2,228 research outputs found

    DOH: A Content Delivery Peer-to-Peer Network

    Get PDF
    Many SMEs and non-pro¯t organizations su®er when their Web servers become unavailable due to °ash crowd e®ects when their web site becomes popular. One of the solutions to the °ash-crowd problem is to place the web site on a scalable CDN (Content Delivery Network) that replicates the content and distributes the load in order to improve its response time. In this paper, we present our approach to building a scalable Web Hosting environment as a CDN on top of a structured peer-to-peer system of collaborative web-servers integrated to share the load and to improve the overall system performance, scalability, availability and robustness. Unlike clusterbased solutions, it can run on heterogeneous hardware, over geographically dispersed areas. To validate and evaluate our approach, we have developed a system prototype called DOH (DKS Organized Hosting) that is a CDN implemented on top of the DKS (Distributed K-nary Search) structured P2P system with DHT (Distributed Hash table) functionality [9]. The prototype is implemented in Java, using the DKS middleware, the Jetty web-server, and a modi¯ed JavaFTP server. The proposed design of CDN has been evaluated by simulation and by evaluation experiments on the prototype

    Using smartphones as a proxy for forensic evidence contained in cloud storage services

    Get PDF
    Cloud storage services such as Dropbox, Box and SugarSync have been embraced by both individuals and organizations. This creates an environment that is potentially conducive to security breaches and malicious activities. The investigation of these cloud environments presents new challenges for the digital forensics community. It is anticipated that smartphone devices will retain data from these storage services. Hence, this research presents a preliminary investigation into the residual artifacts created on an iOS and Android device that has accessed a cloud storage service. The contribution of this paper is twofold. First, it provides an initial assessment on the extent to which cloud storage data is stored on these client-side devices. This view acts as a proxy for data stored in the cloud. Secondly, it provides documentation on the artifacts that could be useful in a digital forensics investigation of cloud services

    Recovering Residual Forensic Data from Smartphone Interactions with Cloud Storage Providers

    Full text link
    There is a growing demand for cloud storage services such as Dropbox, Box, Syncplicity and SugarSync. These public cloud storage services can store gigabytes of corporate and personal data in remote data centres around the world, which can then be synchronized to multiple devices. This creates an environment which is potentially conducive to security incidents, data breaches and other malicious activities. The forensic investigation of public cloud environments presents a number of new challenges for the digital forensics community. However, it is anticipated that end-devices such as smartphones, will retain data from these cloud storage services. This research investigates how forensic tools that are currently available to practitioners can be used to provide a practical solution for the problems related to investigating cloud storage environments. The research contribution is threefold. First, the findings from this research support the idea that end-devices which have been used to access cloud storage services can be used to provide a partial view of the evidence stored in the cloud service. Second, the research provides a comparison of the number of files which can be recovered from different versions of cloud storage applications. In doing so, it also supports the idea that amalgamating the files recovered from more than one device can result in the recovery of a more complete dataset. Third, the chapter contributes to the documentation and evidentiary discussion of the artefacts created from specific cloud storage applications and different versions of these applications on iOS and Android smartphones

    Persistent Memory File Systems:A Survey

    Get PDF
    Persistent Memory (PM) is non-volatile byte-addressable memory that offers read and write latencies in the order of magnitude smaller than flash storage, such as SSDs. This survey discusses how file systems address the most prominent challenges in the implementation of file systems for Persistent Memory. First, we discuss how the properties of Persistent Memory change file system design. Second, we discuss work that aims to optimize small file I/O and the associated meta-data resolution. Third, we address how existing Persistent Memory file systems achieve (meta) data persistence and consistency
    • …
    corecore