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Abstract

Automating arrhythmia detection from ECG requires a robust and trusted system

that retains high accuracy under electrical disturbances. Deep neural networks have

become a popular technique for tracing ECG signals, outperforming human experts.

Many approaches have reached human-level performance in classifying arrhythmia

from ECGs. Even convolutional neural networks are susceptible to adversarial exam-

ples as well that can also misclassify ECG signals. Moreover, they do not generalize

well on the out-of-distribution dataset. Adversarial attacks are small crafted per-

turbations injected in the original data which manifest the out-of-distribution shifts

in signal to misclassify the correct class. However, these architectures are vulner-

able to adversarial attacks as well. The GAN architecture has been employed in

recent works to synthesize adversarial ECG signals to increase existing training data.

However, they use a disjointed CNN-based classification architecture to detect ar-

rhythmia. Till now, no versatile architecture has been proposed that can detect ad-

versarial examples and classify arrhythmia simultaneously. In this work, we propose

two novel conditional generative adversarial networks (GAN), ECG-Adv-GAN and

ECG-ATK-GAN, to simultaneously generate ECG signals for different categories and

detect cardiac abnormalities. The model is conditioned on class-specific ECG signals

to synthesize realistic adversarial examples. Moreover, the ECG-ATK-GAN is robust

against adversarial attacked ECG signals and retains high accuracy when exposed

to various types of adversarial attacks while classifying arrhythmia. We benchmark

our architecture on six different white and black-box attacks and compare them with

other recently proposed arrhythmia classification models.

When considering the defense strategy, the variation of the adversarial attacks,

both targeted and non-targeted, can determine the perturbation by calculating the
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gradient. Novel defenses are being introduced to improve upon existing techniques

to fend off each new attack. This back-and-forth game between attack and defense

is persistently recurring, and it became significant to understand the pattern and

behavior of the attacker to create a robust defense. One widespread tactic is apply-

ing a mathematically based model like Game theory. To analyze this circumstance,

we propose a computational framework of game theory to analyze the CNN Clas-

sifier’s vulnerability, strategy, and outcomes by forming a simultaneous two-player

game. We represent the interaction in the Stackelberg Game in Kuhn tree to study

players’ possible behaviors and actions by applying our Classifier’s actual predicted

values in CAPTCHA dataset. Thus, we interpret potential attacks in deep learning

applications while representing viable defense strategies from the game theoretical

perspective.
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Chapter 1

Introduction

Electrocardiogram (ECG) is a re-polarization sequence in the human heart recorded

over time using a standard non-invasive tool. It is a crucial clinical measurement

that encodes and identifies severe electrical disturbances like cardiac arrhythmia and

myocardial infractions. Many popular systems utilize Deep Neural networks (DNN)

in embedded devices to analyze certain rhythm irregularities in patients. For exam-

ple, the Medtronic Linq monitor uses an injectable chip, the iRhythm Zio monitor

uses a wearable patch, whereas Apple Watch Series 4 monitors rhythm irregularities

from the wrist [1]. Deep convolutional neural networks (CNNs) [2–6] have become the

norm for achieving near-human-level performance for classifying cardiac arrhythmia

and other cardiac abnormalities. Accurately detecting arrhythmia in real-time enables

an immediate referral of the patient to appropriate medical facilities. In addition to

providing the patient with timely medical help, this will benefit the insurance com-

panies by potentially reducing long-time consequences of delayed healthcare. Despite

all these benefits, state-of-the art systems used to predict arrhythmia are vulnerable

to adversarial attacks. These vulnerabilities are crucial as they can result in false hos-

pitalization, misdiagnosis, patient data-privacy leaks, insurance fraud, and negative



2

repercussion for healthcare companies [7, 8].

Many recent architectures incorporate convolutional or recurrent LSTM(Long

short-term memory)-based blocks to find inherent manifold features of different ar-

rhythmia beats [3, 4, 9]. However, despite recent advances in ECG classification,

these methods do not generalize well on out-of-distribution and real-world data.

Another problem with deep-learning architecture is, they are susceptible to adver-

sarial attacks [8]. Quite recently, there have been a couple of works that adopted

GAN(Generative Adversarial Network) for generating synthetic ECG data [2, 10].

However, the first one T.Golany et al. [10] uses a disjointed architecture to classify

arrhythmia, which cannot predict if the signal is real or fake.Additionally, the archi-

tecture only utilizes an unbounded adversarial loss, which results in a random signal

generation overlooking any class-specific signal features. Also, the authors only eval-

uate their model on real ECG signals, providing no benchmarks for the adversarial

ECG test data. For the second work, A. M. Shaker et al. [2], focus more on the fail-

ures of ECG classification architectures in regards to adversarial attacks and provides

no defense against such attacks.

Moreover, these vulnerabilities are highly studied [11, 12], yet a comprehensive

solution is to be devised. Adversarial attacks misclassify ECG signals by introducing

small perturbations that inject the out-of-distribution signal into the classification

path. The perturbations could be introduced to the data by accessing the model

parameters (White-box attack) or inferring the bad prediction outputs for a given set

of input (Black-box attack) [13]. Current deep learning [2–4] and GAN-based [14–17]

classifiers are not specifically designed to utilize the objective function to identify and

mitigate adversarial attacked ECGs.

In machine learning, a classification model refers to a predictive modeling problem,

assuming that the training and testing data is generated from the same underlying
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distribution. But in real life, data evolves, and sometimes malicious instances [18]

change the drift of the existing data. These perturbations in the input data make

machine learning models vulnerable and result in unusual changes in output data.

Though this modification does not affect the human perceptual ability to identify

them, deep learning models, on the other hand, are quite susceptible, creating a

threat to security and safety concerns.

When designing a defense strategy, researchers have suggested many additive de-

fense methods in response to such additive attacks. The current defenses against

such attacks are training modified data focusing on gradient pathways [19], perform-

ing different filtering, or removing adversarial perturbation from the input data [20].

Though the variation of the adversarial attacks (both targeted and non-targeted)

changes the metric of the classifier, it can be identified by figuring out the perturba-

tion by calculating the gradient. Each time a new attack strategy has been proposed,

the defense strategy for the such attack usually follows shortly. Moreover, novel de-

fenses are being introduced to improve upon existing techniques to fend off each new

attack. This back-and-forth game between attack and defense is persistently recur-

ring. As the attack’s synopsis and the defense are robust, it became significant to

understand the pattern and behavior of the attacker to create a robust defense. Many

of the defense techniques incorporate popular decision-making-based frameworks to

explore the interactions between the attacker and the defender. One such popular

tactic is applying a mathematically based model like Game theory [21].

Game theory is a mathematical framework that analyzes the behavior of the play-

ers of the game. In the cyber domain, the players are the attacker and the defender.

The tradeoff between the attacker and the defender is the cost of adopting the strate-

gies. In deep learning models, the classifiers are considered the defender, while ad-

versarial attacks play the attacker role. So the computational tradeoff between the
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adversarial attack and the classifier is distributed based on the gain from the attack.

Before executing a Machine Learning model for Cloud infrastructure, it is required

to analyze not only the implementation or computation cost but also the recovery or

vulnerability cost. In this synopsis, the Game theory is a proper solution.

In this work, we incorporated two new conditional generative network, called

ECG-Adv-GAN [14] and ECG-ATK-GAN [22]. In the ECG-Adv-GAN, the model

can simultaneously synthesize and classify both arrhythmia and adversarial examples

as an end-to-end architecture. Where the ECG-ATK-GAN can simultaneously dis-

tinguish between attacked and non-attacked ECG signals and classify different types

of arrhythmia with high specificity and sensitivity. We benchmark our methods with

other state-of-the-art architectures on the Intra-patient, and Inter-patient datasets

acquired from the MIT-BIH dataset [23] and PTB Dataset [24].

Then, we thoroughly discuss the game-theoretical approach to defense against

adversarial attacks for the deep learning models. We used CAPTCHA (The com-

pletely automated public Turing test to tell computers and humans apart) dataset,

a standard method for authentication of websites and web services. It is intended

to shield against online services from automated scripts and malicious programs. To

validate our experiments we incorporated the two most popular Adversarial Attacks,

Fast Gradient Sign Method (FGSM) and One-pixel Attack, and applied them to the

CAPTCHA dataset. We then execute a defense strategy to fend off this attack while

analyzing each players possible strategies with a Game theoretical perspective.
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Chapter 2

Background

An electrocardiogram (ECG) records show how fast the heart is beating, the rhythm

of the heartbeats (steady or irregular), and the strength and timing of the electri-

cal impulses as they move through the different parts of the heart. Left bundle

branch block beat (LBBB), Right bundle branch block beat (LBBB), Atrial escape

beats(AE), nodal(junctional) escape beat(NE) are considered Normal beats. Again,

Atrial premature beat(AP), premature ventricular contraction(PVC), ventricular es-

cape beat(VE) etc. are categorized as abnormal beats. ECG is a crucial clinical

diagnostic procedure that diagnoses severe electrical disturbances like cardiac arrhyth-

mia. Deep convolutional neural networks (CNNs) [2–6, 25] have been widely used to

achieve near-human-level performance for classifying cardiac arrhythmia. Popular

systems like Medtronic LINQ II ICM, iRhythm Zio, and Apple Watch Series 4 uses

embedded DNN models to analyze cardiac irregularities by monitoring the signals [8].

