
DOH: A Content Delivery Peer-to-Peer Network

Jimmy Jernberg1, Vladimir Vlassov1, Ali Ghodsi1,2, and Seif Haridi1,2

1 School for Information and Communication Technology (ICT), Royal Institute of
Technology (KTH), Stockholm, Sweden

2 Swedish Institute of Computer Science (SICS), Kista, Sweden

Abstract. Many SMEs and non-profit organizations suffer when their Web
servers become unavailable due to flash crowd effects when their web site
becomes popular. One of the solutions to the flash-crowd problem is to place
the web site on a scalable CDN (Content Delivery Network) that replicates
the content and distributes the load in order to improve its response time.
In this paper, we present our approach to building a scalable Web Hosting
environment as a CDN on top of a structured peer-to-peer system of collab-
orative web-servers integrated to share the load and to improve the overall
system performance, scalability, availability and robustness. Unlike cluster-
based solutions, it can run on heterogeneous hardware, over geographically
dispersed areas. To validate and evaluate our approach, we have developed a
system prototype called DOH (DKS Organized Hosting) that is a CDN im-
plemented on top of the DKS (Distributed K-nary Search) structured P2P
system with DHT (Distributed Hash table) functionality [9]. The prototype
is implemented in Java, using the DKS middleware, the Jetty web-server, and
a modified JavaFTP server. The proposed design of CDN has been evaluated
by simulation and by evaluation experiments on the prototype.

1 Introduction

The major focus of our research presented in this article is to design and evaluate
a scalable Content Delivery Network (CDN) built on top of a structured P2P sys-
tem that provides the Distributed Hash Tables (DHT). Such CDN can be used as a
Web-hosting environment that allows improving the overall performance and storage
capacity, scalability and availability of hosted Web sites.

As a motivational scenario, assume a small company has a web server on a 10 Mbit
broadband line, which usually serves it well. One day a large news portal reviews and
recommends the company site to the portal users. Since the site becomes a ”hot
object”, it starts generating a huge amount of hits. Subsequently, the company’s web
server will not be able to cope with the strain, and, eventually, its bandwidth will
be totally consumed, making the company’s Web-pages unavailable. The situation
described above is called the flash crowd effect (also known as the SlashDot effect[1]),
when a sudden increase in traffic makes a web site completely unavailable.

One solution for a company to survive a flash crowd is to pay for joining a pro-
prietary CDN like the one owned by Akamai[2] that offers services in distributing the
load of heavily trafficked web sites for companies with an extensive web presence. For
SMEs and organizations without the need for a CDN on a daily basis, the incurred
costs of placing their web-sites on a proprietary CDN might be considered too high.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Swedish Institute of Computer Science Publications Database

https://core.ac.uk/display/11433369?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


In our view, one of the cost-efficient approaches to building high-performance and
scalable web-sites, CDNs and Web-hosting systems, is to integrate several (open-
source) web-servers in a scalable structured P2P system with DHT functionality. A
(part of the) URL of a Web-page can be used as a key to determine a web-server
on which the page is (to be) stored. The P2P system of web-servers should support
content replication in order to improve performance and availability of hosted Web-
sites. We believe that this approach should make it possible for SMEs and small
organizations to obtain at an affordable price the same hosting services that have
been available to big companies for years. CoralCDN[12] is an existing P2P CDN
that are already deployed, but while CoralCDN is designed to be an overlay network
for handling the flash crowd effect DOH aims for more: to be a low cost, transparent,
web-hosting service with a built in ability to handle a flash crowd.

Extensive research has been done in building efficient DHTs on top of structured
P2P overlay networks, see e.g.[3], [13], [23], [25], and [26]. A DHT provides a dis-
tributed indexing service based on hashing and like an ordinary centralized hash-table,
a DHT, whose buckets are distributed among peers, can be used for storing of differ-
ent kind of information. Note that the DHT should be ”open”: in the case of a hash
collision, when different entries are hashed to the same bucket, a single bucket can
contain multiple entries, which should be searched sequentially.

In this paper, we present our approach to building a scalable Web Hosting envi-
ronment as a CDN on top of a structured P2P system with DHT functionality. In our
design, several Web-servers are organized in a structured P2P system in order to share
their load and to improve the overall system performance, scalability and storage ca-
pacity, as well as availability of hosted web-sites. The underlying P2P overlay network
provides an efficient and scalable lookup mechanism needed for DHT, replication and
ability to automatically self-organize when nodes join/leave the network.

The DHT is used for fetching and storing web pages. Each of the web-servers
is responsible for a region of DHT buckets used to store Web pages, referenced by
URLs. Even though the worst-case lookup latency in a structured P2P system with
N peers is O(log N), building a Web-hosting environment as a structured P2P system
allows improving overall performance and scalability of Web-hosting due to multi-
ple access points, well-balanced load distribution and content replication, increase in
overall storage and computational capacity of the P2P CDN. In our design, we use
a sophisticated content replication mechanism, called symmetric replication [15], in
order to even more improve the system performance, availability and reliability.

