646 research outputs found

    VPNet: Variable Projection Networks

    Get PDF
    In this paper, we introduce VPNet, a novel model-driven neural network architecture based on variable projections (VP). The application of VP operators in neural networks implies learnable features, interpretable parameters, and compact network structures. This paper discusses the motivation and mathematical background of VPNet as well as experiments. The concept was evaluated in the context of signal processing. We performed classification tasks on a synthetic dataset, and real electrocardiogram (ECG) signals. Compared to fully-connected and 1D convolutional networks, VPNet features fast learning ability and good accuracy at a low computational cost in both of the training and inference. Based on the promising results and mentioned advantages, we expect broader impact in signal processing, including classification, regression, and even clustering problems

    A Comparative Study Of Different Types Of Mother Wavelets For Heartbeat Biometric Verification System

    Get PDF
    Recently, advanced biometric technology is turning to the use of electrocardiograms (ECG) signal as new modality for verification system. The ECG signal contains sufficient information to verify an individual as it is unique to everyone. One of the feasible methods to extract the salient information from ECG signal for verification is by using wavelet transform. However, there is a challenge in implementing it as different types and orders of mother wavelet used will yield different verification performance. Therefore, in this study, a comparative study is done so as to investigate the optimum type and order of mother wavelet that represents the best feature for the verification system. Three different types of mother wavelets i.e. Symlet, Daubechies and Coiflet with order ranging from one to five have been studied in this research. The extracted features are then trained by using SVM classifier to generate a model to verify the features. The performance of the ECG biometric verification system is evaluated with the Receiver Operating Characteristic (ROC) plot and Equal Error Rate (EER). Experimental result showed that the developed system achieves the best performance when the 3rd order Coiflet is used as feature with an EER score of 10.755% is achieved

    Detecting and Mitigating Adversarial Attack

    Get PDF
    Automating arrhythmia detection from ECG requires a robust and trusted system that retains high accuracy under electrical disturbances. Deep neural networks have become a popular technique for tracing ECG signals, outperforming human experts. Many approaches have reached human-level performance in classifying arrhythmia from ECGs. Even convolutional neural networks are susceptible to adversarial examples as well that can also misclassify ECG signals. Moreover, they do not generalize well on the out-of-distribution dataset. Adversarial attacks are small crafted perturbations injected in the original data which manifest the out-of-distribution shifts in signal to misclassify the correct class. However, these architectures are vulnerable to adversarial attacks as well. The GAN architecture has been employed in recent works to synthesize adversarial ECG signals to increase existing training data. However, they use a disjointed CNN-based classification architecture to detect arrhythmia. Till now, no versatile architecture has been proposed that can detect adversarial examples and classify arrhythmia simultaneously. In this work, we propose two novel conditional generative adversarial networks (GAN), ECG-Adv-GAN and ECG-ATK-GAN, to simultaneously generate ECG signals for different categories and detect cardiac abnormalities. The model is conditioned on class-specific ECG signals to synthesize realistic adversarial examples. Moreover, the ECG-ATK-GAN is robust against adversarial attacked ECG signals and retains high accuracy when exposed to various types of adversarial attacks while classifying arrhythmia. We benchmark our architecture on six different white and black-box attacks and compare them with other recently proposed arrhythmia classification models. When considering the defense strategy, the variation of the adversarial attacks, both targeted and non-targeted, can determine the perturbation by calculating the gradient. Novel defenses are being introduced to improve upon existing techniques to fend off each new attack. This back-and-forth game between attack and defense is persistently recurring, and it became significant to understand the pattern and behavior of the attacker to create a robust defense. One widespread tactic is applying a mathematically based model like Game theory. To analyze this circumstance, we propose a computational framework of game theory to analyze the CNN Classifier's vulnerability, strategy, and outcomes by forming a simultaneous two-player game. We represent the interaction in the Stackelberg Game in Kuhn tree to study players' possible behaviors and actions by applying our Classifier's actual predicted values in CAPTCHA dataset. Thus, we interpret potential attacks in deep learning applications while representing viable defense strategies from the Game theoretical perspective