The pattern of the ECG signal contains minimal amplitude (mV) and duration, which

makes it vulnerable to external noises [1]. A tiny amount of contaminated noise can

significantly deteriorate the performance of CNNs. Moreover, insurance companies,

contractors, partners, and many stakeholders are financially involved with the auto-
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mated cardiac arrhythmia diagnostic systems by providing subsidies and benefits to

the customers [7,8]. A limitation of current deep learning models is they are trained

using real ECG signals and do not extrapolate well when introduced to adversarial

attacked samples [11, 12]. Adversarial attacks target the vulnerabilities of the deep

learning models and force them to misclassify ECG signals by adding small per-

turbations. Some recent works have shown superior performance due to training on

GAN (Generative Adversarial Networks) synthesized adversarial ECG signals [14–17].

Lately, deep learning architectures have become a go-to for achieving state-of-the-art

accuracy for various ECG classification tasks [3, 4, 9, 26]. Earlier works incorporated

Support Vector Machines (SVM) and Independent Component analysis on top of mor-

phological and dynamic features of ECG signals to group them into classes [26]. The

problem with this approach is, it relies on handcrafted features extracted by human

experts. In contrast, deep learning approaches classify different heartbeats from ECG

signals by automating the feature extraction process. Convolutional neural networks

succeed in extracting manifold features and generalizes better on large amounts of

data. For example, Kachuee et al. [4] employed a 1D CNN-based model to identify

Cardiac abnormalities and obtained almost 94% accuracy in detecting different ar-

rhythmia diseases. Mousavi et al. [9] adopted a Seq-to-seq architecture consisting of

bidirectional LSTM to achieve the state-of-the-art result in arrhythmia classification

from ECG signals. Although these architectures obtain high accuracy in classification

tasks, they often fail to identify adversarial examples in the wild.

One of our fundamental contributions is to illustrate the failure of such models to

classify the correct arrhythmia category when exposed to realistic adversarial exam-

ples. Generative Adversarial Networks (GAN) are a synthesis architecture for gener-

ating high-quality images, time-series data, and other modalities of imaging [27–29].

Generally, the architecture consists of a generator network and a discriminator net-



7

work. Medical data are highly sensitive, so it can be pretty challenging to synthesize

artificial data from real data while retaining the inherent features and preserving pri-

vacy. Many recent works incorporated GANs for ECG signal generation to tackle

the problem of shortage of data [2, 27, 30]. A model requires thousands of data for

each class in Machine Learning training. While it is easy to get Normal heartbeats

of ECG Signal, collecting the different types of abnormal beats is hard. Delaney et

al. [27] proposed a GAN architecture comprising a Bidirectional LSTM-as Generator

and LSTM-CNN as Discriminator to synthesize ECG data. However, the authors

only focused on synthesizing ECG signals using the generator and provided no eval-

uation of the discriminator network for the arrhythmia classification task. Shaker et

al. [2] used a two-stage unsupervised approach for synthesizing and then classifying

ECG signals. In the first stage, the authors utilized DC-GAN [31] by taking Gaus-

sian noise as input and generate random ECG signals for augmenting the training

dataset. In the second stage, the authors utilized two separate networks for classi-

fying the ECG signals into distinct categories. This approach has three underlying

problems: 1) the generator model is not conditioned on unique class-specific signals

and the authors utilized an unbounded adversarial loss, so the synthesis is random, 2)

the classifier was not exposed to adversarial exmples while training, instead the au-

thor used a disjointed GAN training in first stage to augment the existing ECG data,

3) utilizing two seperate architectures, the Generative Adversarial Network and the

ECG classifier are computationally expensive and also the classifier can’t determine if

the ECG signals are real or adversarial. Moreover, the model’s accuracy is relatively

lower than other state-of-the-art ECG classification models. Our second contribution

is a conditional GAN where the generator retains class-specific information by train-

ing it with a closely bounded reconstruction loss, and the discriminator network can

simultaneously distinguish and classify real and adversarial ECG signals with high
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precision. Super realistic adversarial samples can be a temptation for companies in

the context of drug and device approvals. In different clinical trials, regulatory bodies

like the FDA (Food and Drug Administration) affirmed interest in using algorithmic

biomarkers as an endpoint [7]. In this context, adversarial examples can be a channel

for companies to create favorable biased outcomes. For instance, a regulator requires

a matched ECG signal for the patient before and after treatment. As a result, trialists

could inject adversarial noise or create adversarial samples for post-treatment data,

ensuring desired results [7, 32]. In such circumstances, an adversarial ECG detection

system can play a pivotal role in identifying borderline fraudulent trials and, in the

long run, can save lives.

Moreover, the FDA recently released guidelines and tools to collect Real-World

Data (RWD) from research participants [33]. However, such extensive studies require

a large amount of Patient-generated Health Data (PGHD), most of which is collected

from wearable devices. It is both time-consuming and impractical for clinicians to

analyze and do perturbation to address the data shortage [34]. Therefore, reliable

method would be a generative architecture that can synthesize realistic ECG signals

imitating distinct rhythmic irregularities.

The authors in [18], first explored the effects on pertubations on data as adversar-

ial examples. Based on these properties many attack strategies have been invented

like BlackBox or Whitebox attacks. Most of the attacks like Fast Gradient Sign

Method (FGSM), Basic Iterative Method (BIM), Projected Gradient Descent Method

(PGDM) fall under the category of Black Box and White Box Attacks [19,35,36].

Perturbations in Neural Networks leads to vulnerable conditions, especially for

the Classification task. For example, real-life devices like ECG monitoring waistbelt

utilises machine learning as its backbone prediction module, which raises concern

for exploitation using adversarial attacks [37]. So the researchers are focusing on
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defense mechanisms against such attacks given the possibility of vulnerability. To

date, many mechanisms for alleviating the prolbems have been proposed. Solution

ranges from training the model on adversarial samples,label-smoothing [38], as well

as using auxiliary networks to pre-process and clean the samples [20, 39]. But out

of all of these approaches, retraining the model with adversarial samples has proven

to be most effective against such attacks. Recently, Generative Adversarial Network

(GAN) [40] is also being used as a prospective defense against Adversarial Attacks.

However, it is hard to control the parameters and the structures of the network during

training, thus it is not considered as effective.

Contextually conceding with real-life cases, attacking the Neural Networks us-

ing adversarial attacks and defending against such attacks, is one of the traditional

scenarios of the Cyber domain. The Game theory, has been extensively applied

in cybersecurity [41–43] vulnerabilities to capture the interaction between players

quantitatively. Game theory is the study of mathematical models for analyzing the

decision-making process for rational agents [44]. Game theory is successfully applied

in the security-based scenario based on the perspective to analyze the cognitive be-

havior of the players [45]. It considers all possibilities and scenarios by behavioral

analysis, and there is hardly any model that does not consider this case. Especially

in security-based problems, it is necessary to incorporate these ideas with real-life

context. Moreover, Game theory provides into the price and the management utility

of such attacks and defense strategies [46]. In the era of big data, dealing with cost

of high-performance computing is a major concern. Given, the idea is to minimize

the loss, it is quite effective to evaluate the model’s cost efficiency before deployment.

For instance, before executing a Machine Learning model for Cloud infrastructure,

it is required to analyze just not only the implementation or computation cost, also

the recovery or vulnerability cost as well. In this synopsis, Game theory is a proper
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solution. Again, though we consider players to be rational in a Game Theoretic sense,

in real life players can be irrational. Moreover, sometimes while designing a Game,

many auxiliary players are not included in the strategy that might effect the out-

come of the game. Reinforcement learing is a type of Game that helps distinguishing

different players in real life, and shown to beneficial in real life scenarios [47].
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Chapter 3

Methodology

This thesis proposes two conditional generative adversarial network (GAN), ECG-

Adv-GAN and ECG-ATK-GAN.ECG-Adv-GAN comprising a generator for produc-

ing realistic ECG signals and a discriminator for classifying the real and generated

signal’s output labels. Again, ECG-ATK-GAN, a novel GAN based on a class-

conditioned generator and a robust discriminator for categorical classification of both

real and adversarial attacked ECG signals. We also implemented a Deep neural net-

work (DNN) to classifies CAPTCHA images where we calculated accuracy for the

original and adversarial images and analyzed the possible strategies with the Game

theoretical approach.

First, we discussed the proposed architecture for Detecting Adversarial Attack

in Section 3.1.1. In Section 3.1.2, we discuss the objective function and loss weight

distributions for each architecture related to proposed model.

In second Section 3.2, we illustrate the defense strategy against Adversarial At-

tacks by incorporating a novel Deep neural network (DNN) to classify CAPTCHA

images. We discussed the details of the architecture, the building blocks and the

end-to-end pipeline. We also elaborate our loss functions to train our model.
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3.1 Detecting Adversarial Attack

3.1.1 Proposed Architecture

Incorporating generative networks with an auxiliary classification module has been

shown to produce high-quality image synthesis and highly accurate class prediction

as observed in [48]. Inspired by this, we adopt this feature in our architecture us-

ing a class conditioned generator and a multi-headed discriminator for categorical

classification and adversarial example detection as visualized in Fig. 3.1.

In the first proposed model, The generator concatenates the original signal x,

label y, and a noise vector z as input and synthesizes G(x, z, y) ECG signal of a

distinct category. The noise vector, z is smoothed with Gaussian filter with σ = 4

before pushing as input. The generators consist of multiple Convolution, Transposed

Convolution, Batch-Norm, and Leaky-ReLU layers. We use convolution for down-

sampling 3× and use transposed convolution to upsample 3× again to make the

dimension the same as the input. For normal convolution we use kernel size, k = 3,

stride, s = 1 and padding, p = 1. For downsampling convolution and transposed

convolution we use kernel size, k = 3, stride, s = 2 and padding, p = 1. Convolu-

tion and Transposed Convolutions are followed by Batch-normalization and Leaky-

ReLU layers. The encoder consists of six convolution layers. The number of features

are [E1, E2, E3, E4, E5, E6]= [32, 32, 64, 64, 128, 128]. The decoder consists of three

transposed convolution layers and they have [D1, D2, D3] =[128, 64, 32] number of

features. The generator has input and output dimension of 280× 1 and incorporates

Sigmoid activation as output.

