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Preface

This dissertation summarizes the results of the author’s research in signal pro-
cessing. These results are presented in a unified approach which allows to show
the connection between them. The main topic of the thesis is the development
of adaptive models for ECG and EEG signals to perform efficient compression
and classification. The design and construction of such systems involve several
problems including optimization of free parameters, which is of great importance
for providing a compact representation of the signal. In the thesis we propose a
number of numerical algorithms based on different optimization methods. The
mathematical background of our results and methods is the theory of rational
functions. We show that the various systems of rational functions provide the
basis for adaptive signal representations which turn to be better than the existing
state-of-the-art methods in several respects.

In general, signal processing has become an important field of applied sci-
ences over the last decades. Several mathematical results, especially orthogonal
transforms were applied for solving practical problems in data compression, clas-
sification, detection, etc. In connection with this we note that the transforms by
means of rational function systems in ECG signal processing were introduced by
Ferenc Schipp and Sándor Fridli [FriLóc12]. The PhD thesis utilizes and extends
their results to solve different problems, especially in biomedical signal processing.
The main material of the dissertation was published in 4 journal and 5 confer-
ence papers, and presented at 10 international conferences. The conference papers
appeared in IEEE proceedings. We note that 2 conference and 1 journal papers
were written in collaboration with the research group in signal processing of Tam-
pere University of Technology (TUT, Finland), where the author was a visiting
researcher for a five-month period.

The thesis is organized as follows. Chapter 1 contains a brief introduction
to the theory of rational function systems. Also, we provide a summary of the
relevant previously existed results in adaptive signal modeling in order to clarify
our contribution to the topics. For instance, we describe the main problems of
ECG and EEG signal processing along with conventional testing techniques and
databases.

In Chapter 2 we deal with the construction of pole optimization methods.
Namely, we developed the hyperbolic variant of the so-called particle swarm op-
timization (PSO) algorithm, which was integrated into a more general multi-
dimensional framework. By the means of this method one can calculate the best
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pole configurations of the representation (i.e., the optimal positions and multiplic-
ities). It also provides a novel technique for pole identification. Furthermore, we
perform detailed stability and error analysis of the above methods.

In Chapter 3, we propose an electrocardiogram (ECG) signal generator based
on spline interpolation. It turns to be an efficient tool for testing and evaluating
signal models, filtering techniques, etc. In this study, the synthesized heartbeats
were used to test the diagnostic distortion of the rational representation. At the
end of this chapter, we introduce a mathematical model for the multi-channel QRS
complex.

The main topic of Chapter 4 is the construction of a new generalized time-
frequency distribution of EEG signals based on different types of rational func-
tions, which is a joint work with Kaveh Samiee (TUT). We emphasize that the
rational function systems were not used in this field before. Their application in
epileptic seizure detection is the main outcome of our collaboration. Note that
the hyperbolic PSO algorithm introduced in Chapter 2 was successfully applied in
this problem, as well.

In Chapter 5 numerical methods for computing rational series expansions of
discrete signals are presented. The collection of these algorithms can be found
in the RAIT Matlab toolbox together with usual signal processing techniques
adapted to rational functions. We note that the Matlab implementations within
this chapter have been used in the applications shown in previous Chapters 2–4.
Finally, we provide a comparative study of different signal compression methods.

We note that the Appendices are integrated parts of the dissertation. It means
that complicated algorithms and Matlab examples are excluded from the text of
the thesis in order to make it more readable. Namely, pseudocodes of the main
algorithms are moved to Appendix A while Matlab examples can be found in
Appendix B. The latter includes graphical user interfaces (GUI), as well, which
demonstrates the use of rational functions and the ECG signal generator of Sec-
tion 5.1 and Section 3.1, respectively.
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Chapter 1

Introduction

In Section 1.1 we start with defining the general framework of the dissertation and
discussing the most important terms in the signal processing jargon. Furthermore,
we describe a signal model, conventional testing techniques and databases used in
ECG and EEG signal processing. Then, in Section 1.2 we continue with Blaschke
functions including their basic properties. The chapter is closed by Section 1.3,
where we review the construction of orthogonal rational function systems called
Malmquist–Takenaka systems, which will be followed by studying biorthogonal
systems and the problem of non-uniform discretization.

1.1 Signal modeling

The analysis of physiological signals by means of mathematical transforms has
proved to be an effective method in various aspects. For instance, compression
and filtering methods are based on dimensionality reduction of the original signal.
In addition, the coefficients of these transformations can also be used as features
in classification tasks. Generally, these transform-domain based techniques are
closely related to approximation theory in Hilbert spaces. Namely, L2w(R) is usu-
ally considered to be the signal space with a positive weight function w. Then,
the signal f is an element of L2w(R), which is modeled via approximation from a
closed subspace H ⊂ L2w(R). It is well-known that the best approximation f̃ ∈ H
uniquely exists: ‖f − f̃‖L2w = inf{‖f − g‖L2w : g ∈ H} and f − f̃ ⊥ H. In practi-
cal applications H is a finite N ∈ N+ dimensional closed subspace, which implies
that f̃ =

∑N−1
k=0 ckΘk, where ck ∈ R and {Θk : 0 ≤ k < N } is a basis of H. It

can be easily shown that the coefficients ck can be determined as the solution of
the system of linear equations Gc = b, where Gi,j = 〈Θi, Θj〉 denotes the Gram
matrix, bi = 〈f, Θi〉 , and 〈., .〉 is the usual scalar product in L2w(R). Although
G has good numerical properties, e.g., it is symmetric and positive definite, the
conditioning of the problem strongly depends on the base functions. For instance,
one can get a pathological example in L2w(0, 1) by choosing Θk = xk for which
Gi,j =

1
i+j+1

. In this case, the Gram matrix becomes the so-called Hilbert ma-
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trix which is known to be highly ill-conditioned, namely, the condition number

κ2(G) = O
(

(
√
2+1)4N√
N

)
(see e.g., [HämHof91; SülMay03]). For a detailed analysis

of the degree of ill-conditioning for Gram matrices of general inner-product spaces,
we refer to [Tay78]. It is worth mentioning that the Gram matrix of basic rational
functions is ill-conditioned as well (see e.g., the definition of ra,k in Section 1.3),
which also explains the need of orthogonal and biorthogonal rational functions. If
{Θk : k ∈ N } is a set of orthonormal functions, the best approximation of f can
be expressed as follows

(1.1) PΘHf(t) =

N−1∑

k=0

〈f, Θk〉Θk(t) , SΘf(t) =

∞∑

k=0

〈f, Θk〉Θk(t) .

Here PH is an orthogonal projection while SΘf is called the Fourier series, and
ck = 〈f, Θk〉 is the Fourier coefficients of f. In the latter case, it is an important
question whether the series SΘf converges. The answer is yes, since the Bessel’s
inequality holds in Hilbert spaces

(1.2)
∞∑

k=0

|ck|
2 ≤ ‖f‖2L2w .

Finally, if {Θk : k ∈ N } is orthonormal and complete set of functions, Eq. (1.2)
holds with equality, which is the so-called Parseval’s equality. A detailed review
of these results in Fourier analysis along with practical applications in signal pro-
cessing can be found in [GasWit99].

Hereinafter, we will refer to discrete-time series as sequences or piecewise con-
stant functions. Analog signals are considered as periodic or non-periodic functions
defined on the real line. By the term system we refer to a finite or a countable set
of functions. Furthermore, if the system depends on a vector of free parameters
a ∈ C

n (n ∈ N+), it is denoted by {Θa
k : k ∈ N } , and it is called as an adaptive

system. In this context adaptivity means the number of free parameters n.
In practice, a specific system is chosen for each problem. For instance, the

most appropriate basis for audio signals is trigonometric functions (see e.g., MP3
encoding). Furthermore, discrete cosine transforms and wavelets are also preferred
in case of compressing images (see e.g., JPEG and JPEG2000 standards). These
techniques utilize a system of fixed base functions. The main disadvantage of this
concept is the lack of adaptivity. Namely, if the signal f is not correlated with the
shape of the base functions, the distance of f and the subspace H (i.e., the error
of the representation) will be high. In order to rectify this problem, several meth-
ods have been introduced which extend the basic models with free parameters.
For instance, Sörnmo et al. extended the classical Hermite orthogonal polyno-
mials with free parameters via affine transform in [SörBör81]. Then, Coifman
et al. [CoiMey92] increased the adaptivity of wavelets by using wavelet packets
followed by Burrus et al., who highlighted the importance of adaptive wavelets
in [BurGop97]. The general framework of these methods is similar to Eq. (1.1).
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Namely, for a given vector of free parameters a := (a0, a1, . . . , an−1) and n ∈ N+

let us consider the orthonormal function system {Θa
k : k ∈ N } . Then

(1.3) PΘ,aH f(t) =

N−1∑

k=0

〈f, Θa
k〉Θa

k(t) , SΘ,af(t) =

∞∑

k=0

〈f, Θa
k〉Θa

k(t) .

This way, the accuracy of the projection PΘ,aH can be improved by minimizing the
error of the approximation. Thus the optimal parameter ao is defined by

(1.4) ao = arg min
a

∥∥f− PΘ,aH f
∥∥
L2w
,

where arg minx f is the argument of the minimum of the function f. This can
be found by using numerical optimization techniques such as gradient meth-
ods, simplex algorithms, Monte-Carlo simulations, etc. For instance, the system
{Θa

k : k ∈ N } can be orthogonal polynomials [SörBör81], B-splines [KarMon97]
and wavelets [BurGop97] while a is associated to the dilation parameters, base
knots, etc.

Most of the previous algorithms are used in biomedical signal processing as
well. However, we draw the reader’s attention to the fact that medical principles
are usually not taken into account. For instance, wavelet transforms are applied
in ECG analysis [Add05], partly because they became very popular in many fields
of signal processing. On the other hand, their ability to represent ECG signals
is limited (see e.g., Section 5.3). In addition, in these methods the leads of the
ECG records are treated as if they were independent from each other. Another
approach for modeling ECG signals is based on the electrical field generated by
heart. Then the electric field is interpreted as a vector-valued complex function

(1.5) f(z) = (f1(z), f2(z)) (z ∈ D) ,

where f1(z), f2(z) ∈ R. In this dissertation, we will consider ECG as a time-
dependent function f(eit) (t ∈ R). In this model, a heartbeat detected on a par-
ticular lead can be regarded as the projection of the electrical field f to a certain
direction eφ := (cosφ, sinφ) :

Eφ(t) :=
〈
f(eit), eφ

〉
= f1(e

it) cosφ+ f2(e
it) sinφ (t ∈ R, φ ∈ R) .

We note that this coincides with the conventional medical interpretation (see e.g.,
Chapter 1 in [CliAzu06; MorBra08]). Moreover, the model satisfies the so-called
Einthoven’s law, i.e., II = I + III, where I, II, III denotes the limb leads. These
signals measure the potential difference between the left and right arm, left leg
and right arm, left leg and left arm, respectively. In our case, this can be written
in the following form

Eφ2
(t) := Eφ1

(t) + Eφ3
(t) (t ∈ R) ,
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where φ1 = 0, φ2 = −π/3, φ3 = −2π/3. This concept was introduced by Fridli
and Schipp et al., and it was later used to model ECGs by rational functions
[FriLóc12; Sch14].

One of the main scopes of this dissertation is to examine the performance of
rational functions in different signal processing problems including compression
and classification. For this reason, we utilize and extend the previously defined
model. More precisely, we associate the free parameters a to the vector of inverse
poles and the functions Θa

k with the elements of the corresponding orthogonal and
biorthogonal rational function systems. Thus, we get back the Nth partial sums
of the Fourier series of f in Eq. (1.3). In addition, the ck Fourier coefficients can
be computed via continuous and discrete scalar products. In the former case we
will use the trapezoidal rule to approximate integrals. Finally, we note that the
error of the approximation is usually measured in ‖.‖L2w, which is conventional in
ECG signal processing (see e.g., Section 3.2). This is why the theory of Hilbert
spaces is so important in this field.

Signal processing applications

Although there is a wide range of applications of rational functions, we are focusing
mainly on the synthesis, compression and classification of biomedical signals. For
instance, the performance assessment of signal models is a difficult task, especially
when the signal-to-noise ratio is high and the reference data is not available. This
is when the synthetic signals come into picture. The main idea behind that is to
generate signals with prescribed characteristics. Thus, the original signal is known,
which can help us to validate a signal model in the presence of noise. The main
problem here is to define a set of parameters (e.g., coefficients and base knots)
which can guarantee valid signal morphology. In Section 3.1 we give a detailed
description of this topic.

Additionally, let us consider the signal f with M ∈ N+ samples. Then for a
given N ≤M dimensional subspace we have to find the vector of optimal param-
eters ao ∈ D

n (n ∈ N+) by solving Eq. (1.4). Then, the original signal can be
represented using only N number of coefficients instead of M samples. Now, the
problem of compressing discrete-time signals can be reduced to the problem of in-
terpolation and least square approximation for N =M and N≪M, respectively.
In this sense, an algorithm is better than the others if it can provide less ℓ2 error by
using the same number of coefficients. A comparative study of rational functions
along with other state-of-the-art methods can be found in Section 5.3.

The classification of biomedical signals is usually associated with a complex
system which helps experts to analyze medical records visually. In general, pre-
processing and feature extraction steps are performed, followed by (un)supervised
data mining methods. For instance, the coefficients of a compact representation
e.g., compression can be used to reduce the dimension of the original problem.
This procedure results in a few parameters which can characterize the segments
of physiological signals. Then the so-called feature vectors can be used to train
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a classifier. Performance of these algorithms are evaluated through the following
statistical measures:

Sens =
TP

TP + FN
, Spec =

TN

TN+ FP
, Acc =

TP + TN

TP + TN+ FP + FN
,

where TP, TN, FP, FN denote the number of true positive/negative and false posi-
tive/negative hits of the test. For binary classification tasks, Sensitivity/Specificity
is the rate of correctly classified events/nonevents among all events/nonevents
while Accuracy is the ratio of the number of correctly classified patterns to the
total number of patterns. In other words, Sensitivity/Specificity gives the proba-
bility of correctness for the positive/negative tests. Our goal is to find the optimal
parameters of the classifier in order to maximize these statistical measures. To
this end, in Chapter 4 we provide an EEG seizure detection algorithm based on
different rational representations.

Experimental data

PhysioNet database

In Chapter 3 and Section 5.3, we model and compress the ECG signals. In order to
validate the model and to examine the diagnostic distortion of the reconstruction,
we use real ECG records of the PhysioNet database [GolAma00]. It is a collection
of various biomedical signals including photoplethysmogram (PPG), blood pres-
sure (BP), electromyogram (EMG), respiration (RESP), ECG, EEG, etc. In our
experiments, we used the MIT-BIH Arrhythmia Database. It contains 48 half-
hour long ECG recordings, obtained from 47 subjects. Each record was digitized
at 360 samples per second per channel with 11-bit resolution over a 10 mV range.
Additionally, two or more cardiologists independently annotated each record. In
our experiments, we used these annotations in order to perform beat-by-beat pro-
cessing of the signals.

Bonn database

In Chapter 4, we construct an EEG seizure detection algorithm based on rational
functions. In order to test our method, we evaluated several experiments on real
EEG signals. The database has been provided by the University of Bonn and
it is freely available online [AndLeh01]. This database has been widely used for
EEG feature extraction and classification in the literature [TzaTsi12]. The EEG
database consists of five sets (A-E). Each set contains 100 single-channel EEG
segments, each with a duration of 23.6 seconds. Sets A and B have been recorded
using the standard international 10-20 system for surface EEG recording. Five
healthy volunteers participated in these tests with eyes open (A) and eyes closed
(B). For sets C, D and E five epileptic patients were selected for presurgical evalua-
tion of epilepsy by using intracranial electrodes. Depth electrodes were implanted
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symmetrically to record EEG from the epileptogenic zone (D) and from hippocam-
pal formation of the opposite hemisphere of the brain (C). Segments of set E were
taken from contacts of all electrodes. In sets C and D, segments contain interictal
intervals while seizure activities occur in set E. Each epoch was sampled at 173.61
Hz resulting in a total of 4096 samples.

1.2 Blaschke functions

Blaschke functions are special types of Möbius transformations. They have several
applications in signal processing, such as representing the transfer functions of
filters in system identification [SouPap02; SouSch11b; SouBok13; Sch14] or con-
structing general orthogonal basis [HeuVan05; BulGon09]. Blaschke functions play
an important role in our work as well. Namely, they are required to implement
the hyperbolic operations in Chapter 2 and to solve the discretization problem in
Section 5.2 via the so-called argument function.

Möbius transformations

Let us denote the set of complex numbers by C, the open unit disc by D :=

{ z ∈ C : |z| < 1 }, and the unit circle (or torus) by T := { z ∈ C : |z| = 1 }. Fur-
thermore, let N+ stand for the set of non-zero natural numbers, and GL(2) :={

M ∈ C
2×2 : det(M) 6= 0

}
for the set of non-singular matrices of order two.

Then, to every

GL(2) ∋ M =

[
a b

c d

]
,

we associate the function

tM : z→
az+ b

cz+ d
(z ∈ C) .

The set of functions M := { tM : M ∈ GL(2) } is the set of the so-called Möbius
transformations. It is defined at any complex point z ∈ C if we use the following
extensions

tM

(
−
d

c

)
=∞ , tM(∞) =

{ a

c
if c 6= 0

∞ if c = 0
.

It can be shown that for any M ∈ GL(2), the Möbius transformation tM is a
bijective conformal map of C onto itself. Additionally, the inverse transformation
can be defined by inverting the matrix M. Then the inverse function t−1M = tM−1

is also a Möbius transformation. Furthermore, the functions tM form a group
under the operation of composition. Moreover, if M,N ∈ GL(2) then tM ◦ tN =

tMN (see e.g., theorem 5.2c in [Hen74]). Finally, we recall the standard form of
Möbius transformations which can be obtained by applying Schur decomposition
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on M ∈ GL(2) . Namely, M = UTU* where U,T ∈ GL(2) are unitary and
upper triangular matrices, respectively. Thus, any Möbius transformation may be
built as

(1.6) tM = tU ◦ tT ◦ tU* .

Blaschke transformations

The Blaschke functions can be derived from the set of Möbius transformations.
More precisely, let us consider the subset SH(2) ⊂ GL(2) as follows

B =

[
p −q

−q p

]
, det(B) = |p|

2
− |q|

2
= 1 (p, q,∈ C) .

Then B → tB defines a homomorphism and maps the matrices B ∈ SH(2) to
Blaschke functions

tB(z) :=
pz− q

p− qz
=
p

p

z− q/p

1− zq/p
= ǫ

z− a

1− az
=: Ba(z) (z ∈ C) ,

where a := q/p ∈ D and ǫ := p/p ∈ T . Let us denote the set of Blaschke functions
by B := {Ba : a = (a, ǫ) ∈ B } where B := D × T . Then B is a subgroup of M
under the composition operator. Indeed, if we take the functions Baj for j = 1, 2

then Ba1 ◦ Ba2 = Ba ∈ B and the parameters of the composition a = (a, ǫ) can be
expressed as follows

a =
a1ǫ2 + a2

1+ a1a2ǫ2
, ǫ = ǫ1ǫ2

1+ a1a2ǫ2

1+ a1a2ǫ2
.(1.7)

Moreover, Be is the unit element of B with e := (0, 1) while the inverse transfor-
mation can be expressed as B−1

a = Ba−1, where a−1 := (−aǫ, ǫ) . One can classify
the elements of B by considering the bijections of D and T . In this sense, two
other subgroups can be derived from B :

BI := {Ba : a = (r, 1), r ∈ (−1, 1) } , BT := {Ba : a = (0, ǫ), ǫ ∈ T } .

Now, similarly to Eq. (1.6), one can use these subgroups as the building blocks of
the Blaschke group B = BT ◦BI ◦BT. More precisely,

(1.8) Ba = B(0,ei(α+ϑ) ◦ B(r,1) ◦ B(0,e−iα) (a := (reiα, eiϑ) ∈ B) .

Finally, the parameter space B of the Blaschke functions will be described. To
this end, let us consider the following two subsets of B :

B1 := { (r, 1) : r ∈ (−1, 1) } , B2 := { (0, ǫ) : ǫ ∈ T } .
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It can be shown that (B1, ◦) and (B2, ◦) form subgroups of B . Moreover, Eq. (1.7)
implies that

(r1, 1) ◦ (r2, 1) = (r, 1), r =
r1 + r2

1+ r1r2
(r1, r2 ∈ (−1, 1)) ,

(0, ǫ1) ◦ (0, ǫ2) = (0, ǫ), ǫ = ǫ1ǫ2 (ǫ1, ǫ2 ∈ T) .

One can see that (B2, ◦) and (T, ·) are isomorphic groups. Additionally, one can
define the isomorphism between (B1, ◦) and (R,+) by using the map

th(s1 + s2) =
th s1 + th s2
1+ th s1 th s2

=
r1 + r2

1+ r1r2
= r = r1 ◦ r2 ,(1.9)

where rj = th sj, (sj ∈ R, j = 1, 2). Now, the analogue of Eq. (1.8) can be written
as

a = e1 ◦ b ◦ e2 ,
where a ∈ B, e1, e2 ∈ B2 and b ∈ B1. Note that in Chapter 2, we will use these
identities in order to construct a non-deterministic hyperbolic inverse pole opti-
mization technique. A further description of the Blaschke transformation and its
relation to the hyperbolic geometry can be found in [Sch14].

Argument function

The Blaschke transformation Ba : T→ T (a ∈ B) is a bijective mapping of T onto
itself. It means that

Ba(e
it) = eiβa(t) (t ∈ R),

where βa : R→ R is the so-called argument function. In order to give the explicit
form of βa, let us consider the following functions:

γs(t) := 2 arctan(s tan(t/2)) (t ∈ (−π, π), s ∈ (0,∞)) .

In addition, one can extend γs to R for any s ∈ (0,∞) as

γs(−π) := −π, γs(π) := π, γs(t+ 2π) := γs(t) + 2π (t ∈ R) .

It can be shown that γs is a monotonic, differentiable function and

(1.10) γ ′
s(t) :=

1− r2

1− 2r cos t+ r2
:= Pr(t) (t ∈ R) ,

where Pr is the so-called Poisson kernel and

s = s(r) :=
1+ r

1− r
, r ∈ [0, 1) .

One can also calculate the explicit form of the argument function by simple al-
gebraic manipulations. Namely, let us consider the Blaschke function Ba ∈ B
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with the parameters a = (a, ǫ) ∈ B where a = reiα and ǫ = eiϑ with
ϑ, α ∈ [−π, π), r ∈ [0, 1) . Then the corresponding argument function can be
defined as follows

(1.11) βa(t) := ϑ+ α+ γs(t− α) (t ∈ R) .

Note that the optimization problems considered in this study operate with r and
α only, while ϑ is an arbitrary parameter of the argument function. However, for
discretization problems, we had better choose ϑ in such a way that βa(−π) = −π.

In this case, we will use the simplified notation βa, which realizes a mapping
βa : [−π, π) → [−π, π). Additionally, the inverse of this function β−1

a can be
used to construct discrete orthogonal rational systems (see e.g., Section 1.3). As a
consequence, a non-uniform sampling scheme of discrete-time series can be defined,
which was introduced by Schipp and Soumelidis et al. [SouSch02]. Based on their
paper, we give a numerical algorithm to determine the related discretization points
in Section 5.2.

1.3 Rational functions

In this section, we give a brief introduction to the theory of rational functions.
This topic establish a good foundation for signal modeling in Chapters 3–4 and
for numerical algorithms in Chapter 5.

Approximation theory and Fourier analysis give a basis for several applica-
tions in signal processing. Namely, one can reduce the redundancy of a signal by
decomposing it into independent components. Then, only the coefficients of the
representation need to be stored and can later be used for classification or detection
purposes. Orthogonal function systems such as trigonometric, Walsh [SchWad90],
wavelets [Dau92a] are preferred due to their low computational costs. Classical
orthogonal polynomials [Sze67] are also widely used in this field. These kinds of
polynomials can be regarded as a special type of rational functions whose poles are
all fixed at infinity. However, if the poles are taken in the extended complex plane,
we will eventually arrive at the theory of orthogonal rational functions [BulGon99].
These generalized orthogonal bases (GOB) have a wide variety of signal processing
applications [HeuVan05]. During the last ten years, the theory of rational func-
tion systems have been further extended by Adhemar Bultheel et al. [BulGon09],
Ferenc Schipp [FriGil13a; Sch14], Sándor Fridli [FriSch11; FriLóc12; FriGil13b],
Margit Papp [PapSch01; PapSch04] and Alexandros Soumelidis [SouSch02]. Al-
though there is a wide range of applications of these systems, we are focusing on
the main theorems only, which provide the building blocks of our work.



10 Introduction

Malmquist–Takenaka system

We recall that the Hardy space H2(D) is the collection of analytic functions
f : D→ C which are square integrable on D :

‖f‖H2 := sup
0≤r<1

(
1

2π

∫π

−π

∣∣f(reit)
∣∣2 dt

) 1
2

<∞ .

The radial limit function f(eit) := limr→1−0 f(re
it) also exists, which belongs to

L2(T), and ‖f‖H2 = ‖f‖L2(T) (see e.g., [Zyg59; Mór13]). Therefore one can define a
scalar product in H2(D) by

(1.12) 〈f, g〉 := 1

2π

∫π

−π

f(eit)g(eit) dt (f, g ∈ H2(D)) .

The scalar product induces the norm ‖.‖H2 on T. Furthermore, H2(D) is complete
with respect to the norm ‖f‖H2 =

√
〈f, f〉, i.e., in other words H2(D) is a Hilbert

space. In this sense, the best approximation exists for all the closed subspaces of
H2(D). In particular, if we have an orthogonal basis of H2(D), the closest element
of any subspaces can be computed via orthogonal projections. In order to achieve
this, let us first consider the set of rational functions R that are analytic on D.

This is a normed subspace of H2(D). If P denotes the set of polynomials, and
R0 = { r ∈ R : limz→∞ r(z) = 0 } is the set of proper rational functions in R, then
R can be decomposed as

R = span {P ∪R0} .

