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KAJIAN PERBANDINGAN TERHADAP PELBAGAI JENIS 

IBU WAVELET UNTUK SISTEM PENGESAHAN 

BIOMETRIK DENYUTAN JANTUNG  

Abstrak 

Kebelakangan ini, teknologi biometrik terkini sedang beralih arah kepada 

penggunaan isyarat elektrokardiogram (ECG) sebagai satu modaliti terbaru untuk sistem 

pengesahan. Isyarat ECG mengandungi maklumat yang mencukupi untuk mengesahkan 

individu kerana ia adalah unik kepada setiap individu. Satu daripada teknik yang 

dipercayai yang mampu mengektrak maklumat penting daripada isyarat ECG ialah 

dengan menggunakan transformasi wavelet. Namun, terdapat satu cabaran dalam 

mengimplimentasikannya kerana perbezaan jenis dan peringkat ibu wavelet akan 

mempengaruhi prestasi pengesahan. Jadi, dalam kajian ini, satu kajian perbandingan akan 

dibuat bagi menyemak jenis dan peringkat ibu wavelet yang optimum yang boleh 

mewakili ciri yang terbaik untuk sistem verifikasi ini. Tiga jenis ibu wavelets iaitu Symlet, 

Daubechies dan Coiflet dengan turutan peringkat dari satu kelima telah dikaji di dalam 

kajian ini. Ciri yang diektrak kemudiannya dilatih dengan pengelas Mesin Vektor 

Sokongan (SVM) bagi membina model untuk mengesahkan ciri yang diektrak. Prestasi 

sistem pengesahan biometrik ECG ini dinilai dengan Penerima Operasi Ciri (ROC) dan 

Kadar Ralat Sama (EER). Keputusan kajian menunjukkan sistem yang telah dibangunkan 

ini menghasilkan prestasi yang terbaik apabila ibu wavelet Coiflet peringkat ketiga 

digunakan sebagai ciri dengan prestasi EER bernilai 10.755% diperolehi.  
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A COMPARATIVE STUDY OF DIFFERENT TYPES OF 

MOTHER WAVELETS FOR HEARTBEAT BIOMETRIC 

VERIFICATION SYSTEM 

Abstract 

Recently, advanced biometric technology is turning to the use of electrocardiograms 

(ECG) signal as new modality for verification system. The ECG signal contains sufficient 

information to verify an individual as it is unique to everyone. One of the feasible methods 

to extract the salient information from ECG signal for verification is by using wavelet 

transform. However, there is a challenge in implementing it as different types and orders 

of mother wavelet used will yield different verification performance. Therefore, in this 

study, a comparative study is done so as to investigate the optimum type and order of 

mother wavelet that represents the best feature for the verification system. Three different 

types of mother wavelets i.e. Symlet, Daubechies and Coiflet with order ranging from one 

to five have been studied in this research. The extracted features are then trained by using 

SVM classifier to generate a model to verify the features. The performance of the ECG 

biometric verification system is evaluated with the Receiver Operating Characteristic 

(ROC) plot and Equal Error Rate (EER). Experimental result showed that the developed 

system achieves the best performance when the 3rd order Coiflet is used as feature with 

an EER score of 10.755% is achieved. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Living in an era of advanced security technology where there is a need of 

verification system that can help to protect the assets of millions of people from being 

stolen is of fundamental importance. The most basic security system consists of 

verification system which would require some form of identification where a security 

password is required to access the data that were kept. The automatic verification system 

is very popular due to its reliability that can ease people in gaining access to their data 

securely. 

There are many types of verification systems being used today to verify an 

authorized person. These systems authenticate such a person with the reliance of stored 

information in the form of ID card, username, token and many more. Besides that, 

majority of the businesses today depend on electronic data and internet connection for 

their operations which lead to many personal and business information being transferred 

and stored online. With such an advanced technology, this sensitive information is rather 

easily accessed and obtained by scammers. These scammers use various methods which 

are specifically crafted to obtain the verification information desired. 