On the other hand, the discriminator takes both real signal x and adversarial

ECG signals G(x, z, y) as input. It simultaneously predicts if the example is real

or adversarial and classifies the signal as one of four categories. The discriminator
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consists of multiple Convolution, Batch-Norm, Leaky-ReLU, and Fully Connected

layers. We use convolution for downsampling 4 times. For convolution we use kernel

size, k = 3, stride, s = 1 and padding, p = 1, except for downsampling convo-

lution where we use stride, s = 2. The convolution layer is succeeded by Batch-

normalization and Leaky-ReLU layers. After that, we use two fully connected lay-

ers. The encoder consists of eight convolution layers and two dense layers. The

number of features are for each layer is [E1, E2, E3, E4, E5, E6, E7, E8, E9, E10]=

[16, 16, 32, 32, 128, 128, 256, 64, 32]. We use two output activation: classification with

Softmax for four classes and Sigmoid for real/adversarial prediction.

Figure 3.1: Proposed ECG-Adv-GAN consists of a single Generator and Discriminator
where the Generator takes the Real ECG signals, a noise vector, and the class labels
as input. The Generator consists of an encoder and decoder modules through which it
outputs the synthesized adversarial signals. The Discriminator has only an encoding
module that takes Real or Adversarial signal as input. It works as a classifier with two
output modules, one for categorizing signals and the other for detecting adversarial
examples.

For our second model, we propose a novel GAN based on a class-conditioned

generator and a robust discriminator for categorical classification of both real and

adversarial attacked ECG signals as illustrated in Fig. 3.2. The generator concate-

nates both non-attacked or attacked ECG signals E ′
x, label Ey, and a noise vector z

as input and generates G(E ′
x, Ey, z). We use a Gaussian filter with σ = 3 to generate
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the smoothed noise vector, z. The label vector Ey in our model is utilized so that

generated signal is not random. Rather it imitates class-specific ECG representing an

arrhythmia. The noise vector, z ensures that the generated signal has small pertur-

bations so that it does not fully imitate the original ECG signal and helps in overall

training in extrapolation of generated signals. The generators incorporate Residual,

Downsampling, Upsampling, and Skip-Dilated Attention (SDA) block as visualized in

Fig. 3.1. The generator uses Sigmoid activation as output, so the synthesized signal

is constrained within 0-1 as a continuous value.

Figure 3.2: Proposed ECG-ATK-GAN consisitng of a Generator and a Discriminator.
The discriminator is utilized for generating the six attacked signals Exadv

, namely
FGSM, BIM, PGD, CW, HSJ, and DBB. These are then added with the non-attacked
signals Ex to create the training data-set E

′
x. Contrarily, the Generator takes both

attacked and non-attacked ECG signals, E ′
x, a noise vector z, and the class labels Ey

as input.

The discriminator takes attacked/non-attacked real ECG, x and GAN synthesized

ECG, G(E ′
x, Ey, z) signals sequentially while training. The discriminator consists of

three regular blocks and three downsampling blocks (Fig. 3.1). The discriminator

utilizes three losses: 1) Class-weighted Categorical cross-entropy for identifying ad-

versarial attacked/non-attacked ECGs, 2) Categorical cross-entropy for normal and

arrhythmia beat classification and 3) Mean-squared Error for GAN adversarial train-

ing. So we use three output activations: Sigmoid (GAN training), and two Softmax
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Figure 3.3: Proposed (a) Residual, (b) Skip-Dilated Attention, (c) Regular, (d)
Upsampling and, (e) Downsampling Blocks. Here, K=Kernel size, S=Stride, and
D=Dilation rate.

for adversarial attack and arrhythmia/normal beat classification.

• Residual Block: For extracting small perturbations in the attacked ECG

signals, we use convolution with a small kernel, k = 3 and stride, s = 1 in the

residual block in the Generator, illustrated in Fig. 3.2(a). This residual block is

capable of extracting fine features that extrapolate the original signal to contain

small perturbations and make it out-of-distribution. Specifically, the residual

skip connection retains important signal-specific information that is added with

more robust features extracted after the batch-normalization and leaky-ReLU

activation.

• Skip-Dilated Attention Block: We use skip-dilated attention (SDA) block

with kernel size, k = 2, dilation rate, d = 2 and stride, s = 1, as illustrated in

Fig. 3.3(b). By utilizing dilated convolution, our receptive fields become larger,

covering larger areas of the attacked signals [49].

• Regular Block: We use the regular block for discriminators, containing con-

volution (k = 3, s = 1), batch-norm, and leaky-ReLU layers, as visualized in

Fig. 3.2(c). Our main objective here is to encode the signals to meaningful clas-

sification outputs for two tasks, which is to 1) classify the type of arrhythmia

and, 2) distinguish between non-attacked/attacked signals. Therefore, we avoid

using any complex block for feature learning and extraction.
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• Downsampling and Upsampling Blocks: The generator consist of both

downsampling and upsampling blocks, whereas the discriminator consist of only

downsampling blocks to get the desired feature maps and output. The upsam-

pling block consists of a transposed-convolution layer, batch-norm, and Leaky-

ReLU activation layer successively and is given in Fig. 3.3(d). In contrast, The

downsampling block comprises of a convolution layer, a batch-norm layer and a

Leaky-ReLU activation function consecutively and is illustrated in Fig. 3.3(e).

3.1.2 Objective Function and Individual Losses

For ECG-Adv-GAN, we use LSGAN [50] for calculating the adversarial loss and

training our Generative Network. The objective function for our conditional GAN is

given in Eq. 3.1.

Ladv(G,D) = Ex,y

[
(D(x, y) − 1)2

]
+ Ex,y

[
(D(G(x), y) + 1))2

]
(3.1)

In Eq. 3.1, we first train the discriminators on the real ECG signals, x. After that,

we train with the synthesized signal, G(x). We begin by batch-wise training the

discriminators,D on the training data. Following that, we train the G while keeping

the weights of the discriminators frozen. In a similar fashion, we train G on a batch

of training samples while keeping the weights of all the discriminators frozen.

For classification of different normal and arrhythmia signals, we use categorical

cross-entropy as in Eq. 3.2.

Lclass(D) = −
k∑

i=0

yi log(y
′
i) (3.2)

The generators also incorporate the reconstruction loss as shown in Eq. 3.3. We ensure
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that the synthesized signal contains representative features and bounded by the L2

reconstruction loss. This in turn helps with the generator to output realistic signals

with small perturbations and the discriminator to be robust against such adversarial

examples, as shown in [20,51].

Lrec(G) = Ex∥G(x)− x∥2 (3.3)

By incorporating Eq. 3.1, 3.2 we can formulate our final objective function as

given in Eq. 3.4.

min
G,D

(
max
D

(Ladv(G,D)) + λrec

[
Lrec(Gf , Gc)

]
+ λclass

[
Lclass(D)

] )
(3.4)

Here, λrec, and λclass denote different weights, that are multiplied with their re-

spective losses. The loss weighting decides which architecture to prioritize while

training.

Again for, For ECG-ATK-GAN, to distinguish non-attacked and attacked signals

with out-of-distribution perturbations and emphasize the class-specific features even

under significant perturbations, we propose a class-weighted categorical cross-entropy

loss. The loss function is given in Eq. 3.1, where m = 2, for attacked/non-attacked

signal and κ is the class weight for the ground-truth, Ey and predicted class-label,

Ey′ .

Latk(D) = −
m∑
i=0

κiEi
y log(E

i
y′) (3.5)

For classification of normal and different arrhythmia signals, we use categorical

cross-entropy loss. Here, k = distinct normal/arrhythmia beats, depending on the

dataset.
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Lary(D) = −
k∑

i=0

Ei
y log(E

i
y′) (3.6)

For ensuring that the synthesized signal contains representative features of both

adversarial examples and adversarial attacks, our generator incorporates the mean-

squared error (MSE) as shown in Eq. 3.7. This helps the generator output signals

with small perturbations that guarantee the signal to misclassify. As the generator,

G is class-conditioned, it takes distinct ground truth class-label Ey, along with the

attacked/non-attacked ECGs, E ′
x and Gaussian noise vector z as input.

Lmse(G) =
1

N

N∑
i=1

(G(E
′

x, Ey, z)− Ex)
2 (3.7)

We use Least-squared GAN [50] for calculating the adversarial loss and training

our GAN. The cost function for our adversarial loss is given in Eq. 3.8. The dis-

criminator takes real ECG signal, Ex and generated ECG signal, G(E
′
x, Ey, z) in two

iterations. The adversarial loss quadratically penalizes the error while stabilizing the

min-max game between the generator and discriminator.