It can be shown by partial fraction decomposition that R0 is spanned by the system
of basic rational functions (RF):

ra,k(z) :=
1

(1− az)k
(a ∈ D \ { 0 } , z ∈ D, k ∈ N+) .

Parameter a is referred to as the inverse pole (because 1/a is the pole of ra,k
in the usual sense), while k is said to be the order of the basic function. Using
a terminology similar to the trigonometric case, the value k = 1 corresponds
to the fundamental tone and k > 1 to the overtones. It can be shown that
R0 = span {ra,k : a ∈ D \ { 0 } , k ∈ N+} . In other words, any function f ∈ R0 can
be written as

(1.13) f =

n−1∑

j=0

cjraj,kj ,

with appropriate inverse poles aj ∈ D \ { 0 } , multiplicities kj ∈ N+ and com-
plex coefficients cj ∈ C (0 ≤ j < n, n ∈ N+). In order to construct orthogonal
and biorthogonal rational functions, one can introduce the modified basic rational
functions (MRF):

ϕa,k(z) =
zk−1

(1− az)k
(a ∈ D, z ∈ D, k ∈ N+) .
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It can be shown that the functions ra,k and ϕa,k span the same subspaces of
R for a 6= 0, k ∈ N+. Now, let us consider the sequence of inverse poles and
multiplicities:

(1.14) b := (bk ∈ D, k ∈ N), ν := (νk ∈ N+, k ∈ N) ,

where νk counts the occurrences of bk in the segment b0, . . . , bk . Then, for a given
n ∈ N+ the subspaces of R generated by b can be defined as follows:

Rb
n := span

{
ϕb
bk,νk

: 0 ≤ k < n
}
, Rb :=

∞⋃

n=0

Rb
n ⊂ R ,

Note that the sequence ν and hence the subspaces Rb
n depend on the order of the

inverse poles in b . In addition, Rb is everywhere dense in the Hardy space H2(D),
if and only if the so-called Blaschke condition is satisfied [HeuVan05] :

(1.15)
∞∑

k=0

(1− |bk|) =∞ .

In this case, the system
{
ϕb
bk,νk

: k ∈ N
}

is closed in H2(D) , but it does not form
an orthogonal set. Hence, it is difficult to compute the ck coefficients in Eq. (1.13).
On the other hand, we can easily solve this problem by applying Gram–Schmidt
orthogonalization to the modified rational functions. The corresponding rational
function system is the so-called Malmquist–Takenaka (MT) system. A handy
property of the MT system is that the elements can be explicitly expressed by
Blaschke products. Taking the sequence of inverse poles b = (bk ∈ D, k ∈ N),

the MT system can be written as:

Φb
k (z) =

√
1− |bk|

2

1− bkz

k−1∏

j=0

Bbj(z) (z ∈ D , k ∈ N) .

Here, we used the simplified notation of the Blaschke function Bb for b = (b, 1) as
follows

(1.16) Bb(z) :=
z− b

1− bz
(z ∈ D) .

If Eq. (1.15) holds, the MT system is a generalized orthogonal basis in H2(D).
Indeed, one can have the trigonometric system on T by assuming bi = 0 for all
inverse poles, the Laguerre system if all the inverse poles are equal and real, while
the Kautz system can be derived by periodically repeating a complex conjugated
pair of inverse poles.

Finally, we note that the MT system is orthonormal with respect to the scalar
product in Eq. (1.12) which is defined on the torus T. Thus, in the dissertation,
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we restrict the functions f ∈ H2(D) to the unit circle (cf. Eq. (1.5)) by using the
following map

(1.17) [−π, π) ∋ t→ Re
(
f(eit)

)
, Im

(
f(eit)

)
.

In this sense, f becomes a function of real variable t ∈ [−π, π), which can be
interpreted as the time-domain. It is also worth mentioning that there exist ratio-
nal orthogonal systems on the plane with respect to the area measure on D. The
detailed analysis of the construction of these systems can be found in [FriGil13b].

Biorthogonal rational functions

By orthogonalization we obtain an orthonormal set of functions, but the time local-
ization property of the basic rational form has been lost. Fortunately, biorthogonal
rational functions (BRF) cure this problem. Let us consider a vector of inverse
poles b ∈ D

N (N ∈ N+). Suppose that b has n different entries which are

(1.18) a := (a0, . . . , an−1) ∈ D
n .

Set m := (m0, . . . ,mn−1) ∈ N
n
+, wheremk denotes the number of occurrences of ak

in the vector b (cf., Eq. (1.14)). Note that N = m0+m1+· · ·+mn−1.We will take
the system of modified rational functions {ϕa

ki : k ∈ N, 1 ≤ i ≤ mk } , where we
used the simplified notations ϕa

ki := ϕa
ak,i
. Then the corresponding biorthogonal

systems can be defined by using the functions below:

Ωℓn−1(z) :=
1

(1− aℓz)mℓ

n−1∏

i=0,i 6=ℓ
Bmi
ai
(z) ,

ωℓn−1(z) :=
Ωℓn−1(aℓ)

Ωℓn−1(z)
(0 ≤ ℓ < n) .

By Theorem 1 in [FriSch11] the following rational functions

Ψa
ℓj(z) :=

Ωℓn−1(z)(z− aℓ)
j−1

Ωℓn−1(aℓ)

mℓ−j∑

s=0

ω
(s)
ℓn−1(aℓ)

s!
(z− aℓ)

s ,

(0 ≤ ℓ < n, 1 ≤ j ≤ mℓ) are biorthogonal to ϕa
ki with respect to the scalar product

in Eq. (1.12). More precisely,
〈
Ψa
ℓj, ϕ

a
ki

〉
= δijδkℓ (1 ≤ i ≤ mk, 1 ≤ j ≤ mℓ, 0 ≤ k, ℓ < n) ,

where δℓk is the Kronecker delta symbol. Note that the previously defined rational
function systems are complete in H2(D), if and only if Eq. (1.15) holds. Then
a function f ∈ H2(D) can be approximated by the partial sums of its rational
Fourier series. Namely, for a given vector of different inverse poles a ∈ D

n and
multiplicities m ∈ N

n
+ we have

(1.19) SΨ,aN f :=

n−1∑

k=0

mk∑

i=1

〈f, Ψa
ki〉ϕa

ki .



1.3 Rational functions 13

Hereinafter, for a vector of different inverse poles a ∈ D
n with multiplicities m

we will consider the MT system that corresponds to the vector

(1.20) b := (a0, . . . , a0,︸ ︷︷ ︸
m0

. . . , an−1, . . . , an−1︸ ︷︷ ︸
mn−1

) ∈ D
N .

The corresponding MT expansion is as follows

(1.21) SΦ,bN f :=

N−1∑

k=0

〈
f,Φb

k

〉
Φb
k .

Now, let us consider the N dimensional subspaces of R :

Rb
N := span

{
Φb
k : 0 ≤ k < N

}
= Ra

N := span {Ψa
ki : 0 ≤ k < n, 1 ≤ i ≤ mk } .

Then, the operators SΦ,bN f : H2(D) → Rb
N and SΨ,aN f : H2(D) → Ra

N have the
following properties:

i) SΦ,bN and SΨ,aN are projections to Rb
N and Ra

N ,

ii)
〈
f− SΦ,bN f, g

〉
=

〈
f− SΨ,aN f, h

〉
= 0 (g ∈ Rb

N, h ∈ Ra
N) ,

iii) SΦ,bN f and SΨ,aN f are the best approximations in the subspaces Rb
N and Ra

N .

It is clear that the vector of inverse poles b in Eq. (1.20) and thus the correspond-
ing MT and BRF systems are defined if the vector of different inverse poles a and
multiplicities m are given in Eq. (1.18). If there is no ambiguity, we will use the
simplified notations SΦN, S

Ψ
N and Φk, Ψkℓ.

Real-valued rational functions

It is known that the complex trigonometric system
{
eint : t ∈ R, n ∈ Z

}
is a

complete orthogonal set in L2(T) . In addition, the statement also holds for the
real cos(nt) and imaginary parts sin(nt) of this system. Following this analogy,
we can have the same properties for rational functions as well. Namely, we restrict
the elements of the RF system to T in the same way as in Eq. (1.17) by

[−π, π) ∋ t→ Re
(
ra,k(e

it)
)
, Im

(
ra,k(e

it)
)
.

We will use these real valued rational functions in Section 3.3 to model the QRS
complex of an ECG signal. In order to construct real valued orthogonal rational
functions, let us consider a sequence of inverse poles a = (ak ∈ D, k ∈ N). Then
the MT system can be extended as

Φ−k(z) := Φk(z) (k ∈ N, z ∈ T) .

If a0 = 0 and Eq. (1.15) holds, the extended MT system remains orthogonal and
complete in L2(T) :

(1.22) 〈Φk,Φℓ〉 = δk,ℓ (k, ℓ ∈ Z) .
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Now, using the same constraints, the real valued MT system can be defined as
follows:

U0 := 1, V0 := 0, Uk := Re(Φk), Vk := Im(Φk), (k ∈ N+) .

Note that the system remained orthogonal, but 〈Uk, Uk〉 = 〈Vk, Vk〉 = 1/2 (k ∈
N+) . Then, for an f ∈ H2(T) the real valued partial sums of the MT–Fourier series
can be written in the form

Re SΦn f = 〈Re f,U0〉U0 + 2
n−1∑

k=1

(〈Re f,Uk〉Uk + 〈Re f, Vk〉Vk) ,

ImSΦn f = 〈Im f,U0〉U0 + 2
n−1∑

k=1

(〈Im f,Uk〉Uk + 〈Im f, Vk〉Vk) .
(1.23)

These types of the rational representations can be useful, especially when f ∈ L2(T)
is a real valued function, e.g., f is an analog signal. In this case f has non-
zero Fourier coefficients with negative indices, so it cannot be interpreted as the
elements of H2(T). Nevertheless, we can handle this issue by using the analytic
representation of real signals; that is to say we should compute the function F =

f+iHf, where H denotes the well-known Hilbert transformation. Then, Eq. (1.23)
remains valid for F ∈ H2(T) and the approximation of f is equal to Re SΦn F . The
detailed implementation of the complex and real valued MT system will be further
discussed in Section 5.1.

Discretization problem

Since our research interests include discrete time series, it would be evident to
use discrete orthogonal function systems as well. In this sense, we obtain an
interpolation procedure, i.e., the perfect reconstruction of the signal is possible at
these points. For instance, in case of the trigonometric system one can achieve
discrete orthogonality by using the uniform discretization of the torus T. The
points of uniform discretization can be received as the solutions of the following
equation:

(1.24) zn = ζn0 (ζ0 ∈ T, n ∈ N+) .

In particular, for ζ0 = 1 we get back the nth roots of unity:
{
ζk = e

2πik/n : 0 ≤ k < n
}
.

Once the discretization points are known, the Fourier coefficients can be effi-
ciently calculated by using the fast Fourier transform (FFT) introduced by Cooley
and Tukey in [CooTuk65], which can be generalized for constructing discrete or-
thogonal rational functions. More precisely, for a given vector of inverse poles
a := (a0, . . . , an−1) ∈ D

n, Eq. (1.24) can be generalized as follows

An(z) = An(ζ0) (ζ0 ∈ T, n ∈ N+) ,
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where An denotes the so-called Blaschke products

An(z) =

n−1∏

k=0

Bak(z) (z ∈ D) .

As we know from Section 1.2, these Blaschke products can be expressed by the
sum of their argument functions

An(e
it) = eiθa(t) (t ∈ R) ,

where

(1.25) θa(t) =
1

n

n−1∑

k=0

βak(t) (t ∈ R) .

Since the βak functions are continuous and strictly monotonic, there is exactly one
solution τk ∈ [τ0, τ0+2π) for every k = 0, 1, . . . , n−1 which satisfies the equation

θa(τk) = θa(τ0) + 2π
k

n
,

where ζ0 := eiτ0 . Now, the set of discretization points Tn and the corresponding
weight function ρn can be defined as follows

(1.26) Tn :=
{
eiτk : 0 ≤ k < n

}
, ρn(e

it) =
1

θ ′
a(t)

.

Finally, by Theorem 2 in [FriSch11] the corresponding MT system {Φk : 0 ≤ k < n }

forms a discrete orthogonal system on Tn . Namely,

[Φk,Φℓ]n = δk,ℓ (0 ≤ k, ℓ < n) ,

where [. , .]n denotes the discrete scalar product

(1.27) [f, g]n =
∑

z∈Tn

f(z)g(z)ρn(z) (f, g ∈ Rn) .

The same is true for a vector of different inverse poles a = (a0, . . . , an−1) ∈ D
n

with multiplicities m = (m0, . . . ,mn−1) ∈ N
n
+ :

[Ψℓjϕki]N = δijδkℓ (1 ≤ i ≤ mk, 1 ≤ j ≤ mℓ, 0 ≤ k, ℓ < n) ,

where N = m0+m1+ · · ·+mn−1 . We note that in Section 5.2 we give a numerical
method to compute the non-uniform discretization points Tn, which enables us to
use FFT type algorithms [Sch02] to determine the related MT–Fourier coefficients.
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Related works

The adaptivity of a system is very important for signal processing. On the one
hand, the error of the representation can be decreased by choosing optimal pa-
rameters for the system. On the other hand, they can be used as features in
classification tasks. A high level of compactness can be achieved in different ways.
That is why the well-known Hermite orthogonal polynomials were used by Sörnmo
et al. [SörBör81]. As far as we know, it was one of the first attempts to model
the QRS complexes of the ECG by using adaptive systems. The main concept
of this method was to exploit the shape similarity between Hermite polynomi-
als and QRS complexes. In order to increase the adaptivity, dilation parameters
were introduced via argument transformations of the fixed Hermite basis. It was
later used by Jané et al. [JanOlm93] to construct an ECG compression method.
Then, a recent study improved this algorithm by using discrete Hermite functions
[SanSab12]. Expert systems also applied these orthogonal bases in clustering QRS
complexes [LagPet00] and classifying heartbeats [HarEde04]. Additionally, other
classical orthogonal polynomials such as Chebyshev and Legendre polynomials
were used in modeling the QRS complex [GeoVal12]. We note that the construc-
tion of our work with rational functions is quite similar to the evolution of Hermite
based ECG processing methods. For instance, the MT system was first applied
in order to construct ECG compression methods [FriLóc12; LócKov12]. Then, we
modeled the QRS complex [FriKov12] by utilizing the shape similarities of the
elements of the basic RF system. The potentials of rational functions in QRS
detection was examined by Gilián et al. [GilKov14]. Furthermore, different types
of rational functions were adopted in EEG classification tasks like epileptic seizure
detection [KovSam14; SamKov14].

Although their evolutionary structures are similar, our approach is essentially
different from the Hermite based ECG processing methods. For instance, the
latter has only one degree of freedom (i.e., dilation) while the rational function
systems have an infinite number of free parameters (i.e., inverse poles). Since we
can have a high-dimensional search space, finding the optimal parameters is more
difficult. It also raises the need for more sophisticated optimization techniques
(see e.g., Chapter 2). Besides, various problems arise in case of rational functions.
Namely, the classical polynomial spaces PN become dense inH2 as the dimensionN
tends to infinity. However, the same is true for the subspaces of rational functions
Rb
N only if Eq. (1.15) holds. Furthermore, constructing quadrature formulas is

also difficult in case of rational functions. Indeed, in order to define Gaussian
quadrature formulas on the real line or Szegő type quadrature formulas on the
unit circle the zeros of rational functions should be simple and lie on R or T,

respectively. Unfortunately, it is not true for orthogonal rational functions. For
instance, in case of the MT system, there can be multiple zeros which lie inside D.

Appropriate abscissas can be obtained via quasi- and para-orthogonal systems, i.e.,
orthogonality conditions are not required for constants. Bultheel et al. [BulGon09]
introduced a unified approach via the so-called Cayley transform, which maps the
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extended real line to T and the upper half plane to D. They constructed rational
quadrature formulas via quasi-orthogonal and para-orthogonal systems by showing
that the zeros of these functions are simple and lie on T. We note that there is
another way to construct quadrature formulas for rational functions. Namely, one
can define rational interpolation via the non-uniform discretization points of Tn
(see e.g., Eq. (1.26)), which implies the construction of Gauss type quadrature
formulas. Moreover, it can be proved that these formulas have a maximal domain
of validity. For further details we refer to the paper [Sza04]. It is also worth
mentioning that a more general concept was introduced in [BulGon09] in order
to construct rational orthogonal bases. In this sense it is not only the system,
but the corresponding weight function can be changed. Hence, the number of
free parameters, i.e., adaptivity can be increased by using a sequence of varying
complex inner products. Although these results are beyond the scope of this
dissertation, it is in our interests to examine their efficiency in signal processing
applications. Classical orthogonal polynomials can also be generalized by using
rational weight functions [FisGol92]. These methods including different numerical
algorithms, quadrature rules and approximations techniques are summarized in
[Gau04]. Other transformations like Walsh functions [BerChi00], wavelets [Add05],
B-splines [KarMon97], etc., have also been applied in signal processing algorithms.
In Section 5.3 we give a detailed description and comparisons of these methods
along with rational function based approaches. Besides, we enumerate our motives
to use rational systems over the other transformation methods :

• flexibility in the sense that not only the coefficients but the system itself can
also be varied, which means that the base functions can be adapted to the
signal;

• the coefficients give a compressed representation of the signal, so they can
be used as features in further processing steps;

• the elementary waves are localized in time and the basic functions can carry
time-frequency information;

• this is a simple analytic representation of the original signal and thus the
whole set of analytic tools can be applied on the representation;

• only a couple of arithmetic operations are required to recover the signal;

• fast Fourier algorithms can be constructed, which provide efficient imple-
mentations.

As it was mentioned in the previous sections, the MT and the BRF systems have
orthogonal and biorthogonal properties in discrete sense as well. In this case, the
non-uniform discretization of T is defined by the argument function of Blaschke
products in Eq. (1.26). However, such interpolation processes can be constructed
on the uniform grid of T as well by using the discrete analogue of the Cauchy
integral formula. For further details, we refer to [PapSch04].





Chapter 2

Optimization

This chapter is about the optimization of the parameters of finite rational function
systems. Since such systems are defined by the collection of inverse poles with
multiplicities, the following parameters should be determined: the number, the
positions and the multiplicities of the inverse poles. A typical choice for such
optimization problems is Nelder–Mead simplex algorithm. In this specific case
[Lóc09], a bijection was used between R

2 and D for keeping the inverse poles inside
the unit circle. This is, however, a very artificial constraint, which comes from the
Euclidean geometry. We will show that the Poincaré model of the hyperbolic
geometry outlined in Section 2.1 is a more natural choice in this respect. It follows
from the hyperbolic model that the vertices of the simplex stay inside D without
any additional constraints. We note that this algorithm will be used in Section 3.3
for localizing the optimal inverse poles of the QRS model.

We note that the hyperbolic variants of the geometric operators needed for
dimensions higher than 2 are not trivial. We consider two approaches to address
this issue. Namely, the required operators can be defined via complex analysis
or analytic geometry. In this dissertation, we chose the former one because it
can be adapted to other optimization techniques like particle swarm optimization
(PSO) in Section 2.2. The corresponding hyperbolic Nelder–Mead algorithm was
published in [FriKov12]. Then the construction was applied to PSO [KovKir13] for
single and multi-pole systems as well. The approach based on analytic geometry
[Lóc13] uses geometric interpretations of hyperbolic lines and planes which become
circular arcs and spherical caps in R

3 . This way, the hyperbolic Nelder–Mead
algorithm can be extended up to 3 dimensions.

In the following section of this chapter we present a new optimization method
that applies to both the optimal positions and the number of the inverse poles. This
is justified by the fact that in previous works the number of the inverse poles were
fixed, and optimization algorithms were applied to the positions of the inverse poles
only. It is an important generalization of the previous methods, which provides
a more compact and adaptive representation of discrete signals. This way we
can utilize the well-known fact that smooth functions have better approximation
properties. In this context we refer to Jackson’s theorems in [Nat52], and the fact
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that the Fourier coefficients of such regular functions tend faster to zero. Hence,
the same level of accuracy can be achieved by keeping fewer terms in the (MT)
Fourier series. Then the problem is that we do not have a priori information about
the smoothness of the signal. A key point is that no such information is necessary
when we use the MDHPSO algorithm in Section 2.3. ECG signal compression is a
typical example for this problem, where abnormal heartbeats have more complex
waveforms in contrast with normal ones. Thus the latter ones can be represented
by fewer parameters in order to achieve the same level of accuracy. The developed
MDHPSO algorithm automatically adjusts these constraints.

In the final section, we perform the corresponding stability analysis with ex-
periments. We consider higher dimensional problems and test the previously men-
tioned optimization techniques on real and synthesized data. For this purpose, the
ECG signal generator in Section 3.1, artificial signals with random inverse poles
and the PhysioNet ECG database are used. We note that the cost function should
be evaluated only at some specific points of the simplex, and therefore the Nelder–
Mead algorithm can be faster than the PSO. On the other hand, the chance of
being trapped in a local extrema is higher in the first case. We remark that some
partial results for low dimensions can be found in [Lóc09].

The material of this chapter was published in [FriKov12; KovKir13].

2.1 Hyperbolic Nelder–Mead algorithm (HNM)

The Nelder–Mead simplex algorithm [NelMea65] is a fast and widely used deter-
ministic optimization search technique for multidimensional unconstrained mini-
mization. Despite its age it is still a very popular method for practitioners. It is
simple and does not contain differentiation. We note that there are only a few
results about the convergence properties of the Nelder–Mead algorithm. They are
under strict conditions and for dimensions ≤ 2 (see e.g., [LagRee98]). The method
is based on concepts and transformations in the usual Euclidean geometry. Con-
cerning the use of the original Nelder–Mead algorithm for finding the inverse poles
of rational functions, we refer to [Lóc09]. In this section we take the Poincaré
model on D of the hyperbolic geometry. Our reason for taking the hyperbolic
model is that we need to keep the inverse poles within the unit circle. We note
that the hyperbolic model turned out to be useful in system and control theories
as well (see e.g., [BokSch09]). In the Poincaré model the arcs intersecting the unit
circle perpendicularly and the diameters play the role of straight lines. They can
be described by means of the Blaschke functions. Namely, every hyperbolic line
can be given in a parametric form

(−1, 1) ∋ t→ Ba(t) ∈ B (a ∈ B) .

It can be shown that for any pairs w1, w2 ∈ D, w1 6= w2 there exist a unique
parameter a := (a, ǫ) ∈ B and a number p ∈ (0, 1) such that Ba(0) = w1,

and Ba(p) = w2. Moreover, the parametrization of the hyperbolic line connecting
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w1 and w2 is Ba, and Ba maps the interval [0, p] onto the hyperbolic segment
connecting w1, and w2. These parameters can be calculated as follows

(2.1) p = |Bw1
(w2)|, ǫ =

Bw1
(w2)

|Bw1
(w2)|

, a = −ǫw1 ,

where we recall that Bw1
= B(w1,1) (see e.g., Eq. (1.16)). The so-called pseudo-

hyperbolic metric on D is defined by

ρ0(z1, z2) :=
|z1 − z2|

|1− z1z2|
= |Bz1(z2)| (z1, z2 ∈ D) .

Then (D, ρ0) is a complete metric space which is invariant with respect to the
Blaschke transforms, i.e.,

(2.2) ρ0(Ba(z1), Ba(z2)) = ρ0(z1, z2) (z1, z2 ∈ D, a ∈ B) .

One can prove that the group of hyperbolic congruences can be identified with the
collection of the transforms {Ba : a ∈ B}. In particular, the geometric operations in
the Nelder–Mead algorithm can all be expressed in the hyperbolic plain by means
of the Ba functions. We note that the interval (−1, 1) itself is a hyperbolic line
in which the distance between the points −1 < q < p < 1 is

ρ0(p, q) =
p− q

1− pq
.

We take the 0p hyperbolic line segment as a special case. Let the hyperbolic
middle point of it be denoted by pF and let pT be the reflection of 0 with respect
to the point p. Then the following equations of second degree hold for them

pF =
p− pF

1− ppF
, p =

pT − p

1− ppT
.

It is easy to see that they both have a unique solution in (0, 1). For any hyperbolic
line segment w1w2 the middle point wF and the reflection wT of w1 with respect
to w2 can be be given in the form

Ba(pF) = wF , Ba(pT) = wT ,

where Ba is the parametrization of the hyperbolic line connecting w1 and w2 .

The hyperbolic version of the Nelder–Mead algorithm is designed to minimize the
functions of type F : D → R. In our problems related to the QRS complexes,
we will need the following variant of it. In order to define the main step of the
algorithm, let z1, z2, z3 belong to D and be indexed according to the relation

F(z3) ≤ F(z2) ≤ F(z1) .

Furthermore, let the middle point of the hyperbolic line segment z2z3 be denoted
by z0, and the hyperbolic reflection of z1 with respect to z0 by ze. Then a new
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Figure 2.1: Hyperbolic operations of the HNM algorithm.

point z ′ that depends on the value F(ze) will be defined. Finally, we replace z1
by z ′ (Case I.), or modify the original triple (Case II.) in order to have the new
triple of points. We note that in Case I. we define z ′ so that the condition

max{F(z2), F(z3), F(z
′)} < max{F(z1), F(z2), F(z3)}

holds for it.

Case I.:

a) If F(z3) ≤ F(ze) < F(z2), then let z ′ = ze.

b) If F(ze) < F(z3), then let z4 be the hyperbolic reflection of z0 with respect
to ze. This is illustrated in Fig. 2.1(a). Then by comparing the values F(z4)
and F(ze), the point z ′ is defined as follows:
If F(z4) < F(ze), then let z ′ = z4; otherwise let z ′ = ze.

c) If F(z2) ≤ F(ze) < F(z1), then let us take the middle point of the hyperbolic
line segment z0ze and denote it by z4. Provided F(z4) ≤ F(ze), let z ′ = z4;
otherwise turn to Case II. below.

d) If F(z1) ≤ F(ze), then let z4 be the middle point of the hyperbolic line
segment z0z1. Provided F(z4) < F(z1), let z ′ = z4; otherwise turn to Case
II. below.