According to a research on identity fraud conducted in 2016, a total of 13.1 million 

victims of identity fraud had loss a staggering amount of USD 15 billion in the United 

State alone [1]. This astounding figure showed that there is a need of improvement in 

security technology to enhance the automatic verification system. One of the verification 
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methods used by verification system is human biometrics. Recently, there has been a lot 

of biometric studies regarding cardiovascular signals being used in verification system. 

These signals are generated from cardiovascular activity which are measured in the form 

of electrical signals; are called as electrocardiograms (ECG). ECG signals varies by 

person due to the unique anatomical structure of the heart. 

Furthermore, ECG signals are able to tell the differences between a normal and an 

abnormal behavior of the cardiovascular activities. Normal behavior ECG signals will 

show that a person is in healthy condition while the abnormal behavior shows that a person 

is unhealthy. Besides that, these ECG signals also contain sufficient information for use 

in verification and is robust enough to prevent circumventions and threats from attackers. 

Thus, ECG based biometric verification system is a reliable security system. In the future, 

when the sensors for ECG are becoming portable and stable, it shall be implemented in 

verification system for businesses usage. 

 

1.2 Problem Statements 

The new generation of biometric verification system that uses ECG signal which is 

known for its medical usage has been very popular recently. The use of ECG signal for 

biometric verification is due to the liveness detection, robustness to attack, universality 

and permanence [2]. There are many ECG biometrics verification systems that has been 

researched in the past decades which are proven successfully in human verification. These 

biometrics verification system are developed with various method used in feature 

extraction and verification. 
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Despite the various method used to developed the ECG biometric verification 

system, there are still many challenges faced when developing the ECG biometrics 

verification system using wavelet transform for feature extraction and Support Vector 

Machine (SVM) for verification. This verification system provides an ambiguity on the 

performance when wavelet transform is used for feature extraction together with SVM 

classifier. The wavelet transforms of the ECG signal will give different performance based 

on the types and orders of the mother wavelet used. There is no certain that which types 

and orders of mother wavelet used in wavelet transform that determines the best 

performance for an ECG biometric verification system. 

Hence, the ECG biometric verification system needs to be developed with wavelet 

transform as feature extraction together with the verification from the SVM for further 

analysis. Besides that, the use of SVM classifier’s score will help determine the 

performance of the ECG biometric verification system. Then only the comparative study 

on the different types and orders of mother wavelet shall be performed. From the 

comparative study on the different types and orders of mother wavelet used, the mother 

wavelets that provide the best performance of the verification system shall be determined. 

 

1.3 Research Objectives 

The main aim of this research is to compare the performance of different types of 

mother wavelets for ECG biometric verification. In order to do this, the following 

objectives must be achieved. 
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1) To developed feature extraction algorithms based on Symlet, Daubechies and 

Coiflet as mother wavelets. 

2) To classify the ECG features using Support Vector Machine (SVM) classifier. 

3) To evaluate the performance of the system based on Equal Error Rate (EER), False 

Acceptance Rate (FAR), False Rejection Rate (FRR) and Genuine Acceptance 

Rate (GAR). 

 

1.4 Research Scope 

This research will focus on ECG based biometric verification system that uses 

wavelet transform for feature extraction and SVM for classification of data. The use of 

the ECG signal to be evaluated in this research is limited to only the normal signal. Hence, 

the ECG screening algorithm will be developed in this study in order to exclude the 

abnormal ECG signal from the database. The normal signal is collected from a healthy 

individual and with the individual at resting position. While the abnormal signal is 

collected from unhealthy individual and with individual not at resting position. The source 

of the ECG data is taken from the ECG-ID database (ECGIDDB) which is hosted at 

PhysioNet website. Moreover, the research will also focus on the evaluation and 

comparative analysis of the performance of the biometric verification system which uses 

different mother wavelet and different orders of the mother wavelet. 
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1.5 Thesis Outline 

