chapters.

5.6 Summary of Contributions

In this section, we proposed different approaches of type-aware relation extraction mod-
els: pipeline approaches, joint training and neural structured prediction models. Pipeline
approaches use entity classes as input features for relation extraction. In joint training,
entity and relation classification are learned together by combining their loss functions as in
multitask learning. This allows the entity classification to guide the relation classification.
Structured prediction optimizes a triple of entity class and relation predictions, allowing
both tasks to benefit from each other.

We evaluated our models on two different datasets: a large-scale distantly supervised
dataset consisting of web texts, and a medium-scale manually labeled dataset. For pipeline
models, we found that using the probabilities of the entity classifier directly outperformed
binarizing its output, most probably because it preserves the confidence of the entity
classifier and can better learn to cope with noisy predictions. Joint training outperformed
pipeline models. This finding has been shown before, especially for non-neural models.
Our results show that it also holds for neural networks and a large number of fine-grained
entity types.

Finally, neural structured prediction models outperformed jointly trained models with
shared parameters on the manually labeled ERR dataset. We proposed a way to apply
a CRF layer for a sentence classification task without converting it into a token-level
tagging problem. Instead, we designed the input to the CRF layer as a triple consisting
of the classes of two entities and the relation between them. This is beneficial because it
allows to learn transitions between entity and relation classes while avoiding higher-order
connections between the different items of the CRF output sequence (which would be
necessary in token-level tagging scenarios).

The code for the pipeline and joint training architectures is provided at http://

cistern.cis.lmu.de/noise-mitigation, the code for the neural structured prediction
models is available at http://cistern.cis.lmu.de/globalNormalization.

Finally, we added entity class information to our multiclass slot filler classification
models. We showed that joint training of multiclass relation classification and entity clas-
sification led to the best micro F1 results and neural structured prediction models achieved
the best macro F1 scores.

http://cistern.cis.lmu.de/noise-mitigation
http://cistern.cis.lmu.de/noise-mitigation
http://cistern.cis.lmu.de/globalNormalization


Chapter 6

Conclusion and Future Work

In this thesis, we explored neural networks for automatically populating knowledge bases
from text. We addressed the tasks slot filling, uncertainty detection and type-aware relation
extraction and contributed to state-of-the-art research with novel neural architectures for
those tasks and a benchmark dataset for slot filling.

In Chapter 3, we developed a state-of-the-art slot filling system. Slot filling aims at
extracting information about named entities from a large text corpus. We addressed this
challenge by implementing a modular system of various natural language processing compo-
nents. We made it publicly available at http://cistern.cis.lmu.de/CIS_SlotFilling.
The core of the system is the slot filler classification component which directly influences
the output of the system by scoring slot filler candidates based on the textual contexts
they appear in. We proposed contextCNN, a convolutional neural network especially de-
signed for relation classification. It splits the context at the relation arguments and com-
putes features for each of the context parts. To avoid redundant training and make more
effective use of available training data for inverse relations, such as per:children and
per:parents, it models both relations with only one output label and includes a flag
stating which relation argument appears first in the sentence. Its code is also provided
at http://cistern.cis.lmu.de/CIS_SlotFilling. Our experimental results and analy-
sis showed that contextCNN is able to extract n-grams relevant to the different relations
and improves the results when combining it with patterns and support vector machines,
which are traditional models for slot filling. Using contextCNN in the slot filling pipeline
improves the performance by 5.0% micro F1 and 2.9% macro F1 (absolute values). Since
the slot filling task does not provide an official large-scale training dataset, we extracted
training data using distant supervision and presented a data selection strategy based on
self-training in order to reduce noisy labels. With the manual assessments of the slot fill-
ing evaluations, it is only possible to evaluate outputs of the whole slot filling pipeline.
However, it is necessary to assess and compare the performance of individual pipeline com-
ponents as well. Therefore, we proposed a way to create a development and test set for
the slot filler classification component. In particular, we automatically extracted a labeled
relation classification benchmark dataset from the manually assessed system outputs from
2012–2014. Since the labels are based on manual annotations, they are less noisy than

http://cistern.cis.lmu.de/CIS_SlotFilling
http://cistern.cis.lmu.de/CIS_SlotFilling
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the labels from datasets created with distant supervision. Moreover, the dataset is closely
related to the actual slot filling evaluations because the sentences have been directly ex-
tracted from system responses. We showed that results on this benchmark dataset are
correlated with the slot filling pipeline results. Therefore, the dataset will be helpful for
other shared task participants and slot filling researchers in the future to develop their
systems and compare their slot filler classification modules without the need of assess-
ing the whole slot filling pipeline. We published the script for reproducing the dataset
at http://cistern.cis.lmu.de/SFbenchmark. Similar to the slot filling pipeline, the
best result on the benchmark dataset was achieved by a combination of patterns, sup-
port vector machines and contextCNN. The micro F1 result of the combination is 51%,
the macro F1 score is 53% on test. In our experiments, we compared binary models to
multiclass models and also investigated the effect of different domains in the source corpus
on the slot filler classification component. While binary models outperformed multiclass
models on the slot filling benchmark for relation classification, multiclass models led to
a slightly better micro F1 score of the slot filling pipeline. We performed several analy-
ses to assess the impact of the different components of the slot filling system. Our recall
analysis revealed that information retrieval, coreference resolution and the alias compo-
nent are crucial parts for obtaining high recall. Since coreference resolution is expensive
and slows down the system considerably, we prepared a resource of coreference chains for
the slot filling source corpus and made it available to other shared task participants at
http://cistern.cis.lmu.de/corefresources. In a manual error analysis, we showed
that the candidate extraction component and the slot filler classification component are
responsible for most of the false positive extractions of the system. Our ablation study
finally showed the positive impact of entity linking, coreference resolution and contextCNN

on the slot filling results.
One possible future work is the extension of the slot filling system to other languages.

Since 2016, the slot filling shared task includes evaluations for Chinese and Spanish texts
besides the traditional evaluation for English texts. This might be helpful for entities for
which more information and resources exist in other languages. Another research direction
for future work is to move from models that have a strong pipeline character to models
that incorporate more joint training. A recent trend in natural language processing is
end-to-end training. For example, the different models of statistical machine translation
have been superseded by an encoder-decoder neural network, which is trained end to end
(Sutskever et al., 2014; Bahdanau et al., 2015). Examples for other tasks for which end-
to-end systems are applied instead of traditionally used pipelines are speech recognition
(Graves and Jaitly, 2014; Amodei et al., 2016), question answering (Weston et al., 2015;
Kumar et al., 2016), coreference resolution (Lee et al., 2017) and dialogue systems (Serban
et al., 2016). For slot filling, replacing the pipeline with an end-to-end system is challenging
since the system would need to process a large number of input documents in order to
extract answers to the queries. This might lead to long training and processing times.
Moreover, the limited capacity of the hidden layers of neural networks might require the
usage of external memory components (Weston et al., 2015). A first step towards this
direction might be an end-to-end modeling of a single document. Training several pipeline

http://cistern.cis.lmu.de/SFbenchmark
http://cistern.cis.lmu.de/corefresources
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components as a single system could be achieved by introducing confidence scores for the
intermediate components and using backpropagation to measure their error and update
them accordingly (Rumelhart et al., 1986).