Case II.: Let z ′1 be the middle point of z1z3. Similarly, let z ′2 be the mid-
dle point of z2z3. Then the triangle z1z2z3 will be replaced by z ′1z

′
2z3. This is

illustrated in Fig. 2.1(b).

It is easy to check that by this construction the condition made above for z ′ is
fulfilled. By repeating the steps, the triangle shrinks around the best vertex and
the process can be stopped when the desired accuracy is reached.

We note that generally the limit of the process may depend on the starting
triangle. So it should be chosen according to the nature of the problem. For
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instance, we have experienced that there are at least two local minima only when
it is applied for the record of an entire heartbeat rather than for the QRS complex,
and the process may converge to any of them. In that case we can ensure the
proper convergence by taking the initial values close to the expected limit. On
the other hand, our experiments showed that in case of QRS complexes and the
linear subspace La defined in Section 3.3, the minimum is unique and the process
converges to the point of minimum. Some of the theoretical results related to the
original Nelder–Mead algorithm in [LagRee98] can be applied to the hyperbolic
variant as well. For instance, non-degeneracy of the hyperbolic simplices and
convergence properties for strictly convex functions were proved in [Lóc13].

2.2 Hyperbolic particle swarm optimization

(HPSO)

Although HNM produced good inverse pole configurations, it turned out to be
unstable. In other words, it was sensitive to the initial conditions (i.e., the starting
points of the simplex). As a consequence, running the algorithm several times on
the same problem may result in different inverse poles (see e.g., Section 2.4). This
issue, which is well-known in optimization theory, is caused by being trapped in
local maxima or minima. In this section, we show that the well-known particle
swarm optimization (PSO) method is more appropriate for this problem.

Namely, we present an extension of the PSO algorithm based on the Poincaré
model of the hyperbolic geometry. We apply this method on ECG signals to
determine the optimal parameters of the rational function systems. For the sake
of simplicity, we are considering the simple two dimensional case first, where we
need to find only one inverse pole with predefined multiplicity. Thus, we need to
find the position of this single inverse pole for a rational system which minimizes
the ℓ2 error in Eq. (1.4). Then, we extend the method to multi-pole problems.
Finally, we apply the multi-dimensional PSO algorithm to determine the optimal
number of inverse poles as well.

Basic PSO algorithm

The basic PSO algorithm was introduced by Eberhart and Kennedy [KenEbe95] as
a population based stochastic optimization technique. The method was inspired
by the social behavior of bird flocking or fish schooling. The algorithm works
similarly to a swarm which is flying through the (problem) space while they are
looking for an optimal point (e.g., food). Both the swarm and its particles have
a memory, i.e., they can remember their own known global and personal best
positions, respectively. During the search process the swarm is navigated by these
optima. In case of n dimensional search spaces, the method is initialized with a
random population { xk ∈ R

n : 1 ≤ k ≤ S } , where S ∈ N+ denotes the size of the
swarm and each individual xk is a potential solution for the given problem. In
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this sense, it shows similarities to the Evolutionary Algorithms such as Genetic
Algorithm. For instance, in our case each particle xk represents an inverse pole
configuration. Generally, the PSO can also be considered as a special case of
the Monte-Carlo simulation where the initial random population is led by certain
points at each iteration. During the search process each individual xk ∈ R

n keeps
track of its position in an n dimensional search space related to the personal
ỹk ∈ R

n and global ŷ ∈ R
n best solutions so far achieved. In each step, both the

position and the velocity of the kth particle are updated as follows:

vk =c1r1 · (ỹk − xk) + c2r2 · (ŷ− xk) +w · vk ,
xk =xk + vk ,(2.3)

where the learning factors c1, c2 are predefined constants and r1, r2 ∈ (0, 1) are
uniformly distributed random numbers. The inertia weight w was introduced later
[ShiEbe98] in order to control the overall behavior of the swarm. For instance, one
can favor exploration by increasing the value of w . Arbitrary large jumps are usu-
ally inhibited in the search space. For this reason, the velocities and the positions
are restricted to a certain interval defined by the variables, Vmax, Xmin, Xmax. Note
that in further experiments, we use the algorithm by setting c1 := 1.5, c2 := 2 while
w is linearly decreasing from 0.8 to 0.2. For other strategies of the parameter se-
lection and convergence analysis, we refer to [Tre03; BerEng06]. The pseudocode
of the basic PSO algorithm Alg. 4 can be found in Appendix A.

In this section, we first adopt the PSO method to single-pole problems in
Eq. (1.4). For this reason, the particles contain only two coordinates related to the
real and imaginary parts of the inverse pole. Namely, if the algorithm terminates
in the ℓth optimal particle, then a0 := xℓ,1+ ixℓ,2 . In this case, the optimal inverse
pole and its multiplicity are ao := a0 ∈ D and m := m0 ∈ N+, respectively. Then
the corresponding MT system reduces to the following form

Φk(e
it) =

√
1− r2

1− rei(t−α)
· eikβa0

(t) (t ∈ [−π, π))

with (0 ≤ k < m0), where a0 = reiα, α ∈ [−π, π), r ∈ [0, 1) . Both the first
factor of this product and the argument function βa0 are translated in time with
the angle α (cf., Eq. (1.11)). Furthermore, the parameter r can be associated to
a kind of dilation operation. One can see an example of this property in Fig. 2.2,
which displays the real part of Φ0 related to inverse poles with various angles
and absolute values. Generally, the dilation and the translation operations can
be realized by the parameters (r, 1) ∈ B1 and (0, ǫ) ∈ B2 . This concept was also
applied to construct hyperbolic wavelets in [SouSch11a].

Hyperbolic PSO algorithm

As we know from Chapter 1, the inverse poles of the MT system should lie within
the unit circle. Hence, in order to apply the basic PSO algorithm to the single-pole
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Figure 2.2: Translation and dilation properties of the MT system with respect to
the position of the inverse pole.

optimization problem, we should restrict the search space to the open unit disc
D. This implies the idea to use the Poincaré model of the hyperbolic geometry.
Namely, we will replace the operators ·,+,− in Eq. (2.3) by hyperbolic multipli-
cation ⊙, addition ⊕ and subtraction ⊖.

Hyperbolic multiplication

Using the terminology of the Euclidean geometry, the vector scalar multiplication
of the hyperbolic space can be defined in a similar way. Namely, it means the
scaling of a hyperbolic vector by keeping its direction. In this case, the geodesics
of this space are represented by arcs of circles that are orthogonal to the torus.
Furthermore, as it was shown in Section 2.1, the hyperbolic segments can be defined
via the Blaschke functions. Hence, the hyperbolic vector −−−→w1w2 can be interpreted
as a directed line segment of Eq. (2.1) with Ba(0) = w1 and Ba(p) = w2. Let us
consider the scaling of a hyperbolic vector −−−→w1w2 by the factor λ ∈ R. In order to
determine the coordinates of the new endpoint, we should recall the definition of
the hyperbolic metric

ρ(z1, z2) := arth(ρ0(z1, z2)) (z1, z2 ∈ D) .

Then (D, ρ) is a complete metric space which is also invariant with respect to
the Blaschke transforms. Now, we should calculate the new wλ endpoint, which
satisfies the following equation

ρ(w1, wλ) = λρ(w1, w2) .

Using the identities of Eq. (2.1) for the segment −−−→w1w2 and adopting the invariance
of ρ0 in Eq. (2.2) for the hyperbolic metric ρ, the problem can be written as

arth(sλ) = ρ(0, sλ) = λρ(0, p) = λ arth(p) ,

where wλ = Ba(sλ). Reordering this equation, we can get

(2.4) sλ = th(λ arth(p)) .
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Figure 2.3: Hyperbolic operators.

In summary, the expression λ⊙−−−→w1w2 :=
−−−→w1wλ can be evaluated with Eqs. (2.1) -

(2.4) as wλ = Ba(sλ) for any λ ∈ R. Fig. 2.3(a) shows an example where the dashed
blue lines represent the original vectors while the scaled ones are marked by red
color.

Hyperbolic addition

According to the previous section the natural approach to define a hyperbolic
addition would be a proper interpretation of the parallelogram rule. Unfortunately,
this method cannot be used since the difference of two vectors −−−→w0w1 −

−−−→w0w2 is
usually not equal with the addition in the opposite direction −−−→w0w1+((−1)⊙−−−→w0w2)

in hyperbolic sense. One can see an example for this phenomenon in Fig. 2.3(b).
Here, z1 denotes the reflection of w2 onto w0, i.e.,

−−→w0z1 = (−1)⊙−−−→w0w2. Then the
hyperbolic difference of −−−→w0w1 −

−−−→w0w2 was constructed as −−→w0z2 =
−−−→w0w1 +

−−→w0z1.
As we mentioned, it is not equal to the translation of the vector −−−→w2w1. Moreover,
their magnitudes are also different: ρ(w1, w2) = 0.92 and ρ(w0, z2) = 0.46.

Hence, the proper definition of hyperbolic addition relies on the composition
of Blaschke functions. Namely, if a1 = (w1, 1) and a2 = (w2, 1), then by Eq. (1.7)

a1 ◦a2 = (w, ǫ), where w =
w1 +w2

1+w1w2
and ǫ =

1+w1w2

1+w1w2
. This can be interpreted

as a vector addition in the hyperbolic space for vectors with initial point at zero
(see e.g., [Hen74]). Therefore, in this section, we will use the following operators

−−→
0w1 ⊕

−−→
0w2 :=

−→
0w, where w =

w1 +w2

1+w1w2
(w1, w2 ∈ D) ,

−−→
0w1 ⊖

−−→
0w2 :=

−→
0w, where w =

w1 −w2

1−w1w2
(w1, w2 ∈ D) .
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Multi-pole extension

Although, we considered only the case of single-pole optimization in the last sec-
tions, it is easy to extend the method into higher dimensions. Dealing with multi-
pole problems, the optimal inverse poles ao = (a0, . . . , an−1) ∈ D

n should be deter-
mined for a signal f. Hence in Eq. (1.4) ‖.‖L2w = ‖.‖H2 , ao is the vector of inverse
poles and the functions Θao

k are associated with the elements of the corresponding
MT or BRF systems. However, describing rigid movements of the hyperbolic space
is a difficult task in high (3 <) dimensions. So, the geometrical approach cannot
be applied directly on multi-pole problems. Thus, we perform the optimization
separately on each inverse pole as

(2.5) aoi = arg min
ai

∥∥f− SΘ,an f
∥∥
H2 (i = 0, . . . , n− 1) .

In this sense, the original multi-pole problem is separated into single-pole opti-
mizations by applying successively the two dimensional hyperbolic PSO (HPSO).
However, Eq. (2.5) should be evaluated n times, it represents only one update
step of a certain particle. Note that the swarm cannot leave the unit circle during
the algorithm. It is a natural consequence of the hyperbolic model, which makes
the search space boundaries Xmin, Xmax used in the original Euclidean algorithm
unnecessary. Now, the positional updates of the kth particle in Eq. (2.3) can be
modified as follows

vk =c1r1 ⊙ (ỹk ⊖ xk)⊕ c2r2 ⊙ (ŷ⊖ xk)⊕w⊙ vk ,
xk =xk ⊕ vk ,(2.6)

A detailed review of the related hyperbolic operations and their applications
can be found in [Sch14]. Furthermore, the proper implementation of this algorithm
is based on [KovKir13]. In that article, we showed that the HPSO can outperform
other optimization techniques in terms of reconstruction error and stability. The
latter one proved to be important, especially when the MT system is used in
classification problems [KovSam14].

2.3 Multi-dimensional HPSO (MDHPSO)

Although PSO based algorithms are generally related to static environments, many
practical problems change dynamically, which highlights the adaptivity of the sys-
tems. The multi-dimensional (MD) PSO algorithm was introduced by Kiranyaz et
al. [KirPul11] to remove the necessity of setting fixed dimensions a priori. In order
to avoid this drawback, the native structure of the swarm was extended by dimen-
sional parameters. Thus, the particles can seek both positional and dimensional
optima. In order to adapt this concept to inverse pole optimization, we extended
the original algorithm (see e.g., Alg. 5) via hyperbolic operators. More precisely,
the update step of the kth particle is modified as follows:
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Position updates:

vdkk =c1r1 ⊙ (ỹdkk ⊖ xdkk )⊕ c2r2 ⊙ (ŷdk ⊖ xdkk )⊕ w ⊙ vdkk ,

xdkk =xdkk ⊕ vdkk ,(2.7)

Dimension updates:

vdk =[c1r1 · (d̃k − dk) + c2r2 · (d̂− dk) + vdk] ,

dk =dk + vdk ,

where [.] is the integer rounding operator. The main changes comparing to
Eq. (2.6) are the dimensional indices dk, d̃k, d̂ ∈ I, which denote the current,
personal and global best dimensions, respectively. In this case, every particle has
a certain position and velocity at each dimension. For instance, xdkk denotes the
position of the kth particle at the dimension dk ∈ I. In this dissertation, the index
set is I = {1, . . . , 30}, where the indices address the inverse pole configurations
in Tab. 2.1. In order to provide valid indices, we round dk to the closest integer
number and map it into I. Further details can be found in Appendix A. We note
that the best solution can also be determined in an exhaustive manner by applying
the basic PSO algorithm for each dimension. However, it highly increases compu-
tational costs, which is unacceptable, especially in real time applications. On the
contrary, the MDPSO can be interpreted as only two consecutive PSOs executed
on the positional and the dimensional search space, which significantly decreases
the computational complexity. For further details, we refer to [KirInc14].

The MDPSO was originally applied to evolve Artificial Neural Networks (ANN)
for supervised learning [KirInc09], where the weights and bias of the network
should be determined in order to minimize the classification error. Furthermore,
the complexity of the corresponding ANN is also important. Thus, the required
number of layers and neurons, i.e., the dimensionality should be minimized as
well. Using the same analogy, we can identify the number of different inverse
poles of the rational systems as the layers of an ANN and the multiplicities as the
number of neurons in a specific layer. More precisely, let us consider the vector of
different inverse poles a = (a0, . . . , an−1) and let m = (m0, . . . ,mn−1) represent
the vector of multiplicities. Additionally, the architecture space can be described
as the multi-layer perceptron (MLP) configurations in [KirInc09]. One can see
an example in Tab. 2.1, where each inverse pole configuration is assigned to a
dimensional index of the architecture space. Finally, we define the cost function
fαc of the optimization. Let us consider the case when Eq. (1.15) is satisfied. Then,
limN→∞

∥∥f− SΘ,aN f
∥∥
H2 = 0 for any f ∈ H2(T), where N = m0 +m1 + . . .mn−1 . In

other words, the approximation tends to be more accurate as the number of inverse
poles are increased. Thus, the MDPSO algorithm will always terminate in the
highest dimension (i.e., in the largest subspace). In order to avoid that, we compose
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Table 2.1: Architecture space of the MDHPSO.

Dimension index Configuration Dimension index Configuration
1 ( 8 ) 11 ( 4, 2, 2 )

2 ( 4, 2 ) 12 ( 6, 2, 2 )

3 ( 6, 2 ) 13 ( 8, 2, 2 )

4 ( 8, 2 ) 14 ( 4, 4, 2 )

5 ( 4, 4 ) 15 ( 6, 2, 2 )
...

...
...

...
10 ( 8, 8 ) 30 ( 14, 8, 8 )

fαc as the linear combination of the approximation error and the compression ratio:

PRD :=

∥∥f− SΘ,aN f
∥∥
H2∥∥f− f

∥∥
H2

× 100 , CR :=
2 · (n+N)

M
× 100 ,

fαc (PRD,CR) := α · PRD+(1− α) · CR (α ∈ [0, 1]) ,

where f is a discrete-time signal, f is the mean of f and M is the number of
samples. The approximation error is computed as the usual percent root mean
square difference (PRD). In addition, the compression ratio (CR) is proportional
to the number of inverse poles and coefficients n+N, which is multiplied by two,
counting both their real and imaginary parts.

In this sense, the approximation error is extended by using the CR as a penalty
term in higher dimensions. It means that a particle should provide much better
approximation if it wants to step into a subspace with higher dimension. In other
words, updating dimensions is only allowed when a certain amount of improvement
can be achieved. Furthermore, the PRD and the CR are inversely proportional to
each other. Thus, we can adapt the method to different applications by weighting
these measures via α.

Note that we extended the original algorithm by using the hyperbolic operators
⊕, ⊖, ⊙ in Eq. (2.7). For this reason, the modified algorithm is called MDHPSO,
where the cost function is adapted to inverse pole optimization problems. Fig. 2.4
shows an example where we apply the algorithm on BP, RESP, ECG and EEG
signals. As it can be seen, the method automatically adjusts the number of coeffi-
cients and the inverse poles to the complexity of the signal. For this reason, only
two inverse poles are used to represent the BP and RESP signals with 6 and 8
coefficients, respectively. In case of ECG and EEG signals the optimal dimension
of the architecture space is increased. Hence, it results in three different inverse
poles (i.e., 6 degree-of-freedom) with 10 and 18 coefficients.
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(d) EEG : m = ( 8, 6, 4 )

Figure 2.4: Approximation of different types of biomedical signals with α = 0.5

by using the first four channels of the record slp02a from the MIT-BIH/slpdb
database [GolAma00].

2.4 Pole stability analysis

The main goal of this subsection is to highlight the weaknesses of the original
(Euclidean) Nelder–Mead (NM) algorithm and to justify the application of other
optimization techniques including HPSO. For this reason, we use experiments to
show that the NM method can hardly localize the original inverse poles of the MT
system. On the contrary, HPSO has better pole identification properties.

NM algorithm

Compressing signals by using rational functions requires two phases. In phase
one we have to find a proper system of rational functions. Phase two is the
approximation in the corresponding linear subspace Ra

N. In phase one the original
NM algorithm is an effective method for finding the inverse poles of the rational
functions in question. However, the NM algorithm is not stable in the sense that
it may result in different inverse poles for the same problem, depending on the
initial values. Therefore, the NM algorithm for rational approximation of ECG
signals needs to be calibrated. In Section 3.1, we propose an ECG signal generator
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Figure 2.5: PRD of each inverse pole according to normal (left) and asymmetrical
(right) tests.

that can be very useful for this purpose. It produces realistic ECG signals which
are not affected by noise. We use this algorithm to test the stability of the NM
algorithm for synthesized ECG signals. The testing process consists of four steps:

1. Generate normal ECG curves as rational functions.

2. Apply the NM algorithm to find the inverse poles.

3. Approximate the generated ECGs using the inverse poles of step 2.

4. Compare the inverse poles of the original and the approximated curves of
step 1 and 3.

The problem with step one is how to directly create a realistic ECG curve by
inverse pole vectors and coefficients. This is when the method of Section 3.1 comes
into picture. Namely, we use our algorithm for generating a realistic ECG curve.
Then we apply rational approximation to represent it as a rational function. It is
clear that the way to control the ECG curve through poles and coefficients would
be more difficult than to set these parameters explicitly utilizing our spline ECG
model. Accordingly, a normal electrocardiogram was created by our polynomial
model and then we applied steps 2–3 to determine an appropriate inverse pole-
vector and coefficients for step 1. Now, we have a normal ECG curve that was
generated by rational functions, so we can continue the test by repeating steps
2–4.

Here, we used the same synthetic ECG dataset as in Section 3.2. In addition,
we use three inverse poles a = (a0, a1, a2) with multiplicities m0 = m2 = 1

and m1 = 2 . The middle pole is repeated twice in order to emphasize its role
in representing the QRS complex. Fig. 2.5 shows the PRD (see e.g., Eq. (3.2))
between the original and the approximated inverse poles. As it was expected,
the inverse poles which correspond to significant lobes (QRS, T) of the heartbeat
can be identified almost correctly. Namely, the error rate is less than 10% in
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Figure 2.6: PRD of the coefficient vectors in ℓ1 and ℓ2 norm according to normal
(left) and asymmetrical (right) tests.

most cases for a1 and a2 . However, it is not true for a0, which can have very large
PRD. Consequently, the simplex algorithm can result in very different inverse poles
with respect to the initial values. Note that a small displacement of the original
inverse poles can greatly change the rational system and thus the corresponding
coefficients of the representation. In order to visualize this problem, we computed
the coefficients of the rational representation with respect to the original a and
the optimized a + ∆a (find by NM) inverse pole vectors. Then, the PRD of
these coefficient vectors are calculated in ℓ1 and ℓ2 norms. As it can be seen
in Fig. 2.6, the coefficients are sensitive to the displacement ∆a of the original
inverse pole vector. Additionally, it causes higher error in case of asymmetric (i.e.,
more complex) waveforms. Thus, stabilization of the optimization is inevitable,
especially for classification problems of Section 4.2.

Another definition of stability is based on the theory of numerical analysis; that
is to say an algorithm is stable if it does not magnify numerical errors. Informally,
a method cannot provide significantly different output for small changes of the
input. Unfortunately, NM does not satisfy this requirement, because it is sensitive
to the initial conditions. This phenomenon can be seen in Fig. 2.7. Here, we run
the NM algorithm on the original data, which returns with an optimal set of inverse
poles (green dots). Then, we slightly modify one of these inverse poles by adding
0.1 to its imaginary part (black star). This is followed by the reinitialization of the
NM method using these modified inverse poles. The new set of predicted inverse
poles (red circles) can be seen in Fig. 2.7(a). Although we made a small change in
the initial conditions, the NM algorithm terminated in a very different optimum.
Fig. 2.7(b) shows the corresponding approximations, where we applied a small
vertical shift for better visualization. Note that the difference of the PRDs is less
than 1%, which is irrelevant for compression problems. However, changes of the
inverse poles remain a serious issue in case of classification tasks.
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Figure 2.7: Inverse pole predictions by NM for different initial conditions.

HPSO algorithm

In this section, we perform some experiments on the HPSO algorithm to test its
efficiency in various aspects. Our goal is to compare this method with the original
(Euclidean) NM method. Recall that the inverse poles were strongly dependent
on the initial conditions. For this reason, we test the stability of the inverse poles
and the approximation error for the HPSO.

In the first experiment, we generate 400 signals with random inverse poles and
coefficients. Then both algorithms are executed 100 times on each synthesized
signal. One can see an example in Fig. 2.8(a) and Fig. 2.8(b), which show the
resulted inverse poles on the same record. The original parameters are marked by
black squares. Moreover, Fig. 2.8(c) displays the average error of 100 executions
for all the 400 signals. One can see that the stability of the inverse poles is about
twice as good as that of the HPSO algorithm.

In the second experiment we test the approximation error of both optimization
methods. For this purpose, we use the MIT-BIH Arrhythmia Database from Phy-
sioNet [GolAma00]. Namely, the first 3 minutes of each ECG record is segmented
into heartbeats. Then these beats are approximated by using HPSO and NM algo-
rithms (overall run > 9000). Relying on former research on ECGs [FriLóc12], we
chose 3 inverse poles with multiplicities m0 = m2 = 2,m1 = 4. Fig. 2.8(d) shows
the average error of each ECG record, where the approximation error is measured
in PRD.

Although the HPSO is slightly better than the NM algorithm, the difference
is not significant. For this reason, we conclude that the inverse poles of HPSO
are more stable while the approximation keeps its accuracy. Note that it is of
great importance in case of classification tasks. Namely, it is a natural assumption
to extract similar features (e.g., inverse poles and coefficients) for similar signals.
However, it is not guaranteed with the NM algorithm. On the other hand, HPSO
proved to be better in this sense, which makes it is possible to use the inverse poles
and coefficients as features, for instance in ECG beat classification.
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Figure 2.8: Experimental results on synthetic and real data.

It is worth mentioning that the performance of PSO type algorithms are depen-
dent on the starting positions of the particles, which is crucial especially in higher
dimensions. For instance in [RicVen04] the swarm was initiated by using centroidal
Voronoi tessellation, which makes the starting positions more evenly distributed
in the search space. It was also shown by experiments that the performance of the
PSO algorithms can be improved by using this scheme in high-dimensional search
spaces. Although this topic is beyond the scope of the dissertation, extending
these results to hyperbolic variation of the Voronoi tessellation and HPSO is an
interesting question.

Conclusions

We have extended the basic PSO algorithm to hyperbolic spaces by using the
Poincaré disk model. The particles of this method move inside the unit circle,
which does not require additional conditions like Xmin and Xmax. The algorithm
is able to construct good approximations with better inverse pole stability. We
will also use this property in Chapter 4 in order to extract features for EEG
seizure detection problems. Furthermore, we showed by experiments that the
HPSO outperforms the NM algorithm in every aspect (stability, approximation



2.4 Pole stability analysis 35

error), except for the execution time, which depends on the size of the swarm.
For instance, in case of n dimensional search spaces, the NM method evaluates
the objective function at only 1, 2 or n + 2 points when termination occurs in
Case I. and Case II., respectively (cf., Section 2.1). On the contrary, we used 20
number of particles in our HPSO experiments. Of course, this drawback of the
algorithm can be improved by applying parallel implementations. Since there is an
isomorphism between the Poincaré disk and the Beltrami–Klein model, Alg. 4 –
5 in Appendix A can be further extended to the latter model as well (see e.g.,
[Gre93]). In Section 2.3, the MD PSO scheme is also adopted for optimizing
rational functions via hyperbolic geometry. In this sense, a good approximation
can be achieved without using any types of a priori information. Moreover, it is
possible to determine not just the positions of the optimal inverse poles, but the
multiplicities and the best number of different inverse poles as well. We note that
Section 5.3 gives a comparative analysis of different ECG compression methods.
In these experiments, we used the original NM algorithm. Our expectation is that
the results can be further improved by applying MDHPSO.

