4 research outputs found

    Recovering Residual Forensic Data from Smartphone Interactions with Cloud Storage Providers

    Full text link
    There is a growing demand for cloud storage services such as Dropbox, Box, Syncplicity and SugarSync. These public cloud storage services can store gigabytes of corporate and personal data in remote data centres around the world, which can then be synchronized to multiple devices. This creates an environment which is potentially conducive to security incidents, data breaches and other malicious activities. The forensic investigation of public cloud environments presents a number of new challenges for the digital forensics community. However, it is anticipated that end-devices such as smartphones, will retain data from these cloud storage services. This research investigates how forensic tools that are currently available to practitioners can be used to provide a practical solution for the problems related to investigating cloud storage environments. The research contribution is threefold. First, the findings from this research support the idea that end-devices which have been used to access cloud storage services can be used to provide a partial view of the evidence stored in the cloud service. Second, the research provides a comparison of the number of files which can be recovered from different versions of cloud storage applications. In doing so, it also supports the idea that amalgamating the files recovered from more than one device can result in the recovery of a more complete dataset. Third, the chapter contributes to the documentation and evidentiary discussion of the artefacts created from specific cloud storage applications and different versions of these applications on iOS and Android smartphones

    Analysing distributed Internet worm attacks using continuous state-space approximation of process algebra models

    Get PDF
    AbstractInternet worms are classically described using SIR models and simulations, to capture the massive dynamics of the system. Here we are able to generate a differential equation-based model of infection based solely on the underlying process description of the infection agent model. Thus, rather than craft a differential equation model directly, we derive this representation automatically from a high-level process model expressed in the PEPA process algebra. This extends existing population infection dynamics models of Internet worms by explicitly using frequency-based spread of infection. Three types of worm attack are analysed which are differentiated by the nature of recovery from infection and vulnerability to subsequent attacks.To perform this analysis we make use of continuous state-space approximation, a recent breakthrough in the analysis of massively parallel stochastic process algebra models. Previous explicit state-representation techniques can only analyse systems of order 109 states, whereas continuous state-space approximation can allow analysis of models of 1010000 states and beyond
    corecore