To validate our approach, we have developed, implemented and evaluated a system
prototype called DOH (DKS Organized Hosting) that is a content delivery network
implemented on top of the DKS (Distributed K-nary Search) structured P2P system
with DHT functionality [9]. DOH provides the same features as a corporate CDN
at the same cost as a regular low-end web server. The system prototype is imple-
mented in Java, using DKS[3], the Jetty[14] web server, and a modified JavaFTP[6]
server package. We have evaluated our proposed CDN design by simulation and by
performing evaluation experiments on the developed prototype.

The remainder of the paper is organized as follows: Section 2 describes the DOH
architecture. Section 3 presents our DOH prototype. Section 4 presents results of pre-
liminary performance evaluation. Section 5 discusses some related work. Conclusions
and future work are given in Section 6.



2 DOH Design

When designing the DOH content delivery network, two different types of users should
be considered: a regular user (called User) browsing the Web; and a content provider
(called here Publisher) publishing content of a web-site in DOH. As shown in Figure 1,
DOH consists of two types of nodes: Translators and DOH-Nodes (or shortly Nodes).

The DOH-Nodes are connected by the DKS P2P middleware in a structured P2P
network. Each DOH-Node contains an FTP server, a web server, and is connected
to the DKS overlay network (see Figure 1). It serves HTTP requests submitted by
Users; confirms identity, inserts, and removes content provided by Publishers.

Translator nodes handles interaction between the User and the system before an
HTTP request is sent to a DOH-Node. A Translator redirects the User’s browser to
DOH-Nodes based on a load-balancing strategy. Each Translator maintains a cache
for storing information about other Translators and DOH-nodes including their load
status and RTT times, referred to as the Translator-cache. This information is used
for redirection decisions, and when Nodes join.

Fig. 1: Architecture of the DKS-based Hosting (DOH) P2P Content Delivery Network

Servicing of an HTTP request arrived to one of the DOH Translator nodes, passes
the following steps:

1. Redirection from the old home to a Translator. This step is performed when the
DNS entry for the requested web page has been updated;

2. Redirection from a Translator to a DOH-node based on current load of the DOH
nodes and network congestion;

3. Retrieval of the requested file (replica) from the Translator-cache of the node or,
if the cache misses, from the DHT of the DKS P2P system.

4. Unwrap, assemble, and write the file to the disk (cache) of the requested DOH
node;

5. Sending the requested file to the requesting client.



2.1 Translator

A web-hosting system like DOH allows storing (and replicating) content of several
web sites in one hosting system. As the content is referenced to by URLs, the system
needs to direct a HTTP request to one of DOH-Nodes that serve as access points to
the content, i.e. it needs to translate a requested URL to a new URL that redirects a
requesting client to one of the DOH-Nodes. To perform this URL-to-URL translation,
the DOH system includes Translator nodes that are Users’ initial access points to the
DOH content delivery network. Translators serve as mediators that redirect web
clients to one of the DOH-nodes based on their current load and network congestion.
Thus, the URL-to-URL translation performed by Translators aims at load balancing
in order to improve availability and performance of the DOH content delivery network.

To perform load balancing, each Translator maintains a cache of information on
DOH-nodes: IP-addresses, load, and RTT values; and information on other Transla-
tors it knows. This cache is called Translator-cache. When a Translator receives an
HTTP request, it checks the Translator-cache to find the currently ”best” DOH-node
that can service the request. To redirect the client to a DOH-node, the Translator is-
sues a 302-code message that, according to the HTTP standard[11], is used to respond
on requests for temporarily moved pages, and adds the IP address of the Node to the
new URL when forming the 302-code response to redirect the requesting client. E.g., if
the riginal URL is http://www.url.com/a/b/index.html, then the translated URL
is http://192.168.2.23/www.url.com/a/b/index.html, where 192.168.2.23 has
been chosen as the currently ”best” DOH node to service the request.

Information in the Translator-cache is periodically updated by the Nodes. The
data collected in the Translator-cache are used to calculate Nodes’ load and network
congestion over time. The Translator-cache is also used for bootstrapping, as it
contains information on Nodes and Translators that are known to be up and running.
There are three levels of the caching structure: (1) level 1 keeps a list of other known
Translator-caches, (2) level 2 is the local Translator-cache level, and (3) level 3 is a
Translator-cache-entry that stores data on an actual Node. When a new Node joins
DOH, it first contacts the Translator-cache (if any) it used last time. If that cache is
down, the Node queries a cache list for online caches. The queried Translator-cache
may respond with several valid entries, and the new (booting) Node contacts one of
these Nodes to join the system. The same mechanism is used when a Publisher wants
to find a Node to upload its content on DOH.

2.2 DOH-Node

In DOH, web content and its replicas are stored in a hash table distributed among the
DOH-nodes. The content is replicated in DHT according to the symmetric replication
mechanism used in DKS[15].