The thesis is organized by dividing into 5 chapters as follows. The first chapter will 

cover the introduction for this thesis where it consists of problem statement, research 

objectives and research scope. The second chapter will present the literature review where 

research and studies related to ECG biometric verification system done by others are 

documented. This chapter also includes basic ECG signal explanations, wavelet transform 

theory as feature extraction and SVM as the classifier. The third chapter will describe the 

methodology in detail and the method implemented in this project. The fourth chapter will 

present the analysis and discussion of the preprocessing, feature extraction and classifier 

results. Moreover, Chapter 4 describes the performance of numerous mother wavelet and 

the orders of mother wavelets used. Lastly, Chapter 5 will conclude the thesis. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Overview 

In this chapter, numerous researches regarding ECG biometric verification system 

shall be discussed. This will lead to some of the challenges faced by the researcher on the 

techniques used for feature extraction and the models used for classification of the data 

collected. There are three types of feature extraction, one being fiducial based, second is 

the non-fiducial based and third is a hybrid where both fiducial and non-fiducial based are 

combined. These types of feature extraction methods were adapted into the studies and 

are crafted specifically for ECG signal. Besides that, the classifier used for ECG 

biometrics is widely different among the studies. Some of the studies use simple classifier 

while other uses more complex classifiers. 

The following section shall discuss the fundamentals and theories used in ECG 

biometric verification system. The fundamentals of ECG signal are evaluated and 

explained in further details. One of the theories used in this research is the wavelet 

transformation where the algorithm of the transformation is explained. Furthermore, the 

classifiers used in this research which is a SVM classifier will be discussed as well.  

 

2.2 ECG Signal 

An ECG signal is the measurement of the heart movement in terms of electrical 

activity. ECG signal is as practical and secure as compared to other biometric data due to 

the ECG signal are easily measurable with today’s technology and are very hard to be 
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replicated. ECG signals are complex and difficult to duplicate due to the signal being 

generated from the biological nature of the heart. The ECG signal carries adequate 

information about the movement of the heart and is very personalize as the structure of an 

individual’s heart is uniquely developed.  

  

Figure 2.1: Segment of continuous ECG signal. 

 

A regular ECG signal is plotted in the time domain versus the amplitudes. An ECG 

signal is separated into three main components which are the P wave, QRS complex and 

T wave as shown in Figure 2.1 above. An ECG signal always starts with the P wave where 

the atrial depolarizes follow by the QRS complex due to the depolarization of the 

ventricular area and then completes the cycle with the T wave which is due to the 

ventricular repolarization [3]. 
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Figure 2.2: In-depth detail of an ECG signal. 

 

An in-depth detail of the ECG signal is as shown in Figure 2.2 above. There are 

several parameters on an ECG signal that can be measured in terms of time. One of the 

parameters would be the P-R interval which is the period from the start of the P wave until 

the start of the QRS complex. The P-R interval has a typical duration of 120 milliseconds, 

ms. While for the P-R segment, the duration is at the end of P wave to the start of QRS 

complex and is typically flat. The next parameter would be the Q-T interval which is the 

period from the start of QRS complex to the end of the T wave and have a duration of less 

than 400 ms. 

The S-T segment parameter is between the end of QRS complex until the end of T 

wave and it represents the ventricular depolarization. Another parameter would be the 

QRS interval which has a typical duration of 70 to 110 ms and the interval is between the 

end of the P-R interval to the start of S-T segment [2]. The last parameter would be the 

R-R interval where the interval is between the R peak of one ECG pulse and the preceding 
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ECG pulse. The R-R interval can also represent the variability of the heart period and are 

normally used for medical studies. 

Identity verification from an ECG signal recording can be categorized by using 

various method such as the number of ECG data channel used, operational setting, the 

method to generate desired features and type of classifier used [4]. The number of ECG 

data channel used typically are one to three channels or 12 lead ECG signal. Most of the 

study in ECG biometrics uses single channel ECG signals as the single channel ECG 

signal provides sufficient information to be used for biometric verification [5]. While 

some of the studies use more than one channel ECG signals which also provides adequate 

information for biometric verification. The more channel used of an ECG signal does not 

mean it is necessarily better as more channel ECG signal requires more processing time 

where extra steps are required to be performed in order to combine scheme of the channel 

effectively. 

Besides that, the ECG signal can also be categorized based on how the ECG signal 

is collected and what is the condition of an individual when the ECG signals are collected. 