Ladv(D) =
[
(D(E ′

x, Ey)− 1)2
]
+
[
(D(G(E ′

x, Ey, z), Ey) + 1))2
]

(3.8)

By incorporating Eq. 3.5, 3.6, 3.7 and 3.8, we can formulate our final loss function

as given in Eq. 3.9. Here, λmse, λatk, and λary denote different weights, that are

multiplied with their corresponding losses. We want our generator to synthesize

realistic ECGs to fool the Discriminator, while classifying the types of arrhythmia

with high accuracy. So, the final goal is to maximize the adversarial loss and minimize
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other losses.

min
G,Dary ,Datk

(
max
Dadv

(Ladv(D))+λmse

[
Lmse(G)

]
+λatk

[
Latk(D)

]
+λary

[
Lary(D)

] )
(3.9)

3.1.3 Adversarial Attacks

We incorporated six established adversarial attacks (shown in Fig 3.4) for ECG-ATK-

GAN. The attacks target our discriminator model as it is responsible for classifying

different types of arrhythmia and normal beats in ECG signals. The reason for

choosing these state-of-the-art attacks is to make our model more robust for intrusive

perturbations in real-world applications. Four of these attacks are white-box, meaning

detailed knowledge of the network architecture, the parameters, and the gradient w.r.t

to the input is utilized to corrupt the data [52]. The other two are black-box attacks,

meaning no knowledge of the underlying architecture or parameter is needed; instead,

some output is observed for some probed inputs [52]. Moreover, the attack corrupts

the data by estimating the gradient direction using the information at the decision

boundary of the output [53,54]. We experimented with perturbation values, ϵ ranging

from 0.001 to 0.1, and selected the value which looked visually realistic and harder

to discern. So, the visually realistic perturbations for FGSM, BIM, PGD and DBB

is, ϵ = 0.01 and for CW, ϵ = 0.1.

• Fast Gradient Sign Method (FGSM): This white-box attack creates at-

tacked ECGs, EXadv
by perturbing the original signal, EX . For this, it calculates

the gradients of the loss, Lary (Eq. 3.2) based on the input signal to create new

adversarial signals that maximize the loss [35].

• Basic Iterative Method (BIM): This is an improved white-box attack, where

the FGSM attack is iteratively updated in a smaller step size and clips the
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signals values of intermediate results to ensure the ϵ-neighborhood of the original

signal, EX [19].

• Projected Gradient Descent (PGD): This white-box attack is considered

the most decisive first-order attack. Though similar to BIM, it varies in initial-

izing the example to a random point in the ϵ-ball of interest (decided by the

L∞ norm) and does random restarts. In contrast, BIM initializes in the original

point [36].

• Carlini-Wagner (CW): This is an optimization-based white-box attack [55].

It resolves the unboundedness issue by using line search to optimize the at-

tack objective. We utilized the version with the L∞ norm, i.e., for maximum

perturbation applied to each point in the signal.

• Decision-based Boundary Attack (DBB): This is a decision-based black-

box attack that starts from querying a large adversarial perturbation and then

seeks to reduce the perturbation while staying adversarial [54]. It only requires

the final class prediction of the model.

• Hop Skip Jump Attack (HSJ): A powerful black-box attack that only re-

quires the final class prediction of the model [53]. And it is an advanced version

of the boundary attack, requiring significantly fewer model queries than Bound-

ary Attack.



21

Figure 3.4: The non-attacked and attacked signals (white and black-box attacks)
overlapped on each other signified by Red and Blue lines.

3.2 Mitigating Adversarial Attack

3.2.1 Proposed CNN model

To illustrate a defense strategy against adversarial attacks, we proposed a Deep Con-

volutional Neural Network(CNN) architecture shown at Fig 3.5. The model in Fig 3.5

classify CAPTCHA images and it is also incorporated with a Game theoretical sce-

nario. The CNN model takes the CAPTCHA images x as input and predicts the

classes of the original input. The model consists of multiple Convolution, Batch-

Norm, ReLU, and Fully Connected layers. We use convolution and separable con-

volution for downsampling three times. For convolution, we use kernel size, k = 3,

stride, s = 1 and padding, p = 0, except for downsampling convolution, where we

use stride, s = 2. The convolution layer is succeeded by Batch-normalization, ReLU,

and Max-pooling layers. After that, we use one fully connected layer. The encoder

consists of 9 convolution layers and four dense layers. The number of features are

for each layer is [E1;E2;E3;E4;E5;E6;E7;E8;E9;E10]= [32; 32;64;64; 128; 128; 256; 64;

32]. We use one output activation: classification with Softmax for four class predic-

tions. For the classification of the particular characters of the CAPTCHA image, we
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Figure 3.5: Representation of the Stackelberg game for the CNN model which is
consist of three combined layers to decode in three steps.The generated CAPTCHA
images are the input while the prediction outputs are the four classes.

use categorical cross-entropy [41] as in Eq. 3.10.

Lclass(D) = −
k∑

i=0

yi log(y
′
i) (3.10)
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3.2.2 Adversarial Attacks

To demonstrate the defense strategy, we integrated two popular white box adversarial

attacks, Fast Gradient Sign Method (FGSM) [35], and One Pixel Attack [56]. These

attacks target the CNN model, which is responsible for classifying CAPTCHA data.

FGSM Attack

FGSM uses the gradients of the neural network to create an adversarial sample. The

attack mechanism is to calculate the gradients of the loss based on input images

to create a new image that maximizes the loss [36]. We illustate the FGSM attack

in Fig. 3.2. The distinct part of this attack is the consideration of the gradient

with respect to the original image to maximize the loss. So the procedure implies

calculating the contribution of each image pixels towards the loss function by using the

chain rule and calculate the corresponding gradient. For the model that is not trained,

the gradient is not taken into consideration; thus, it will be constant. Therefore, The

FGSM attack only targets the trained model. The FGSM attack is given in Eq. 3.11.

x′ = x+ ϵ · sign(▽xJ(θ, x, y)) (3.11)

In Eq. 3.2, x′ symbolized the optimal disturbance or the adversarial sample. Here,

x represents the Original input image, and y represents the corresponding label. θ is

the model parameter, so the loss function, J , is calculated based on the value of θ, x,

and y. Again the perturbation level ϵ is multiplied to ensure a small perturbation.

One Pixel Attack

A single-pixel modification can make extremely deep Neural Networks such as Resnet,

VGG, and other such models vulnerable [56]. Moreover, in this thesis, we manifested
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Figure 3.6: (A)FGSM attack on the original image and the generated adversarial
sample is predicted with low accuracy, (B)One pixel attack on the original image
with the changes on a single pixel and multi pixels which generate the adversarial
sample with low prediction accuracy

that initial local perturbation shows the characteristics of spreading and becoming

global. This emphasizes that nearby pixels of the targeted perturbed pixel are exposed

to the same vulnerability. We illustrate the one pixel attack in Fig. 3.6.

To understand the mathematical intuition behind the one pixel attack, a function

f(x) that takes images as input where f(x) ϵ R where R is the distribution of the

input image. The output of the classifier is the probability of the label, Rl where x

ϵ Rp∗q. Here, R stands for real numbers, l is the labels of the image and p,q are the

dimension of the input image. To create an adversarial sample x′ we will put some

perturbation εxϵR in the input image x.

x′ = x+ ε′x (3.12)

x′ϵRn|argmax(f(x′)) ̸= argmax(f(x)) (3.13)
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maximizeεxfadv(x+ εx)c

subject 7→ ||εx
(3.14)

In the case of untargeted attack, the soft-label fadv(x)c need to be minimized.

maximizeεx − fadv(x+ εx)c

subject 7→ ||εx
(3.15)

So the equation for the one pixel attack can be represented as in Eq. 3.16. d is a

small value that modify the number of pixels are going to attack. In case of one pixel

attack d = 1 which will only manipulate a single pixel.

maximizeex ∗ fadv(x+ ex)

subject 7→ ex|| ≤ d

(3.16)

3.2.3 Optimization: Differential Evolution (DE)

Differential evolution is a population-based heuristic optimization algorithm that is

used here to encode the perturbation optimally. Furthermore, for the one-pixel attack,

the mechanism of creating perturbation with five elements, x-y coordinate, and RGB

value makes it independent of the classifier type, and by applying the DE for the

attack, it is sufficient to know the probability labels. q. Eq. 3.17 [56] is the formulation

of the DE, where xi is an element of the candidate solution, r1, r2, r3 are random

numbers,F is the scale parameter set to be 0.5, g is the current index of generation.



26

xi(g + 1) = xr1(g) + F (xr2(g)− xr3(g)), r1 ̸= r2 ̸= r3 (3.17)

In black box attack the only available information is the probability labels of the

input. Storn et al. [57] demonstrated that using differential evolution, any attacker

can target a single pixel of the input image to perturb, which can fool the DNN

model to fail the classification task. In One Pixel Attack, DE algorithm is used to

define a successful attack as an adversarial attack made over a correctly classified

sample. In the same way, DE can be used as defense by calculating the gradients

while maximizing the output loss.
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Chapter 4

Experiments

In this section, we detail our model experiments and evaluate our architecture based

on qualitative and quantitative metrics. First, distinguished two sections Sec. 4.1 and

Sec. 4.2 based on Adversarial Attacks and defense strategy.

We elaborate on the structuring and pre-processing of our dataset in Sec. 4.1.1.

Then detail our hyper-parameter selection and tuning in Sec. 4.1.2. Next, we describe

our adversarial training scheme in Sec. 4.2.3. Also, we compare our architecture

with existing state-of-the-art generative models based on some qualitative evaluation

metrics in Sec. 4.1.4. Lastly, in Sec. 4.1.3, we analyze the quantification done by

experts, by distinguishing between real and synthesized and attacked ECG signals.