Chapter 4 described our work on uncertainty detection. Uncertainty detection ad-
dresses the challenge of identifying a sentence or a phrase as a fact (certain) vs. as an
unspecific, speculative, subjective or ambiguous utterance (uncertain). This distinction
is important for knowledge base population since statements derived from uncertain in-
formation should be either labeled as such or entirely excluded from a knowledge base.
For uncertainty detection, we developed several attention-based methods. Attention is
a promising approach since uncertainty is mostly expressed by one or more hedge cues,
which can be distributed over the sentence. In particular, we made a first attempt to
systematize the design space of attention. We identified the following axes: weighted vs.
unweighted selection, sequence-agnostic vs. sequence-preserving selection, and internal vs.
external attention. We proposed different novel attention mechanisms along those axes:
k-max average attention, sequence-preserving attention and external attention. K-max
average attention only considers the vectors with the k maximum attention weights for
computing the result of the attention layer. It, thus, alleviates the need of the network
to produce sharp attention weight distributions in order to reduce noise from unimpor-
tant input vectors. Sequence-preserving attention keeps order information from the input
vectors, an information which is typically lost in standard average attention but might
be important for several natural language processing tasks. External attention allows the
network to use external knowledge for computing the attention weights. For uncertainty
detection, we used vector representations of uncertainty cues as external knowledge. How-
ever, all of our proposed attention mechanisms can be used for other tasks as well. For
sentiment analysis, for example, one could use vectors representing sentiment words as
a resource for external attention. We conducted our experiments on the dataset of the
CoNLL 2010 shared task on learning to detect hedges. To the best of our knowledge,
we are the first to explore convolutional and recurrent neural networks on that dataset.
Our networks improved the state-of-the-art results on the Wikipedia domain by 3.6% F1
absolute without using any hand-crafted features. On Wikipedia, our best results were
67.52%. On the Biomedical domain, our models performed comparably to state of the
art with 85.57%. The best results were obtained with external attention on the input
word embeddings with (k-max) average attention. In an analysis, we compared different
selection strategies: pooling, internal attention and external attention and showed that
external attention provided the network with the clearest focus on the relevant parts of the
sentence. Furthermore, we compared recurrent neural networks with convolutional neural
networks and showed that convolutional neural networks outperformed recurrent neural
networks especially for long sentences. They also seemed to be slightly more robust in the
presence of many out-of-vocabulary words. We published the source code of our models at
http://cistern.cis.lmu.de/attentionUncertainty. For the first time, we integrated
an uncertainty detection component into the slot filling pipeline. The component improved
precision by 1.4% and the final micro F1 by 0.4% absolute.

In future work, the detection of uncertainty for knowledge base population can be ex-

http://cistern.cis.lmu.de/attentionUncertainty
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tended in several ways: First, it is possible to also identify the degree of uncertainty and
include corresponding labels as additional information for facts in a knowledge base. A
benchmark dataset which can be used for this investigation is FactBank (Sauŕı and Puste-
jovsky, 2009). Second, there are other characteristics of information which we have not
included in our investigation so far. Two examples are contribution and temporality. Con-
tribution identifies the source of information, e.g., the author of a statement. Depending
on his/her credibility, a statement might be considered as true or possibly wrong (Sauŕı
and Pustejovsky, 2009). Thus, future work could also extract the author of a statement
(and if possible an assessment of his or her credibility, for example, as in (De Marneffe
et al., 2012)) to include it in a knowledge base as well. Temporality accounts for the fact
that some characteristics or relations of entities are only true for a certain amount of time.
Employment of a person, for example, or the place of residence, can change over time.
For those relations, time stamps could also be extracted and entered in a knowledge base.
When including an uncertainty component in a slot filling system, the scope of the uncer-
tainty cues is highly relevant. Thus, another future research direction is scope identification
in addition to uncertainty cue detection.

In Chapter 5, we presented our investigations of type-aware relation extraction. In the
first part of the chapter (Section 5.2), we described pipeline-based and jointly trained mod-
els in which entity types or entity type predictions are used as input features for relation
classification. As entity and relation classifiers, we applied slightly adapted versions of
contextCNN. We explored different pipeline approaches: PREDICTED-HIDDEN, which com-
putes entity class features by feeding the entity class probabilities into a fully-connected
feed-forward layer, BINARY-HIDDEN, which uses the predicted entity classes instead of
their probabilities as input of a fully-connected hidden layer, BINARY, which uses the pre-
dicted entity classes directly as features (without a hidden layer), and WEIGHTED, which
uses the predicted entity class probabilities to weight pre-trained entity class embeddings.
Our experiments on a large-scale distantly supervised dataset showed that WEIGHTED and
PREDICTED-HIDDEN, i.e., using the probabilities of the entity class predictions, outper-
formed deriving features from binary decisions. For joint training of entity and relation
classes, we applied the architecture from PREDICTED-HIDDEN but trained both the entity
and the relation classifier jointly. This approach outperformed all pipeline models by a large
margin. Its area under the precision-recall curve was 0.66 while the best pipeline model
achieved only 0.53. Our analysis revealed that deriving features from the textual context
with contextCNN had a high impact on the results, especially for relation classification.
The code for our models is provided at http://cistern.cis.lmu.de/noise-mitigation.
In the second part of the chapter (Section 5.3), we proposed a model which is trained on
the sequence of entity and relation class outputs. The probability of a sequence of pre-
dictions is obtained by globally normalizing the score of the sequence over the scores of
all possible sequences. We propose to apply a linear-chain conditional random field out-
put layer to be able to learn transition scores indicating which entity classes and relation
classes often occur together. Again, we used context splitting and convolutional layers to
derive features from the input word embeddings. The input of the model is a sentence
together with a pair of entities (or words). The output is a globally normalized sequence

http://cistern.cis.lmu.de/noise-mitigation
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consisting of the class of the first entity, the relation between the two entities and the
class of the second entity. We conducted our experiments on a medium-scale manually la-
beled dataset for entity and relation recognition and obtained results comparable to other
state-of-the-art models. We evaluated three setups with increasing difficulty: (1) predict-
ing relations only between named entity pairs, (2) table filling with entity boundaries, (3)
table filling without entity boundaries. In all setups, the conditional random field output
layer improved results upon task-specific softmax output layers by up to 4.4% F1 on av-
erage. Our analysis of the transition scores of the linear-chain conditional random field
layer showed that the model has learned reasonable correlations between entity and rela-
tion classes. We made the code for the neural structured prediction models available at
http://cistern.cis.lmu.de/globalNormalization. Finally, we integrated joint entity
and relation classifiers into the slot filling pipeline. On the slot filling benchmark, the
structured prediction models outperformed other type-aware relation classification models
in terms of macro F1, especially on unseen test data. A pipeline model achieved the best
micro F1 scores of all multiclass models though. When applied in the slot filling pipeline,
the neural structured prediction models led to the best macro F1 scores with 25.12% while
the jointly trained models had the highest micro F1 scores with 22.17%. These results were
better than both using binary models and using multiclass models without entity class in-
formation. To the best of our knowledge, this work is the first to use neural networks for
joint entity and relation classification in a slot filling pipeline.