There is a standard placement of electrode to collect the ECG signals for studies while 

there are also nonstandard placements of the electrode being used for studies as well. The 

nonstandard placement includes the placement of pads on the individual’s thumbs, palms 

[6], and some electrode placed on the wrist together with the finger [7]. Normally ECG 

signals are taken from the individual in resting conditions and are used for studies in the 

biometric verification. 
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2.3 Wavelet Transform Theory 

A raw ECG signal does not provide any further information for biometrics purposes 

and the ECG signal needs to be transformed by any mathematical transformation to unlock 

further information contains in the ECG signal. Wavelet transform is being used as the 

mathematical transformation due to the capability to provide a time-frequency domain of 

the ECG signal. Wavelets transform can accurately deconstruct and reconstruct finite, 

non-periodic and non-stationary signals. Besides that, the wavelet transform can represent 

a function with sharp peaks and discontinuities [8]. 

The wavelet transform can be determined by plotting a function f(t) in the space of 

square integral functions, L2(R) to another signal Wf (a, b) in L2R2 where (a, b) are 

continuous with a representing the scaling parameter and b representing the shifting 

parameter. The wavelet transform basis in time and frequency domain can be defined with 

the mother wavelet ψ(t) and continuous scaling and shift parameters (a, b). The wavelet 

transform will then give an equation as below [9]. 

 𝜓𝑎,𝑏(𝑡) =
1

√|𝑎|
𝜓 (

𝑡 − 𝑏

𝑎
) (2.1) 

The continuous wavelet transforms (CWT) of continuous time f(t) can be define as 

 𝑊𝑓(𝑎, 𝑏) = ⟨𝑓(𝑡), 𝜓𝑎,𝑏(𝑡)⟩ (2.2) 

where wavelet equation (2.1) combined with equation (2.2) giving equation (2.3). 

 𝑊𝑓(𝑎, 𝑏) =
1

√|𝑎|
∫ 𝑓(𝑡)

+∞

−∞

𝜓 (
𝑡 − 𝑏

𝑎
)  𝑑𝑡 (2.3) 

CWT have an advantage in the time-frequency resolution, however, the CWT is still 

unable to represent functions concisely. Thus, the discretized of the continuous scaling 
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and shift parameters (a, b) to proper discrete values can define the discrete wavelet 

transform (DWT). Let 𝑎 = 𝑎0
𝑚, 𝑏 = 𝑛𝑏0𝑎0

𝑚 to get the basis of DWT as shown in equation 

(2.4). 

 {𝜓𝑚𝑛(𝑡)} = 𝑎𝑜
−𝑚/2

𝜓(𝑎0
−𝑚𝑡 − 𝑛𝑏0)    𝑚, 𝑛 ∈ 𝑍 (2.4) 

Expressing any 𝑓(𝑡) ∈ 𝐿2(𝑅) in the superposition of equation (2.5) gives the DWT 

equation when the sets {𝜓𝑚𝑛(𝑡)} called frame is complete for some 𝜓(𝑡), 𝑎 and b [9].  

 𝑓(𝑡) = ∑ ∑ 𝑑𝑚,𝑛𝜓𝑚𝑛(𝑡)

𝑛𝑚

 (2.5) 

where the DWT coefficients, 𝑑𝑚,𝑛 is defined as 

 𝑑𝑚,𝑛 = 〈𝑓(𝑡), 𝜓𝑚𝑛(𝑡)〉 =  
1

𝑎𝑜
−𝑚/2

∫ 𝑓(𝑡)𝜓(𝑎0
−𝑚𝑡 − 𝑛𝑏0)𝑑𝑡 (2.6) 

A one-dimensional DWT scheme can be illustrated in the Figure 2.3. With a signal 

s of length N, the DWT consist of log2 𝑁 stages max. The signal will first be decomposed 

simultaneously through a low and high pass filter of length 2N giving two filtered signal 

F and G respectively where the length of signal F and G are 𝑛 + 2𝑁 − 1, if 𝑛 =

 𝑙𝑒𝑛𝑔𝑡ℎ(𝑠). Next the filtered signal F and G is down sampled to get the approximation 

coefficients, cA1 and detail coefficients, cD1 where cA1 and cD1 have a length floor 

(
𝑛−1

2
) + 𝑁 [10]. 