4.1 Results: Detecting Adversarial Attack

4.1.1 Data Set

PhysioNet MIT-BIH Arrhythmia dataset includes the ECG signals for 48 subjects,

including 25 men and 22 women, recorded at the sampling rate of 360Hz. Ameri-
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can association of medical instrumentation (AAMI) recommends the database as it

contains the five fundamental arrhythmia groups. For our experiment, we divided

the dataset into four categories, N [Normal beat (N), Left and right bundle branch

block beats (L, R), Atrial escape beat (e), Nodal (junctional) escape beat (j)], S

[Atrial premature beat (A), Aberrated atrial premature beat (a), Nodal (junctional)

premature beat (J), Supraventricular premature beat (S)], V [Premature ventricular

contraction (V), Ventricular escape beat (E)],F [Fusion of the ventricular and normal

beat (F)]. We used lead II between the two leads in ECG signals, collected by placing

the electrodes on the chest. We first find the R-peak for every signal, use a sampling

rate of 280 centering on R-peak, and then normalize the amplitude between [0, 1].

For ECG-Adv-GAN, to test our model’s robustness against adversarial examples, we

divided the original data into two 1) inter-patient and 2) intra-patient sets, as done

in [9]. In the intra-patient data, we randomly choose the training and the test sets

from the same patient records. In contrast, inter-patient data consists of training and

testing set with different patient records. Following Chazal et al. [58], we divided the

dataset into subsets of DS1 =101, 101, 106, 108,109, 112, 114, 115, 116, 118, 119,

122, 124, 201, 203, 205, 207, 208, 209, 215, 220, 223,230 and DS2 = 100, 103, 105,

111, 113, 117, 121, 123, 200, 202, 210, 212, 213, 214, 219, 221, 222, 228, 231, 232,

233, 234. In the Intra-patient benchmarking, we combine and randomize DS1 and

DS2. Then we divide that into 80% and 20% sets of train and test data. For the

Inter-patient benchmarking, we train on the DS1 dataset and test on the DS2 dataset.

From Intra-patient data, we take N: 87529, S: 5892, V: 2438, F: 2438 samples and

divide this into 80% and 20% folds. In the case of Inter-patient data, we train on the

DS1 and test on DS2. The sample size for train data is N: 44476, S: 3205, V: 683,

and test data is N: 43053, S: 2687, V: 1755. We can see that there is a lack of sam-

ples for minority classes. To address this, we use Synthetic Minority Over-sampling
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Technique (SMOTE) to balance the number of samples for training [59].

For ECG-ATK-GAN, we also benchmark on PTB Diagnostic ECG Database [24],

which consists of Normal and Myocardial Infraction beats. For each category, we use

10,000 samples, meaning we end up having 20,000 ECGs in total. We split them

into 80% training and 20% test data. In similar manner to MITBH, we apply six

adversarial attacks on these ECG signals. For training we end up having 32,000

(16,000 non-attacked and 16,0000 attacked) signals for each attack types. We use the

same 5-fold cross-validation method.

Again, for benchmarking and to overcome the lack of minority class samples in

ECG-ATK-GAN, we use SMOTE to increase the number of samples for S, V, and F

to 10,000 each. We do not use SMOTE on test data. Next, we use the train and test

ECG signals to create the six types of adversarial attacked ECGs (using Adversarial

Robustness toolbox [60]). So we end up having 40,000 training and 19,327 test same

number attacked ECGs as non-attacked ones for each adversarial attacks. Next,

we combine the original and adversarial ECGs to create our whole training dataset,

Ex +Exadv = E
′
x (Fig. 3.2). We use 5-fold cross validation and select the model with

the best validation score.

4.1.2 Hyper-parameters

In ECG-Adv-GAN, for adversarial training, we used least-square-GAN [50]. We chose

λclass = 10 and λrec = 1 (Eq. 3.4). Again, forECG-Atk-GAN, we chose λatk = 10

(Eq. 3.1), λary = 10 (Eq. 3.2), and λmse = 1 (Eq. 3.3), to give more weight to

classification losses than to adversarial loss.

For both of the models, we used Adam optimizer with a learning rate of α =

0.0002, β1 = 0.5 and β2 = 0.999. We used Tensorflow 2.0 to train the model in

mini-batches with the batch size, b = 64 in 200 epochs for ECG-Adv-GAN and batch
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size, b = 128 for 100 epochs which took consecutively around 8 hours and 4 hours to

train. We generated random float values in a range of [0, 1] for initializing the noise

vector, z. The inference time of our generator and discriminator are 0.0987 and 0.053

milliseconds per instance.

4.1.3 Quantitative Evaluation

For normal and arrhythmia beat classification tasks, we compare our model with other

state-of-the-art architectures on Intra-Patient and Inter-Patient test sets as given in

Table. 4.1 and Table. 4.2. We further experiment on adversarial examples synthesized

using our Generator from the above two tests set, which we also provide in Table. 4.1

and Table. 4.2. For metrics, we use Accuracy (ACC), Sensitivity(SEN), and Speci-

ficity(SPEC). We can see for the first experiment, except for the architecture given

in [9], our model achieves the best score compared to other deep learning and ma-

chine learning derived architectures. The architecture in [9] uses Seq2Seq, consisting

of Bidirectional LSTM and RNN layers. On the other hand, [2–4] uses 1D Convo-

lution based architecture. Out of these models, Shaker et al. [2] adopt DC-GAN, a

generative network [31] for adversarial signal generation. However, their classification

architecture is trained separately, and they provide results only on real ECG signals.

As for the second experiment, we evaluate our proposed ECG-Adv-GAN and other

architectures on adversarial examples generated from the Intra-patient and Inter-

patient data-set. The authors of these architectures failed to provide any pre-trained

weight that we can use to evaluate. So for a fair comparison, we train and test them

on the same set. This evaluation’s main idea is to test the model’s effectiveness and

robustness on out-of-distribution and real-world data, which the adversarial example

imitates. As shown in Table. 4.1, our model outperforms other the proposed methods

for the Intra-Patient data-set. In Table. 4.2 for the Inter-Patient data-set, our model
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achieves the best overall accuracy and sensitivity across all the normal and abnormal

beat categories. Only the architecture by Acharya et al. [3] scores better specificity

for Normal and Fusion beats. We can also see that Mousavi et al. [9] performs worse

for out-of-distribution adversarial data-set, which confirms signs of over-fitting on the

real ECG signals.

For the third experimentation, we evaluate our discriminator and check its accu-

racy to detect adversarial examples as given in Table. 4.3. We use a test set with 50%

adversarial and 50% real data to carry out this benchmark. By combining the real

and the adversarial examples synthesized by our generator, we can have this 50/50

test split. So for the Intra-Patient and Inter-Patient set of 19327 and 19152 signals,

we end up having 38654 and 38304 samples successively. We use Accuracy, Sensi-

tivity, Precision, F1-score, and AUC as standard metrics for measuring our model’s

performance. As shown in Table. 4.3, both our model scores high accuracy, preci-

sion, sensitivity, and AUC for the Intra-Patient and Inter-Patient data-set. However,

the model trained on Intra-Patient data performs better for detecting both and real

adversarial examples with more than 80% F1-score and Precision. Another impor-

tant insight is that the model detects adversarial examples far better than real ECG

signals. Consequently, it confirms the hypothesis that Generative Networks are far

superior for detecting adversarial examples.

Stability of Signal Generation

To evaluate the stability of GAN during training time, we illustrate distinct signals

synthesized by the generator network in Figure 4.1. The figure illustrates how the

synthesized signals are generated in different training stages. In the early stage of

training, the ECG signal’s complexity sometimes prevents the generator from learning

a select number of features to fool the discriminator network, as seen in the first row
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Figure 4.1: Each pair of row contains real and adversarial signal for Epoch 1,100
and 200 successively.The column consists of different ECG signals such as Normal
(N), Atrial Premature (A), Premature Ventricular (V), and Fusion (F) beats and for
each graph, the X-axis signifies sample/time in range of [0, 280] and Y-axis signifies
amplitude of [0, 1].We can see that our ECG-adv-GAN synthesizes realistic looking
adversarial ECGs over time
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of the image (Epoch 1). Over time, we can see that the outputs synthesized by the

generator become more visually realistic. For example, on Epoch-200, the peak of

the signal for every class (N, S, V, F) is not differentiable from the original ECG-

Signal. To validate, we monitored the GAN’s stability by visually evaluating the

synthesized samples for each epoch. The signals in Figure 4.1 produced by the ECG-

Adv-GAN were tested with our Discriminator and other state-of-the-art classifiers

to determine if the models can accurately classify adversarial samples. From Tables

4.2 and 4.3, we can see that our Discriminator outperforms other architecture in

classifying adversarial examples.

Table 4.1: Intra-patient ECG classification : Comparison of architectures trained
and tested on real Intra-Patient MIT-BIH dataset and further evaluated on adver-
sarial examples, generated from Intra-Patient test set.