Training a model on joint entity and relation classification can be seen as a form of
multi-task learning (Caruana, 1998; Collobert and Weston, 2008). Multi-task learning is
applied in natural language processing to create more robust input representations or guide
the network during training (Collobert and Weston, 2008; Collobert et al., 2011; Klerke
et al., 2016; Mart́ınez Alonso and Plank, 2017). For relation classification, not only entity
classification but also other tasks, such as semantic role labeling, may be useful. Therefore,
a direction for future work is the investigation of other possible additional tasks.

http://cistern.cis.lmu.de/globalNormalization
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A.1 Slot List

slot filler cardinality inverse
per:age 1 -
per:alternate names ≥ 1 -
per:cause of death 1 -
per:charges ≥ 1 -
per:children ≥ 1 per:parents
per:cities of residence ≥ 1 gpe:residents of city
per:city of birth 1 gpe:births in city
per:city of death 1 gpe:deaths in city
per:countries of residence ≥ 1 gpe:residents of country
per:country of birth 1 gpe:births in country
per:country of death 1 gpe:deaths in country
per:date of birth 1 -
per:date of death 1 -
per:employee or member of ≥ 1 {org,gpe}:employees or members
per:origin ≥ 1 -
per:other family ≥ 1 per:other family
per:religion 1 -
per:schools attended ≥ 1 org:students
per:siblings ≥ 1 per:siblings
per:spouse ≥ 1 per:spouse
per:stateorprovince of birth 1 gpe:births in stateorprovince
per:stateorprovince of death 1 gpe:deaths in stateorprovince
per:statesorprovinces of residence ≥ 1 gpe:residents of stateorprovince
per:title ≥ 1 -
org:alternate names ≥ 1 -
org:city of headquarters 1 gpe:headquarters in city
org:country of headquarters 1 gpe:headquarters in country
org:date dissolved 1 -
org:date founded 1 -
org:founded by ≥ 1 {per,org,gpe}:organizations founded
org:members ≥ 1 {org,gpe}:member of
org:number of employees members 1 -
org:parents ≥ 1 {org,gpe}:subsidiaries
org:political religious affiliation ≥ 1 -
org:shareholders ≥ 1 {per,org,gpe}:holds shares in
org:stateorprovince of headquarters 1 gpe:headquarters in stateorprovince
org:top members employees ≥ 1 per:top member employee of
org:website 1 -

Table A.1: TAC KBP slot filling slots and their inverse. Filler cardinality shows whether
the output is a single filler or a list of multiple fillers.

Table A.1 provides the different relations (slots) from the slot filling task as introduced
in Section 3.1.
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A.2 Distantly Supervised Patterns

slot number of patterns
per:age 497
per:alternate names 3250
per:cause of death 3661
per:charges 1714
per:children 2143
per:locations of residence 10688
per:location of birth 7431
per:location of death 6767
per:date of birth 3228
per:date of death 8104
per:employee or member of 25446
per:origin 8240
per:other family 1430
per:parents 5966
per:religion 3716
per:schools attended 3161
per:siblings 5452
per:spouse 4074
per:title 11104
org:alternate names 2053
org:location of headquarters 53612
org:date dissolved 1297
org:date founded 1931
org:founded by 3151
org:member of 4638
org:members 378
org:number of employees members 4183
org:parents 7262
org:political religious affiliation 4280
org:shareholders 86
org:subsidiaries 10434
org:top members employees 5933
org:website 161

Table A.2: Statistics of distantly supervised patterns from Roth et al. (2013) with (city,
state or province, country)-slots merged to one location-of slot.

Table A.2 provides statistics of the distantly supervised pattern set as introduced in
Section 3.3.2.
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A.3 Dataset Statistics

slot + – ratio
per:age 4151 32254 0.13
per:alternate names 287 752 0.38
per:cause of death 173 994 0.17
per:charges 5 1008 0.00
per:children 61826 138456 0.45
per:date of birth 38413 34182 1.12
per:date of death 3039 9404 0.32
per:employee or member of 283434 585997 0.48
per:location of birth 94565 187957 0.50
per:location of death 9053 57259 0.16
per:locations of residence 247312 551846 0.45
per:origin 165777 414065 0.40
per:other family 46 957 0.05
per:religion 5 1004 0.00
per:schools attended 9618 297964 0.03
per:siblings 5186 20939 0.25
per:spouse 70636 201608 0.35
per:title 11175 211475 0.05
org:alternate names 1691 5879 0.29
org:date dissolved 94 570 0.16
org:date founded 8079 53809 0.15
org:founded by 42885 280808 0.15
org:location of headquarters 354491 736513 0.48
org:members 70611 177586 0.40
org:number of employees members 7 648 0.01
org:parents 48490 111628 0.43
org:shareholders 47 1325 0.04
org:top members employees 194726 412137 0.47
total 1725822 4529024 0.38

Table A.3: Statistics of the training data set.

Table A.3 provides statistics of the slot filling training data set which has been created
with distant supervision. It is introduced and described in Section 3.4.2.

Table A.4 and Table A.5 show statistics of the slot filling benchmark dataset as de-
scribed in Section 3.4.3. In Table A.4, the data is split into a development and evaluation
set according to the slot filling assessment years. In Table A.5, the data is split according
to genre and randomly assigned to development and evaluation sets.
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dev eval
slot + – ratio + – ratio
per:age 185 119 1.55 129 130 0.99
per:alternate names 53 329 0.16 3 357 0.01
per:cause of death 148 103 1.44 34 69 0.49
per:charges 42 148 0.28 66 118 0.56
per:children 214 451 0.47 26 452 0.06
per:cities of residence 126 979 0.13 86 446 0.19
per:city of birth 42 149 0.28 14 151 0.09
per:city of death 108 224 0.48 12 161 0.07
per:countries of residence 100 488 0.20 62 260 0.24
per:country of birth 11 116 0.09 7 139 0.05
per:country of death 22 159 0.14 8 88 0.09
per:date of birth 55 100 0.55 5 85 0.06
per:date of death 119 178 0.67 15 102 0.15
per:employee or member of 426 1873 0.23 146 732 0.2
per:origin 132 552 0.24 89 465 0.19
per:other family 26 309 0.08 14 353 0.04
per:parents 71 431 0.16 53 388 0.14
per:religion 15 108 0.14 17 40 0.42
per:schools attended 97 397 0.24 21 239 0.09
per:siblings 49 172 0.28 19 320 0.06
per:spouse 157 478 0.33 31 470 0.07
per:stateorprovince of birth 29 116 0.25 7 116 0.06
per:stateorprovince of death 59 145 0.41 7 109 0.06
per:statesorprovinces of residence 90 558 0.16 44 214 0.21
per:title 879 2463 0.36 331 1136 0.29
org:alternate names 152 458 0.33 69 180 0.38
org:city of headquarters 60 279 0.22 38 124 0.31
org:country of headquarters 99 243 0.41 37 78 0.47
org:date dissolved 4 92 0.04 2 54 0.04
org:date founded 35 167 0.21 29 79 0.37
org:founded by 48 904 0.05 47 306 0.15
org:member of 9 307 0.03 0 177 0.0
org:members 65 334 0.19 5 162 0.03
org:number of employees members 26 87 0.30 9 50 0.18
org:parents 50 524 0.10 10 246 0.04
org:political religious affiliation 15 196 0.08 5 31 0.16
org:shareholders 24 874 0.03 3 203 0.01
org:stateorprovince of headquarters 45 192 0.23 23 70 0.33
org:subsidiaries 90 762 0.12 15 138 0.11
org:top members employees 430 1627 0.26 169 412 0.41
org:website 66 62 1.06 16 5 3.2
total 4473 18253 0.25 1723 9455 0.18