The following step would be splitting the approximation coefficients cA1 into two 

parts using the same scheme illustrated in Figure 2.3. The signal, s will be replaced by 

approximations coefficient, cA1 in the scheme. This will produce another approximation 

coefficients, cA2 and detail coefficients, cD2 and so on if the scheme is repeated. The one-
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dimensional wavelet decomposition of a signal, s at level j will result in the following 

structure: [𝑐𝐴𝑗 , 𝑐𝐷𝑗 , … , 𝑐𝐷1] [10]. An example of the structure containing level 4 is shown 

in Figure 2.4. 

 

Figure 2.3: One-dimensional DWT scheme. 

 

 

Figure 2.4: Structure of 4 level decomposition. 
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2.4 Support Vector Machine (SVM) 

Normally, SVM are used for both classifications and regression challenges. SVM 

is a type of learning machine where it uses learning algorithms to learn from a set of 

training data and using those training data to build SVM models. The SVM models will 

then attempts to classify a set of new data into its respective classes. These SVM models 

performed the classification by generating a hyperplane that separates the data into two 

classes. Provided a training data, a set of input vectors can be generated where the term 

𝑥𝑖 represents each of the input vectors with several component features. Pairing the input 

vectors with its corresponding labels denotes as 𝑦𝑖 and there will be m of such pair giving 

(𝑖 = 1, . . . , 𝑚). 

In Figure 2.5, the depiction of the training data labelled as data points in an input 

space with a hyperplane can be seen. The hyperplane separating the data points to two 

sides where one side of the data points are labelled 𝑦𝑖  =  𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (+) and the other side 

as 𝑦𝑖 = 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (−). The hyperplane generated by the SVM will have maximized 

margin in between the location of the separated labelled points. The support vectors are 

known as the closest points on both sides which have the most influence of the separating 

hyperplane. The linear separating hyperplane is as given in equation (2.7). 

 𝑤. 𝑥 + 𝑏 = 0 (2.7) 

where b is the offset of the hyperplane from the origin in input space, x are points 

located within the hyperplane and are normal to the hyperplane and w is the weight which 

determines the orientation [11]. 
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Figure 2.5: Linear classification of data. 

 

In real-life, many data can come from various forms and may be complex to classify 

not like the linear classification shown in Figure 2.5 above. Data such as the extracted 

features from ECG signals are complex to classify and could not be accurately classified 

by just using linear classifier. With the introduction of a kernel function in SVM, it will 

help to transform the input space into a higher dimension space where the SVM can easily 

separate those complex labelled points. 

The hyperplane generated by the SVM for input vector 𝑧, would be given as 

equation (2.8). 

 𝜙(𝑧) = ∑ 𝛼𝑖
∗

𝑚

𝑖=1

𝑦𝑖𝐾(𝑥𝑖, 𝑧) + 𝑏∗ (2.8) 

Where 𝛼𝑖
∗ is the Lagrange multipliers of the optimal value, the 𝑦𝑖 is the labels of 

data points while the 𝐾(𝑥𝑖, 𝑧) is the kernel function and the 𝑏∗ denotes the value of the 

bias at optimality [11]. 
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2.5 Researches in ECG Biometrics 

There are countless preceding works in the ECG biometric verification system 

which covers various methods to achieve good performance for its verification system. In 

this section, overviews of the type of feature extraction and classifier approaches that are 

used in the field of ECG biometric verification system found in the literature are 

presented.  

Feature extractions from ECG signals can be classified into three types which are 

fiducial based, non-fiducial based and hybrid [4]. The fiducial based method of feature 

extractions relies on the extraction of amplitude, temporal, area, angle, or dynamically of 

a single pulse cycle of a heartbeat. Fiducial based requires characteristic points as a 

reference on the ECG signal to provide enough information for biometric verification. For 

the non-fiducial based method, characteristic points are not used as features from an ECG 

signal. Features like wavelet coefficients and autocorrelation coefficients are used instead 

while the hybrid method combines both fiducial and non-fiducial based features. 