Dataset Method ACC N S V F
SEN SPEC SEN SPEC SEN SPEC SEN SPEC

Real ECG
Intra-Patient

Proposed Method 99.31 99.28 94.36 94.56 99.64 94.93 99.94 95.54 99.54
Mousavi et al. [9] 99.92 100.0 98.87 96.48 100.00 99.50 99.98 98.68 99.98
Shaker et al. [2] 98.00 96.29 99.68 99.30 97.71 99.74 98.55 99.80 96.95

Kachuee et al. [4] 93.4 - - - - - - - -
Acharya et al. [3] 97.37 91.64 96.01 89.04 98.77 94.07 98.74 95.21 98.67

Ye et al. [26] 96.50 98.7 - 72.4 - 82.6 - 65.6 -
Yu and Chou [61] 95.4 96.9 - 73.8 - 92.3 - 51.0 -

Song et al [62] 98.7 99.5 - 86.4 - 95.8 - 73.6 -

Adversarial ECG
Intra-Patient

Proposed Method 99.89 99.96 98.63 95.56 99.98 99.02 99.99 100.0 99.94
Mousavi et al. [9] 86.97 72.75 99.31 92.81 93.24 81.26 98.90 100.0 81.48
Shaker et al. [2] 80.33 59.09 90.71 88.58 91.50 68.02 98.93 99.12 68.90
Acharya et al. [3] 69.58 35.50 98.69 71.45 84.32 74.33 97.29 99.36 56.78
Kachuee et al. [4] 75.91 49.47 99.65 79.49 95.22 70.33 96.53 100.0 59.45

Now we are going to discuss the performance of ECG-ATK-GAN to classify the

real adversarial attacks for class specific ECG signals. We perform the quantitative

evaluation by comparing our model with other state-of-the-art architectures [2–4] on

both attacked and non-attacked data from MITBH and PTB datasets. In the first

experiment, we use either only normal or adversarial attacked test data (19,327 and

4,000 for MITBH and PTB) for benchmarking the models on normal/abnormal beat

classification, which is illustrated in Table. 4.4 and Table. 4.5. We train all the models

on their respective attacked and non-attacked training samples for a fair comparison.
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Table 4.2: Inter-patient ECG classification : Comparison of architectures trained
and tested on real Inter-Patient MIT-BIH dataset and further evaluated on adver-
sarial examples, generated from Inter-Patient test set.

Dataset Method ACC N S V F
SEN SPEC SEN SPEC SEN SPEC SEN SPEC

Real ECG
Inter-Patient

Proposed Method 97.72 95.87 96.00 88.19 99.60 93.75 99.64 90.90 96.53
Mousavi et al. [9] 99.53 99.68 96.05 88.94 99.72 99.94 99.97 - -
Garcia et al. [63] 92.4 94.0 82.6 62.0 97.9 87.3 95.9 - -

Lin and Yang. [64] 96.50 91.0 - 81.0 - 86.0 - - -
Ye et al. [26] 75.2 80.2 - 3.2 - 50.2 - - -

Yu and Chou [61] 75.2 78.3 - 1.8 - 83.9 - 0.3 -
Song et al [62] 76.3 78.0 - 27.0 - 80.8 - 73.6 -

Adversarial ECG
Inter-Patient

Proposed Method 98.39 97.52 94.06 93.54 99.75 93.18 99.85 93.50 97.71
Mousavi et al. [9] 75.90 48.65 99.02 90.37 90.90 73.10 99.80 100.0 60.57
Shaker et al. [2] 81.93 61.31 98.92 90.37 96.28 84.65 99.56 97.40 67.71
Acharya et al. [3] 79.63 57.26 99.78 95.03 73.23 64.58 98.02 98.70 86.92
Kachuee et al. [4] 66.52 31.79 99.46 22.36 94.39 50.75 94.63 97.40 43.13

Table 4.3: Adversarial Example Detection: Evaluating the discriminator’s per-
formance for detecting adversarial example on Intra and Inter Patient Data

Dataset Accuracy Sensitivity Precision F1 Score AUCReal Adversarial Real Adversarial Real Adversarial
Intra-Patient 87.83 82.93 92.74 91.95 84.45 87.21 88.40 87.83
Inter-Patient 77.82 64.48 91.17 74.41 80.44 87.96 71.96 77.82

For metrics, we use Accuracy, Sensitivity, and Specificity. We can see that for ‘No

Attack’, all models achieve comparatively good results. However, for each distinct

attack, the results worsen for other models compared to ours. The architecture in [2–4]

utilizes 1D Convolution based architecture. Out of these models, Shaker et al. [2]

adopt DC-GAN, a generative network for adversarial signal generation. However,

their classification architecture is trained separately, and they provide results only on

real ECG signals. One reason for their model’s good performance for the no-attack

scenario is training with GAN-generated adversarial samples, which helps to learn

out-of-distribution signals. Moreover, the two 1D CNN architectures achieve better

sensitivity for minority category F for FGSM, BIM, and HSJ attacks. Similarly, our

model’s performance on the minority category F is best for PGD, CW, and DBB

attacks and second best for FGSM and BIM. Our model performs poorly against

HSJ attacks because the signals have too much high noise and no clear pattern, as
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Table 4.4: MIT-BIH Dataset ECG-ATK-GAN : Comparison of architectures
trained and evaluated on non-attacked/attacked ECGs for normal and three ar-
rhythmia beat classification.

Model Accuracy N S V F
Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

No
Attack

Proposed Method 99.2 98.8 95.2 83.7 99.8 97.9 99.7 92.4 99.3
Shaker et al. [2] 98.6 97.4 98.1 93.0 98.7 99.2 99.0 87.2 99.6

Kachuee et al. [4] 98.1 96.8 94.5 88.7 97.6 92.5 99.6 90.4 99.3
Acharya et al. [3] 96.4 92.8 96.2 86.2 97.0 95.9 98.8 94.2 97.1

FGSM

Proposed Method 98.7 97.9 95.0 82.6 99.2 99.2 98.7 73.2 99.8
Shaker et al. [2] 92.6 84.7 93.3 81.8 89.9 96.5 95.6 57.9 98.7

Kachuee et al. [4] 86.5 73.1 82.8 68.9 83.4 73.7 97.3 82.8 93.2
Acharya et al. [3] 77.2 53.3 87.9 65.7 74.1 66.2 92.3 65.6 87.9

BIM

Proposed Method 98.1 97.1 91.2 76.1 98.6 95.0 99.4 84.1 98.9
Shaker et al. [2] 96.2 93.1 90.1 69.1 98.2 97.6 94.9 55.4 99.8

Kachuee et al. [4] 85.6 70.6 90.4 67.4 90.5 83.6 92.3 82.1 88.5
Acharya et al. [3] 76.9 54.4 87.5 49.0 88.2 42.1 91.9 87.8 73.8

PGD

Proposed Method 98.4 97.0 96.1 89.0 98.0 97.5 99.3 88.5 99.6
Shaker et al. [2] 96.5 93.4 92.8 81.3 97.9 94.5 98.2 82.8 97.4

Kachuee et al. [4] 87.2 74.0 86.9 66.3 87.6 84.7 91.8 65.6 95.2
Acharya et al. [3] 77.2 54.0 88.8 54.1 91.3 57.8 82.0 66.2 80.6

CW

Proposed Method 98.8 97.8 97.0 91.1 98.8 98.3 99.5 91.0 99.5
Shaker et al. [2] 95.4 90.8 96.0 84.7 97.0 97.8 94.1 72.6 99.7

Kachuee et al. [4] 91.9 84.5 83.3 74.4 89.3 79.7 99.3 61.1 96.3
Acharya et al. [3] 81.2 61.8 89.1 64.6 81.5 67.7 94.1 83.4 86.8

DBB

Proposed Method 93.0 85.8 94.9 84.4 96.1 91.3 96.2 84.1 93.9
Shaker et al. [2] 90.1 80.6 86.7 65.1 94.2 79.4 94.9 83.4 91.7

Kachuee et al. [4] 79.7 57.9 86.4 78.0 69.3 70.9 96.6 82.1 93.6
Acharya et al. [3] 81.9 62.6 85.8 68.1 75.6 77.0 95.8 82.8 92.7

HSJ

Proposed Method 71.9 44.8 68.2 34.6 78.6 35.7 82.6 32.4 83.8
Shaker et al. [2] 70.5 41.2 67.4 33.0 77.1 40.4 81.1 37.5 83.4

Kachuee et al. [4] 68.6 39.3 65.8 21.3 82.5 10.3 94.5 43.9 62.2
Acharya et al. [3] 68.4 37.6 70.0 32.3 57.4 23.6 90.4 20.3 90.0

Table 4.5: PTB Dataset ECG-ATK-GAN : Comparison of architectures trained
and evaluated on non-attacked/attacked ECGs for normal and myocardial infarc-
tion beat classification.

Methods No Attack FGSM BIM PGD CW DBB HSJ

Accuracy

Proposed Method 99.5 99.4 99.6 99.6 99.5 93.1 71.8
Shaker et al. [2] 98.0 98.6 95.8 96.4 98.3 91.4 70.2

Kachuee et al. [4] 95.2 97.1 94.4 92.2 91.3 88.6 56.5
Acharya et al. [3] 79.8 84.1 83.2 84.1 80.9 77.4 54.7

Sensitivity

Proposed Method 99.3 99.2 99.6 99.7 99.2 92.6 79.8
Shaker et al. [2] 96.7 98.3 92.1 94.8 98.0 91.5 83.7

Kachuee et al. [4] 98.3 96.0 95.9 92.1 95.4 86.7 85.5
Acharya et al. [3] 82.1 93.1 93.4 90.6 90.3 88.5 90.7

Specificity

Proposed Method 99.7 99.5 99.7 99.5 99.7 93.7 64.0
Shaker et al. [2] 99.3 98.9 99.4 98.0 98.7 91.2 56.8

Kachuee et al. [4] 92.1 98.2 93.0 92.2 87.3 90.3 28.1
Acharya et al. [3] 77.7 75.3 73.2 77.8 71.6 66.5 19.4

illustrated in 3.3. Besides that, our architecture’s overall performance is more robust

against adversarial attacks for classifying arrhythmia and myocardial infractions, as

shown in Table. 4.5.
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Table 4.6: Generator’s Performance ECG-Adv-GAN: Similarity between ad-
versarial examples and Inter-Patient and Intra-Patient test set.