Table A.4: Statistics of the slot filling benchmark dataset.
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news web
dev eval dev eval

slot + – ratio + – ratio + – ratio + – ratio
org:alternate names 85 209 0.41 86 204 0.42 23 105 0.22 21 99 0.21
org:city of headquarters 40 162 0.25 43 167 0.26 9 36 0.25 5 32 0.16
org:country of headquarters 65 139 0.47 59 128 0.46 5 23 0.22 7 24 0.29
org:date dissolved 3 63 0.05 3 63 0.05 0 7 0.0 0 7 0.0
org:date founded 30 98 0.31 30 96 0.31 2 21 0.1 1 20 0.05
org:founded by 41 498 0.08 40 499 0.08 5 95 0.05 4 98 0.04
org:member of 3 203 0.01 3 207 0.01 2 29 0.07 1 28 0.04
org:members 33 210 0.16 32 208 0.15 3 35 0.09 2 39 0.05
org:number of employees members 17 55 0.31 16 55 0.29 1 12 0.08 1 12 0.08
org:parents 28 287 0.1 27 288 0.09 3 91 0.03 2 89 0.02
org:political religious affiliation 10 98 0.1 9 94 0.1 0 16 0.0 0 15 0.0
org:shareholders 14 462 0.03 13 466 0.03 0 63 0.0 0 60 0.0
org:stateorprovince of headquarters 24 103 0.23 30 103 0.29 6 24 0.25 7 26 0.27
org:subsidiaries 47 335 0.14 47 342 0.14 6 96 0.06 5 102 0.05
org:top members employees 264 837 0.32 268 844 0.32 27 151 0.18 26 156 0.17
org:website 37 23 1.61 36 23 1.57 3 10 0.3 4 9 0.44
per:age 168 102 1.65 139 95 1.46 6 16 0.38 6 16 0.38
per:alternate names 29 254 0.11 22 245 0.09 2 47 0.04 2 45 0.04
per:cause of death 90 76 1.18 88 72 1.22 3 9 0.33 2 8 0.25
per:charges 54 113 0.48 47 111 0.42 3 17 0.18 1 14 0.07
per:children 118 362 0.33 115 348 0.33 6 35 0.17 2 35 0.06
per:cities of residence 111 622 0.18 93 586 0.16 4 84 0.05 5 74 0.07
per:city of birth 36 165 0.22 22 91 0.24 0 12 0.0 0 13 0.0
per:city of death 88 215 0.41 29 126 0.23 0 17 0.0 3 14 0.21
per:countries of residence 79 309 0.26 76 319 0.24 5 36 0.14 3 40 0.07
per:country of birth 10 116 0.09 8 94 0.09 0 16 0.0 0 15 0.0
per:country of death 16 123 0.13 14 94 0.15 0 12 0.0 0 9 0.0
per:date of birth 36 72 0.5 25 65 0.38 0 18 0.0 0 16 0.0
per:date of death 69 123 0.56 65 119 0.55 2 15 0.13 2 15 0.13
per:employee or member of 272 1017 0.27 248 965 0.26 22 241 0.09 19 232 0.08
per:origin 111 424 0.26 95 392 0.24 8 75 0.11 6 69 0.09
per:other family 18 264 0.07 16 261 0.06 2 18 0.11 2 17 0.12
per:parents 70 332 0.21 54 329 0.16 2 29 0.07 1 32 0.03
per:religion 14 58 0.24 12 57 0.21 2 12 0.17 2 11 0.18
per:schools attended 67 242 0.28 48 243 0.2 2 51 0.04 2 48 0.04
per:siblings 37 184 0.2 34 185 0.18 0 39 0.0 0 38 0.0
per:spouse 103 379 0.27 79 364 0.22 4 44 0.09 3 45 0.07
per:stateorprovince of birth 20 100 0.2 17 103 0.17 0 13 0.0 0 9 0.0
per:stateorprovince of death 32 122 0.26 30 107 0.28 3 8 0.38 1 10 0.1
per:statesorprovinces of residence 64 334 0.19 56 326 0.17 7 35 0.2 4 36 0.11
per:title 576 1597 0.36 501 1498 0.33 54 162 0.33 51 145 0.35
total 3029 11487 0.26 2675 10982 0.24 232 1875 0.12 203 1822 0.11

Table A.5: Statistics of the slot filling benchmark dataset, genre split.
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A.4 Slot Filler Classification Model Choices

PATuschema PATdist SVMbow SVMskip

dev eval dev eval dev eval dev eval
per:age .65 .77 .69 .80 .84 .75 .86 .74
per:alternate names .40 .18 .50 .50 .35 .02 .35 .02
per:cause of death .40 .00 .44 .11 .80 .36 .82 .32
per:children .11 .07 .10 .07 .71 .43 .81 .68
per:date of birth .64 .57 .67 .57 .99 .67 1.0 .67
per:date of death .24 .10 .30 .32 .78 .50 .79 .54
per:empl memb of .32 .24 .24 .22 .43 .34 .42 .36
per:location of birth .22 .39 .30 .30 .62 .29 .59 .27
per:loc of death .08 .00 .13 .00 .64 .27 .64 .34
per:loc of residence .26 .32 .10 .03 .28 .27 .31 .33
per:origin .26 .19 .13 .11 .68 .59 .65 .64
per:parents .26 .36 .27 .38 .51 .63 .65 .79
per:schools att .25 .26 .27 .26 .78 .67 .78 .71
per:siblings .17 .48 .14 .50 .60 .64 .60 .68
per:spouse .39 .49 .40 .53 .63 .29 .67 .32
per:title .51 .45 .48 .42 .36 .30 .54 .48
org:alternate names .65 .74 .70 .71 .60 .63 .62 .62
org:date founded .44 .53 .47 .40 .61 .59 .57 .70
org:founded by .22 .51 .39 .62 .85 .76 .77 .74
org:loc of headqu .43 .38 .39 .30 .43 .44 .43 .42
org:members .03 .29 .03 .29 .49 .16 .70 .13
org:parents .31 .10 .31 .18 .28 .10 .37 .20
org:subsidiaries .20 .13 .32 .56 .33 .24 .38 .37
org:top memb empl .45 .38 .53 .46 .51 .57 .43 .55
macro F1 .33 .33 .35 .36 .59 .44 .62 .48

Table A.6: F1 results of different patterns and SVM feature choices on slot filling bench-
mark dataset.

Table A.6 and Table A.7 provide slot-wise results for the different model choices which
are described in Section 3.5.2.
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PCNN PCNNext contextCNN

dev test dev test dev test
per:age .85 .74 .86 .76 .83 .76
per:alternate names .21 .04 .27 .04 .32 .04
per:cause of death .00 .00 .67 .46 .77 .52
per:children .73 .49 .77 .56 .82 .61
per:date of birth .99 .67 .99 .77 1.0 .77
per:date of death .77 .48 .76 .41 .72 .48
per:empl memb of .39 .30 .40 .26 .41 .37
per:location of birth .59 .25 .59 .26 .59 .23
per:loc of death .63 .32 .64 .34 .63 .28
per:loc of residence .19 .21 .18 .21 .20 .23
per:origin .38 .30 .38 .36 .43 .39
per:parents .50 .48 .44 .34 .65 .78
per:schools att .71 .42 .70 .45 .72 .55
per:siblings .57 .65 .64 .68 .63 .70
per:spouse .66 .34 .66 .39 .67 .30
per:title .50 .44 .53 .45 .57 .46
org:alternate names .58 .59 .54 .56 .65 .66
org:date founded .65 .62 .65 .69 .64 .71
org:founded by .76 .60 .74 .65 .80 .68
org:loc of headqu .39 .42 .40 .40 .43 .45
org:members .46 .06 .56 .06 .65 .04
org:parents .25 .10 .27 .11 .41 .16
org:subsidiaries .18 .40 .15 .39 .36 .44
org:top memb empl .44 .48 .43 .52 .43 .53
macro F1 .52 .39 .55 .42 .60 .46

Table A.7: F1 results of different CNN architecture choices on slot filling benchmark
dataset.
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A.5 Hyperparameters