It is worth mentioning that the problem in Eq. (1.4) can be solved by using
constrained optimization techniques as well. These methods can be classified into
two categories, derivative-free methods, and methods involving derivatives of the
objective function. In our case, signals are regarded as discrete-time series, con-
sequently the derivatives are not available. In order to overcome this problem,
one can use derivative-free algorithms such as sequential quadratic programming
(SQP). The SQP methods optimize the quadratic model of the objective function
(or its Lagrangian) at each iteration. The process requires the approximation of
the gradient vector and the Hessian matrix, which can be computed via divided
differences and quasi-Newton methods. Although there exist several variants of
these algorithms, non of them turn to be the best in every respect. We refer
to a recent study [RioSah13], in which 22 leading software implementations of
derivative-free methods are analyzed. The motivation why we used MDHPSO in-
stead of the available state-of-the-art methods was that it is able to determine also
the optimal number of free parameters (i.e., inverse poles) while it avoids brute-
force executions. We have no knowledge about any other algorithms by means of
which that optimization is possible. Comparison analysis of the MDHPSO and
the existing optimization methods will be a subject of a future work.





Chapter 3

ECG signal modeling

In this chapter we address two problems. First we develop an electrocardiogram
(ECG) signal generator based on spline interpolation. Data simulation is an im-
portant task, especially when test data is not available. In addition, it is a useful
tool for comparing signal processing algorithms using different constraints. For in-
stance, in case of ECG compression methods preserving clinical features is crucial.
Hence, these techniques are usually validated by medical experts in the literature,
which is an expensive and time-consuming protocol. This problem can be avoided
by using synthesized data with known characteristics. It is worth mentioning that
there are other examples in the literature where artificial signals are used. Namely,
McSharry et al. [McSCli03] proposed a dynamical model called ECGSYN to gen-
erate synthesized ECG signals. It is an open source program built in PhysioNet
[GolAma00]. Another example is a former paper of Quiroga et al. [QuiNad04]
where they simulated neuronal spike activity for clustering purposes.

To test our model developed in Section 3.1, we need to measure the reconstruc-
tion error. There are different ways to evaluate the distortion of the reconstructed
signal. We will use the so-called PRD and WDD measures. PRD expresses the
numerical error of the approximation and WDD imitates the diagnostic distor-
tion. The disadvantage of WDD is that the medical features (wave amplitudes,
widths, shapes, etc.) contained in it are hard to detect, especially in case of noisy
signals. An important application of the signal generator is that by using it, the
WDD distortion properties of the various approximation methods can be directly
calculated and compared. Thus, our approach is more appropriate for comparing
ECG compression algorithms via WDD than the previously mentioned methods
like ECGSYN. As a result, we can characterize the diagnostic distortion of the
rational ECG representation as well. It is one of the main contribution of this
chapter since there were no such experiments before.

The second problem, which we consider in Section 3.3, is to construct a QRS
model based on elementary rational functions. It is worth mentioning that there
are other QRS models which utilize approximation theory in Hilbert spaces. For
instance, Sörnmo et al. [SörBör81] applied Hermite functions to represent the QRS
complex. Later, Georgiev et al. also used Legendre and Chebyshev polynomials in



38 ECG signal modeling

[GeoVal12]. Then, Sandryhaila et al. [SanSab12] extended the basic Hermite model
to discrete dilated orthogonal functions. Our concept is completely different, since
we are modeling all the limb leads. Therefore, it is essential to reveal a relation
between optimal inverse poles of different leads.

In this chapter the results of the publications [Kov12; FriKov12; LócKov12] are
summarized.

3.1 ECG signal generator

Heart functioning is associated with electric activity of the heart over time. This
causes electrical changes on the human skin, which is amplified and measured by an
ECG device. For this purpose electrodes are placed over the surface of the human
body according to a prescribed arrangement. Then the electric voltage between
two of them is measured. Each pair is called lead and they detect the same electric
heart activity but from a different angle. The 12-lead ECG, in which 12 different
electrical signals are recorded, are the most widely used. The role of digital signal
processing in ECG analysis is to help cardiologists to detect and diagnose diseases.
Compressing, transferring and making automated diagnosis of multi-lead record-
ings by devices with narrow bandwidth is also important, especially for patients
who require 24 hours of observation, for instance Holter monitoring.

Many algorithms have been constructed to analyze, measure and compress
ECGs. Generally, there are two different ways to test these methods. The first one
is to use large ECG databases such as PhysioNet to compare the algorithms. Un-
fortunately, the real ECGs are usually affected by several types of noise [FriJan90],
which makes it difficult to validate the accuracy of the tested procedures. How-
ever, using synthetic realistic ECG signals can be advantageous, especially when
we want to compare different signal processing techniques. In contrast to real ECG
signals, we can apply and evaluate our methods either on realistic and noise-free,
or on distorted signals.

In this section, we generate signals similar to those corresponding to lead II,
which is the voltage between the right arm and the left leg. By taking advantage of
separating diagnostic and geometrical properties, we may construct a model that
is flexible and well parametrized by each heartbeat. Namely, in our interpretation
ECG signals are curves with prescribed parameters, including base knots, deriva-
tives, curvature which give a strictly mathematical control over the signal. We note
that Clifford, McSharry and their coauthors [McSCli03; CliAzu06; SaySha10] car-
ried out a similar program based on a dynamical model. This method controls
the characteristics of the synthesized heartbeat via interwave (PQRST) timings,
widths and amplitudes. On the other hand, it is not enough to model all the pos-
sible diagnostic distortions of a heartbeat. Our approach is essentially different.
We use both diagnostic and geometrical features to generate synthetic ECGs.
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Figure 3.1: Main ECG characteristics of a heartbeat.

ECG morphology

An ECG signal can be segmented into heartbeats. Each heartbeat consists of five
standard waves labeled with the letters P, Q, R, S, T. These waves indicate the
depolarization and the repolarization phases of heart muscles. Besides, five more
interwave timings called PR, PR segment, QRS, QT, ST segment are used. These
intervals are indicated on Fig. 3.1. Now we give a brief introduction about the role
of these clinical features:

P wave: P waves are usually a low-amplitude feature that represent the depo-
larization of the atria prior to atrial contraction. They are hard to detect,
but important to distinguish various cardiac arrhythmias.

QRS complex: It reflects the depolarization of the ventricles. This is the most
significant wave of the ECG due to the large muscle mass of the ventricles.
It can be easily detected and it is often used to determine the heart rate.

T wave: The T wave represents the repolarization of the ventricles. It is a
recovery phase of the cardiac muscle. The shape of this wave carries a lot
of information about cardiac abnormalities, which is why it is important to
analyze its geometrical properties such as symmetry, asymmetry and slope.

PR segment: The PR segment is the flat, usually isoelectric segment between
the end of the P wave and the start of the QRS complex. Most of the delay
in the PR segment occurs in the AV node.
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PR interval: It is the time elapsing between the beginning of the P wave and
the beginning of the next QRS complex. It reflects conduction through the
AV node1.

ST segment: It represents the period from the end of ventricular depolarization
to the beginning of ventricular repolarization. ST level shifts are significant
markers of cardiac abnormalities.

QT interval: It represents the time between the start of ventricular depolariza-
tion and the end of ventricular repolarization. The QT interval is inversely
proportional to heart rate: shortens at faster heart rates and lengthens at
slower heart rates.

There is one more feature, the so-called J point that will be used as a control point
in our model. The J point has no standard definition. An informal definition in
Chapter 10 of [MorBra08] states that “it is the point where the QRS ends and the
ST segment begins”. A more formal definition in [CarGam02], [Gol06] says that “it
is the first point of the inflection on the upstroke of the S wave”. In our model the
J point is represented by the knot x11, which can be chosen as an inflection point.
In addition, we calculate the length of the ST segment from this point. Thus, our
model can satisfy both of the aforementioned medical definitions.

Mathematical Model

One way to synthesize the electrocardiogram is to use dynamical models
[McSCli03; SaySha10]. In this case the ECG curve represents a trajectory de-
termined by a differential equation related to the appropriate dynamical system.
This model has the advantage of well parametrization, robustness and filtering
properties. It is also possible to generate long-term recordings such as 24-hour
Holter ECGs by taking into account the heart rate variability. Namely, the heart
rate may be significantly influenced by sympathetic and parasympathetic2 activ-
ities. For instance, the heart rate increases and decreases during inhalation and
exhalation, respectively. This phenomena is called respiratory sinus arrhythmia
(RSA). In a dynamical model RSA can be treated and parametrized as well, mak-
ing the synthesized electrocardiogram more realistic. For proper algorithms and
further analysis see e.g., [McSCli03; SaySha10].

1There are two important nodes in the heart, the sinoatrial and the atrioventricular node. The
former is the physiological pacemaker of the heart that is responsible for triggering the heartbeat.
The latter is a part of the electrical control system of the heart which has to delay the cardiac
pulses, so that the atria can contract completely before the ventricles begin contracting.

2Sympathetic and parasympathetic systems are the main parts of the autonomic nervous
system. The first one is supposed to prepare the human body for stressful times, sudden loads,
to generate energy and to pump more blood to the brain, to the muscles and to the lungs. The
second one is responsible for storing energy and enhancing digestion.
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Our approach is an interpolation method. More precisely, we employ piece-
wise polynomial interpolation based on 15 control points. This approach has the
following benefits:

• Geometrical parameters of the curve can be adjusted from segment to seg-
ment.

• We are able to set diagnostic parameters of the ECG irrespectively of its
geometrical parameters.

• It is possible to use error measures based on different ECG features like
diagnostic intervals, amplitudes, etc.

Polynomial interpolation

We control one heartbeat from the electrocardiogram through 15 base points.
Denoting these points by x1, . . . , x15, we have to find the spline S that satisfies the
following equation:

(3.1) S(i)(xk) = f
(i)(xk), (k = 1, . . . , 15; i = 0, 1, 2),

where f : R → R is a time-varying function that represents the ECG curve. The
problem can easily be solved by the classical Hermite interpolation method. The
main question to be answered, is how to choose the base points? Of course, they
must be correlated with the diagnostic parameters, because they determine the
diagnostic intervals and the wave amplitudes of the ECG. For this reason, we use
the standard points of the electrocardiogram characterized by special geometrical
properties. Fig. 3.1 shows the end points of the segments of a heartbeat, the
extrema and the inflection points.

It follows naturally from our model that the endpoints of the diagnostic sub-
intervals and the points of local extrema must be base points. This way 13 control
points are set. It turned out that additional base points should be taken if we
want to preserve the geometrical properties, such as the curvature of our signal.
Then the problem is twofold. On the one hand, we need to find sufficient proper
control points, whereas on the other hand, we need to minimize their number in
order to keep the model as simple as possible. Our experience showed that certain
inflection points play a key role in this respect. In case of ECG signals a typical
inflection point of this type appears in the QRS complex. That point is indicated
by a star in Fig. 3.1. Yet another control point is necessary in order to describe
the P wave. All the possible P wave shapes can be found in [ZigCoh00] and some
of them are presented in Fig. 3.2. The corresponding new control point is marked
by a square in Fig. 3.1.

After having set the control points, we must specify the order of interpolation
at these points. Based on geometric considerations given above, the values of
the function, the first and the second derivatives will be described at the inner
control points. So in this model we have 15 base points and 3 values associated
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Figure 3.2: The first five shape models for the P wave.

to each of them. It means about 3 × 15 amplitudes and another 15 positions,
which makes it complicated at first sight. However, these parameters cannot be
chosen arbitrarily if we want to generate a realistic ECG signal. For instance, the
ECG curves are not affected by noise in our model, so we might as well set the
baseline to zero. It means that the values at 8 control points are equal to zero.
Similarly, the tangents are zero at all the 5 extreme points. Moreover, we can set
the range of the amplitudes and the interwave timings automatically. We took
the data constraints from Tab. 3.1 in [CliAzu06]. This way the complexity of the
problem can be reduced.

We will distinguish diagnostic and geometric parameters. Namely, the 15 di-
agnostic parameters can be divided into two classes. The first group contains the
diagnostic intervals: PR interval, PR segment, QRS, QT, ST segment. Fig. 3.1
was generated by our program and it shows the onsets and the offsets of each
interval related to the base points. The second class includes the positions and the
amplitudes of the P, Q, R, S, T waves.

Tangents and curvatures are the geometric parameters. They can be set at
some but not all of the base points. For instance, the curvature is set only at
the extrema, but the tangents can be varied at all of the non-extreme points.
Furthermore, at the endpoints, x1, x15, we demand only interpolation constraints.
Thus, the variable parameters are summarized in the list below

S(xk) = f(xk) (k = 1, 15),

S(i)(xk) = f
(i)(xk) (k = 2, 4, 5, 6, 8, 11, 12, 14; i = 0, 1),

S(i)(xk) = f
(i)(xk) (k = 3, 7, 9, 10, 13; i = 0, 2).

ECG profiles

Qualifying ECG signal processing methods requires databases with a high amount
of test signals. In order to generate such data, we need to vary our parameters.
In addition, we have to keep the typical geometrical and diagnostic properties
related to the actual ECG class. Therefore, we define the ECG profile by means
of the upper and the lower bounds of the parameters. These bounds are typical of
certain kinds of cardiac abnormalities. This way we can define profiles for several
types of diseases using their medical statistics. Then we can generate different
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Table 3.1: Parameters of the ECG model.

P Q R S T
Amplitudes (mV) (0.1,0.2) 0.20 (1,2) 0.25 (0.1,0.5)
Positions (1/2,20) (1/4,10) (2/4,10) (3/4,10) (1/2,20)
Tangents (0,0) (0,0) (0,0) (0,0) (0,0)
Curvatures (-30,0) (90,100) (-100,0) (-10,100) (-70,0)

PR int. PR seg. QRS ST seg. QT int
Intervals (secs) (120,200) (50,120) (80,120) (80,120) (300,430)

realistic ECG signals of a certain type by randomizing the parameters between
these bounds, whereas all of them carry the same diagnostic information.

In order to declare a new profile, we should give lower and upper bound pairs
including the positions of the base points. The length of the diagnostic intervals
and the amplitudes are given in milliseconds and in millivolts, respectively, except
the amplitudes of the Q and S waves. Namely, these negative deflections are
given in the percentage of the amplitude of the R wave. Tab. 3.1 shows the
parameters of a normal ECG profile where the positions in the second row refer to
the horizontal alignment of the wave peaks. These values are randomly generated
from an Ik (k = 1, . . . , 5) interval for each wave. The first element of the pair sets
the center of each Ik, which is related to the right diagnostic interval that contains
the wave. For instance, the first number of (1/2, 20) at P means that the center
of the interval I1 has been set to the middle of the P wave. The second parameter
sets the length of I1 to 20 milliseconds. The parameters of the Q, R, S, T peaks
are interpreted in a similar way. The constraints of x4, x8 (i.e., red star and square
in Fig. 3.1) are calculated automatically via divided differences of the adjacent
knots x3, x5 and x7, x9, respectively. We note that at the other control points the
tangent and curvature are fixed to be zero in this profile. The correct amplitudes
and interwave timings were adopted from Section 3.3 in [CliAzu06]. The proposed
algorithm was implemented in Matlab. A brief introduction of the program with
examples can be found in the Appendix B.

3.2 ECG quality measures

Comparison analysis of ECG signal processing algorithms can be performed with
respect to various definitions of distortion. There is a wide range of them which
are classified into two groups, namely numerical and diagnostic distortions. The
former one contains simple arithmetic operations, which provides a fast comparison
of different algorithms in the sense of the reconstruction error. On the other hand,
these methods are distributing the error equally among all portions of the ECG
signal. It is a serious problem, since the ECG segments possess different diagnostic
relevance. For instance, the same amount of numerical error in the QRS and in
the P wave does not imply the same diagnostic distortion of the ECG. In order to
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Table 3.2: Prediction ranges of WDD and PRD.

Measure
Quality groups

Very good Good Not good Bad
WDD (%) 0-2.3 2.3-12 12-18 18-40
PRD (%) 0-2 2-9 9-19 19-60

cure this problem, clinical observations are integrated with numerical measures. A
detailed review of these methods can be found in [AlF06].

The percent root mean square difference (PRD) is one of the most general error
measure:

(3.2) PRD =

∥∥f− SΘ,aN f
∥∥
L2w∥∥f− f

∥∥
L2w

× 100 ,

where f is the mean of the signal, f is the original signal with M samples, SΘ,aN f is
the reconstructed signal. Note that the results are independent from f since it was
eliminated from the denominator. Although it is easy to compute the PRD error,
this formula neglects the diagnostic features of the electrocardiogram. However,
we also have to measure the degree of distortion of the reconstructed signal in
terms of the relevant diagnostic information. This is why the so-called Weighted
Diagnostic Distortion (WDD) was introduced:

(3.3) WDD(β, β̂) = ∆βT · Λ

tr[Λ]
· ∆β× 100 ,

where ∆β is the normalized difference between the original and the reconstructed
feature vectors β, β̂ and Λ is a diagonal matrix of weights. Each feature vector
consists of 18 elements which are composed of diagnostic intervals, wave ampli-
tudes and wave shapes. In [ZigCoh00], a qualitative analysis of the WDD measure
is also provided. More precisely, a large amount of real ECG data was evaluated
by cardiologists and their mean opinion score (MOS) was compared to the WDD
and PRD of the corresponding signal. Then, four quality groups were associated
to different WDD and PRD ranges, which are summarized in Tab. 3.2. On the
one hand, the WDD correlates very well with the MOS of the clinical experts. On
the other hand, there is no standard code for practical applications. Besides, the
measure is unstable due to the requirement of accurate classification for charac-
teristic features of real ECG signals. In order to cure this problem, we decided to
use synthetic ECG data in our experiments.

Experiments

In contrast to the dynamical model [McSCli03], our method can control all the
diagnostic features that are required to compute the WDD. So we can test and
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Table 3.3: Asymmetric parameters of the ECG model.

P Q R S T
Positions (3/4,10) (2/8,10) (6/8,10) (7/8,10) (1/4,10)

PR PR seg. QRS ST seg. QT
Intervals (secs) (130,170) (40,40) (80,120) (80,120) (300,430)
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Figure 3.3: The average PRD and WDD error over 100–100 synthesized signals
including normal (left) and asymmetric (right) ECGs.

compare the performance of ECG processing methods on one heartbeat by ran-
domizing the relevant parameters. We performed two tests with different ECG
parameters. First, we used our method to generate normal electrocardiograms
and test the accuracy of the MT rational approximation. In the second case, we
synthesized ECGs with asymmetric waveforms by changing the corresponding pa-
rameters of Tab. 3.1 to Tab. 3.3. Note that only 3 inverse poles were used to
generate the MT system. However, inverse poles can be repeated periodically to
make the approximation more accurate. Each test consists of 100 synthesized ECG
signals sampled at 256 Hz and compressed under different periodicity conditions.
Comparison of the original and the reconstructed signals in PRD and WDD can
be seen in Fig. 3.3. As we expected the MT reconstruction is more sensitive to
the asymmetries of the original signal. However, the PRD can be reduced to an
acceptable level (< 5%) by repeating the poles periodically at least 5 times. In
this case, the compression ratio related to one beat is 36/256 because we have 15
complex coefficients and 3 complex inverse poles. Moreover, according to Tab. 3.2,
the MT reconstruction is of high quality since the WDD is less than 2%.

Conclusion

We have presented another method for generating electrocardiograms that are
used to replicate many of the important features of the human ECG. We have
shown how to synthesize ECG signals with the same diagnostic but different ge-
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ometrical parameters and vice versa. In particular, we have demonstrated that
the polynomial approximation can serve as an efficient method for ECG model-
ing. Depending on the positions of the base points, the procedure can be used
to compare the accuracy of different signal processing methods via feature based
measures like WDD.

Further research is required on simulating cardiac abnormalities which can
serve as a tutorial for medical students. In this case, it is worth extending the
model by additional base points and new ECG profiles to describe certain types of
diseases. An additional question to be answered is that of synthesizing multilead
ECGs.

3.3 QRS modeling

In this section, our aim is to provide a simple mathematical model for explaining
and demonstrating the relation between different ECG records (i.e., leads). To
this end, the electrode combinations I, II, III, aVR, AVL, aVF will be considered.
For these leads the corresponding electrodes are coplanar and therefore we may
use a two dimensional model for representing the relation between the records.
The model we construct is based on elementary rational functions having a single
inverse pole of second order. We show that the same inverse pole turns to be
optimal for each of the electrode combinations. To find the optimal inverse pole, we
have developed the hyperbolic version of the Nelder–Mead algorithm in Chapter 2.
We also show that if we extend the function space by adding the elementary
rational functions with the same inverse pole of order one, three and four, etc.,
then a good approximation of QRS complexes can be given for all records.

The mathematical model of the QRS complex

The QRS complex is of special diagnostic importance in the analysis of ECG
signals. In our model they will be represented by means of basic rational functions.
Namely, for an inverse pole a ∈ D we take the restriction of ra,2 onto T and
decompose it into real and imaginary parts

ra,2(e
it) = Ua,1(t) + iUa,2(t) (t ∈ R, a ∈ D) .

Then the QRS complexes will be modeled as proper linear combinations of
Ua,1(t), Ua,2(t), and the constant function Ua,0(t) = 1. In other words the QRS
complexes will be modeled by the elements of the three dimensional linear subspace

La := span {Ua,k : k = 0, 1, 2 } .

The role of the constant function is basically normalization. It has no effect on the
shape of the curve. Therefore, it has no morphological importance. This means
that our model is essentially two dimensional–in other words–a planar one. This
modeling of course implies that also the QRS complexes should be interpreted
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as real functions defined on an interval of length 2π. Thus, the preprocessing of
the QRS signals is necessary, which will be described in the experiments. If the
inverse pole a is fixed, i.e., the subspace La is given, then the approximation will
be the Fourier projection of the QRS generated functions onto the subspace. To
this order it is convenient to have an orthonormal basis in La, which is quite easy
to obtain in this case. Namely, if a ∈ D is given in Euler form a = reiα, then by

1

(1− az)2
=

∞∑

k=0

(k+ 1)(az)k

=

∞∑

k=0

(k+ 1)rk(cos(k(t− α)) + i sin(k(t− α))) (z = eit)

we have

Ua,1(t) =

∞∑

k=0

(k+ 1)rk cos(k(t− α)) , Ua,2(t) =

∞∑

k=0

(k+ 1)rk sin(k(t− α)) .

Hence it follows immediately that the functions Ua,0, Ua,1−Ua,0, Ua,2 are pairwise
orthogonal with respect to the usual scalar product in L2(T). Consequently, this
triple forms a basis in La. Taking the norm induced by the scalar product in
Eq. (1.12), we have

‖Ua,1 − 1‖2 = ‖Ua,2‖2 =
1

2

∞∑

k=1

(k+ 1)2r2k .

We can express it in a closed form by considering

d

dz

z

(1− z)2
=

1+ z

(1− z)3
=

∞∑

k=1

k2zk−1 .

Namely, by substituting z = r2, we obtain

∞∑

k=1

k2r2(k−1) =
1+ r2

(1− r2)3
.

Hence,

N2(r) := ‖Ua,1 − 1‖2 = ‖Ua,2‖2 =
1

2

( 1+ r2

(1− r2)3
− 1

)
.

Then the orthonormal basis we will use in La is

ua,0 := Ua,0 = 1 , ua,1 :=
Ua,1 − 1

N(r)
, ua,2 :=

Ua,2

N(r)
,
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which can be written in an explicit form as follows

ua,1(t) =

√
2

1+r2

(1−r2)3
− 1

(
1− 2r cos(t− α) + r2 cos(2(t− α))

(1− 2r cos(t− α) + r2)2
− 1

)
,

ua,2(t) =

√
2

1+r2

(1−r2)3
− 1

2r sin(t− α) − r2 sin(2(t− α))
(1− 2r cos(t− α) + r2)2

.

Then by the Bessel formula we have that the best approximation of a preprocessed
QRS complex in the Hilbert subspace La is

df(a) = ‖f‖2 −
2∑

k=0

|〈f, ua,k〉|2 .

This is the error for a fixed inverse pole a. Since we may choose a arbitrarily in
the unit disc, the process goes on with minimizing the error function df : D→ R.

If the point of minima is a ∈ D, then the QRS complex will be represented by the
corresponding Fourier-projection

fQRS := Su3 f =

2∑

k=0

〈f, ua,k〉ua,k .

For this step of the process we have used the HNM algorithm (see e.g., Chapter 2).

Tests and Results

We have used signals of the PhysioNet PTB Diagnostic ECG Database to test our
model. More precisely, 77 records of the 52 healthy subjects there, the first 10
heartbeats for each of them, altogether 770 heartbeats were taken.

In order to use our model, we had to transform the QRS complexes to 2π pe-
riodic functions. This preprocessing of the QRS complex went as follows. First
we used the segmentation program called ecgpuwave, which is available as part of
PhysioToolkit. For more information about the program, we refer to [GolAma00].
After the segmentation the result was a function restricted onto an interval. The
values at the two endpoints were usually not equal. Therefore, we extended the
function periodically by applying the program periodize, which is a part of the
RAIT Matlab toolbox (see e.g., Section 5.1). We performed these steps for the
six leads: I, II, III, aVR, aVL, aVF. Then we used the HNM algorithm for finding
the best inverse pole for the rational approximation detailed above. During the
algorithm the distance between the rational Fourier projection and the QRS func-
tion was calculated only for the interval on which the QRS complex was originally
supported. This included about a hundred sample points.

In our first test we were interested in the dependence of the best inverse poles
for the different leads. For this reason, we compared the 6 inverse poles received
from the records of 6 leads of the same heartbeat. We found that the best inverse



3.3 QRS modeling 49

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) Inverse poles of all the 6 leads.

0 0.2 0.4 0.6 0.8 1
0

10

20

30

Distance of poles

P
e
rc

e
n
ta

g
e

(b) Distance of inverse poles.

Figure 3.4: Statistics of the inverse poles.

poles for the different leads are very close to each other even for real records that
contain noise. In Fig. 3.4(a) we show the positions of the inverse poles in the
unit circle for the record s0479 in the PTBDB database. The average of the six
inverse poles is marked by ∗. In Fig. 3.4(b) we demonstrate the result of the test
performed for all the 770 heartbeats. We calculated the maximum of the distances
of the 6 inverse poles from their average. The test shows that the inverse poles
are within a 0.1 radius circle for about 65% of the records and within a 0.2 radius
circle for more than 95% of them. On the basis of the test, we may consider the
inverse pole to be invariant with respect to the leads; therefore we may conclude
that the inverse pole is characteristic for the heartbeat itself rather than for the
different leads.