    Wearable Wireless Devices

    Get PDF
    No abstract available

    Wavelets and their use

    Get PDF
    This review paper is intended to give a useful guide for those who want to apply discrete wavelets in their practice. The notion of wavelets and their use in practical computing and various applications are briefly described, but rigorous proofs of mathematical statements are omitted, and the reader is just referred to corresponding literature. The multiresolution analysis and fast wavelet transform became a standard procedure for dealing with discrete wavelets. The proper choice of a wavelet and use of nonstandard matrix multiplication are often crucial for achievement of a goal. Analysis of various functions with the help of wavelets allows to reveal fractal structures, singularities etc. Wavelet transform of operator expressions helps solve some equations. In practical applications one deals often with the discretized functions, and the problem of stability of wavelet transform and corresponding numerical algorithms becomes important. After discussing all these topics we turn to practical applications of the wavelet machinery. They are so numerous that we have to limit ourselves by some examples only. The authors would be grateful for any comments which improve this review paper and move us closer to the goal proclaimed in the first phrase of the abstract.Comment: 63 pages with 22 ps-figures, to be published in Physics-Uspekh

    Denoising and R-Peak Detection in ECG Signals: A Performance Evaluation

    Get PDF
    An electrocardiogram (ECG) is a continuous electrical signal from the heart that is recorded to understand the activity and condition of the heart. A recorded ECG signal always follows a defined pattern for a normal heart condition. Variation in the normal ECG pattern can be seen in cases of numerous cardiac abnormalities. A recorded ECG is also affected by a number of noises and distortions, resulting in a low SNR. A variation in ECG pattern can lead to incorrect study and improper diagnosis of heart condition. Thus, to perform an efficient analysis, it is necessary to preprocess the ECG waveform. ECG preprocessing requires noise removal and analysis of necessary features needed to study cardiac activity. In this paper, ECG preprocessing is evaluated by using two noise removal techniques, i.e., finite and infinite impulse response. After this, the R-peaks are detected using discrete wavelet transform (DWT), maximal optimal DWT, principal component analysis and independent component analysis. A wavelet transform technique is further proposed using Savitzky-Golay filtering and DWT. The results obtained from the proposed methodology represent the best results compared to those of other methods explicated in this paper

    Current and Future Use of Artificial Intelligence in Electrocardiography.

    Get PDF
    Artificial intelligence (AI) is increasingly used in electrocardiography (ECG) to assist in diagnosis, stratification, and management. AI algorithms can help clinicians in the following areas: (1) interpretation and detection of arrhythmias, ST-segment changes, QT prolongation, and other ECG abnormalities; (2) risk prediction integrated with or without clinical variables (to predict arrhythmias, sudden cardiac death, stroke, and other cardiovascular events); (3) monitoring ECG signals from cardiac implantable electronic devices and wearable devices in real time and alerting clinicians or patients when significant changes occur according to timing, duration, and situation; (4) signal processing, improving ECG quality and accuracy by removing noise/artifacts/interference, and extracting features not visible to the human eye (heart rate variability, beat-to-beat intervals, wavelet transforms, sample-level resolution, etc.); (5) therapy guidance, assisting in patient selection, optimizing treatments, improving symptom-to-treatment times, and cost effectiveness (earlier activation of code infarction in patients with ST-segment elevation, predicting the response to antiarrhythmic drugs or cardiac implantable devices therapies, reducing the risk of cardiac toxicity, etc.); (6) facilitating the integration of ECG data with other modalities (imaging, genomics, proteomics, biomarkers, etc.). In the future, AI is expected to play an increasingly important role in ECG diagnosis and management, as more data become available and more sophisticated algorithms are developed.Manuel Marina-Breysse has received funding from European Union’s Horizon 2020 research and innovation program under the grant agreement number 965286; Machine Learning and Artificial Intelligence for Early Detection of Stroke and Atrial Fibrillation, MAESTRIA Consortium; and EIT Health, a body of the European Union.S
    corecore