A.5.1 Hyperparameters of Support Vector Machines

SVMbow SVMskip

genre- genre- trained trained
independent independent on news on web

slot C C C C
per:age 0.03 0.03 0.01 0.01
per:alternate names 10.00 0.03 - -
per:cause of death 0.01 1.00 - -
per:children 0.03 0.01 0.03 0.03
per:date of birth 0.01 0.01 0.10 0.01
per:date of death 0.01 0.01 0.10 0.01
per:empl memb of 0.03 0.01 0.03 0.03
per:location of birth 0.01 0.01 0.10 0.01
per:loc of death 1.00 0.01 0.10 0.01
per:loc of residence 3.00 0.01 10.00 0.01
per:origin 3.00 0.10 30.00 0.03
per:schools att 3.00 0.10 0.30 0.10
per:siblings 1.00 0.01 0.01 0.01
per:spouse 0.01 0.10 30.00 0.01
per:title 30.00 10.00 1.00 0.10
org:alternate names 0.01 10.00 0.10 0.01
org:date founded 0.01 0.01 0.30 0.01
org:founded by 0.01 0.01 0.03 0.03
org:loc of headqu 0.03 0.01 10.00 0.10
org:members 0.01 3.00 1.00 0.03
org:parents 0.03 0.01 3.00 0.03
org:top memb empl 0.01 0.30 0.01 0.01

Table A.8: Hyperparameter (penalty parameter C of error term) of SVMs for slot filling.
No training of genre-specific models if no genre-specific training data is available.

Table A.8 shows the penalty values C of the error term of the SVM, which we tune on
the development set. The SVMs are described in Section 3.3.3. For all other parameters
of the SVM, we use the default values of LinearSVC:1 For regularization, for example, l2
penalty is applied, the loss function is squared hinge loss and the training is run for a
maximum of 1000 iterations.

1http://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html.

http://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
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A.5.2 Hyperparameters of contextCNN

genre-independent trained on news trained on web
filter # conv # hidden filter # conv # hidden filter # conv # hidden

slot width filters units width filters units width filters units
per:age 3 300 300 3 300 100 3 300 100
per:alternate names 5 300 300 - - - - - -
per:cause of death 5 300 1000 - - - - - -
per:children 3 300 100 5 300 300 3 300 100
per:date of birth 5 300 1000 3 300 100 3 300 100
per:date of death 5 300 100 5 300 1000 3 300 100
per:empl memb of 3 300 100 3 300 1000 3 300 1000
per:location of birth 3 300 300 3 300 1000 3 300 100
per:loc of death 3 300 300 5 300 1000 5 300 100
per:loc of residence 3 300 100 3 300 300 5 300 300
per:origin 5 300 100 5 300 300 5 300 1000
per:schools att 3 300 300 5 300 1000 3 300 100
per:siblings 3 300 1000 3 300 100 3 300 100
per:spouse 3 300 300 5 300 1000 3 300 300
per:title 3 300 100 3 300 1000 3 300 1000
org:alternate names 5 300 1000 5 300 300 5 300 1000
org:date founded 5 300 100 3 300 100 3 300 100
org:founded by 5 300 300 3 300 100 3 300 100
org:loc of headqu 3 300 100 3 300 100 5 300 300
org:members 5 300 100 5 300 300 5 300 100
org:parents 5 300 300 3 300 100 5 300 100
org:top memb empl 3 300 100 5 300 300 5 300 300

Table A.9: Hyperparameters of contextCNN for slot filling, optimized on dev set of slot
filling benchmark with genre-independent split (according to years) and genre-dependent
splits. No training of genre-specific models if no genre-specific training data is available.

Table A.9 shows the hyperparameters of contextCNN which lead to the best perfor-
mance on the development set. The contextCNN is introduced in Section 3.3.4. All net-
works (contextCNN, PCNN and PCNNext) are trained with gradient descent using a batchsize
of 10 and an initial learning rate of 0.1. The learning rate is halved whenever the perfor-
mance on the development set decreases. For regularization, we apply l2 regularization
with a weight of 1e-5.

A.5.3 Hyperparameters of PCNN and PCNNext

The PCNN, which we use as a baseline model, is described in Section 3.5.2 and Section 3.7.2.
For training PCNN, we use the same hyperparameters for all slots: a contextsize of 120, 300
convolutional filters with filter width 5 and no fully-connected hidden layer. However, we
still add the flag v denoting which relation argument appears first in the sentence to the
input of the softmax layer.

For training PCNNext, we use the hyperparameters and the training schedule from
contextCNN. Thus, the only difference between contextCNN and PCNNext is the time of
context splitting (before or after convolution). We also apply 3-max pooling and add the
flag v denoting which relation argument appears first in the sentence.
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A.5.4 Hyperparameters of Multiclass Models

parameter #N ≈ #non-N #N ≈ 2· #non-N #N ≈ 4· #non-N
SVMskip: C 0.3 0.1 0.01

Table A.10: Hyperparameter (penalty parameter C of error term) of multiclass SVM for
slot filling.

Table A.10 provides the results of tuning the penalty parameter C of the multiclass
SVM for slot filling. Its results are provided in Section 3.5.3. We additionally apply class
weights in order to account for imbalanced distributions of classes in the dataset. They
are multiplied to the error term of the SVM. The weights are determined automatically
to be inversely proportional to the frequency of the classes: wc = N

C·fc with wc being the
weight for class c, C the total number of classes, N the total number of instances and fc
the frequency of class c.

parameter #N ≈ #non-N #N ≈ 2· #non-N #N ≈ 4· #non-N

n
o
N
E
R filter width 3 3 3

# conv filters 3000 3000 3000
# hidden units 100 100 300
learning rate 0.1 0.1 0.1

Table A.11: Hyperparameters of multiclass version of contextCNN.

model filter # conv # hidden # hidden learning
width filters units RE units EC rate

slotNER 3 300 100 100 0.10
jointNER 3 300 100 25 0.10
global 3 3000 100 100 0.03

Table A.12: Hyperparameters of type-aware derivations of contextCNN.

Table A.11 and Table A.12 provide hyperparameters of the multiclass versions of
contextCNN with and without entity type information. They are presented in Section 3.5.3
and Section 5.4. All neural multiclass models are trained with a fixed learning rate, which
is tuned on the development set. As before, we use minibatch training with a batchsize
of 10. The size of the individual contexts is limited to 40. For regularization, we apply l2
regularization with a weight of 1e-5.

Note that we tune the number of negative examples first using noNER (Table A.11) and
then keep it fixed for the type-aware models (Table A.12) in order to use the same data
for all of them.



138 A. Additional Material for Slot Filling

A.6 Genre-specific Results

train on NEWS train on WEB
SVM CNN SVM CNN

dev test dev test dev test dev test

te
st

on
n

ew
s

per:age .79 .80 .88 .87 .78 .76 .85 .83
per:alternate names - - - - - - - -
per:cause of death - - - - - - - -
per:children .85 .86 .78 .78 .75 .80 .00 .07
per:date of birth .98 .99 .00 .00 .95 .91 .00 .00
per:date of death .72 .78 .56 .63 .31 .48 .00 .00
per:employee or member of .45 .44 .44 .46 .47 .45 .40 .44
per:location of birth .57 .50 .54 .43 .59 .51 .57 .48
per:location of death .65 .67 .62 .60 .65 .62 .66 .64
per:locations of residence .26 .25 .14 .10 .39 .39 .29 .28
per:origin .47 .37 .36 .27 .55 .51 .36 .39
per:schools attended .80 .82 .81 .79 .64 .70 .63 .69
per:siblings .81 .67 .79 .61 .81 .67 .71 .55
per:spouse .74 .64 .76 .71 .77 .65 .73 .67
per:title .46 .42 .49 .50 .28 .23 .29 .33
org:alternate names .22 .32 .69 .67 .65 .70 .66 .66
org:date founded .25 .00 .00 .00 .00 .00 .00 .00
org:founded by .84 .85 .88 .76 .85 .78 .86 .65
org:location of headquarters .51 .50 .53 .51 .51 .53 .53 .50
org:members .60 .60 .59 .51 .50 .52 .46 .51
org:parents .30 .32 .29 .34 .26 .33 .30 .34
org:top members employees .56 .55 .56 .54 .54 .53 .53 .54

Table A.13: Genre specific F1 scores. Genre specific training data (of the same sizes).
Slots with no results had either no genre-specific training or evaluation data. News results.