After having found the optimal inverse poles, one can calculate the Fourier
projection of the QRS complexes onto the corresponding La. Then we will receive
a simple approximation for the QRS complexes in the 6 leads. We cannot of course
expect a high accuracy from this approximation. All we want to demonstrate is the
surprising result, i.e., even these simple rational functions show the basic characters
of the records. In Fig. 3.5 we took the same records as in Fig. 3.4(a). The green
curves correspond to the QRS complexes, and the black curves are the rational
approximates. Besides the geometric similarity, we note that the PRD’s calculated
on the support of the QRS complexes fall between 8.7 and 13 for all leads.

Finally, we were interested in improving the accuracy of the approximation. For
this reason, we kept the optimal inverse pole calculated but instead of just using the
corresponding elementary rational function of degree 2, we added those of degree
1, 3, 4 and higher. In other words, we took the linear space spanned by the real and
imaginary parts of the functions ra,k(eit) (t ∈ R, k = 0, . . . ,N, N ∈ N) where the
multiplicity of the single pole is equal to N. Taking an orthonormal basis in this
2N + 1 dimensional real subspace, the approximation is the Fourier projection of
the functions corresponding to the QRS complexes onto the subspace. The degree
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Figure 3.5: QRS approximations of all the 6 leads.

of approximation of the Fourier projection improves by increasing N. At the same
time the compression ratio decreases since more and more coefficients should be
stored. This relation is demonstrated in Fig. 3.6(a) by taking 5 records, (s0306lre,
s0301lre, s0324lre, s0479_re, s0552_re) from the database. We performed the
computation for N = 12 for the 770 heartbeats, and calculated the error in terms
of PRD. The result is presented in Fig. 3.6(b). It shows that for more than 80%
of the records the PRD is not greater than 5%.

We note that this method is related to the theory of discrete Laguerre systems,
which are special Malmquist–Takenaka systems (see e.g., [HeuVan05]). Concerning
the latest results in this respect, we refer to [FriSch11] and [SchSou11].

Conclusions

We have developed a mathematical model to represent the QRS complexes of an
ECG signal. The efficiency of the method is confirmed by experiments. Although
we used only one inverse pole, the approximation can be considerably accurate. In
addition, the optimal inverse pole of each lead is highly correlated, which reveals
the relationship of the 6 channels of an ECG record.
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Figure 3.6: Statistics of the representation.

Finally, we would like to remark that the model and the results presented above
naturally induce several questions that may initiate further investigations. Let us
mention here two as examples.

a) Our model is a planar one, and therefore, can be applied for 6 leads only.
Thus, it is worth developing a spatial model in order to demonstrate the
relation between all the 12 leads.

b) As it was shown in this section, the best inverse poles for the different leads
are characteristic for the heartbeat itself rather than for the leads. So far we
have only used a database of healthy subjects. It remains an open question
whether the position of the inverse pole could be an indicator for certain
malfunctions of the heart.





Chapter 4

EEG signal modeling

In this chapter we examine the problem of epileptic seizure detection in electroen-
cephalography (EEG). One of the challenges is to distinguish rhythmic discharges
from non-stationary patterns occurring during seizures. The method developed in
this chapter is based on an adaptive and localized time-frequency (t-f ) distribu-
tion of EEG signals by means of rational functions. The corresponding rational
Discrete Short Time Fourier Transform (DSTFT) is a novel feature extraction tech-
nique for epileptic EEG data. In order to separate seizure epochs from seizure-free
epochs, a Multilayer Perceptron (MLP) classifier is fed by the coefficients of the
rational DSTFT. The effectiveness of our method is compared with several state-
of-art feature extraction algorithms used in off-line epileptic seizure detection. This
comparative study shows that the proposed algorithm outperforms the competing
techniques in terms of classification accuracy. What is more, it provides a compact
representation of EEG time-series.

The mathematical foundation of the method is summarized in Section 4.1.
Section 4.2 contains the construction and the analysis of the algorithm. We note
that the HPSO process (see Section 2.2) plays an important role in the feature
extraction. The results of the comparative study are provided in the final section.

A significant part of the material presented in this chapter is the result of a col-
laboration with Kaveh Samiee (Department of Signal Processing, TUT, Tampere,
Finland) and was published in [KovSam14] and [SamKov14]. The contribution of
this author includes the development of rational DSTFT for EEG signals and the
corresponding error and frequency analysis of different t-f representations.

4.1 Discrete Short Time Fourier Transform

Classical STFT in feature extraction

The Fourier transform is a well-known tool for analyzing the frequency distribu-
tion of a signal. Unfortunately, the time information is lost in the transform. As a
consequence, sudden changes of the signal cannot be localized in time. However,
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there is a wide range of applications where both time and frequency information
are required. Additionally, processing of the signal via FFT requires the values
of the signal f at all sample points, which is impossible in real time applications.
Truncating the signal was one of the first idea to solve this problem, which means
that the signal is multiplied by a rectangular window rA = χ[−A,A]. Unfortu-
nately, it is equal to a convolution in the frequency domain by using the function
sincA(t) = sin 2πAt

πt
, which is not Lebesgue integrable. In order to replace rA, a fam-

ily of window functions was introduced like triangular, Hahn, Hanning, Gaussian,
etc. Using this concept, the short time Fourier transform (STFT) of f ∈ L2(R)
can be introduced as follows

Fǫ
g f(t,ω) =

∫

R

f(τ)g(τ− t)e−2πiτωdτ (t,ω ∈ R) ,

where g is a window function with g ∈ L1(R)∩L2(R) and ‖g‖L2 = 1. Let us denote
the trigonometric system by ǫω(τ) = e2πiτω. Then, the STFT becomes a scalar
product in L2(R) :

Fǫ
g f(t,ω) = 〈f, gt,ω〉 ,
gt,ω(τ) = g(τ− t)ǫω(τ) .

Using the inner product invariance and the transition property of the Fourier
transform, we have the following expressions

Fǫ
g f(t,ω) = 〈f̂, ĝt,ω〉 ,
ĝt,ω(ξ) = ĝ(ξ−ω)ǫξ−ω(t) .

Now, the STFT can be interpreted as the projections of f to t-f atoms gt,ω.
Equations above also show that the spectra Fǫ

g f is localized both in time and
frequency around the points (t,ω). For the fundamental results of this field, we
refer to [Gab46]. In his paper, Dennis Gabor used a certain type of Gaussian
window g(τ) = π−1/4e−τ

2/2 which is a kind of fixpoint of the Fourier transform. He
proved two main properties of the STFT; namely, the inversion and the Parseval’s
formulas, which are analogous to those for the ordinary Fourier transform:

f(x) =

∫ ∫

R2

Fǫ
g f(t,ω)gt,ω(x)dωdt ,(4.1)

‖f‖L2 =
∫ ∫

R2

∣∣Fǫ
g f(t,ω)

∣∣2 dωdt ,(4.2)

where Eq. (4.1) is understood in the sense of L2 norm, i.e.,

lim
δ→∞

∥∥∥∥
∫ δ

−δ

∫ δ

−δ

Fǫ
g f(t,ω)gt,ω(x)dωdt− f(x)

∥∥∥∥
L2

= 0 .

Note that Eqs. (4.1)–(4.2) express the fact that f and Fǫ
g f contain the same

amount of information in the sense of L2. One can use this property to analyze the
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signal. For instance, in case of epileptic seizure classification, certain frequencies
of the signal should be detected first. Then, a proper feature vector should be ex-
tracted in order to characterize the seizure. A common feature extraction method
is the M×N block decomposition of the t-f domain:

(4.3) F(i, j) =

∫ ∫

Ωij

∣∣Fǫ
g f(t,ω)

∣∣2 dωdt ,

where Ωi,j := [ti, ti+1] × [ωj, ωj+1] for 0 ≤ i < M and 0 ≤ j < N. Due to
the energy conservation property of the STFT, the feature elements F(i, j)’s can
be used to detect seizure activity. For instance, a high value of F(i, j) indicates
frequency components with high energy in the block Ωi,j. The reader is referred to
the review [TzaTsi09], which applies this feature extraction technique to different
t-f distributions. We also utilized this idea in order to analyze the performance of
rational functions in seizure classification.

Rational DSTFT

In Chapter 3 we modeled the ECG signals, which are quasi-periodic waveforms.
Thus, it naturally implies that one should choose the window function as g = rA in
order to enclose an entire heartbeat. This can be carried out via segmentation of
the signal. Unfortunately, EEGs are more chaotic waveforms and there is no such
kind of quasi-periodic property as the ECG, which also legitimates the construction
of rational STFT based methods. Let us denote the uniformly sampled f(t) and
g(t) functions by f[n] and g[n], respectively. Then, the discrete (D)STFT over
the compactly supported g window function can be written as

(4.4) Fǫ
g f[n, k] =

M−1∑

m=0

f[m]g[m− n]ǫk[m] (n ∈ N) ,

where ǫk[m] := e2πik
m
M (0 ≤ k < M), and M is the window size. In our case, M is

also equal to the number of equally spaced frequency bins. This algorithm can be
interpreted as a successive evaluation of Fourier transforms over short segments of
the whole signal (see e.g., Chapter 5. in [Mit11]). Additionally, the frequencies
can be visually represented by displaying the squared magnitude of the Fourier
coefficients at each segment. The resulting diagram is called the spectrogram of
the signal f.

Using the same terminology as in Eq. (4.4), we can define a similar representa-
tion of the signal by replacing the trigonometric basis ǫk with the elements of the
GOB. More precisely, let us consider ℓ different inverse poles a = (a0, . . . , aℓ−1)

with multiplicities m = (m0, . . . ,mℓ−1) and the uniformly sampled functions f, g.
In order to define a generalized t-f representation, we set M to be equal to the
sum of the multiplicities. Then the rational DSTFT can be written as

Fφ
g f[n, k] =

M−1∑

m=0

f[m]g[m− n]φk[m] (n ∈ N) ,(4.5)



56 EEG signal modeling

with 0 ≤ k < M, where φk[m] := Φk(e
2πim

M ). For a single inverse pole a0 with mul-
tiplicitym0 =M, we can also use the biorthogonal systems ψk[m] := Ψ0,k+1(e

2πim
M )

or ϕk[m] := ϕ0,k+1(e
2πim

M ). The corresponding inverse transform (see e.g., [Mit11])
can be written in a similar form

f[m]g[m− n] ≈ 1

M

M−1∑

k=0

Fφ
g f[n, k]φk[m] (n ∈ N) ,(4.6)

where 0 ≤ m <M. This procedure can also be interpreted as a windowed Fourier
transform, but now we are using different bases. In addition, if we set ak = 0 for all
k, then ϕk[m] = φk[m] = ǫk[m], so we get back the classical DSTFT as a special
case, which can be seen in Figs. 4.2–4.3. We note that the ≈ token was used in
Eq. (4.6). The main reason for this is that there are no proper inversion formulas
for these types of rational systems at the uniform discretization of the unit disk.
On the other hand, the perfect reconstruction is possible if we resample the original
signal f over an appropriate non-uniform discrete grid defined in Section 1.3.

In order to decrease the dimensionality of the feature vector, we will use only
the firstN coefficients of the whole spectra at each window. This can be interpreted
as a linear dimensionality reduction step. Furthermore, we will apply the HPSO
algorithm to determine the optimal inverse pole vector ao in Eq. (1.4), which
minimizes the reconstruction error for the first N rational Fourier coefficients.
Note that it is not possible with the classical STFT since it has no free parameters.
These coefficients and the expansions in Eqs. (1.19)–(1.21) will be calculated by
using the biort_coeffs and mt_coeffs commands of the RAIT Matlab toolbox,
which are described in Section 5.1.

Let us consider some examples with the following test signals

f1(t) = e
−20(t− 1

5
π)2 · sin (100πt) ,

f2(t) = e
−20(t− 4

5
π)2 · sin (2000πt) ,

f3(t) = sin(2π6t),

f(t) = f1(t) + f2(t) ,

g(t) = sin2 (πt) ,

where t ∈ [0, π] and g is the so-called Hanning window. In our first experiment
we apply the rational DSTFT to f which was uniformly sampled at the sampling
frequency fs = 4000 Hz. Additionally, we use only one pole a0 choosing the first
N = 32 coefficients by setting the window length M = 128. Hence, we compute
32 rational components at each windowed segment. For the sake of simplicity,
we use the uniform distribution on the real interval [−1, 0] as the poles of the
biorthogonal rational function system. Then the absolute square values of the
coefficients Fψ

g f[n, k] are displayed in Figs. 4.2-4.3. We note that for a0 = 0 we
get back the classical DSTFT, where the two frequency components f1 and f2 are
well separated.
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Figure 4.1: Schematics of the test signals f1 + f2 and f3.
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Figure 4.2: Rational DSTFT spectrograms of the function f = f1 + f2.
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Figure 4.3: Rational DSTFT spectrograms of the chirp signal f3.
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4.2 Seizure classification

EEG is one of the most common techniques used for monitoring brain activi-
ties. Generally, expert neurologists analyze the records visually, which is time-
consuming. In particular, the noisy characteristics of the EEG recording makes it
difficult to separate seizures from artifacts with similar time-frequency patterns.
To address this problem, machine learning algorithms have been widely used for
automatic detection or prediction of epileptic seizures in raw EEG signals. We note
that the raw EEG data may be corrupted by major artifacts caused by muscle ac-
tivities or eye blinking. Hence, pre-processing of the signal is necessary. Then,
feature extraction steps are performed, followed by (un)supervised data mining
methods. Lately, a wide range of general signal processing and machine learn-
ing algorithms have been adapted for seizure detection and EEG classification.
The most important step is to extract discriminative features in the time and/or
frequency domains.

For instance Polat and Güneş [PolGün07; PolGün08] used the fast Fourier
transform (FFT) based feature extraction to detect rhythmic discharges in epilep-
tic seizures, while Gabor et al. [GabLea96; Gab98] used FFT to calculate the
spectrograms in the frequency band 0 to 32 Hz for each EEG channel. Namely, a
two dimensional FFT spectrogram of size 8×32 was computed for 8 EEG channels.
A Self-Organizing Map (SOM) was then used for classification [Koh89]. However,
wavelet transforms are more appropriate for analyzing non-stationary EEG signals
since they provide a simultaneous representation in the time-frequency domain.
For instance, Adeli et al. [GhoAde07; AdeZho03] applied Daubechies wavelet trans-
form to analyze the epileptic seizure pattern in five frequency sub-bands: delta (0–4
Hz), theta (4–7 Hz), alpha (8–12 Hz), beta (13–30 Hz), and gamma (30–60 Hz).
Using these five sub-bands and chaos theory, non-linear dynamics of the EEG are
simultaneously quantified by a classifier. Then, the correlation dimension (CD) is
used to represent the complexity of the system, and the chaoticity is measured by
the largest Lyapunov exponent (LLE) in the five sub-bands. Finally, each EEG
signal is classified into three classes: healthy, interictal and ictal. It is also worth
mentioning that the special STFT, namely the Gabor transform, has been found
effective in epileptic seizure analysis. Chen et al. [CheZha10] described the EEG
signal patterns during epilepsy periods by means of the so-called Frequency Band
Relative Intensity Ratio (FBRIR). In this method, a filter bank consisting of a
number of Gabor filters, with different parameters such as orientations and central
frequencies, was used to detect seizure and seizure-free epochs. The advantage
of this method is that it works simultaneously on both scalp EEG and ECG and
so improves information extraction [NasPou11]. Although EEG and ECG are a
one dimensional signals there are various techniques which convert them into two
dimensional images. Then the usual 2D feature extraction methods can be ap-
plied as well. For instance, Chou et al. [ChoChe06] compressed ECG signals by
utilizing JPEG2000 encoding. In case of EEG, Samiee et al. [SamKir15] extracted
2D features in order to classify epileptic seizures. They used the aforementioned 5
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Figure 4.4: Spectrograms of sets B to E for different selection of poles. First
row: rational DSTFT spectra for a0 = −0.1+ 0.1i; Second row: classical DSTFT
spectra.

sub-bands of 23 channels to convert the EEG into images, which was followed by
a five-level Daubechies wavelet (db4) transform.

The proposed feature extraction algorithm is adaptive, scalable and the model
is compact in both time and frequency domains. Moreover, we show that–in terms
of robustness and efficiency–our method outperforms conventional t-f feature ex-
traction techniques commonly used in epilepsy research.

Feature extraction using rational DSTFT

In the present work, we apply the generalized rational DSTFT to EEG time-series
of the Bonn dataset [AndLeh01] (see e.g. Section 1.1). The seizure epochs in set
E contain low frequency oscillations in the theta frequency sub-band along with
high frequency rhythmic spikes and high amplitude changes in the alpha and beta
frequency sub-bands. These characteristics of the seizure patterns can be used to
distinguish them from seizure-free EEG segments. Thus, we want to achieve a
better resolution by increasing the number of coefficients. In this work, we use one
inverse pole a0 with m0 =M multiplicity. Then we represent each EEG epoch of
lengthM by the firstN coefficients of the rational DSTFT. The optimal parameters
a0, M, N will be determined in Section 4.2. The absolute values of the coefficients
and five statistical measures are regarded as features: 1. absolute mean value;
2. absolute median value; 3. absolute standard deviation; 4. absolute maximum
value; 5. absolute minimum value of the coefficients. One can see an example
in Fig. 4.5, where three segments of an EEG signal were approximated by using
the first 16 terms of the MT (green line) and the trigonometric (red line) Fourier
series. The absolute values of the corresponding coefficients are also displayed.
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Figure 4.5: Feature elements for a three-seconds-long segment of the record D003
from the Bonn EEG dataset.

Thanks to the Parseval’s formula in Eq. (4.2), the coefficients can reflect neural
activity. For instance, there is a spike in the middle segment, which significantly
increases the absolute values of the coefficients.

The resulting feature vector contains N+5 feature elements for eachM sample
long EEG epoch. For instance, in Fig. 4.4, one can see the rational DSTFT spectra
for all the five sets and the comparison with the classical DSTFT spectra. Here
we used the MT system with 32 coefficients and a fixed window size of 0.5 second
(i.e., N = 32, M = 88).

Classification

In order to evaluate the efficiency and the robustness of the proposed feature
extraction method, we perform various binary classification tasks. We mainly
investigate the detection of epileptic seizure epochs (Set E) in the presence of
seizure-free epochs (Sets A, B, C and D). Thus, we define six classification tasks
of set E

• (E–A): in the presence of set A;

• (E–B): in the presence of set B;

• (E–C): in the presence of set C;

• (E–D): in the presence of set D;

• (E–A,C): in the presence of sets A and C;

• (E–A,B,C,D): in the presence of sets A, B, C and D.
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In all of these classification tasks the rational DSTFT features were tested by
using various classifiers such as Naive Bayes, Logistic Regression, Support Vector
Machine (SVM), K-Nearest Neighbors (KNN) and Multilayer Perceptron (MLP)
architectures. After a series of numerical experiments, the feed forward MLP has
been selected as the optimal classifier, which is trained by the back-propagation
algorithm. More precisely, the MLP architecture consists of N+ 5 neurons in the
input layer, (N + 6)/2 neurons in the hidden layer and 2 neurons in the output
layer representing seizure and seizure-free classes. It is worth mentioning that the
MLP is one of the most common classifiers used for EEG analysis in the literature.
Thus, our experiments show the effectiveness of the proposed feature extraction
method utilizing a conventional classifier.

Impact of the inverse pole on the classification accuracy

Once the inverse poles and multiplicities are given, the orthogonal and biorthogonal
rational systems are determined. Then the coefficients of the representation can
be easily calculated by using the discretization of the scalar product in Eq. (1.12).
Although the system is adaptive due to the free parameters provided by the inverse
pole(s), it has an effect on the coefficients as well. Namely, the shape of the base
functions varies along with the position of the inverse pole a0. For this reason, the
classification results can also change. One of the main interests of this section is
to analyze the impact of the position of the inverse pole a0 on the classification
accuracy. More precisely, we compare the classification results of the simple (E–A)
task for a set of inverse poles which are chosen from a 50 × 50 grid of the unit
circle. Half of the dataset is used to train the classifier and the other half is used
for testing. Additionally, for each one-second-long epoch M = 176, we extract
the first N = 16 coefficients with respect to four different rational systems (MT,
RF, MRF and BRF). Then we apply MLP architecture as the classifier, which was
described in the previous section.

According to our experiments, the number of zero coefficients increases in the
rational DSTFT as the absolute value of the inverse pole increases. This phe-
nomenon is caused by the terms in the rational series expansions in Eq. (4.5) as
they represent higher frequencies while the inverse poles tend closer to the torus.
These zero coefficients can reduce the accuracy of the (A–E) classification task
up to 6%. However, for the inverse poles which are close enough to the center,
the classification accuracy is similar to the classical DSTFT, which is a special
case of the proposed model for a0 = 0. This can be seen in Fig. 4.6, where the
classification results of the four rational systems have been displayed at each in-
verse pole. During this experiment we extracted different rational coefficients for
all EEG records while we used the same inverse pole for every segment. Then the
classification accuracy at each inverse pole is indicated by a color code. One can
see that the results are similar near the zero inverse pole. Unfortunately, stepping
away from zero can degrade the results by introducing more zero coefficients to
the rational expansion. All the rational function systems defined in Section 1.3
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(a) MT (b) RF

(c) MRF (d) BRF

Figure 4.6: Classification results obtained by different rational coefficients for each
inverse pole in the 50× 50 grid.

share the same behavior because they span the same subspaces of R for non-zero
inverse poles. Tab. 4.1 shows the average and the highest classification accuracies
for each rational system. As it can be seen, MT representation can outperform
all the other rational series expansions. Therefore, we will consider only MT ra-
tional systems in our further experiments. Moreover, the proposed algorithm can
outperform the classical DSTFT technique as well by fixing the inverse pole at
a0 = −0.1 + 0.1i. Although the difference is very small, it is just the simplest
classification task. We conclude that the performance of the classical DSTFT
based seizure detection methods can be improved via rational DSTFT, especially
for more complex classification tasks. Furthermore, the results highlight the im-
portance of choosing the right inverse pole as well. For this reason, we decided
not to fix the inverse pole for the whole signal. More precisely, an optimal inverse
pole was chosen by using the HPSO algorithm in order to minimize the mean
square error (MSE) of the reconstructed signal. The purpose of the optimization
procedure is to make a compact representation of each segment. Consequently, the
coefficients can carry more information and they can be used as features. Flex-
ibility is one of the main advantages of the rational DSTFT comparing to other
STFT representations. Namely, the rational systems can be varied from segment
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Table 4.1: Comparison of average and best classification accuracies obtained by
different rational coefficients in the 50× 50 grid.

Rational System Avg Acc (%) Best Acc (%) (a0 6= 0)
MT 97.9 99.4

RF 94.6 97.3

MRF 96.8 99.2

BRF 94.4 99.3

classical STFT - 99.0

to segment in contrast with the uniform representations such as classical DSTFT
or even the wavelet transform where the shapes of the base functions are fixed
for all segments. For this reason, we expect an improvement in the classification
accuracies comparing to STFT based features.

Impact of the time-frequency resolution

The classification accuracy of EEG epochs mostly depends on two primary regu-
larizations of the time-frequency transform: 1) time resolution, which is equal to
the size of each epoch M, in real applications, it is generally more than 1 second;
2) frequency resolution, which is related to the number of coefficients N (i.e., fea-
tures). Hence, in case of multichannel EEG data, high-dimensional feature vectors
should be avoided. For this reason, we investigate the trade-off between time and
frequency resolutions to reduce computational complexity.

In order to find the best choice for the epoch size and the optimal number of
coefficients, we consider all the possible combinations for M = 173, 256, 512, 1024

samples long segments withN = 8, 16, 32 number of MT coefficients. We evaluated
the average classification accuracy of the six classification tasks for each combina-
tion. As it can be seen in Tab. 4.2, the best average classification accuracy using
MT rational DSTFT is obtained for 32 coefficients with 256 sample size window,
which is roughly equal to 1.5 seconds. Besides, the highest average Sensitivity
(true-positive-ratio) and Specificity (true-negative-ratio) are also obtained for this
combination of epoch size and number of coefficients. Moreover, by increasing the
size of the epoch, the performance of the MT rational DSTFT is dropped. This
phenomenon is due to the fact that only a limited number of base functions were
used for the representation. On the contrary, the classical DSTFT operates with
an equal number of bases and samples in the epoch (i.e., N = M). The former
method is an approximation while the latter one is an interpolation procedure.
For this reason, rational DSTFT may not be able to fit the signal in the presence
of a long epoch and high frequency changes. Hence, we fix the window size to
M = 256 samples and we extract N = 32 coefficients in our further experiments.
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Table 4.2: Classification results of MT rational DSTFT for different epoch sizes and number of coefficients.