Furthermore, the types of classifiers used for ECG verification are based on the 

features where the classifiers used vary in different studies. Some of the studies use simple 

classifiers like nearest neighbor classifiers, nearest center classifiers, linear discriminant 

analysis (LDA) classifiers and others. While some of the studies use more complex 

classifier such as neural network classifier and support vector machines.  

In the researches of ECG biometric verification system, one of research discussed 

by Hegde (2011) proposed a feature extraction technique that uses a non-fiducial method 

[12]. Radon transform is applied to the image of an ECG signal and Standardized 

Euclidean distance is applied on the Radon image to obtain the feature vector. There are 
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135 ECG signals taken from PhysioNet QT database and MIT-BIH database as the test 

subject. The classifier used here is correlation coefficient of more than 0.9 where the 

feature vector stored in the database is compared to the test ECG image and calculated the 

authenticity of a person. The performance of the methods achieves a FAR of 2.19% and 

FRR of 0.128%. 

In this next study, a fiducial based feature extraction is proposed where the feature 

vector are based on the slopes and angles of the ECG signal [13]. The characteristics of 

the feature are from six slopes and three angles as shown in Figure 2.6. The database used 

contains 100 samples of ECG signals which are collected from volunteers. Such private 

database could not be used by others to study or perform further analysis and comparison 

of the method. The classifier used in this study is Multi-Layer Perceptron (MLP) which 

is a multilayer neural network and the performance achieved a verification rate of 96.44%. 

The performance evaluation is only the verification rate and the lack of other results like 

FAR and FRR which is common in biometric performance evaluation. This makes it hard 

to have a further comparison with this research. 

 

Figure 2.6: Six slopes and three angles that were selected [13]. 
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Another research proposed a fiducial based feature extraction which is known by 

Pulse Active Width (PAW) where it is using the concept of Pulse Width Modulation 

(PWM) [14]. The ECG signal will be modulated with a triangular wave and resulted in 

the PAW which the modulated signal is controlled by the modulation index and 

modulation factor together with the maximum modulated amplitude set to 1. Euclidean 

distance is used in this study to verify the authenticity of the ECG signal where the value 

is generated from the differences between the feature vectors. The performance of the 

PAW is measured in Equal Error Rate (EER) at 0.1801 from 98 individual’s data in PTB 

database. 

In this following research, quite similar as the PAW research where the feature 

extraction uses the Pulse Active Ratio instead of comparing the modulated pulse width 

[15]. The ECG signal is still modulated with the triangular wave and this time the PAR 

feature vector is formed with a different set of parameters in the modulated signal which 

is the modulation index, modulation factor, maximum and minimum modulated signal 

amplitude. The resulted PAR or feature vectors are verified with Euclidean distance as 

well and achieve an EER of 0.1915 for Arrhythmia and 0.0989 for the healthy subject. 

The performance could not directly be compared with the PAW method due to a different 

set of databases being use. In this research 112 subjects are from PTB ECG database and 

out of the 112 subjects, 98 subjects have arrhythmia or irregular heartbeat and the rest are 

healthy subject. 

The next research uses the non-fiducial method as the feature extractor which is the 

Autocorrelation method and Linear Discriminant Analysis (LDA) as the classifier for the 

biometric verification system [2]. There are 52 subjects used in this study and it achieves 
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a verification rate of 81.48% for 5 seconds long ECG and 92.3% for 3 min recordings of 

ECG signal. However, the research also did use empirical mode decomposition (EMD) 

for recognizing the emotional patterns of the ECG signal and using it as biometric 

verification system. The reported results are 3.96% for EER with the implementation of 

biometric template updates. 

In this research, the Heart Rate Variability (HRV) is used for generating 101 

features and from there only 10 HRV features are reliable enough for biometric use [16]. 