Table A.13 and Table A.14 show slot-wise results. The most important findings are
summarized in Section 3.5.2. The models are evaluated on the data presented in Table A.5.
For training, the data from Table A.3 is split into genre-specific sets according to the sources
of the sentences (see Section 3.4.2).
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train on NEWS train on WEB
SVM CNN SVM CNN

dev test dev test dev test dev test

te
st

on
w

eb

per:age .33 .73 .57 .83 .00 .67 .57 .83
per:alternate names - - - - - - - -
per:cause of death - - - - - - - -
per:children .59 .33 .70 .33 .63 .57 .00 .00
per:date of birth - - - - - - - -
per:date of death .67 .86 .67 .75 .00 .86 .00 .00
per:employee or member of .29 .19 .35 .25 .30 .19 .30 .20
per:location of birth - - - - - - - -
per:location of death .40 .36 .33 .42 .43 .47 .31 .18
per:locations of residence .23 .07 .00 .08 .34 .27 .32 .14
per:origin .59 .40 .40 .22 .59 .41 .41 .23
per:schools attended .50 .67 .36 .57 .80 .80 .00 .67
per:siblings - - - - - - - -
per:spouse .52 .50 .60 .57 .56 .57 .67 .62
per:title .47 .43 .52 .43 .33 .13 .41 .31
org:altername names .27 .19 .51 .37 .60 .49 .56 .38
org:date founded .00 .00 .00 .00 .00 .00 .00 .00
org:founded by .46 .86 .46 .75 .60 .89 .67 .75
org:location of headquarters .39 .46 .43 .44 .44 .48 .36 .47
org:members .40 .44 .14 .36 .44 .67 .15 .57
org:parents .09 .08 .11 .07 .10 .08 .15 .08
org:top members employees .44 .40 .39 .34 .47 .36 .45 .35

Table A.14: Genre specific F1 scores. Genre specific training data (of the same sizes).
Slots with no results had either no genre-specific training or evaluation data. Web results.
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A.7 Slot-wise Results for Multiclass Models

SVM CNN
#N ≈ #N ≈ #N ≈ #N ≈ #N ≈ #N ≈

#non-N 2· #non-N 4· #non-N #non-N 2· #non-N 4· #non-N
dev eval dev eval dev eval dev eval dev eval dev eval

per:age .77 .70 .76 .69 .77 .68 .70 .68 .70 .65 .67 .66
per:alternate names .0 .0 .0 .0 .0 .0 .22 .0 .11 .0 .4 .0
per:cause of death .50 .0 .56 .0 .48 .0 .53 .11 .59 .20 .44 .17
per:children .73 .39 .68 .27 .59 .31 .71 .48 .76 .38 .65 .43
per:date of birth .76 .33 .33 .0 .20 .0 .93 .80 .95 .75 .82 .80
per:date of death .68 .60 .59 .51 .54 .54 .64 .51 .65 .53 .57 .59
per:employee or member of .25 .21 .11 .13 .4 .3 .37 .28 .39 .27 .31 .22
per:location of birth .69 .31 .50 .12 .37 .7 .68 .36 .73 .34 .71 .21
per:location of death .65 .32 .66 .31 .61 .36 .62 .28 .62 .28 .60 .30
per:locations of residence .6 .11 .4 .4 .1 .0 .6 .15 .6 .2 .0 .1
per:origin .9 .4 .4 .0 .1 .0 .9 .11 .7 .0 .3 .0
per:schools attended .70 .57 .73 .64 .73 .65 .65 .45 .64 .43 .67 .52
per:siblings .56 .71 .56 .67 .59 .67 .57 .73 .62 .70 .66 .63
per:spouse .73 .45 .75 .50 .76 .57 .66 .39 .69 .46 .70 .50
per:title .51 .51 .48 .46 .40 .41 .51 .42 .23 .19 .33 .23
org:alternate names .57 .59 .48 .41 .38 .42 .55 .57 .18 .31 .38 .42
org:date founded .61 .60 .57 .55 .55 .56 .54 .63 .55 .74 .49 .62
org:founded by .70 .70 .70 .69 .76 .70 .62 .71 .70 .77 .64 .69
org:location of headquarters .14 .14 .5 .4 .2 .4 .25 .24 .17 .19 .5 .7
org:members .71 .15 .69 .36 .71 .44 .64 .17 .55 .25 .52 .33
org:parents .37 .10 .32 .21 .21 .0 .37 .14 .34 .27 .13 .0
org:top members employees .45 .54 .40 .39 .26 .20 .48 .55 .53 .61 .52 .57
micro F1 .50 .43 .47 .37 .41 .34 .27 .21 .24 .18 .22 .18
macro F1 .51 .37 .46 .32 .41 .30 .52 .40 .49 .38 .45 .36

Table A.15: Slot-wise F1 results for multiclass models with different amounts of N samples.

Table A.15 shows slot-wise results for the multiclass models. Balancing the number
of positive and negative samples leads to the best results on average. The results are
summarized in Section 3.5.3.
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A.8 Slot-wise Results of Slot Filling System

hop 0 hop 1 all hops
Slot P R F1 P R F1 P R F1
gpe:births in city 13.04 8.82 10.53 100.0 0.0 0.0 13.04 7.32 9.38
gpe:births in country 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0
gpe:births in stateorprovince 4.17 2.17 2.86 100.0 0.0 0.0 4.17 1.22 1.89
gpe:deaths in city 46.15 13.04 20.34 0.0 0.0 0.0 35.29 10.91 16.67
gpe:deaths in country 37.5 37.5 37.5 40.0 18.18 25.0 38.1 29.63 33.33
gpe:deaths in stateorprovince 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
gpe:employees or members 32.65 20.25 25.0 0.0 0.0 0.0 31.37 17.39 22.38
gpe:headquarters in city 20.59 20.0 20.29 18.75 11.54 14.29 19.7 14.94 16.99
gpe:headquarters in country 18.18 13.95 15.79 0.0 0.0 0.0 17.65 6.12 9.09
gpe:headquarters in stateorprovince 6.67 33.33 11.11 0.0 0.0 0.0 2.27 0.98 1.37
gpe:holds shares in 100.0 0.0 0.0 - - - 100.0 0.0 0.0
gpe:member of 20.83 55.56 30.3 17.65 23.08 20.0 20.0 41.94 27.08
gpe:organizations founded 13.33 50.0 21.05 100.0 0.0 0.0 13.33 50.0 21.05
gpe:residents of city 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0
gpe:residents of country 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0
gpe:residents of stateorprovince 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0
gpe:subsidiaries 33.33 12.5 18.18 0.0 0.0 0.0 16.67 6.45 9.3
org:alternate names 40.0 19.51 26.23 0.0 0.0 0.0 30.77 17.78 22.54
org:city of headquarters 45.45 50.0 47.62 0.0 0.0 0.0 16.67 33.33 22.22
org:country of headquarters 44.44 50.0 47.06 0.0 0.0 0.0 21.05 21.05 21.05
org:date dissolved 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0
org:date founded 81.82 64.29 72.0 16.67 12.5 14.29 58.82 45.45 51.28
org:employees or members 29.41 34.72 31.85 25.93 18.42 21.54 28.57 29.09 28.83
org:founded by 48.65 78.26 60.0 0.0 0.0 0.0 45.0 62.07 52.17
org:holds shares in 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0
org:member of 5.41 12.5 7.55 0.0 0.0 0.0 5.0 12.5 7.14
org:members 20.63 16.46 18.31 8.27 21.57 11.96 12.24 18.46 14.72
org:number of employees members 60.0 50.0 54.55 0.0 0.0 0.0 50.0 42.86 46.15
org:organizations founded 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0
org:parents 7.69 33.33 12.5 0.0 0.0 0.0 6.67 28.57 10.81
org:political religious affiliation 50.0 33.33 40.0 100.0 0.0 0.0 50.0 33.33 40.0
org:shareholders 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0
org:stateorprovince of headquarters 63.64 70.0 66.67 0.0 0.0 0.0 50.0 58.33 53.85
org:students 35.71 10.0 15.63 20.83 10.87 14.29 26.32 10.42 14.93
org:subsidiaries 22.5 22.5 22.5 21.43 100.0 35.29 22.22 27.91 24.74
org:top members employees 27.78 52.63 36.36 100.0 0.0 0.0 27.78 37.04 31.75
org:website 100.0 33.33 50.0 - - - 100.0 33.33 50.0