Classification task

Window size + Number of coefficients

173 256 512 1024

8 16 32 8 16 32 8 16 32 8 16 32

(E–A)
Sens% 99.5 99.0 99.0 99.9 100.0 99.9 99.5 100.0 100.0 97.9 96.9 100.0
Spec% 99.1 99.9 99.9 98.1 99.4 99.6 98.4 98.4 99.5 96.6 99.0 97.6
Acc% 99.3 99.5 99.5 99.0 99.7 99.8 99.0 99.3 99.8 97.3 98.0 98.8

(E–B)
Sens% 92.5 98.9 98.9 99.1 94.9 99.6 98.5 99.8 99.0 99.5 88.1 99.0
Spec% 98.3 98.4 98.4 94.3 98.9 99.0 95.6 92.8 98.2 91.3 98.6 95.7
Acc% 95.4 98.7 98.7 96.8 96.9 99.3 97.1 96.4 98.6 95.3 93.5 97.3

(E–C)
Sens% 96.9 96.8 96.8 95.5 97.3 99.3 87.9 99.5 98.3 96.4 94.8 99.5
Spec% 96.7 97.3 97.3 97.1 99.0 97.7 95.3 93.5 98.4 78.7 91.3 90.8
Acc% 96.8 97.0 97.0 96.3 98.1 98.5 91.5 96.6 98.4 87.3 93.0 95.0

(E–D)
Sens% 94.5 94.1 94.1 91.3 93.7 95.6 86.0 95.9 96.9 83.4 82.9 90.7
Spec% 94.3 95.9 95.9 94.5 94.7 94.1 88.6 89.4 92.5 86.0 93.7 92.8
Acc% 94.4 95.0 95.0 92.9 94.2 94.9 87.3 92.8 94.8 84.8 88.5 91.8

(E–A,C)
Sens% 98.8 98.7 98.7 98.2 99.1 99.2 94.6 99.3 97.8 94.0 97.7 100.0
Spec% 95.0 96.6 96.6 96.7 97.6 98.9 94.7 97.7 97.5 91.6 92.6 94.1
Acc% 97.5 98.0 98.0 97.7 98.6 99.1 94.7 98.8 97.7 93.2 96.0 98.0

(E–A,B,C,D)
Sens% 98.3 99.6 99.6 97.4 97.1 99.2 98.3 97.8 98.7 97.3 98.5 98.2
Spec% 91.6 87.6 87.6 93.7 94.3 93.8 78.7 91.1 91.6 66.8 81.3 88.3
Acc% 96.9 97.2 97.2 97.4 96.5 98.1 94.4 96.5 97.3 90.8 94.8 96.1

Average
Sens% 96.8 97.9 97.9 96.9 97.0 98.8 94.1 98.7 98.5 94.8 93.2 97.9
Spec% 95.8 96.0 96.0 95.7 97.3 97.2 91.9 93.8 96.3 85.2 92.8 93.2
Acc% 96.7 97.6 97.6 96.7 97.3 98.3 94.0 96.7 97.8 91.5 94.0 96.2
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Table 4.3: Comparison of classification results of MT rational DSTFT coefficients
with classical DSTFT coefficients.

Classification task

Feature extraction

Classical DSTFT MT rational DSTFT

(E–A)
Sens% 98.2 99.9
Spec% 100.0 99.6
Acc% 99.1 99.8

(E–B)
Sens% 98.3 99.6
Spec% 93.3 99.0
Acc% 95.8 99.3

(E–C)
Sens% 94.0 99.3
Spec% 98.1 97.7
Acc% 96.1 98.5

(E–D)
Sens% 94.2 95.6
Spec% 94.5 94.1
Acc% 94.3 94.9

(E–A,C)
Sens% 98.9 99.2
Spec% 98.9 98.9
Acc% 97.7 99.1

(E–A,B,C,D)
Sens% 97.7 99.2
Spec% 93.1 93.8
Acc% 96.8 98.1

4.3 Experimental results

In this section, we compare the performance of the MT rational DSTFT with
the classical DSTFT in terms of classification accuracy. Based on the results
of Section 4.2, we decided to use the optimal inverse pole at each segment by
setting N = 32 and M = 256. Furthermore, we applied the classical DSTFT,
which is embedded in Matlab. For all of the six classification tasks defined in
Section 4.2, we consider 50% of the data, chosen randomly, to be the training set
and the remaining data to be the test set. More precisely, for the MT rational
DSTFT, we extract feature vectors containing 37 elements (32 coefficients + 5
statistical values). For the classical DSTFT, we choose 32 coefficients with the
largest absolute values from each 256 sample long epoch. Tab. 4.3 shows the
classification results for the six classification tasks. As it can be seen, MT rational
DSTFT yields the highest classification accuracy. It means that the proposed
method is able to achieve higher sensitivity while keeping the same specificity of
the classical DSTFT. Remember that sets A, B and sets C, D and E are recorded
using scalp and intracranial electrodes, respectively. However, it has no influence
on the performance of the proposed method as it can be seen in Tab. 4.3. Therefore,
the classical DSTFT based EEG feature extraction algorithms can be improved
by using the proposed rational t-f distribution.
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Figure 4.7: Mean square errors of the Bonn Database.

Although we achieved a small amount of enhancement in the sense of classifica-
tion accuracy, the reconstruction error has been significantly decreased compared
to the classical DSTFT. Furthermore, the representation is more compact thanks
to the adaptive nature of the rational function systems which can be seen in
Fig. 4.7. The inverse discrete (ID) STFT of the signal was computed by using the
optimal parameters N = 32 and M = 256. Then the average mean square error
was evaluated for all EEG records of the Bonn dataset. The overall MSEs are as
follows: 2.52× 103 (classical) and 5.5× 102 (rational). In this sense, the accuracy
of our representation is about 4.5 times better. As a consequence, the proposed
representation is more robust than the classical DSTFT, i.e., one can achieve a
better classification result with our model using a smaller set of coefficients or
features. In other words, the proposed method provides a sparse representation of
the signal while the components remain orthogonal.

Time-frequency analysis

In quantum mechanics, the well-known Heisenberg uncertainty principle states
that the position and momentum of a particle cannot be measured at the same
time with arbitrarily high precision. In signal processing, this theorem is referred
to as Gabor limit, which can be written as follows

(4.7) ∆t · ∆f ≥ 1

4π
,
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where

σ2f =

∫

R

x2 |f(x)|
2
dx , ∆t =

σf

‖f‖L2
,

σ2
f̂
=

∫

R

ξ2|f̂(ξ)|2dξ , ∆f =
σf̂

‖f̂‖L2
.

As a consequence, the higher the level is for frequency resolution, the lower it is
for time localization, and vice versa (see e.g., Chapter 1. in [Mal08]).

Although several procedures have been constructed to cure this problem, there
is no absolute best among them. Unfortunately, all t-f distributions suffer from
this problem to some extent. In the previous sections, we have already compared
the proposed method with the classical DSTFT, where a particular window g was
used for time localization. Here the length of the function g controls the trade-
off between the t-f resolutions. The Wigner–Ville transform (WVT) was another
solution, which does not spread the time or frequency support of sinusoids (see
Theorem 4.7. in [Mal08]). Although it gives a very good t-f resolution, it can
hardly be used in the case of multi-component signals because of the so-called
cross terms. However, there is a family of t-f representations, which may solve
this problem. The Cohen’s class of distributions [Coh89] is a generalization of the
WVT where most of the cross terms are eliminated using different kernels. The
related power spectra can be written in the form

Cgf(t,ω) =

∫

R

Kgf(t, τ)e
−2πiτωdτ,

where Kgf(t, τ) denotes the convolution of the autocorrelation and the kernel func-
tion g(u, τ) defined as

Kgf(t, τ) =

∫

R

g(u− t, τ)f(u−
1

2
τ)f(u+

1

2
τ)du ,

g(u, τ) =

∫

R

φ(θ, τ)e2πiθudθ .

These distributions have a wide range of applications. Additionally, a recent study
[TzaTsi09] has already introduced a feature synthesis for epileptic seizure detection
in EEG based on these t-f distributions. For the sake of completeness, we also
tested the proposed algorithm against 13 Cohen’s class distributions with different
kernels. In order to extract features from each t-f representation, we follow the
same procedure as suggested in [TzaTsi09]. More precisely, a grid is constructed
for each one-second-long EEG epoch to divide its t-f plane into regions. Each
region points out a specific frequency sub-band in a certain time window. The
frequency sub-bands are: 0–2.5 Hz, 2.5–5.5 Hz, 5.5–10.5 Hz, 10.5–21.5 Hz and
21.5–43.5 Hz. Moreover, we divide the time axis into three equal windows result-
ing in a total 15 t-f regions. Then the energy of the signal is computed in each
region using Eq. (4.3) in order to extract feature vectors. Furthermore, the energy
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Table 4.4: Comparison of classification results of different t-f distributions.

Distribution

Classification task

(E–A) (E–B) (E–C)

Sens% Spec% Acc% Sens% Spec% Acc% Sens% Spec% Acc%
Born-Jordan 71.5 100.0 85.8 71.7 100.0 85.9 71.4 100.0 85.8
Butterworth 72.0 100.0 86.1 72.1 100.0 86.1 71.9 100.0 86.0

Choi-Williams 72.5 100.0 86.3 72.7 100.0 86.4 72.4 100.0 86.3
Generalized 72.2 100.0 86.2 73.0 100.0 86.6 72.0 100.0 86.1

Margenau-Hill (MH) 70.1 100.0 85.1 70.0 100.0 85.1 70.0 100.0 85.1
Pseudo MH 100.0 0.0 49.8 100.0 0.0 49.8 100.0 0.0 49.8

Wigner-Ville (WV) 66.5 100.0 83.3 66.7 100.0 83.4 66.3 100.0 83.3
Pseudo WV 71.5 100.0 85.8 71.6 100.0 85.9 71.5 100.0 85.8

Zhao-Atlas-Mark 66.0 100.0 83.1 66.0 100.0 83.1 66.0 100.0 83.1
Rihaczek 70.1 100.0 85.1 70.0 100.0 85.1 70.0 100.0 85.1

Page 70.1 100.0 85.1 70.0 100.0 85.1 70.0 100.0 85.1
Pseudo Page 98.1 100.0 99.1 97.2 96.1 96.7 97.6 96.6 97.1

Pseudo interference 71.2 100.0 85.7 71.6 100.0 85.9 67.7 100.0 89.1

MT (N=16, M=173) 99.0 99.9 99.5 98.9 98.4 98.7 96.8 97.3 97.0

MT (N=32, M=256) 99.9 99.6 99.8 99.6 99.0 99.3 99.3 97.7 98.5

Distribution

Classification task

(E–D) (E–A,C) (E–A,B,C,D)

Sens% Spec% Acc% Sens% Spec% Acc% Sens% Spec% Acc%
Born-Jordan 67.2 98.6 83.0 66.7 100.0 88.8 74.4 100.0 94.8
Butterworth 68.0 98.6 83.4 66.8 100.0 88.8 68.7 99.4 93.2

Choi-Williams 68.1 98.6 83.4 66.8 100.0 88.8 68.6 99.4 93.2
Generalized 67.3 98.5 83.0 67.7 88.8 89.1 67.8 99.3 93.0

Margenau-Hill (MH) 69.2 98.0 83.7 72.5 100.0 90.8 71.0 99.2 93.5
Pseudo MH 69.0 95.6 82.4 70.4 100.0 90.0 69.6 98.8 92.9

Wigner-Ville (WV) 66.1 99.3 82.8 69.3 100.0 89.7 74.5 98.9 94.0
Pseudo WV 66.7 98.4 82.6 68.6 100.0 89.4 69.7 99.3 93.3

Zhao-Atlas-Mark 60.3 99.1 79.8 67.9 100.0 89.2 71.4 99.5 93.8
Rihaczek 69.2 98.0 83.7 72.5 100.0 90.8 71.0 99.2 93.5

Page 69.2 98.0 83.7 72.5 100.0 90.8 71.0 99.2 93.5
Pseudo Page 71.6 95.4 83.6 70.4 100.0 90.0 73.1 98.7 93.6

Pseudo interference 67.0 98.5 82.8 67.7 100.0 89.1 68.1 99.4 93.1

MT (N=16, M=173) 94.1 95.9 95.0 98.7 96.6 98.0 99.6 87.6 97.2
MT (N=32, M=256) 95.6 94.1 94.9 99.2 98.9 99.1 99.2 93.8 98.1

of the signal over the entire segment is also computed as an additional feature
resulting in a feature vector with 16 elements. Finally, the feature vectors are fed
into the MLP classifier, which was trained in the same way by using 50% of the
data. Tab. 4.4 shows the results of the six classification tasks using different t-f
distributions and the comparison with two sets of MT rational DSTFT features,
one with similar epoch size M = 173 and N = 16 coefficients and the other one
with the optimal setting (M = 256 samples and N = 32 coefficients) determined in
Section 4.2. The classification results of the Cohen’s class t-f distributions do not
differ significantly from each other, except for the Pseudo Page distribution. Fur-
thermore, we could achieve the best accuracy in all the binary classification tasks,
and the difference is more than 8.3% and 3.3% for the last two classification tasks,
respectively. Moreover, the proposed method shows a significant improvement in
terms of sensitivity and accuracy for the first four classification tasks. We note
that the database is very small compared to long term recordings used in practical
applications [GolAma00]. Additionally, our algorithm uses only a few coefficients
of the rational decomposition in contrast to t-f features in [TzaTsi09], where the
sums of several coefficients were used from certain partitions of the power spectra.
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Wavelet based power spectra (WT) have been also developed to maintain the
trade-off between the t-f domains. In this case, the frequency domain is loga-
rithmically scaled by dynamically changing the window size. For this reason, the
lower frequencies have fine frequency distribution while the higher ones are well
localized in time. It has proved to be a very useful property in many practical
applications [Add02]. Although there exist various types of wavelet functions, the
decomposition procedure itself generally works with a fixed orthogonal basis. In
case of rational functions, both the adaptive representation [FriLóc12] and the
non-uniformly spaced frequency scale [SouSch02] are available.

Feature analysis

Since our extracted features are coefficients of the t-f distribution, finding the
most discriminative elements in the feature vector indicates the frequency range
where epileptic seizure patterns are very active. In order to determine the most
significant components in the feature vector, we sort the feature elements in a
supervised manner via SVM. Using the whole feature vector of the training set,
the elements can be ranked by using a recursive leave-one-out procedure according
to the weights of the support vectors [GuyWes02]. One can see the top five most
significant elements for each classification task in Tab. 4.5. For five classification
tasks, the median value of the coefficients is the most discriminative component
of the feature vector. In addition, the most common elements in the top five
ranking list are the 10th and 11th coefficients. Thus, it is expected that the seizure
patterns of set E should be more active in a specific frequency sub-band. In order
to illustrate this phenomenon the classical STFT spectrograms of the 10th and the
20th rational components were displayed for sets E and D in Fig. 4.8. As it can
be seen, the spectra of set E possesses a higher magnitude for the theta and alpha
frequency sub-bands in contrast with the spectra of set D. Furthermore, the power
spectra of the 10th rational component c10Φ10 shows a noticeable visual difference
in the theta sub-band. Namely, seizure patterns of set E are mostly active in a
wider frequency range comparing to set D. The comparison of the power spectra
of the 20th rational component c20Φ20 of sets D and E shows that the dominant
seizure activity of set E is concentrated in the alpha frequency sub-band. This
explains why the 20th coefficient is ranked as the most significant feature element
in the discrimination of sets E and D.

Comparison with state-of-the-art methods

As a final performance assessment, we compare our method with other state-
of-the-art feature extraction techniques proposed for seizure classification in the
literature. These methods include: 1) Wavelet analysis which decomposes an
EEG signal into five frequency sub-bands by using second-order Daubechies (db2)
wavelet transform. The feature vector consists of the maximum, minimum, average
and standard deviation of the wavelet coefficients of each sub-band [GülÜbe05;
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Table 4.5: Top five most significant feature elements for each task.

Classification task
(E–A) (E–B) (E–C) (E–D) (E–A,C) (E–A,B,C,D)

#
to

p
5

36 36 36 20 36 36
12 5 18 19 10 10
10 8 11 21 37 11
11 7 16 18 12 32
5 11 19 31 16 9

(a) Spectra of set D. (b) Spectra of set E.

Figure 4.8: Spectra of sets D, E by using different number of rational components.

KulPer11]; 2) Entropy based feature extraction using Shannon entropy (SEntr),
log-energy entropy and sample entropy [AydSar09]; 3) Spectral analysis applying
Welch FFT Power Spectral Density (PSD) [PolGün07]; 4) Approximate entropy
(AEntr) based feature extraction [SriEsw07]. For all of these methods, the same
MLP classifier was used by feeding 50% of the data in the learning phase. As it
can be seen in Tab. 4.6, our method is mostly ranked as the first or the second best
approach in terms of classification accuracy. It can outperform both the entropy
and the approximate entropy based feature extraction methods in all classification
tasks. Besides, due to consideration of all coefficients in Welch PSD based method,
a large dimensional feature vector is obtained in contrast to our method, which uses
only 32+ 5 features. This is why it is faster to train the classifier by the proposed
compact features. Our approach is ranked first together with the wavelet based
method on average. The high accuracy level obtained by the proposed method
in all the six classification tasks demonstrates its ability to discriminate between
epileptic seizure and seizure-free epochs in the presence of imbalanced EEG data.
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Table 4.6: Classification results obtained by different feature extraction methods
using MLP classifier.

Classification task

Feature extraction

Wavelet SEntr Welch AEntr MT RDSTFT

(E–A)
Sens% 100.0 92.1 98.7 87.3 99.9
Spec% 100.0 99.9 100.0 89.6 99.6
Acc% 100.0 96.0 99.4 88.4 99.8

(E–B)
Sens% 99.2 90.5 98.2 91.1 99.6
Spec% 99.1 99.4 100.0 94.0 99.0
Acc% 99.2 94.9 99.1 92.6 99.3

(E–C)
Sens% 98.7 89.6 92.3 0.0 99.3
Spec% 97.9 97.6 99.9 100.0 97.7
Acc% 98.3 93.6 96.1 50.3 98.5

(E–D)
Sens% 95.6 85.2 86.7 2.8 95.6
Spec% 97.4 94.4 99.6 99.4 94.1
Acc% 96.5 89.8 93.2 51.3 94.9

(E–A,C)
Sens% 97.5 93.6 98.3 0.0 99.2
Spec% 99.7 98.0 99.7 100.0 98.9
Acc% 99.0 96.5 99.3 66.3 99.1

(E–A,B,C,D)
Sens% 96.0 90.3 95.0 0.0 99.2
Spec% 98.7 96.7 98.7 100.0 93.8
Acc% 98.1 95.5 97.9 79.8 98.1

Finally, we compare the proposed algorithm with the results of some state-
of-the-art epilepsy detection methods reported in the literature using the same
dataset. We consider the classification accuracies of the same classification tasks,
which are summarized in Tab. 4.7. Compared to the others, our method achieved
the best results with a significant improvement for the classification tasks (E–B)
and (E–C). It is ranked second best for the classification task (E–D), where the dif-
ference is about 0.6%. In addition, the proposed method is close to the best scores
in terms of the highest classification accuracy, where the difference is 0.2% and 2%
for the classification tasks (E–A) and (E–A,B,C,D), respectively. The deviation is
caused by the high variance between the inverse pole(s) and the coefficients. More
precisely, in each segment the optimal inverse pole is selected via the hyperbolic
modification of the basic PSO algorithm (see e.g., Section 2.2). Furthermore, al-
tering the inverse pole(s) changes the base functions as well. This procedure can
affect the variance of the extracted coefficients, which can cause variations in the
classification results. In order to address this problem, a more sophisticated clas-
sification approach such as ensemble learning with bagging techniques could be
considered. Such techniques may reduce the variance between the inverse poles
and coefficients by using, e.g., bootstrap replicates.
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Table 4.7: Comparison of the proposed algorithm with state-of-the-art methods
for the same classification tasks performed on the Bonn EEG dataset.

Author(s) Classification Accuracy (%)

Srinivasan et al. [SriEsw05] (E–A) 99.6
Subasi [Sub07] (E–A) 95

Parvin Kumar et al. [PraSri10] (E–A) 96 – 99.8
Guo et al. [GuoRiv09] (E–A) 95.2

Nicoletta and Georgiou [NicGeo12] (E–A) 93.5
Xie and Krishnan [XieSha08] (E–A) 100

Kaya et al. [KayUya14] (E–A) 99.5
Proposed method (E–A) 99.8

Nicoletta and Georgiou [NicGeo12] (E–B) 82.9
Proposed method (E–B) 99.3

Nicoletta and Georgiou [NicGeo12] (E–C) 88.0
Proposed method (E–C) 98.5

Nicoletta and Georgiou [NicGeo12] (E–D) 79.9
Kaya et al. [KayUya14] (E–D) 95.5
Proposed method (E–D) 94.9

Tzallas et al. [TzaTsi07] (E–A,B,C,D) 97.7
Ocak [Oca08] (E–A,B,C,D) 96.2

Sheng-Fu Liang et al. [SheCha11] (E–A,B,C,D) 97.8 – 98.5
Guo et al. [GuoRiv10] (E–A,B,C,D) 98.3

Xie and Krishnan [XieKri13] (E–A,B,C,D) 100
Proposed method (E–A,B,C,D) 98.1

Conclusions

The main contribution of this section is to provide an effective and novel feature
extraction algorithm for epileptic seizure detection in EEG signals. We proposed
the rational DSTFT, which is an adaptive generalization of the classical DSTFT.
Additionally, we described the epileptic seizure patterns in the t-f domain by us-
ing different types of rational functions. In order to increase the efficiency, we
investigated both the optimal number of coefficients and the best window size.
Moreover, we analyzed the proposed features in order to determine the most sig-
nificant ones. The performance of different rational systems was compared with
the classical DSTFT in terms of classification accuracy. Furthermore, we increased
the adaptivity of our method by applying the HPSO algorithm to determine the
optimal position of the inverse pole for each EEG epoch. For this reason, the
proposed method gives a compact t-f representation of the signal. We also showed
that the inverse rational DSTFT has a smaller mean square error compared to
the classical DSTFT for the same number of non-zero coefficients. Finally, we
compared the performance of our feature extraction procedure with 13 Cohen’s
class t-f distributions. Several state-of-the-art feature extraction methods were
taken into account, which are commonly used in epileptic seizure detection and
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classification. The comparative study shows that the proposed rational DSTFT
can be used as a robust feature extraction method in off-line epilepsy analysis and
detection. In addition, the proposed algorithm utilizes results from the recently
developed theory of signal models for rational orthogonal systems. Experiments
confirmed that the MT rational DSTFT could be successfully applied to perform
epileptic seizure pattern detection in EEGs.

We note that the adaptability of the system could be further improved by using
multi-dimensional HPSO to determine the optimum number of unique inverse
poles. MDHPSO can explore multi-dimensional search spaces while it will converge
to the best inverse pole configuration in the optimal dimension.

Taking advantage of the adaptive behavior of rational representations, we ex-
pect that our method will perform well on longer EEG recordings. Hence, fu-
ture work will focus on the use of rational DSTFT in multichannel long-term
epileptic seizure detection in order to study the proposed method in the presence
of high frequency EEG activities (i.e., high gamma 50 Hz) as it was suggested
in [WorPar04]. For this purpose, we shall test our future algorithms on larger
datasets such as Physionet [GolAma00], which contains more variability between
seizure and seizure-free epochs. Furthermore, using long-term EEG recordings, we
can evaluate the performance of future methods for real-time seizure detection by
measuring the delay of detected seizures onset.





Chapter 5

Numerical methods

In this chapter we develop numerical methods for computing rational series
expansions of discrete signals. They are related to and applied in the algorithms
presented in the previous chapters. Section 5.1 provides subroutines for evaluating
Blaschke functions, MT and biorthogonal rational systems along with continuous
and discrete implementations. The complex and real valued interpretations of Sec-
tion 1.3 are included as well. We also made interactive graphical user interfaces
(GUI) for visual demonstration of these algorithms, which can help users to un-
derstand the contribution of certain parameters such as poles, multiplicities, etc.
Implementing GUIs requires only technical competence; therefore, we give only a
brief introduction to their functionality and a few examples in Appendix B. We
note that the so-called RAIT toolbox was implemented in collaboration with Lev-
ente Lócsi. Here, we present only our contribution to this project, which includes
the implementations of the real valued MT systems, of the continuous and of the
discrete biorthognal systems, and signal processing applications with experiments
on ECG recordings. In this section we summarize the results of the following
publications [KovLóc12a; KovLóc12b].

In Section 5.2, we introduce a fast algorithm to compute the non-uniform dis-
cretization points for discrete rational orthogonal and biorthogonal systems. In
order to do that, we need new concepts for constructing an effective numerical
solution. Namely, a good estimation process is developed for the sampling points
based on the monotonic behavior of the argument function. Then, a sequence
of fixed-point iteration is executed starting with appropriate initial values. Fur-
thermore, we perform tests for the convergence of some root-finding algorithms
in order to achieve the best accuracy. These methods are compared in terms of
evaluation time and step number. Finally, we present a parallel implementation
in CUDA which can further improve the execution time. The main material in
this section is taken from [KovVad13]. The contribution of this author is the pro-
posed algorithm with experiments while the parallel implementation was made in
collaboration with Viktor Vad.

In the final section, we give a short review of different ECG compression meth-
ods, and provide a comparative study for these methods. We show that the ratio-
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nal representations outperform B-splines, discrete wavelet transforms and wavelet
packets in several respects.

5.1 RAIT MATLAB toolbox

In this section, we present a general Matlab library for rational function
systems and their applications. The collection of these algorithms can be found
in the rational approximation and interpolation toolbox (RAIT) [KovLóc12a] to-
gether with usual signal processing techniques adopted to rational functions. The
procedures of this library can be divided into 6 classes, which are listed in Tab. 5.1.
We have different types of rational functions, namely the elementary rational func-
tions (RF), the biorthogonal (BRF), and the MT systems. Three routines were
implemented for each system to compute the values, the coefficients and the pro-
jection onto Ra

N. The names of the functions abbreviate the type of the system
and the related operation. For instance, if we want to calculate the coefficients
of a function with respect to the discrete complex biorthogonal system, then the
abbreviation biortdc_coeffs should be used. We introduce the parametrization
of these procedures via the continuous BRF system. All functions of the first three
classes can be called in the same way.

• biort_system(M,ipoles). Calculates the values of the BRF system at M

number of uniformly distributed points on T. The vector of different in-
verse poles a := (a0, . . . , an−1) and multiplicities m := (m0, . . . ,mn−1)

are determined from ipoles, automatically. The program returns with a
matrix where the kth row contains the values of the kth member of the
BRF system. Namely, let us denote the largest index by j(k) for which
Nj(k) := m0 + . . .+mj(k)−1 < k . Then the matrix Ψ ∈ C

N×M can be defined
as follows:

Ψ =
[
Ψj(k),ℓ(k)(e

itm)
]
1≤k≤N, 0≤m<M ,

where tm = 2πm/M, ℓ(k) := k−Nj(k) and N = m0 + . . .+mn−1 .