Dataset MSE Structural
Similarity

Cross-correlations
Coefficient

Normalized
RMSE

Intra
Patient 0.00241 0.9977 0.9425 0.0292

Inter
Patient 0.00038 0.9982 0.9986 0.0136

4.1.4 Qualitative Evaluation

In ECG-Adv-GAN, for finding the structural similarity with the original ECG, we

benchmark synthesized adversarial signals using four different metrics, i) Mean Squared

Error (MSE), ii) Structural Similarity Index (SSIM), iii) Cross-correlation coefficient,

and iv) Normalized Mean Squared Error (NRMSE). We use the same Intra and Inter

Patient test set for synthesizing adversarial examples. Table. 4.6 shows that SSIM for

both Inter and Intra Patient has a 99.8% score, which means the adversarial exam-

ples are structurally similar to the original signal. As for cross-correlation, MSE, and

NRMSE, our model generates better Inter-patient adversarial examples over Intra-

patient ones. Thus the score for Inter Patient test set is better than the Intra Patient

dataset. It is important to note that we want to achieve lower MSE and RMSE. Sim-

ilarly, we want to score higher for SSIM and Cross-correlation coefficient. For visual

comparison, we provide real and synthesized ECG signals for each class in Fig. 3.2.

The columns contain Normal (N), Atrial Premature (A), Premature Ventricular (V),

and Fusion (F) beats. In contrast, the row contains Real and Adversarial Signals suc-

cessively. It is apparent from the figure that the synthesized signals are quite vivid

and realistic visually.

Again, in ECG-ATK-GAN, for finding the similarity between real and synthesized

attacked/non-attacked ECG signals, we benchmarked generated adversarial signals
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Table 4.7: Generator’s Performance ECG-ATK-GAN: Similarity of adversarial
and attacked / non-attacked signals.

MITBIH PTB

Mean-Squared-Error Structural
Similarity

Cross-corelation
Coefficiet

Normalized
RMSE Mean-Squared-Error Structural

Similarity
Cross-corelation

Coefficient
Normalized

RMSE
No Attack 0.0129 99.90 99.86 3.487e-5 0.0184 99.87 99.93 8.152e-5

FGSM 0.0117 99.81 99.89 2.890e-5 0.0001 99.84 99.89 0.02391
BIM 0.0134 99.80 99.86 3.737e-5 0.0155 99.91 99.95 5.769e-5
PGD 0.0122 99.84 99.89 3.115e-5 0.0179 99.88 99.92 7.722e-5
CW 0.0065 99.95 99.97 9.038e-6 0.0188 99.87 99.92 8.498e-5
DBB 0.0002 99.00 99.39 0.03159 0.0007 99.19 99.29 0.05532
HSJ 0.0003 99.42 99.45 0.0393 0.0003 99.51 99.60 0.03872

using four different metrics, i) Mean Squared Error (MSE), ii) Structural Similar-

ity (SSIM), iii) Cross-correlation coefficient, and iv) Normalized Mean Squared Er-

ror (NRMSE). In Table. 4.7, We use both attacked and non-attacked signals from

the test set. We score SSIM of 99.90%, 99.81% (FGSM), 99.80% (BIM), 99.84%

(PGD), 99.95% (CW), 99.00% (DBB) and 99.43% (DBB) for MITBH Dataset. On

the other hand we achieve SSIM of 99.87% (No Attack), 99.84% (FGSM), 99.91%

(BIM), 99.84% (PGD), 99.87% (CW), 99.19% (DBB) and 99.51% (DBB) for PTB

Dataset. As for cross-correlation, MSE, and NRMSE, our model generates quite

realistic signals with minimal error.

4.2 Results: Mitigating Adversarial Attack

4.2.1 Dataset

In our experiment, we used CAPTCHA dataset to analyze the attack. CAPTCHA

is a type of challenge-response test applied in computing to determine if the user is

human or not [65]. In the experiment, we generated 20000 images where we allowed

to have four characters in the image. The characters will be chosen in-between (A-Z),

all in uppercase, and the numbers from (0-9). All the characters are randomly placed

in the image. The library optimally avoids generating the same images, and in our

dataset we made sure not to have any duplicate CAPTCHA image. In Fig 3.6, you
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can see the instance of three generated CAPTCHA images.

4.2.2 Hyper-parameter tuning

For training, we used categorical cross entropy loss [41] . For optimizer, we used

Adam [66], with learning rate α = 1e − 4. We train with mini-batches with batch

size, b = 32 for 20 epochs. It took approximately 1.5 hours to train our model on

NVIDIA P100 GPU.

4.2.3 Training procedure

Firstly, we split the dataset into train and test, where the test portion contains 20

percent of the data. Then using the provided Hyperparameters, we trained on the

training dataset. We used Accuracy matrices to predict the test data. Later we

performed the FGSM Attack and One-pixel attack on the same test dataset and

calculated the accuracy. If the accuracy was greater than 50%, we retrained the

classifier on the same test data, but this time we included the adversary while training.

In the next step, we calculated the accuracy, and therefore, if it is less than 85%, we

did the retrain again. The condition of the retrain the model is, it has to be less

than the threshold, and after the adversarial attack, the classifier must include all the

generated adversarial samples, including the original input.

4.3 Analysis: Game Theory

The game is designed with four possible outcomes. These outcomes are labeled with

payoff from 0 through 10 for both of the players. The outcome value is 0 if only there

is no attack from the player’s perspective. The payoff and strategies for both players
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Algorithm 1 Adversarial Training based Stackelberg Game
Input: xiϵX, yiϵY ;Labelled training data Xtrain, Labelled testing data Xtest

Output: M(Accuracy)
1: Initialize hyper-parameters:

max_epoch, max_batch, ωM , αM , β1
M , β2

M

2: Train Model(M) on Xtrain to get output model accuracy Macc(default)
3: Adversarial attacks F 7→ FGSM or O 7→ One−pixel−attack with perturbation

(α)
4: for e = 1 to max_epoch do
5: for b = 1 to max_batch do
6: Lclass(M) = −log( eyp∑k

i eyk
)||yp ⊆ (+yclass)

7: Lclass(M)←M(x), y
8: ωM ← ωM + Adam(M,ωM , αM , β1

M , β2
M)

9: Save weights(ω) and snapshot of M
10: end for
11: end for
12: Evaluate Macc for Xtest of M
13: if Macc > 50% then
14: Retrain on M with Adversarial sample (α∗, ω∗)ϵLclass(M)
15: Lclass1(M) = −log( eyp∑k

i eyk
)||yp ⊆ (+yclass(α∗,ω∗))

16: Lclass1(M)←M(x), y
17: Calculate Macc for Xtest ∪ Xtest +Xtestα∗ of M
18: end if
19: Evaluate Macc for Xtest of M (2nd step)
20: if Macc < 85% then
21: Retrain on M with Adversarial sample (α∗, ω∗)ϵ[Lclass(M) + Lclass1(M)]
22: Lclass2(M) = −log( eyp∑k

i eyk
)||yp ⊆ (+yclass2(α

∗, ω∗))

23: Lclass2(M)←M(x), y
24: Calculate Macc for Xtest ∪ Xtest +Xtestα∗ of M
25: end if
26: return Macc

are given below:

The game is designed with four possible outcomes. These outcomes are labeled

with payoffs from 0 through 10 for both players. The outcome value is 0 if there is

no attack from the player’s perspective. The payoff and strategies for both players

are given below:

• Initially, we assume that, if there is no attack, the total payoff of the game is 0.
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Figure 4.2: The representation of the Game’s kuhn tree between the Attacker (Ad-
versarial Attack) and the Defender (Classifier) to calculate the Optimal solution

• The Attacker can choose any of the adversarial attacks, FGSM or One-pixel

attack, but the classifier will initially classify both cases

• For a given two class labels, it is a binary classification problem for the classifier.

In Fig 4.2, the Kuhn tree is designed as a binary tree; as per probability dis-

tribution, a discrete output of the binary classifier is Xϵ(0, 1). Therefore based

on the accuracy of the classifier, it can be branched for more or less than 50%.

• If the classifier’s output is less than 50%, the Attacker is already successful and

will get a payoff of more than 50%. In the Fig 4.2 we can see that for both

FGSM and One-pixel attacks, the Attacker got more value, and the defender

will get the rest payoff as (1- Attacker’s payoff) which is less than Attacker’s

payoff.

• For the second scenario, where the accuracy is greater than 50%, the classifier

will defend by classifying with higher certainty. If the accuracy is now more
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than 85%, then the classifier will not have to retrain on the adversarial sample

as it is familiar with the adversarial data distribution. However, suppose the

classifier predicts with less than 85% certainty. In that case, It will utilize this

data as an adversarial sample and train again on the original data along with

the adversarial sample.

• Finally, the classifier’s target is to get an accuracy of more than 85%. If the

classifier, as in defender, brings more value, the game ends or follows the pre-

vious step. The core purpose of the game is to win the classifier (Defender).

As in the generalized version in the case of the DNN-based classification task

for the cyber domain, we can consider that achieving an accuracy of more than

90% is reliable.

4.3.1 Game Formulation:

We formulate the game between the attacker and classifier as a two-player Stackelberg

game [41]. The fundamental components of forming the game are: modeling the

actions taken by the players, formatting players as the decision-makers, calculating

the payoffs for each players. While forming the Stackelberg game, we consider the

adversarial attacker’s action as the Leader (L) who initiates the game by manipulating

data over a strategy space. In response to each attack, the classifier is considered as a

Follower (F) who manipulates training data distribution based on the re-optimization

of the weights.