Table A.16: Slot-wise CSLDC max scores from best CIS entry (baseline + CNN + EL) in
2015 slot filling assessments; part 1: gpe and org slots.

Table A.16 and Table A.17 show slot-wise results of the slot filling pipeline using the
best setup from Section 3.5.4. Aggregated results and the most important findings are
given in Section 3.5.4.
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hop 0 hop 1 all hops
Slot P R F1 P R F1 P R F1
per:age 100.0 70.0 82.35 75.0 12.5 21.43 90.91 29.41 44.44
per:alternate names 100.0 23.81 38.46 100.0 0.0 0.0 100.0 20.0 33.33
per:cause of death 33.33 50.0 40.0 100.0 0.0 0.0 33.33 33.33 33.33
per:charges 50.0 7.69 13.33 50.0 12.5 20.0 50.0 9.52 16.0
per:children 58.33 100.0 73.68 0.0 0.0 0.0 36.84 46.67 41.18
per:cities of residence 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0
per:city of birth 75.0 42.86 54.55 100.0 0.0 0.0 75.0 18.75 30.0
per:city of death 100.0 0.0 0.0 100.0 100.0 100.0 100.0 16.67 28.57
per:countries of residence 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0
per:country of birth 50.0 50.0 50.0 - - - 50.0 50.0 50.0
per:country of death 100.0 100.0 100.0 0.0 0.0 0.0 57.14 80.0 66.67
per:date of birth 83.33 62.5 71.43 100.0 0.0 0.0 83.33 55.56 66.67
per:date of death 50.0 11.11 18.18 100.0 0.0 0.0 50.0 6.67 11.76
per:employee or member of 21.25 34.69 26.36 0.0 0.0 0.0 20.48 29.82 24.29
per:holds shares in 100.0 0.0 0.0 - - - 100.0 0.0 0.0
per:organizations founded 60.0 50.0 54.55 100.0 100.0 100.0 63.64 53.85 58.33
per:origin 23.08 18.75 20.69 0.0 0.0 0.0 3.06 10.34 4.72
per:other family 60.0 75.0 66.67 100.0 0.0 0.0 60.0 75.0 66.67
per:parents 50.0 66.67 57.14 0.0 0.0 0.0 46.15 66.67 54.55
per:religion 100.0 25.0 40.0 100.0 0.0 0.0 100.0 16.67 28.57
per:schools attended 60.0 69.23 64.29 - - - 60.0 69.23 64.29
per:siblings 43.75 58.33 50.0 100.0 0.0 0.0 43.75 35.0 38.89
per:spouse 50.0 18.75 27.27 - - - 50.0 18.75 27.27
per:stateorprovince of birth 50.0 50.0 50.0 100.0 0.0 0.0 50.0 50.0 50.0
per:stateorprovince of death 66.67 57.14 61.54 100.0 0.0 0.0 66.67 50.0 57.14
per:statesorprovinces of residence 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0
per:title 50.0 34.04 40.51 26.03 21.35 23.46 33.33 25.74 29.05
per:top member employee of 35.71 55.56 43.48 100.0 0.0 0.0 35.71 55.56 43.48

Table A.17: Slot-wise CSLDC max scores from best CIS entry (baseline + CNN + EL) in
2015 slot filling assessments; part 2: per slots.
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Additional Material for Uncertainty
Detection

B.1 Hyperparameters

CNN GRU
# conv filter # hidden # att # gru # hidden # att
filters width units hidden hidden units hidden

units units units

W
ik

ip
ed

ia

(3)/(2) 200 3 200 - 10 100 -
(6)/(4) 100 3 500 - 10 100 -
(7)/(5) 200 3 200 - 10 200 -
(11)/(8) 200 3 200 - 10 100 -
(12)/(9) 200 3 200 200 30 200 200
(13)/(10) 100 3 200 200 10 200 100

B
io

m
ed

ic
a
l (3)/(2) 200 3 500 - 10 500 -

(6)/(4) 100 3 200 - 10 500 -
(7)/(5) 100 3 500 - 10 50 -
(11)/(8) 200 3 200 - 10 50 -
(12)/(9) 200 3 500 100 30 100 200
(13)/(10) 200 3 50 100 10 50 200

Table B.1: Result of hyperparameter tuning for CNN and GRU models.

Table B.1 provides the hyperparameters of the models we train and evaluate on un-
certainty detection. They are described in Section 4.2. The numbers in the first column
correspond to the model numbers in Section 4.4.

For training the CNNs, we use a fixed learning rate of 0.03. For training the GRUs, we
apply Adagrad (see Section 2.2.4) with an initial learning rate of 0.1. In all cases, we use a
batchsize of 10 and apply l2 regularization with a weight of 1e-5. The number of training
epochs is determined by peak performances on the development set.
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B.2 Analysis of Selection Mechanisms
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Figure B.1: Pooling vs. internal attention vs. external attention.
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Figure B.2: Pooling vs. internal attention vs. external attention.

Figure B.1 and Figure B.2 compare pooling, internal attention and external attention
for randomly picked examples from the test set. As in Section 4.5.1, pooling extracts values
from all over the sentence while internal and external attention learn to focus on words
which can indicate uncertainty (e.g., “thought” or “probably”).



Appendix C

Additional Material for Type-aware
Relation Extraction

C.1 Hyperparameters of Pipeline and Jointly Trained

Models

model # epochs # conv hidden EC hidden
filters units units

contextCNN (no types) 8 100 100 –
+ BINARY 8 100 100 –
+ BINARY-HIDDEN 11 100 100 80
+ PREDICTED-HIDDEN 11 100 100 80
+ WEIGHTED 11 100 100 100
JOINT 11 100 100 80

Table C.1: Hyperparameters of type-aware models for relation extraction on ClueWeb.

Table C.1 provides the hyperparameters of the pipeline and joint models for relation
extraction. The models are presented in Section 5.2.1.

For the three contexts for relation extraction, we use a contextsize of 25 and a filter
width of 3. For the entity classification parts, we use a contextsize of 10 and 300 convolu-
tional filters of widths 1–4. The hidden unit size is 600.