The 101 features are generated using statistical, spectral, time frequency and nonlinear 

techniques which are a hybrid method of feature extraction. Furthermore, the 10 HRV 

features are selected based on five different algorithms which are the statistical 

dependency, mutual information, random subset feature selection, sequential forward 

selection and sequential floating forward selection. The R-R intervals of 81 subjects are 

collected and there is 11% of the subject having an unhealthy signal. The K-Nearest 

Neighbor classifier is used for classification and the performance achieves a verification 

rate of 82.22%. 

The following research proposes an approach using a non-fiducial method where 

the ECG signal are segmented into five and multiscale local shape patterns (MLSP) are 

applied at each sample point [17]. The results of the MLSP give a pattern distribution 

which are used as feature vectors. In this study, ECG signals are taken from PTB database 

which there are 60 subjects chosen for the experiment. The Euclidean distance is used as 

a tool to verify the authenticity of the ECG signal which it achieves a verification rate of 

91.67%. 
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The other research that uses non-fiducial method are using the discrete wavelet 

transform (DWT) to extract the feature vectors [6]. The mother wavelet used is 

Daubechies wavelet order 3 (DB3) with five level of decompositions. The feature vectors 

are from the DWT which is performed on a single ECG signal where there is an average 

of 100 ECG cycles. There is a total of 80 individual’s ECG signals obtained from the 

PhysioNet database and all the ECG are from healthy individual. The use of Random 

Forest as classification resulted with a 100% verification rate. The random forest classifier 

depends on the correlation between the trees in the forest as the error rate will increase as 

the correlation between two trees increases. The training set needed to have low error rate 

for the random classifier to perform better. 

In this research, the same non-fiducial based method are used as [6] which is the 

DWT but the mother wavelet used are Symlet, Daubechies and Coiflet [7]. There are no 

mentions of the mother wavelet order and level of decomposition used. In addition, the 

feature vectors are extracted from each of the segmented ECG signals which give more 

feature points as the training dataset for training the classifier. The ECG signals are 

collected from 50 individuals from the built heartbeat detection kit. The classifiers used 

is the SVM with optimization on the parameter and it achieves an EER of 2.0069% with 

GAR of 97% and FAR of 1%. 

For this recent research, the DWT is used to denoise the ECG signal and the mother 

wavelet used is coif3 and decomposed at level 4 [18]. The non-fiducial based is used as 

feature extraction with combination of autocorrelation and Kernel Principal Component 

Analysis (KPCA). In this study, a total of 52 numbers of subjects are taken from 

volunteers and the signals are verified before using. The classifier used here is a Gaussian 



20 

 

(One Against All) OAA SVM where the SVM is using the Gaussian function as the kernel 

trick to achieve a non-linear classification. The results show that the ECG biometric 

verification achieves a performance with FRR of 4.83% and FAR of 3.5%. 

In summary, the feature extractions which are fiducial based will depend on a 

specific incorporated location in the ECG signals for feature vectors and requires extra 

processing step to uncover the specific parameter. Furthermore, there are several 

anomalies which could affect the morphology of the signal significantly making the signal 

difficult to localize [6]. While for the non-fiducial based feature extraction, it will not 

depend on the morphology of the ECG signal and does not require any extra step in 

localizing the parameter from the ECG signal. This will also lead to improving the 

processing speed of uncovering the feature vectors. 

Based on the literature reviewed, the non-fiducial based feature extraction that 

showed significant results is the DWT as in [6][7][18]. There are various types of mother 

wavelets and various order of mother wavelet being used in DWT in between those paper 

to obtain the features from the ECG signals. The biometric verification system is not 

solely dependent on the feature extraction but the combination of the feature extraction 

process together with the verification process. Therefore, in this research the DWT will 

be used with various types of mother wavelet in various order to get a comparative 

analysis. From this comparative analysis, the best mother wavelet and the order of the 

mother wavelet can be determine for use in an ECG biometric verification system. 
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In ECG biometric verification, the feature vectors need to be classified into multiple 

classes as an individual’s ECG signal will be compared to multiple individuals in a 

collected database. A linear classifier is only able to distinguish data into two classes while 

non-linear classifier can classify data into multiple classes which are more rational to use 

in ECG biometric applications. Considering the classifier discussed in this literature, the 

linear classifier in [2] yields poor performance when compared to the non-linear classifier 

in [6][7][18] which yield better performances. With the use of a non-linear classifier, the 

biometric verification can be developed together with the feature extraction. The ECG 

biometrics studies are summarized in Table 2.1. 
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Table 2.1: Summary of studies in ECG biometrics. 