As per the rule of the Stackelberg game, the leader(L) will initiate the game by

the adversarial attack. Here, there are two action spaces, two attacks F 7→ FGSM

and O 7→ One − pixel − attack, and feature space of the weight,W , would initially

be chosen randomly. L’s and F’s payoff function will settle through JLϵR and JF ϵR.

After the attack, the classifier will try to learn the optimal parameter w∗ϵW from the
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training set based on the adversary α∗ϵ[F,O]. The optimal adversary will estimate

through the payoffs JL and JF by solving Eq. 4.1

α = arg max
αϵ[F,O]

JL(α, ω
∗)

ω = argmax
ωϵW

JF (α
∗, ω)

(4.1)

The game is Stackelberg simultaneous game, so we formulate the game from

Eq. 4.1 to Eq. 4.2. Therefore the attacker(L) starts the game by the adversarial

attacks then the classifier receives the new data space along with the original data

xϵX, including the actions and weights(α∗, ω∗).

(α∗, ω∗) = arg max
αϵ[F,O]

JL(α, argmax
ωϵW

JF (α, ω)) (4.2)

The game is a two-class classification problem with diverging data distributions,

and for theoretical perspective, we considered the data space as a one-dimensional

feature space. We denote the distribution σ to determine the payoff relation between

L’s and F’s by calculating the loss function, Eq. 4.3. In our model, we used categorical

cross-entropy as a loss function, and we calculate the cost, CF for follower and the

cost, CL = (1− CF ) for the leader to determine the payoff JL and JF .

CF = −
k∑

i=0

xilog(x
′
i)

JL + JF = σ + CL(α, ω) + CF

(4.3)

From Eq. 4.2 and Eq. 4.3 for the two-player Stackelberg game, we can express

the objective function Eq. 4.4 for simultaneous actions. In Fig. 3.4, we can see that

the type of attack is unknown to the classifier in the initial stage, so there will not
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be any changes in the weights and parameters; thus, its an incomplete information

game. In the following stages, depending on the attack type, the classifier will get

updated weights (ω) and parameters(α) along with relative payoff value CF and CL

for JL and JF . The final objective function is given in Eq. 4.4.

(α∗, ω∗) = arg max
αϵF,O

JL(α, argmax
ωϵW

(σ + CL(α, ω) + CF − JF (α, ω))) (4.4)

4.3.2 A Characterization of Threshold for Game Strategy

We have rational agents playing the game, all the win or loss scenarios for the attacker

were illustrated based on manipulation of Retrain defense strategy. To demonstrate

this, we first established that the Threshold must be categorized as a Binomial prob-

ability distribution in the initial attack. Then we set that the Threshold value of the

defender should have more than 85% accuracy against the first attack for a successful

defense.

• Macc as Threshold For all the input images xϵX, the Accuracy rate (MaccϵR)

will act as Threshold for all possible scenario, to measure the success rate of

the attacker and the defender in the classification model.

Following Probability distribution addressed the first attacks on the classifica-

tion model, and for Macc as Threshold, it outlines the Threshold value based on

the probability distribution.

• Binomial probability distribution for the First attack For any xϵX the

success of the attacker is f(s).
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f(s|A, p) =

A

s

 ps(1− p)A−s

f(s) =

 SuccessfulA 7→ f(s|A, p) ≤ 50%

Not− SuccessfulA 7→ f(s|A, p) > 50%

(4.5)

The numbers A and p signifies the distributions: the number of attacks and the

probability of success in each Attacks. So the probability of s number of success

in A number of attacks is represented by the function f(s|A, p) in Eq. 4.5. The

Binomial Coefficient (As) measures the possible success s can be obtained from

A attacks without replacement wheres ps(1− p)A−s estimates the probability of

such outcomes.

For the initial attack, the Binomial distribution is acceptable as it only deals

with the success of the attack. So the probable chance for the function is,

f(s|A, p) 7→ (< 50% >): either it will be a successful attack or unsuccess-

ful, nothing other then that. In our scenario, for the attack to be successful,

f(s|A, p) > 50%, the classifier’s weights, and the parameters will have to change

as well as the payoff JL and JF , and can be validated from from Eq. 4.4 and

Eq. 4.5. For the further attacks on the next stages, it will follow the following

Retraining as a successful Defense.

• Retrain as a successful Defense for higher Macc For any attacks after the

first attack, the success of fD(s) will be greater or less than the original Macc

and Retrain(α∗, ω∗) as the defense will be continued until f(s(α
∗,ω∗)

Macc
) > Macc.
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f(s
(α∗,ω∗)
Macc

) =

 SuccessfulD 7→Macc
(α∗,ω∗) > 85%

Not− SuccessfulD 7→Macc
(α∗,ω∗) < 85%

(4.6)

From the following attacks, the objective is to Retrain model(M) on the Ad-

versarial samples X(α∗,ω∗)ϵX to gain the original accuracy MOriginal
acc ϵR. In our

experiment, we retained on updated sample X(α∗,ω∗) along with the original

sample X to gain the original MOriginal
acc > 85%

Figure 4.3: The Optimal solution is calculated from the Game’s kuhn tree between
the Attacker (Adversarial Attack) and the Defender (Classifier)

4.3.3 Utility Value and Simulation Results on CAPTCHA Data

To evaluate the Deep Learning Model on the classification of the CAPTCHA dataset,

We first trained the model on XtrainϵX and calculated MOriginal
acc on the test data, Xtest

for the Threshold measurements. For computational tractability, the first attack in the

Stackelberg Game is a Black Box attack. So initially, it is an incomplete information

game; therefore, the attack type and the number of attacks are unknown. In Fig 4.2,
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the Kuhn tree, we can see the Classifier is unknown to the attacks FGSM and One-

Pixel-Attack along with the parameters(α) and weights(ω) changes after the attack.

Table 4.8: Utility as Macc : The accuracy value of the Model is represented as Utility
in two stages for both attacks.

Player 2 : Classifier Threshold No. of
Game
Steps

Original Retrain
M_{acc} M_{acc} if <= 50 %

Player 1:
Adversarial

Attack

FGSM 33% 68.3% 1One Pixel Attack 56% 71%
Value from

Step 1
Retrain

2 if >= 85 %

FGSM 68.3% 88.5% 2One Pixel Attack 71% 91.1%

Table 4.9: Pure Strategy Nash Equilibrium for the first stage Incomplete information
game

Player 2 (Classifier)
Player 1

(Adversarial Attack)
6.7, 3.3 1.15, 8.85
5.6, 4.4 0.89, 9.11

We consider that the Adversary is only allowed to perturb the positive instances

in the first attack. To calculate the Utility, we used Accuracy,Macc as matrice to solve

the game. The accuracy matrice is the prediction values by the Model(M), which

is usually determined in percentages, but here we ranged it from [0− 10]ϵR for easy

computation.

For instance, from Table 4.8, in the first step after the FGSM attack, the classifiers

Macc = 33%. So the gain for the Classifier as Player2(D) is 3.3, which is converted in

the range [0− 10] in the Kuhn tree Fig 4.2. Similarly, for the Player1(A), we deduct

the value from 100 as per probability rule, thus the attacker’s Utility value 67% in

Table 4.8 and 6.6 in the Kuhn tree Fig 4.2.

Now to calculate the Optimal value, we will follow the bottom-up approach. Gen-

erally, we will observe the Attacker’s perspective, and based on that, the proper



47

defense will be taken. Fig 4.3 illustrates the representation of the computation for

the optimal value. As it is a two Stage game, after getting the optimal values from

the terminal nodes of two binary sub-tree, we get an Incomplete information Sub-

game. The Equilibrium solution for the game is Nash Equilibrium in Table 4.9. We

get unique Nash equilibrium in pure strategies in (1.15, 8.85). Therefore, from the

Attacker’s perspective, it will obtain the optimal value if it chooses FGSM as its at-

tack strategy. Conceding this game-theoretical approach, the Classifier will benefit by

estimating the Attacker’s possible attack strategies and can take prior precautions.

In real life, DL models are highly vulnerable to other attacks like PGD [36],

Carlini-Wagner attack [55], FGM attack [67], etc., and continuously different types

of attacks are formulated by attackers. Therefore, it is impossible to track all the

attacks and take defensive measures based on that. So understanding the Attacker’s

rational behavior is essential.
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Chapter 5

Conclusion and Future Work

To conclude, we proposed ECG-Adv-GAN and ECG-ATK-GAN, two novel condi-

tional Generative Adversarial Network for simultaneously detect Adversarial Exam-

ples and Adversarial Attacks. Our architectures outperform previous techniques by

adopting a dual learning task of synthesizing adversarial ECG signals while predict-

ing the signal category. The model is best suited for real-time ECG monitoring,

where it can perform robustly and effectively. Detecting arrhythmia accurately and

robustly in real-time will pave the way for better patient care and disease monitoring.

In addition, insurance companies, contractors, partners, and many stakeholders will

financially benefit from a trusted cardiac arrhythmia diagnostic system that is ro-

bust against adversarial attacks. This system can also help identify new attack types

by distinguishing signal anomalies. We also we introduced a thoroughly analysis of

the vulnerability of the CNN model in the Adversarial Attack for the CAPTCHA

dataset while emphasizing on possible defense mechanisms. We evaluated the model

from a Game theoretical perspective for the optimal solution. A future direction to

this work is to incorporate and defend against adversarial attacks using GAN [35] in

same dataset to evaluate the defender’s performance in multiple attacks. Our future
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direction is to evaluate the defence strategy with GAN. We would like to experiment

with ECG data for defence and also evaluate the game theory with mathematical

evaluation. Lastly extend our work to incorporate with real life scenarios.
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