All models are trained with a learning rate of 0.03 and a batchsize of 50. To avoid
overfitting, we apply l2 regularization with a weight of 1e-5.
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C.2 Relation-specific Results of Pipeline and Jointly

Trained Models

relation contextCNN BINARY BINARY-HIDDEN

government.government agency.jurisdiction 62.26 66.33 65.63
government.us president.vice president 66.67 50.00 34.29
location.location.containedby 49.04 51.73 55.21
organization.organization founder.organizations founded 67.54 52.46 54.79
organization.organization.place founded 42.38 50.42 48.63
people.deceased person.place of death 36.13 48.35 55.17
people.person.children 53.20 39.34 55.17
people.person.nationality 52.82 60.59 63.91
people.person.place of birth 46.76 47.56 49.82
people.person.religion 78.73 80.13 71.34

Table C.2: Relation-wise results of type-aware models on ClueWeb (part 1).

relation PREDICTED-HIDDEN WEIGHTED JOINT

government.government agency.jurisdiction 66.25 62.65 70.41
government.us president.vice president 37.04 66.67 21.74
location.location.containedby 68.99 64.19 33.45
organization.organization founder.organizations founded 56.18 58.54 62.30
organization.organization.place founded 42.48 38.34 58.51
people.deceased person.place of death 50.78 53.73 67.10
people.person.children 46.25 53.09 53.48
people.person.nationality 68.06 66.50 54.65
people.person.place of birth 44.90 48.44 49.70
people.person.religion 72.34 66.34 75.94

Table C.3: Relation-wise results of type-aware models on ClueWeb (part 2).

Table C.2 and Table C.3 show relation-wise results of the type-aware models. The
results are visualized in Figure 5.6 and discussed in Section 5.2.4.
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C.3 Hyperparameters of Neural Structured Predic-

tion Models

setup 1 setup 2 setup 3
softmax CRF softmax CRF softmax CRF

filter width CNNcontext 3 3 3 3 3 3
filter width CNNentity 2 2 2 2 2 2
# filters CNNcontext 500 200 500 500 500 500
# filters CNNentities 100 50 100 100 100 100
# hidden units RE 100 100 100 200 100 100
# hidden units EC 50 50 50 50 50 50

Table C.4: Hyperparameters of globally normalized models.

Table C.4 provides hyperparameters of the neural structured prediction models pre-
sented in Section 5.3.1. The different setups are described in Section 5.3.3.

We use a contextsize of 120 and an entity size of 20. All models are trained with a
learning rate of 0.1 and a batchsize of 10. To avoid overfitting, we apply l2 regularization
with a weight of 1e-4. The number of epochs is determined via early stopping on the
development set.
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Richárd Farkas, Veronika Vincze, György Móra, János Csirik, and György Szarvas. The
CoNLL-2010 shared task: Learning to detect hedges and their scope in natural lan-
guage text. In Computational Natural Language Learning, pages 1–12. Association for
Computational Linguistics, 2010.

Oliver Ferschke, Torsten Zesch, and Iryna Gurevych. Wikipedia revision toolkit: Efficiently
accessing Wikipedia’s edit history. In Annual Meeting of the Association for Computa-
tional Linguistics: Human Language Technologies: System Demonstrations, pages 97–
102. Association for Computational Linguistics, 2011.

Matthias Feys, Lucas Sterckx, Laurent Mertens, Johannes Deleu, Thomas Demeester, and
Chris Develder. Ghent University-IBCN participation in TAC-KBP 2014 slot filling
and cold start tasks. In Text Analysis Conference. National Institute of Standards and
Technology, 2014.

Jenny Rose Finkel, Trond Grenager, and Christopher Manning. Incorporating non-local
information into information extraction systems by Gibbs sampling. In Annual Meet-
ing of the Association for Computational Linguistics, pages 363–370. Association for
Computational Linguistics, 2005.



BIBLIOGRAPHY 157

John R. Firth. A synopsis of linguistic theory, 1930–1955. In Studies in Linguistic Analysis.
Basil Blackwell, 1957.

Carol Friedman, Philip O. Alderson, John H.M. Austin, James J. Cimino, and Stephen B.
Johnson. A general natural-language text processor for clinical radiology. In Journal of
the American Medical Informatics Association, volume 1(2), pages 161–174. BMJ Group
BMA House, 1994.

Evgeniy Gabrilovich, Michael Ringgaard, and Amarnag Subramanya. FACC1: Freebase
annotation of ClueWeb corpora, 2013.

Viola Ganter and Michael Strube. Finding hedges by chasing weasels: Hedge detection us-
ing Wikipedia tags and shallow linguistic features. In Annual Meeting of the Association
for Computational Linguistics and International Joint Conference on Natural Language
Processing of the Asian Federation of Natural Language Processing, pages 173–176. As-
sociation for Computational Linguistics, 2009.

Matthew Gardner. Reading and reasoning with knowledge graphs. PhD thesis, Carnegie
Mellon University, 2015.
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Thomas Pellissier Tanon, Denny Vrandečić, Sebastian Schaffert, Thomas Steiner, and Ly-
dia Pintscher. From Freebase to Wikidata: The great migration. In International Confer-
ence on World Wide Web, pages 1419–1428. International World Wide Web Conference
Committee, 2016.

Baolin Peng, Zhengdong Lu, Hang Li, and Kam-Fai Wong. Towards neural network–based
reasoning. In Computing Research Repository (arXiv.org), arXiv:1508.05508, 2015.

Fuchun Peng and Andrew McCallum. Information extraction from research papers using
conditional random fields. In Information Processing & Management, volume 42(4),
pages 963–979. Elsevier, 2006.

Jian Peng, Liefeng Bo, and Jinbo Xu. Conditional neural fields. In Advances in Neural In-
formation Processing Systems, pages 1419–1427. Neural Information Processing Systems
Foundation, Inc., Curran Associates, Inc., 2009.

Maria Pershina, Bonan Min, Wei Xu, and Ralph Grishman. Infusion of labeled data into
distant supervision for relation extraction. In Annual Meeting of the Association for
Computational Linguistics, pages 732–738. Association for Computational Linguistics,
2014.



168 BIBLIOGRAPHY

Francesco Piccinno and Paolo Ferragina. From TagME to WAT: A new entity annota-
tor. In International Workshop on Entity Recognition & Disambiguation, pages 55–62.
Association for Computing Machinery, 2014.

Glen Pink and James R. Curran. SYDNEY at TAC 2014. In Text Analysis Conference.
National Institute of Standards and Technology, 2014.

Glen Pink, Joel Nothman, and James R. Curran. Analysing recall loss in named entity
slot filling. In Conference on Empirical Methods in Natural Language Processing, pages
820–830. Association for Computational Linguistics, 2014.

Lutz Prechelt. Early stopping — but when? In Neural Networks: Tricks of the Trade,
pages 553–553. Springer, 1998.

Pengda Qin, Chaoyi Ma, Yidong Jia, Wei Wang, Zhengkuan Zhang, Zuyi Bao, Weiran Xu,
and Jun Guo. BUPT PRIS at TAC KBP 2015. In Text Analysis Conference. National
Institute of Standards and Technology, 2015.

Xin Ying Qiu, Xiaoting Li, Weijian Mo, Manli Zheng, and Zhuhe Zheng. GDUFS at slot
filling TAC-KBP 2012. In Text Analysis Conference. National Institute of Standards
and Technology, 2012.

Lawrence R. Rabiner. A tutorial on hidden Markov models and selected applications in
speech recognition. In Proceedings of the IEEE, volume 77(2), pages 257–286. Institute
of Electrical and Electronics Engineers, 1989.

Rashedur Rahman, Brigitte Grau, Sophie Rosset, Yoann Dupont, Jérémy Guillemot,
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