• biort_coeffs(s,ipoles). Computes the BRF–Fourier coefficients of the
discrete signal s with respect to the inverse poles ipoles. The implementa-
tion is based on the simple matrix-vector product form of orthogonal systems.
The program returns with the coefficient vector c ∈ C

Nx1 and the ℓ2 error e
of the approximation:

c =
1

M
Ψs , e = ‖s − s̃‖2 ,

where s̃ ∈ C
Mx1 denotes the reconstructed signal. In order to get the right

coefficients, s must be an element of H2(D) (see e.g., the function addimag

on page 77).
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• biort_generate(M,ipoles,c). Computes the linear combination of the
corresponding BRF system by using the coefficient vector c. The program
returns with the related element of Ra

N where N is the number of inverse
poles in ipoles:

s̃ = Ψ∗c ,

where Ψ∗ is the conjugate transpose of Ψ. Note that the values of the recon-
structed signal s̃ are computed at the same grid tm = 2πm/M (0 ≤ m <M).

The Blaschke class includes the procedures that implement the derivatives and
the inverse of the argument function βa. Additionally, the visualization of the
Blaschke function also belongs to this library:

• blaschkes_img(I,a). Transforms an image I of size N × N, applying the
Blaschke function defined by the inverse pole a. To this end, we first associate
each pixel to a complex number z ∈ D. Then the real and imaginary parts
of Ba(z) determine the new coordinates of the pixels (see e.g., Alg. 1). The
program returns with the Blachke transformed image B, the absolute values
|Ba(z)| and the arguments ∠Ba(z) of the projection. One can see an example
in Fig. B.1, which depicts the Blaschke transformed Lena image.

The problem of calculating the projection onto Ra
N is twofold. On the one

hand, we need to find the best poles for the selected rational system to minimize
Eq. (1.4). On the other hand, we need to calculate the projection itself. The latter
can be managed by using functions of the first three classes, whereas the former
can be solved by applying different types of optimization methods. To this end,
the (Euclidean) Nelder–Mead simplex algorithm was applied for rational functions
in [Lóc09]. Later, we adopted this method to the real valued MT system and to
the complex continuous BRF functions as well.

• simplex_biort(s,mult,period,init,show,eps). Gives the inverse poles
of the continuous BRF system that best fits the approximation of the signal
s. The parameters mult and period determine the multiplicities and the
periodicity of the inverse pole vector. Initial values are defined by the init

variable. Furthermore, the predicted inverse poles can be displayed at each
step due to the show parameter. We can also control the accuracy of the
process through the eps variable. All the simplex algorithms are called
consistently by using the right abbreviation of the rational system, such as
mtdc, mtdr, biort, etc.

There are many procedures that perform conversations between systems, visu-
alize rational functions, etc. We only present the most important methods below,
but additional examples can be found in Appendix B.

• addimag(f). All the rational–Fourier expansions operate on functions that
are analytic on the unit circle. Unfortunately, most of the real valued signals
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do not satisfy this constraint. To this end, we eliminate the Fourier coeffi-
cients with negative indices via F = f + iHf (cf., the hilbert command in
Matlab). In this case, F ∈ H2(T) and the BRF approximation of the signal
f is equal to ReSΨNF . Note that every procedure of the first three class in
Tab. 5.1 can be used in the same way.

• coeff_conv(M,ipoles,coeffs,base1,base2). It converts the coefficients
coeffs between the continuous systems base1 and base2. Parameters M

and ipoles define the number of samples and the inverse poles, respectively.
From Section 1.3, we know that the rational functions MT, MRF and BRF
span the same subspaces of R for a given vector of inverse poles a and mul-
tiplicities m. As a consequence, the change of basis can be easily calculated
via Gram matrix transforms. For instance, if we have the MT coefficient
vector c ∈ C

N×1, then the coefficients c ′ ∈ C
N×1 of the corresponding BRF

system are as follows

c ′ =
1

M
ΨΦ∗c (Φ, Ψ ∈ C

N×M) .

A similar function called coeffd_conv is also available to perform conversa-
tions between discrete orthogonal rational systems.

• discretize_dr(ipoles,eps). Computes the non-equidistant discretization
for the real valued MT system. The inverse poles are given in ipoles and
the accuracy of the method can be set due to the variable eps. Recall that
from Section 1.3 the first element of ipoles should be equal to zero. Here,
the set T

R
n should be determined (cf., Tn in Eq. (1.26)). Using the kernel

function of the real MT system, one can show that the discretization points
can be computed by inverting the following expression

ηa(t) = θa(t) −
t

2n
(t ∈ R) .

If a0 = 0, the monotonic property of θa still holds for ηa as well. Thus, there
is only one τRk ∈ [τR0 , τ

R
0 + 2π) for every k = 0, 1, . . . , 2n − 2 which satisfies

the equation

ηa(τ
R
k) = ηa(τ

R
0) + π

k

n
.

Then, the discretization points of the real valued MT system can be written
as

T
R
n :=

{
eiτ

R
k : 0 ≤ k ≤ 2n− 2

}
.

Note that the program automatically insert a zero inverse pole into ipoles,
so the first condition in Eq. (1.22) is satisfied. This implementation utilizes
the bisection method based on the enhanced order of the discretization points
(see e.g., [Lóc11]). Section 5.2 provides another numerical solution to this
problem.
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Table 5.1: References of all functions in the toolbox. Bold names indicate the
procedures implemented by this author.

Biort_sys Rat_sys MT_sys

biort_system lf_system mt_system
biort_coeffs lf_generate mt_coeffs
biort_generate mlf_system mt_generate
biortdc_system mlf_coeffs mtdc_system
biortdc_coeffs mlf_generate mtdc_coeffs
biortdc_generate mlfdc_system mtdc_generate

mlfdc_coeffs mtdr_system
mlfdc_generate mtdr_coeffs

mtdr_generate

Blaschke Simplex Other
arg_der simplex_mt addimag
arg_fun simplex_mtdc bisection_order
arg_inv simplex_mtdr coeff_conv
arg_inv_anim simplex_biort coeffd_conv
argdr_fun simplex_biortdc discretize_dc
argdr_inv coords2params discretize_dr
blaschkes coords2params_all dotdc
blaschkes_img multiply_poles dotdr

periodize_poles kernel
subsample
periodize
norm_sig

In order to improve the accuracy of the approximation, we have to transform
the signals to 2π periodic functions, i.e., the values at the end points should be
equal. We give two solutions to this problem.

• periodize(s,alpha). We treat the discontinuity near the endpoints by
using the extension of the original signal s. The preprocessing steps are
carried out as follows. First, we apply the well-known Savitzky–Golay FIR
smoothing filter applying second order polynomials width frame size equal
to 11 samples. It is followed by the prediction of the signs of the slopes in the
smoothed data. Then, we extend the signal at the two endpoints by keeping
the slopes. Then a Tukey window is applied to generate a 2π periodic signal.
The parameter alpha controls the length of extension.
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Figure 5.1: Approximating real signals using the BRF system by taking the third
lead of the record s0301lre from the PhysioNet/PTBDB database [GolAma00].

• norm_sig(s). It is a simple procedure which removes the linear approxima-
tion from the discrete signal of length M :

s̃[m] := s[m] −

(
s[0] +m

s[M− 1] − s[0]

M− 1

)
(0 ≤ m <M) .

Note that it is important to take care of such discontinuities of the signal;
otherwise the reconstruction error will be high. For instance, Fig. 5.1 shows the
original signal (green) and its approximations with (blue) and without (red) peri-
odization. The effect of jump discontinuity can be seen as the red colored function
starts to oscillate near the ends of the interval.

Conclusion

A new Matlab toolbox has been introduced together with signal processing meth-
ods which can be useful in a wide range of applications. For instance, these systems
are capable of representing different types of discrete-time series. Both equidistant
and non-uniform discretizations can be used. Four types of signal representations
are available due to different classes of rational function systems. Moreover, two
Matlab GUIs were implemented for educational purposes.

5.2 Discretization problem

In this section, we provide a fast algorithm to compute the non-uniform
grid in Eq. (1.26). Let us consider a vector of different inverse poles a :=

(a0, a2 . . . , an−1) ∈ D
n, multiplicities m := (m0, . . . ,mn−1) ∈ N

n
+ and N =

m0 + m1 + · · · + mn−1. Furthermore, we define the inverse pole vector b ∈ D
N

following Eq. (1.20). Then, a non-uniform discretization can be defined via the
inverse of the corresponding argument function:

(5.1) DM
b =

{
τk ∈ [−π, π) : τk = θ

−1
b (tk), tk ∈ DM

0

}
,
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Figure 5.2: Rational function approximation of real signals.

where

DM
0 =

{

−π+ 2π
k

M
: 0 ≤ k < M

}

.

In addition, these irregular sampling points can be identified by TN in Eq. (1.26)
for M = N .

We note that the non-uniform distribution of the unit circle was first introduced
by Schipp et al. [SchBok98; SouSch02]. Although there exist a few numerical meth-
ods [Lóc11; KovLóc12a] to solve this problem, the efficiency of these algorithms is
inadequate for large M. Let us consider an example in Fig. 5.2 where we approxi-
mated a real ECG and a PPG signal by using n = 3 and n = 4 different inverse
poles, respectively. These signals have been resampled according to the related
non-uniform grid. The PRD is less than 5% for both signals in Fig. 5.2, but we
applied a small vertical shift for better visualization of the approximations. If we
choose the appropriate inverse poles for the system, then the sampling points will
be dense near sudden changes of the signal. So we can achieve better resolution
for high frequency components. The problem of discretization is addressed in the
present work. We note that this is especially important if the inverse poles and
thus the discretization points are always adjusted to individual segments of the
signal (see e.g., [KovLóc12a; KovKir13]).

Related works

There are several numerical algorithms available for solving the non-linear equa-
tions in Eq. (5.1). The bisection method is a very simple one which is able to
determine a root of an f : R→ R function. This algorithm is robust, which means
that continuity is a necessary and sufficient condition for being terminated in a
root (if it exists). Non-existent derivatives or the possibility of multiple roots do
not cause any problems during the execution.

Unfortunately, the price of robustness is paid in the speed of the convergence,
which is linear. This property was improved in [Lóc11], by taking advantage of
the monotonic behavior of the argument function. Namely, the initial intervals
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Figure 5.3: Rational function system defined by two poles.

can be set dynamically according to the previously calculated results. For this
reason, let us consider a simple example with two inverse poles a0 = 0.9 · e

π
3
i and

a1 = 0.5 ·e−
π
3
i with m0 = m1 = 1. Fig. 5.3(b) shows the related argument function

θb(t) for which b = a = (a0, a1). Let θb(t1) < θb(t2) < θb(t3). If the preimages of
the points θb(t1), θb(t3) are already computed, then monotonicity implies that t2
lays between t1 and t3. As a consequence, the next bisection method for t2 can be
initiated from the interval [t1, t3]. Although this trick saves a lot of time, this is not
enough when we have a large number of inverse poles, especially in pathological
cases for |ai| ≈ 1. A detailed information about the execution time can be found
in [Lóc11].

The parallel implementation of the bisection method can further improve the
execution time. Let us consider M to be an integer power of two. By taking
advantage of the previous section, we can evaluate the middle point tM/2 of the
distribution first. Then, in the second iteration two bisection methods can be
performed on the intervals [t0, tM/2] and [tM/2, tM−1]. Generally, in the kth step we
have 2k−1 parallel executions of the bisection method. Unfortunately, this is not an
optimal implementation for GPU computing [SanKan10]. In CUDA-based GPU
architecture [Far11] a parallel job is represented by a kernel. A kernel consists of
threads, which represent a unit of tasks executed in a parallel Single Instruction
Multiple Data (SIMD) fashion. Threads are managed in a hierarchically organized
way and the individual threads are handled together in the smallest hierarchical
entity, the warp. Threads in the same warp share their memory addresses and they
execute the same instruction at the same time. Furthermore, a definite number of
threads create a block which can share a specific amount of memory, and they can
communicate via synchronization. Blocks form the upmost hierarchical level, the
grid. During the execution, a thread can identify itself by id numbers. A thread
has a unique id in the block, and a block also has a unique id in the grid. It means
that the maximal performance can only be reached if we compute all the points of
DM

b at the same time. In this case, one should use the original interval [−π, π] at
each run of the bisection method.
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Fixed-point iterations

Another way to suppress the limitations of the previous algorithm is to swap the
bisection for Householder’s method [Hou70]. This is a general fixed-point iteration
which can be written in the following form

(5.2) τk,l+1 = τk,l + d · (1/f)
(d−1)(τk,l)

(1/f)(d)(τk,l)
, (d ∈ N+) ,

where τk,l is the lth approximation of the point τk ∈ DM
b . The convergence rate

of this method is equal to d + 1 if the multiplicity of the root is equal to one,
f ∈ C(d+1) and τk,0 is close enough to the solution. Using Eq. (1.10), the first
derivative of the average argument function can be written in the form

θ ′
b(t) =

1

N

N−1∑

j=0

β ′
bj
(t) =

1

N

N−1∑

j=0

Prj(t− αj) ,

where the inverse poles are given as bj = rj · eiαj, (rj ∈ [0, 1), αj ∈ [−π, π)). Since
the Poisson kernel Pr(t) has infinitely many derivatives, it is possible to use high
order Householder methods. On the other hand, in this study we perform tests
only for d = 1, 2 (Newton/Halley) because of the complexity of higher derivatives.
In further sections, we will show that the difference between these methods is not
significant.

However, we can only achieve faster convergence if the initial approximation
of the solution is reasonably accurate. In order to cure this problem, we apply
the inverse interpolation technique. Additionally, we utilize the benefits of the
monotonic property of θb via monotone piecewise cubic Hermite interpolation. In
this case, the approximation of the inverse function has the following parameters:

• xi = −π+ i · 2π
L−1

: values;

• fi := θb(xi) : base points;

• di := 1/θ ′
b(xi) : derivatives;

with i = 0, 1, . . . , L−1 where L is the number of different base points. Now, we can
fit a monotone piecewise cubic Hermite interpolation polynomial H which satisfies
the following constraints:

H(fi) = xi, H ′(fi) = di (0 ≤ i < L) .

In order to get a monotone interpolation of the argument function, we applied
the algorithm in [FriCar80]. Then, the initial approximation of the solution is
computed by τk ≈ τk,0 = H(tk) where tk ∈ DM

0 . Note that both the number of
base knots L and their positions have significant effects on the overall performance.
More precisely, the former one increases the number of polynomial segments while
the latter one influences the accuracy of the initial approximation of the solution.
In the following two sections, we will provide an optimal setup of these parameters.
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Figure 5.4: Experiments on large number of poles using uniform base knots.

Number of base knots

In our first experiment, we test the approximation error of the argument function
against the number of uniformly sampled base knots. For this reason, the vector
of inverse poles a ∈ D

n is generated randomly with the multiplicities m0 = m1 =

. . . = mn−1 = 1. Then, we compute the ℓ2 error between the monotone piecewise
Hermite interpolation polynomial H and the original function θb. More precisely,
we perform the following steps:

1. generate different inverse poles ai ∈ D (i = 0, . . . , 500) and let a = a0, n = 1;

2. approximate the set DM
b (b = a) via inverse interpolation using L knots;

3. compute the average error at τk,0 for 0 ≤ k < M;

4. set n = n+ 1 and a := (a0, . . . , an−1) then repeat 2− 4 as long as n < 500.

This process was repeated ten times for different number of base knots. Fig. 5.4
shows the results for L = 6, . . . , 10 . Experiments for L ≤ 5 are not displayed
because of their high approximation error.

In Fig. 5.4(a) the argument function is similar to the identity function. It is
caused by both the large number of poles and the fact that every pole is drawn
from the standard uniform distribution of D. Furthermore, increasing the number
of base knots does not decrease significantly the approximation error, especially
for large n. One can see this phenomenon in Fig. 5.4(b), where the average ℓ2 error
is less than 0.03 for n > 50. Furthermore, Fig. 5.4(b) shows that only 7 base points
are enough to estimate the initial values τk,0 with 1-digit precision in most cases.
Note that the error is much higher for n ≤ 10, which is investigated in the next
subsection.

Rate of convergence

The rate of convergence of the aforementioned Householder’s method is d+ 1. We
examine this statement for n ≤ 10 number of inverse poles with high multiplicities.
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One of the main interests in this experiment is to use inverse poles which are close
to T. Therefore, a random number of inverse poles are generated within the track
limited by T and the inner circle in Fig. 5.3(a). This can be written as

(5.3) aj = rj · eiαj, ( rj ∈ [0.9, 1), αj ∈ [−π, π) ).

for 0 ≤ j < n. The test is organized as follows:

1. generate n different inverse poles and multiplicities;

2. construct the vectors a ∈ D
n, b ∈ D

N ∈ and m ∈ N
n
+;

3. choose base knots for the approximation of θb;

4. compute the average error of the initial values τk,0;

5. repeat from 2 by using the same poles a changing b and mj := mj+ 1 where
j is a random integer drawn from the set {1, . . . , n} .

Note that our test cases satisfy the condition in Eq. (5.3) for at least one inverse
pole. As a result, we have fewer poles but high multiplicities. It is in contrast with
the first experiment, where we had a lot of inverse poles with single multiplicities.
The main difference between the two experiments is the approximation error which
is much higher in this case. It is an undesirable effect of the inverse poles which
have great absolute values (rj ≥ 0.9). One can see this phenomenon in Fig. 5.3(b),
where the argument function has high first derivatives near α0 = π/3 caused by the
inverse pole a0. To overcome this problem, we extend the uniformly sampled 7 base
knots with additional points where the argument function has high curvatures. We
assume that this means a major improvement of the initial values. Now, we go
through the technical details about how we can choose the right base points.

First of all, we investigate the relationship between the absolute value of a
single inverse pole and the shape of the curvature of the related argument function.
Hence, in Fig. 5.5 we plot the first derivative and the curvature for a single inverse
pole a = 0.9 · eiπ3 , which can be computed as

κ(t) =
|β ′′
a(t)|

(1+ β ′2
a (t))

3
2

, (t ∈ [−π, π]).

As we know from Eq. (1.10), the first derivative of the argument function (i.e.,

Pr(t − α)) attains its maximum value at t = α which is equal to
1+ r

1− r
. This

quotient increases as r tends closer to 1, which also determines the deviation from
the identity function. At the same time, the width of the main lobe of the Poisson
kernel decreases, which is marked by a red arrow in Fig. 5.5(a). Our aim is to
predict this behavior by using the global extrema of the curvature. To this end, we
choose additional knots for making the initial approximation more accurate. Let
us consider Fig. 5.5(b), where we plot the width of the main lobe of β ′

a against r.
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Figure 5.5: Estimated parameters of the argument function.

The graph of this figure is associated to the width function ~w(r) for r ∈ [0, 1).

We approximated this function by using piecewise cubic spline interpolation in
Fig. 5.5(b). The estimation is marked by red dashed lines and the base knots
(rk, wk) are denoted by the red points. Furthermore, the number and the positions
of the base points have been localized by using a B-spline optimization method
[KarMon97]. Although it is a slow procedure, we apply it only once in order to give
an optimal estimation of ~w. In further executions, we use only the precomputed
approximation of the width function to choose new base points for estimating τk,0
(see e.g., Alg. 3).

In Fig. 5.6(a) we plot the approximations of the argument function from
Fig. 5.3(b). On the one hand, the ℓ2 error over the equidistant knots is significant
because the critical points are missing. On the other hand, the second approxi-
mation is much better due to the new (red) base points which are determined by
the lines 9–11 in Alg. 3. We repeated this experiment 500 times with n = 2 . . . 10

random inverse poles for M = N. Finally, the Newton’s method is applied with 10
iterations to refine the initial values of the estimation. During the tests, we evalu-
ated about 127, 000 points in DM

b . As a final step, we counted the points where the
error was greater than 10−6. Hence, the total number of divergent points can be
seen in Fig. 5.6(b). Although the same number of base knots were used for both
the uniform and the non-uniform approximations, the difference between them is
significant. In the former case the average number of divergent points is more than
8%, whereas in the latter case it is reduced to 1% only. We note that it is also
possible to switch back to the bisection method in a divergent point where the
previously computed neighbors are chosen as the initial interval.

Parallel implementation in CUDA

Fortunately, not only algorithmic optimization can be achieved in this case. If
we take a closer look at the solution of DM

b using Newton/Halley iteration, we
can notice that the solution processes of τk’s are independent from each other,
but the algorithmic instructions are completely the same. This finding gave us
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Figure 5.6: Estimated parameters of the argument function.

the opportunity to use massively parallel SIMD optimization. Our parallelization
is relatively simple on principle. We dedicated a thread to the solution process
of τk, where k could be determined by the id of the thread. At the moment, the
monotone piecewise cubic Hermite interpolation polynomial fitting part is executed
on the CPU. In this form one block represents one inverse pole configuration. On
the one hand, it means there is a technical boundary for M, although we feel it is
still enough for practical situations. On the other hand, it will be straightforward
to generalize the implementation in order to solve DM

b for many b with the same
kernel execution.

We also exploited a few specialties of the GPU architecture. The evaluation
of argument function is the bottleneck of the iterative part. If we examine this
part, a high amount of redundancy can be noticed. Namely, each inverse pole
uses a specific temporary variable which depends only on the value of the inverse
pole. It is a natural assumption that these temporary variables could be precom-
puted. However, they need to be stored in a way that every thread can reach them
simultaneously.

For this reason, the CUDA architecture has a special memory, called texture
memory. Although the concept of texture memory came from the field of Com-
puter Graphics, it is useful for general computing as well. It is due to the fact
that the simultaneous reading is realized via cache memory. For this reason, we
stored the inverse pole dependent temporary values in texture memory. As it was
mentioned before, threads in the same warp execute the same instructions. In our
case, it means that the efficiency of a warp depends on the thread, whose iteration
has the smallest rate of convergence. Since in CUDA the branching is achieved
by instruction masking, the naive implementation would execute instructions inef-
fectively on threads that reached the desired accuracy. Therefore, we used voting
functions, which guarantees that a warp finishes the execution when the desired
efficiency is reached by all threads in the warp. It does not make the execution
much faster, but the solution will be more accurate without increasing execution
time.
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Our CPU code was executed on Intel Xeon W3530 2.80 Ghz, and the GPU was
a NVIDIA Quadro 600. The experiments were performed on an increasing number
of inverse poles, which were generated randomly. The time needed for execution
can be observed in Fig. 5.7. We note that our algorithm can be used to initialize
both the bisection and the Newton’s method. For this reason, the execution time
of this step is not included in this experiment. In order to express the effect of
the algorithmic and the technical optimization, we run our method on both CPU
and GPU architectures. Although we did not use parallel implementation, there
is a significant difference between the original bisection method [Lóc11] and the
single core execution of our procedure. The proposed solution needs much less time
than the former algorithm. In addition the CUDA-based parallelization improves
efficiency with another magnitude. To compare the asymptotic behavior of these
procedures, we fit quadratic polynomials on the curves in Fig. 5.7. By using the
polyfit Matlab command we have the following results

ybisect = 0.46x
2 + 0.45x− 2.3,

yCPU = 0.13x2 − 0.18x− 0.06,

yCUDA = 0.01x2 + 0.02x+ 0.48 .

Comparing the coefficients, we can see that the magnitude of the quadratic term
decreased from 10−1 to 10−2, i.e., asymptotically it is closer to a linear polynomial.
Notice that there is no remarkable improvement for the Halley method, which is
a natural consequence of the use of higher derivatives. Their complex form makes
the evaluation of Eq. (5.2) more difficult.

Conclusion

We proposed an algorithm to solve the discretization problem. New concepts have
been revealed to improve both the execution time and the accuracy. We introduced
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not only a theoretical but a practical modification as well. Namely, we developed
a parallel implementation for CUDA-based GPU architecture.

On the one hand, the high number of inverse poles or multiplicities can increase
the execution time. On the other hand, if we model dynamic environments, it is
also necessary to optimize the inverse poles. In this case, optimization techniques
like PSO, NM, etc., require the computation of several irregular discretization set
at each step. In the future, we want to apply our method in the aforementioned
procedures to localize the best inverse pole(s) of discrete orthogonal rational sys-
tems.

5.3 Compression techniques

In this section, we want to investigate the efficiency of rational functions in com-
pressing different types of ECG signals. For this reason, we perform experiments
to compare the compression ratio and the accuracy of different methods in biomed-
ical signal processing. A wide range of algorithms have been proposed in this field
which are classified into the following categories [JalHut90]:

1. Parameter extraction techniques: algorithms are utilizing mostly polyno-
mial prediction and interpolation [NavCoh93], entropy and differential cod-
ing [HamTom91]. These methods are usually combined with beat codebook,
vector quantization [WanYua97; SunTai05], etc.

2. Direct time-domain techniques: the main concept is based on the reduc-
tion of the sampling frequency by decomposing the signal into plateaus,
slopes, turning points and peaks [CoxNol68; Mue78; BohBar88; IshShi83;
FirGor08]. There exist hybrid methods [AbeTom82] as well which utilize the
advantages of these algorithms.

3. Transform-domain techniques: these methods can be interpreted as projec-
tions of the signal to low dimensional subspaces of a certain domain. Namely,
the original data are represented by linear combinations of sinusoids [Lee-
Buc06], wavelets [Add05], Walsh functions [BerChi00], orthogonal polyno-
mials [JanOlm93], principal components [CasLagne], etc.

In this section, we are focusing on transform-domain techniques. To this end, we
used the review [Add05] as a reference of these ECG signal compressing meth-
ods. In order to assess their quality, we perform our tests on two main classes of
these algorithms. Namely, we compare the performance of rational functions with
wavelet and polynomial approximation based methods.

Furthermore, we want to use an objective measure of the level of compression
and distortion rate. For this reason, synthesized ECG signals in Section 3.1 are
also used to test these methods. In this case, we can generate electrocardiograms
with different diagnostic and geometrical features while the analytic forms of the
original signals are also provided. So, both compression and distortion rates can
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be compared by using different types of error measures, such as PRD and WDD
(see e.g., Section 3.2).