Papers Database 
Feature Extraction 

Method 

Verification 

Method 
Performance Comments 

Hegde et. al 

(2011) [12] 

PhysioNet 

QT, MIT-

BIH 

Radon transform 
Correlation 

coefficient 

FAR of 2.19% and 

FRR of 0.128% 

Proposed an image based feature 

vector. 

Safie et. al (2011) 

[15] 
PTB PAR 

Euclidean 

distance 
EER of 0.1915 

Studied on both healthy and 

unhealthy subject. 

Safie et. al (2011) 

[14] 
PTB PAW 

Euclidean 

distance 
EER of 0.1801 

Proposed a unique way of 

extracting feature vector. 

Agrafioti (2011) 

[2] 

Self-

collected 
Autocorrelation LDA GAR of 92.3% 

Proposed ways to capture emotion 

from ECG signal to use as ECG 

biometric verification. 

Belgacem et. al 

(2012) [6] 

MIT-BIH, 

ST-T, NSR, 

PTB and 

self-collected 

DWT 
Random 

Forest 
GAR of 100% 

Uses variety of database and 

emphasized on the use of DWT as 

feature extractor. 
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Table 2.1: Summary of studies in ECG biometrics (continued). 

Papers Database 
Feature Extraction 

Method 

Verification 

Method 
Performance Comment 

Hamdi et. al 

(2014) [13] 

Self-

collected 

Slopes and angles in ECG 

signal 

MLP Neural 

network 
GAR of 96.44%. 

Complex classifier used and 

proposed slope and angle 

parameter as feature vector. 

Bashar et. al 

(2015) [17] 
PTB MLSP 

Euclidean 

distance 
GAR of 91.67% 

Proposed an image based feature 

vector. 

Akhter et. al 

(2016) [16] 

Self-

collected 

Statistical, spectral, 

wavelet and nonlinear 

techniques 

K-Nearest 

Neighbor 
GAR of 82.22% 

Proposed HRV for used in 

biometric verification system. 

Hejazi et. al 

(2016) [18] 

Self-

collected 
Autocorrelation & KPCA 

Gaussian 

OAA SVM 

FRR of 4.83% and 

FAR of 3.5% 

Emphasized on the kernel trick 

used for feature extraction as well 

as for classifier. 

Ramli et. al 

(2016) [7] 

Self-

collected 
DWT SVM 

GAR of 97%, FAR of 

1% and EER of 2% 

Proposed a portable ECG 

detection kit for used in ECG 

biometric verification. 
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2.6 Summary 

This chapter presented a discussion on the research of ECG biometric verification 

system developed based on combination of different feature extraction method and 

classifiers used for verification. From the researches in biometric verification, the uses of 

non-fiducial based feature extraction have more advantages as compared to the fiducial 

based feature extraction. The DWT is one of the non-fiducial based feature extraction 

method that shows better performance but there is still ambiguity in the performance when 

different mother wavelets are used. Furthermore, the literature also shows that the non-

linear classifier is giving better performance result as compared to the linear classifier. 

This shows that the SVM is one of the best non-linear classifier to be used in the 

verification system. Therefore, an ECG biometric verification system will be developed 

using the DWT as feature extraction and the SVM classifier for verification. 

Besides that, further studies are required in the DWT as a feature extractor due to 

the different level of decomposition and mother wavelet may play an important role in 

extracting the features accurately. The different types and mother wavelet will also impact 

the performance of the ECG biometric verification system. Hence, a comparative analysis 

should be conducted to show the performance of the biometric verification system. This 

comparative study should use different types and orders of mother wavelets to determine 

which mother wavelets will provide the best performance for an ECG biometric 

verification system. 

  