B-spline approximation

It is an efficient and adaptive transform method for signal compression. In this
case, we consider the optimization of the system of B-splines Ba

k,ℓ which can be
defined as follows:

Ba
k,0(t) =

{
1 if ai ≤ t < ai+1,
0 otherwise,

and

Ba
k,ℓ(t) =

ak+ℓ+1 − t

ak+ℓ+1 − ak+1
Ba
k+1,ℓ−1(t) +

t− ak

ak+ℓ − ak
Ba
k,ℓ−1(t) .

The base functions are characterized by the knot vector a = (a0, a1, . . . , an+ℓ)

and their optimal locations should be determined. For a fixed ℓ order of B-splines,
the corresponding parameters of our framework in Eq. (1.3) are the knots a, the
system Θa

k = B
a
k,ℓ and the coefficients ck. Here, the optimization process contains an

iterative method which removes the most insignificant knot at each step. Although
the system is highly adaptive, the coefficients can hardly be computed due the non-
orthogonal property of the B-spline base functions. In order to fix this problem,
an efficient knot ranking algorithm was proposed in [KarMon97].

Wavelet decomposition

The theory of discrete wavelet transform (DWT) has several practical applications
in signal processing [Mal08]. Generally, it starts with a system {φ(t− j)}j∈Z which
is usually an orthonormal basis of an initial subspace V0 ⊂ L2(R), where φ(t)
is the so-called scaling function. Then, the original signal is decomposed into
the subspaces Vi and Wi, which are orthogonal complements of each other with
respect to Vi+1. The embedded subspaces Vi ⊂ Vi+1 (i ∈ Z) are referred to as
multiresolution analysis (MRA), which can be used to define an orthonormal basis
of Vi and Wi as follows:

φi,j(t) = 2
i/2φ(2it− j) (i, j ∈ Z) ,

ψi,j(t) = 2
i/2ψ(2it− j) (i, j ∈ Z) .

The scaling function φ and the so-called mother wavelet ψ are completely char-
acterized by a compactly supported low-pass filter h as follows:

φ(t) =

ℓ−1∑

j=0

hjφ(2t− j) , ψ(t) =

ℓ−1∑

j=0

gjφ(2t− j) ,
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where gj = (−1)1−jhℓ−1−j is a high-pass filter and ℓ is the filter length. Although
the constraints of orthogonality restrict the values of the filter’s coefficients, we
still have ℓ

2
− 1 degree-of-freedom to choose hj [BurGop97]. In this section, we

are using the so-called Daubechies wavelets [Dau92b] which have ℓ/2 vanishing
moments, i.e., they can suppress at least ℓ

2
− 1 order of polynomials. Now we

can insert the DWT into our framework in Eq. (1.3) by defining the vector index
k = (i, j) , which runs through the dilation i and the translation j indices of the
mother wavelet ψ . Then, for a fixed ℓ length of low-pass filter Θa

k = ψk. Note that
the Daubechies wavelets have no free parameters, i.e., the system is not adaptive.
In order to cure this problem, the wavelet packets transform (WPT) was introduced
by Coifman et al. [CoiMey92], which utilizes different tilings of the time-frequency
plane. Namely, both the approximation and the detailed coefficients are further
decomposed at each level of the MRA. Then all coefficients that have high entropy
are removed. The remaining terms are the ’best’ optimal selection in the sense
of Shannon entropy. A detailed description of the implementation can be found
in [Add02]. Although it is possible to construct other orthogonal wavelets with
ℓ
2
−1 degree-of-freedom, these algorithms are beyond the scope of this dissertation.

For further details of this topic, we refer to the papers [BreLuc07; BlaCru07;
AboAlA13].

Experiments on synthetic data

In this experiment, we generated 100 different synthetic ECG signals with normal
diagnostic parameters defined in Section 3.1. According to the review [Add02]
we use Daubechies wavelets with five vanishing moments (db5). The embedded
Matlab commands wdencmp and wpdencmp were used to perform tests on DWT
and WPT. Since the applied ECG model [Kov12] is based on splines, a B-spline
based compression algorithm would result in a perfect reconstruction. Thus, during
the first experiment, we skip this method in order to compare the results in a fair,
objective way.

Now, we apply the aforementioned algorithms to process 100 synthetic ECG
signals. During the compression, the thresholds are decreased at each step until the
PRD exceeds 5%. Fig. 5.8(a) shows the required number of coefficients. One can
see that the average number of MT coefficients is fewer than the DWT. However,
the WPT is better, but it is still comparable with the performance of rational
functions. Fig. 5.8(b) expresses the cases where the WDDs of the reconstructed
signals are between 0 − 10%, 10 − 20%, etc. Note that the WDD of the MT
approximation is the best among all the tested methods.

Experiments on real data

In our next experiment, we are applying the algorithms to real ECG data. Our
comparisons include the rational representation, DWT, WPT and a B-spline based
adaptive method [KarMon97]. The test contains the first 3 minutes of 14 real ECG
signals of the MIT-BIH database from PhysioNet [GolAma00]. Some preprocessing
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Figure 5.8: Statistics of the tested methods using 100 synthetic beats.

steps are necessary to deal with noise, but these algorithms are beyond the scope
of this dissertation, this is why we just enumerate the applied techniques. First
of all, the signals are segmented into beats, which is followed by a simple baseline
subtraction algorithm [Cline] to deal with baseline wandering. Additionally, the
well-known Karhunen–Loéve transformation (KLT) is also applied to filter out high
frequency noises. Namely, the series of beats in a signal are aligned along with
their R peaks. Then, only the first four KLT bases were computed. The KLT was
implemented via SVD decomposition of 20 successive beats. In order to improve
the speed of this preprocessing step, we utilized the running SVD algorithm in
[CheAxt10].

In contrast with our previous experiment, now we fixed the parameters of the
systems to 30. It means that the DWT and the WPT can have 30 coefficients, since
they have no free parameters. The MT representation possesses three inverse poles
with multiplicities m = (3, 6, 3) i.e., 30 = 2 · (12 + 3). Finally, it means 15 base
knots and 15 coefficients for the B-splines. In this case, the compression ratio is
the same for all these procedures. Thus, the algorithm with less approximation
error is better. The final results can be seen in Fig. 5.9, where the average PRD is
assigned to all of the related methods and records. As we expected, the B-spline
approximation cannot keep up with the other three methods. Although the differ-
ence is not significant in case of MT, DWT and WPT, the rational representation
performed slightly better in most cases.

Note that our primary goal was to demonstrate the feasibility and applica-
bility of rational functions in ECG compression. The potential application area
can be extended to other types of data which are not necessarily biomedical or
physiological signals. Furthermore, for every algorithm (Fig. 5.9) we counted only
the number of coefficients required to achieve a certain level of accuracy. Other
parameters such as quantization level or the indices of the thresholded wavelet co-
efficient vector were not considered, although the latter one can notably increase
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Figure 5.9: Statistics of 14 compressed real ECG signals.

the amount of the required data. To this end, efficient data structures such as
embedded zerotree wavelet (EZW) [Sha93] or set partitioning in hierarchical trees
(SPIHT) are available in [SaiPea96]. It is also worth mentioning that the WPT
algorithm has outperformed the simple wavelet thresholding method in some cases
(Fig. 5.9). We note that it did not turn to be useful in practice due to the addi-
tional header information needed to identify the best basis. This phenomenon was
described, for instance, by Hilton in [Hil97]. Finally, we conclude that the rational
representations can achieve the same level of accuracy as the DWT and WPT.
On the other hand, rational methods do not require additional information for the
reconstruction, which is not true for wavelet based algorithms. For instance, in
the latter case, the indices of non-zero coefficients should be also retained. It is
also worth mentioning that we counted the number of parameters only. However,
the results are dependent on the number of bits used for storing these parameters.

Conclusion

The main disadvantage of B-splines is the lack of orthogonality, i.e., the coefficients
can be computed via the least square method. On the contrary, DWT and WPT
grant low computational complexity. Unfortunately, the price of speed is paid
in the adaptivity of the systems. Representations of real signals by means of
optimized rational functions attempted to fix this problem. Namely, we are keeping
the orthogonality while increasing the number of free parameters. As confirmed
by experiments, rational functions have a great potential in compressing signals.
Only one question–that of the filtering property–remains open: can we use these
expansions for denoising ECG?





Chapter 6

Notations

N is the set of natural numbers with zero N := { 0, 1, 2, 3, . . . }

N+ is the set of natural numbers without zero N+ := { 1, 2, 3, . . . }

Z is the set of integers
R is the set of rational numbers
R is the extended real line given by R ∪ {∞}

C is the set of complex numbers
C is the extended complex plane given by C ∪ {∞}

D is the open unit disc defined as { z ∈ C : |z| < 1 }

D is the closed unit disc defined as { z ∈ C : |z| ≤ 1 }
T is the unit circle or torus defined as { z ∈ C : |z| = 1 }

B is the Cartesian product of D and T

I is the open real interval (−1, 1)
arg min is the argument of the minimum arg minx f := { x : f(x) ≤ f(y) (y ∈ Df) }

R is the set of rational functions that are analytic on D

H2(D) is the Hardy space of square integrable functions that are analytic on D

L2(T) is the space of square integrable functions on T

L2w(R) is the w-weighted space of square integrable functions on R

a is the complex conjugate of a ∈ C

f̂ is the Fourier transform of the function f ∈ L2(T)
Hf is the Hilbert transform of the function f ∈ L2(T)
Fǫ
g f(t,ω) is the trigonometric short time Fourier transform of f with a window g

Cgf(t,ω) is the Cohen’s class distribution of f with a specified window g





Appendix A

Algorithms

Algorithm 1 Blaschke transformation of an image I ∈N×N

1: function blaschkes_img(I,a)

2: for k← 1,N do

3: for ℓ← 1,N do

4: x := 2ℓ/N− 1

5: y := 2k/N− 1

6: z := x+ iy

7: if |z| < 1 then

8: K := ⌊(ImBa(z) + 1) ·N/2⌋
9: L := ⌊(ReBa(z) + 1) ·N/2⌋

10: B(k, ℓ) := I(K, L)

11: Babs(k, ℓ) := |Ba(z)|

12: Barg(k, ℓ) := ∠Ba(z)

13: else

14: B(k, ℓ) := 0

15: Babs(k, ℓ) := 0

16: Barg(k, ℓ) := 0

17: end if

18: end for

19: end for

20: return B, Babs, Barg

21: end function
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Algorithm 2 hyperbolic multiplication ⊙
1: function hyp_mul(λ,w1,w2)

2: if w1 = w2 then

3: sλ := 0

4: wλ := w1

5: else

6: p := |Bw1
(w2)|

7: ǫ := Bw1
(w2)/ |Bw1

(w2)|

8: a := −ǫw1

9: sλ := th(λ arth(p))

10: wλ := ǫBa(sλ)

11: end if

12: return sλ, wλ
13: end function

Algorithm 3 Choosing base points with high curvature.
1: function choose_knots(a)

2: load(’bspline_parameters’, rk, wk) ⊲ base points (rk, wk)

3: knots := [−π, π]

4: for i← 1, n do

5: r := |ai|

6: α := ∠ai

7: if 0.9 ≤ r then

8: width := spline(rk, wk, r) ⊲ cubic spline interpolation

9: knots := [knots, α]

10: knots := [knots, α+ width]

11: knots := [knots, α− width]

12: end if

13: end for

14: return knots

15: end function
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Algorithm 4 Basic Particle Swarm Optimization
1: function BPSO(f, S, N, Vmax, c1,2)

2: w0 := 0.2 ⊲ Initializing weights, particles, etc.

3: wN := 0.8

4: for all k← 1, S do

5: Randomize xk, vk
6: Initialize ỹk, ŷ := xk

7: end for

8: for ℓ← 1,N do

9: for k← 1, S do

10: if f(ỹk) > f(xk) then ⊲ Updating the local best positions.

11: ỹk := xk

12: end if

13: end for

14: if f(ŷ) > min
1≤i≤S

f(ỹi) then ⊲ Updating the global best position.

15: gbest := arg min
1≤i≤S

f(ỹi)

16: ŷ := xgbest

17: end if

18: w := wN − ℓ(wN −w0)/N ⊲ Updating the inertia weight.

19: for k← 1, S do ⊲ Updating vk and xk .

20: Randomize r1, r2 ∈ [0, 1]

21: vk := c1r1 · (ỹk − xk) + c2r2 · (ŷ− xk) + w · vk
22: if |vk| > Vmax then

23: vk := sgn vk · Vmax
24: end if

25: xk := xk + vk

26: end for

27: end for

28: return xgbest
29: end function
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Algorithm 5 Multi-Dimensional Particle Swarm Optimization
1: function MDPSO(f, S, N, Dmin, Dmax, VDmax, Vmax, c1,2)

2: w0 := 0.2 ⊲ Initializing weights, particles, etc.

3: wN := 0.8

4: for all k← 1, S do

5: for all d← Dmin, Dmax do

6: Randomize xdk, v
d
k

7: Initialize ỹdk, ŷ
d := xdk

8: end for

9: Randomize dk, vdk

10: Initialize d̃k, d̂

11: end for

12: for ℓ← 1,N do

13: w := wN − ℓ(wN −w0)/N ⊲ Updating the inertia weight.

14: for k← 1, S do

15: if f(xdkk ) < f(ỹdkk ) then

16: if f(xdkk ) < f(ỹd̃kk ) then

17: d̃k := dk ⊲ Updating the local best dim.

18: end if

19: ỹdkk := xdkk ⊲ Updating the local best positions.

20: end if

21: if f(xdkk ) < min
{
f(ŷdk), min

1≤i≤S,i 6=k
f(xdki )

}
then

22: if f(xdkk ) < f(ŷd̂) then

23: d̂ := dk ⊲ Updating the global best dim.

24: end if

25: gbestdk := k ⊲ Updating the global best positions.

26: ŷdk := xdk
gbestdk

27: end if ⊲ Updating dk, vdk, x
dk
k and vdkk .

28: UPDATE_POS(xdkk , v
dk
k , ỹ

dk
k , ŷ

dk , Vmax, c1,2, w)

29: UPDATE_DIM(dk, vdk, d̃k, d̂, Dmin, Dmax, VDmax, c1,2)

30: end for

31: end for

32: return xd̂
gbestd̂

33: end function
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Algorithm 6 Applying dimensional updates.

1: function UPDATE_DIM(dk, vdk, d̃k, d̂, Dmin, Dmax, VDmax, c1,2)

2: Randomize r1, r2 ∈ [0, 1]

3: vdk = [vdk + c1r1 · (d̃k − dk) + c2r2 · (d̂− dk)]

4: if |vdk| > VDmax then ⊲ Clamping vdk .

5: vdk = sgn vdk · VDmax

6: end if

7: dk = dk + vdk

8: if dk > Dmax then ⊲ Clamping dk .

9: dk = Dmax

10: else if dk < Dmin then

11: dk = Dmin

12: end if

13: return dk, vdk
14: end function

Algorithm 7 Applying positional updates.

1: function UPDATE_POS(xdkk , v
dk
k , ỹ

dk
k , ŷ

dk, Vmax, c1,2, w)

2: Randomize r1, r2 ∈ [0, 1]

3: vdkk = c1r1 · (ỹdkk − xdkk ) + c2r2 · (ŷdk − xdkk ) + w · vdkk
4: if |vdkk | > Vmax then

5: vdkk = sgn vdkk · Vmax ⊲ Clamping vdkk .

6: end if

7: xdkk = xdkk + vdkk
8: return xdkk , v

dk
k

9: end function
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MATLAB examples

MATLAB GUIs

In this section, we want to demonstrate the use of the ECG signal generator and the
rational functions of Sections 3.1–5.1. For this reason, three interactive Matlab

GUIs are implemented.

The first GUI is called blaschke_tool. It can be used to visualize the con-
nection between the position of the inverse pole and the values of the argument
function. It is also possible to display grayscale images that are projected onto the
unit disc via Blaschke functions (see e.g., Fig. B.1(a) and Fig. B.1(b)). Further-
more, one can see the absolute values and the arguments of the Blaschke function
in Fig. B.1(c) and Fig. B.1(d).

In order to demonstrate the properties of the MT systems, we build up the
GUI called malmquist_tool. Here, the user can change the positions, the number
and the multiplicities of inverse poles, interactively. The argument function is also
displayed on the unit disc. Furthermore, all the members of the MT system can
be visualized according to the selected inverse poles. It is not only the complex
case, but the real valued MT–Fourier expansions are implemented as well. More-
over, both the real and the complex discretizations are available for interpolation
purposes. All of these functions can be animated by moving the inverse poles in
the unit circle. Fig. B.2 shows some illustrations generated by the toolbox. In
Fig. B.2(a) one can see the inverse poles and the discretization of the real valued
MT system while Fig. B.2(b) displays the corresponding argument function. It also
illustrates that the discretization points tend to be dense near the inverse pole as
it gets closer to the torus. This is due to the fact that the set Tn in Eq. (1.26) can
be interpreted as a solution of an electrostatic equilibrium problem [PapSch01].
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(a) Original image. (b) Transformed image.

(c) Absolute values of a
Blaschke function.

(d) Arguments of a
Blaschke function.

Figure B.1: Properties of a Blaschke function.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

4

2

2

1

(a) Inverse poles, multi-
plicities and Tn.

−pi −pi/2 0 pi/2 pi
−pi

−pi/2

0

pi/2

pi

(b) Argument function.

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

3

 ✁✄✂✆☎

(c) Real part of Φ6.

−2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

 ✁✄✂✆☎

(d) Imaginary part of Φ6.

Figure B.2: Visualization of the MT systems defined by four inverse poles.
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Figure B.3: Geometrical view (left) and graph paper view (right) of an ECG curve.

In order to control the ECG generation process, a Matlab Toolbox called
ECGGEN was also created with an interactive GUI. It consists of three view
modes, each with a different functionality:

Geometrical view: It was designed to show the geometrical parameters of the
ECG curves. Therefore, only tangents and curvatures can be seen at each
base point. The positions of these points are expressed with their coordi-
nates.

Diagnostical view: It is a conversation between geometrical and diagnostic
properties. Users can change the duration of five diagnostic intervals and
the amplitudes of the waves. All parameters are given in milliseconds (ms)
and millivolts (mV). This view mode can be seen in Fig. 3.1.

Graph paper view: It is a standard medical viewpoint. Each ECG recorder
prints the output signals to a graph paper which has a regular grid. As
usual, the time is represented on the x-axis and the voltage is represented
on the y-axis. In addition, each small square of the grid is 1 mm in length
which represents 40 ms time and 0.1 mV amplitude.

The parameters are converted proportionally between view modes, so we can ex-
amine the same ECG signal from different viewpoints.

Examples

In this section we present some Matlab instructions of the RAIT toolbox.
First, we start with a real ECG curve from the PTBDB database of Physionet
[GolAma00]. Second, we perform the simplex algorithm to find the optimal in-
verse poles for the continuous MT system. Finally, we compute the coefficients
and the corresponding MT expansion. Note that the original signal is Hilbert
transformed using the command addimag. As we shall see later, this step can be
skipped if we use the discrete real valued MT system.
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Figure B.4: MT approximation of the record s0306lrem from the Phys-
ioNet/PTBDB database.

>> s=periodize(ecg,0.1,0);

>> s_im=addimag(s);

>> m=[1 2 1];

>> pr=2;

>> init=zeros(1,6);

>> p=simplex_mt(s,m,pr,init,0,1e-6);

>> mp=periodize_poles(multiply_poles(p,m),pr);

>> mtco=mt_coeffs(s_im,mp);

>> s_mt=mt_generate(length(s),mp,mtco);

Now, we can get the reconstructed signal by taking the real part of the variable
s_mt. In Fig. B.4, one can see the optimal inverse poles of the MT system and the
approximation. Note that the 6.92% PRD is achieved by using only 8 coefficients
and 3 inverse poles, which means 11 complex (or 22 real) parameters. In contrast,
the original signal contains about 900 samples per heartbeat.

If we convert the coefficients into the basic rational function system (RF), the
main diagnostic waves of the ECG curve can be separated. This method can
be used to analyze ECG curves, because the corresponding waves express real
diagnostic features. Fig. B.5(a) shows the lack of this property in case of the MT
system, which does not reflect any diagnostic information. On the other hand,
the basic rational representation preserves the individual waveforms of the ECG.
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Figure B.5: Basic functions of MT and RF systems.

Fig. B.5(b) is generated by the following code :

>> len=length(s);

>> lfco=coeff_conv(len,mp,mtco,’mt’,’lf’);

>> lfs=lf_system(len,mp);

>> P=real(lfco([1,5])*lfs([1,5],:));

>> QRS=real(lfco([2,3,6,7])*lfs([2,3,6,7],:));

>> T=real(lfco([4,8])*lfs([4,8],:));

Now, let us consider the discrete analogue of the previous examples. For a
change, we use a segment of a central venous pressure (CVP) signal. First, the
optimal inverse poles are determined. Then, the discrete coefficients are calculated,
directly. Note that there is no need to apply the Hilbert transformation here. In
Fig. B.6(a) and Fig. B.6(b) we display the reconstructed signal using only three
different inverse poles. The latter figure was obtained by repeating the number
of the inverse poles periodically. Hence, the same instructions were executed by
setting the variable pr to 2. For instance, Fig. B.6 was obtained as follows:

>> s=periodize(cvp,0.1,0);

>> len=length(s);

>> m=[1 3 2];

>> pr=1;

>> init=[-0.6,-0.6,0.2,0.7,-0.4,-0.6];

>> p=simplex_mtdr(s,m,pr,init,0,1e-6);

>> mp=periodize_poles(multiply_poles(p,m),pr);

>> [cUk,cVk]=mtdr_coeffs(s,mp,1e-6);

>> s_mtdr=mtdr_generate(len,mp,cUk,cVk);
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Figure B.6: Real valued MT approximation of the record mgh001 from the Phys-
ioNet/MGHDB database.
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Transformation methods in signal processing
Péter Kovács

Summary of the PhD Dissertation

This dissertation is concerned with the application of the theory of rational

functions in signal processing. The PhD thesis summarizes the corresponding

results of the author’s research.

Since the systems of rational functions are defined by the collection of in-

verse poles with multiplicities, the following parameters should be determined:

the number, the positions and the multiplicities of the inverse poles. Therefore,

we develop the hyperbolic variant of the so-called Nelder–Mead and the par-

ticle swarm optimization algorithm. In addition, the latter one is integrated

into a more general multi-dimensional framework. Furthermore, we perform a

detailed stability and error analysis of these methods.

We propose an electrocardiogram signal generator based on spline interpo-

lation. It turns to be an efficient tool for testing and evaluating signal models,

filtering techniques, etc. In this thesis, the synthesized heartbeats are used to

test the diagnostic distortion of the rational representation. In addition, we

introduce a mathematical model for the multi-channel QRS complex.

We construct a new, generalized time-frequency distribution of signals

based on different types of rational functions. This method is applied for the

problem of epileptic seizure detection in electroencephalography. The effective-

ness of our algorithm is compared to several state-of-the-art feature extraction

methods.

Numerical methods for computing rational series expansions of signals are

also presented in a Matlab toolbox. We provide a fast algorithm to construct

discrete rational orthogonal functions. Then, these systems are used to rep-

resent discrete-time series which are compared with usual signal compression

techniques.

The main material of the dissertation has been published in 4 journal and

5 conference papers, and presented at 10 international conferences. The con-

ference papers have appeared in IEEE proceedings.

Budapest, 2016



Transzformációs módszerek a jelfeldolgozásban
Kovács Péter

Doktori értekezés összefoglalása

Az értekezés témája a racionális függvényrendszerek vizsgálata és alkalma-

zása a jelfeldolgozás területén. A disszertációban ismertetem az egyes problé-

maköröket, illetve bemutatom az ezek megoldására kidolgozott módszereket.

A racionális függvények esetén a rendszert az inverz pólusok sorozata

egyértelműen meghatározza. Így az adaptív racionális reprezentációk konstruk-

ciójához a következő szabad paraméterek optimalizálására van szükség: inverz

pólusok száma, értéke és multiplicitása. A probléma megoldására a dolgozat-

ban a Nelder–Mead szimplex és az ún. Particle Swarm Optimization algorit-

musok hiperbolikus változatát használtam. Továbbá kidolgoztam egy olyan

többdimenziós módszert, mellyel az inverz pólusok értékei mellett azok opti-

mális száma és multiplicitása is meghatározható. Az értekezésben részletesen

elemzem az említett módszerek stabilitását és hibáját.

Az értekezésben kidolgoztam egy spline interpoláción alapuló elektrokardio-

gram (EKG) generátort. Ennek segítségével megvizsgáltam különböző EKG

modellek numerikus és diagnosztikai hibáját, melyeket összehasonlítottam a

racionális rendszerekkel. A disszertációban többcsatornás felvételek QRS kom-

plexusát is modelleztem, melyhez elemi racionális függvényeket használtam.

Az értekezésben a diszkrét rövid idejű Fourier-transzformáció analógiáját

követve kidolgoztam egy adaptív idő-frekvencia felbontást. Ennek segítségével

elektroenkefalogram jelekben lehet epilepsziás rohamokat detektálni. A mód-

szert több state-of-the-art algoritmussal is összehasonlítom.

A disszertációban tárgyalt racionális függvényekhez és a kapcsolódó transz-

formációkhoz egy önálló Matlab eszköztárat készítettem. Ennek segítségével

megvalósítottam egy racionális EKG tömörítő eljárást, melyet az irodalomban

jól ismert technikákkal együtt teszteltem. Továbbá egy új, párhuzamosított

módszert adtam a diszkrét racionális ortogonális rendszerek szerkesztésére.

Az értekezésben saját, illetve társszerzőkkel írt publikációimat összegeztem.

Ebből 4 folyóirat, 5 pedig konferencia közlemény, melyek IEEE proceedings-

ben jelentek meg. Az eredményeket 10 nemzetközi konferencián prezentáltam.

Budapest, 2016