Each DOH-Node includes three subsystems which are the DKS middleware that
connect the Node to the P2P DKS overlay network, an FTP server, and a web server.
When a client requests a file, the web server searches the file locally, and if the file
does not exist locally, or the local replica is considered too old, the web server will
perform a lookup operation in the DKS DHT to retrieve the requested file. The FTP
server of a DOH-node is used when Publishers upload content.



Granularity of content stored in DHT

To store contents (or content references) of hosted web sites, the DOH CDN uses
a Distributed Hash Table (DHT) provided by the DKS P2P middleware[3]. When
content of a web site is stored to or fetched from the DHT, either the entire URL or a
part of the URL is considered as a key. The hashed key value determines a DOH-node
responsible for the DHT-bucket in which the content is (to be) stored.

There are three strategies of placement of web-site content identified by URLs
to the DHT, that differ in the granularity of a web-site content stored in a
bucket of the DHT: (1) file-wise placement (uses the entire URL as a key, e.g.
http://www.url.com/a/b/index.html); (2) directory-wise placement (uses the di-
rectory part of the URL as a key, e.g. http://www.url.com/a/b/); (3) site-wise
placement (uses the web-sire part of the URL as a key, e.g. http://www.url.com/).

With the file-wise placement, files that belong to the same web-site can be stored
in different DHT buckets and distributed among the DOH-nodes.

With the directory-wise placement, all files of the same directory are hashed to
the same bucket, i.e. stored on the same DOH-node. Even though the files are hashed
directory-wise it does not mean they have to be returned directory-wise on a DHT
get request. The DKS API allows a file name to be sent along with the DHT get
request as an additional parameter to retrieve specific entry (the requested file).

The web-site-wise placement is a coarse-grained placement and is similar to the
directory-wise placement described above. The site-wise placement causes the entire
content of a web-site to be stored in the same DHT bucket.

The coarser the placement is, the lower is the level of content distribution. In our
DOH prototype, we support all three different levels of granularity. Preliminary eval-
uation of file-wise and directory-wise distribution shows that the system performance
is not very sensitive to the granularity of the content distribution in the DHT but
rather to prefetching and caching. One can expect that the file-wise and directory-
wise distribution allows improving performance in the case of intensive concurrent
accesses to a web-site, as well as improving its availability in the case of node failures.
We leave more detailed evolution of the distribution strategies to our future work.

Symmetric Replication and Adaptive Caching

DKS builds on symmetric replication, which is built on-top of the DHT layer. Sym-
metric replication of DHT content enables parallel lookups, which increase the respon-
siveness of the system, while keeping the number of messages needed for restoring the
replication degree after dynamism low. In addition to the symmetric replication for
reliability and higher performance, DOH also implements an adaptive caching of re-
quested content at DOH-nodes. The caching algorithm has been devised based on a
combination of the Directory scheme defined in [16] with the entry caching scheme
of DNS. We assume that whenever an object (a file) is requested, it is likely to be
requested again from the same or another access point. Therefore it makes sense to
cache the object on its way to the node that originates the lookup operation. In DKS,
the return path of passing the object to the requesting node is recursive; therefore
the object can be cached in the nodes along the return path. Consistency of copies
is weak and can be kept by using the if-modified-since field built-in to the header of
the HTTP protocol. When a cache is full, the Least Recently Used (LRU) algorithm
or some other caching policy, could be used for deciding which objects to evict.



3 A System Prototype

We have implemented the DOH prototype in Java, using the DKS P2P middleware
with the DHT API[3], the Jetty[14] web server, and a modified JavaFTP[6] server.

In the DOH-Node prototype, the web server functionality has been implemented
by modifying the Jetty web server, which is licensed under the Apache license[4]. For
uploading, downloading and removing content in DOH, we use the modified JavaFTP
server package, also licensed under the Apache license. The DOH-Nodes are peers in
the P2P DKS network, and the DKS DHT API is used to store and retrieve content
of web sites hosted in DOH. In order to integrate the Jetty server in our prototype,
we have extended the server so that it creates a special handler that searches the DKS
DHT if a requested file is not found locally in the web server’s cache.

JavaFTP server is a package that implements the FTP standard[21]. We have
modified the server so that it allows a content provider to upload the files in the DHT
rather than to the host’s local file system. In order for the DOH system prototype to
handle large objects, it uses data fragmentation that, we believe, allows better control
over memory usage and to avoid running out of memory on a low-end server.

When a file is stored to the DHT the following steps are performed:

1. The key (it can be either the file name or the directory name or the web-site
name) is hashed to get a hash table index using SHA-1[10], shortened to 64 bits.

2. If necessary (it depends on the file size), the file is fragmented;
3. Each of the fragments or the entire file is put in the DHT entry defined by the

hash-table index. The put operation is based on the DKS lookup operation that
finds a DOH node responsible for the target bucket. placed.

When retrieving a file from DHT, a DOH node performs the following steps:

1. The key is hashed to obtain a hash table index;
2. A DHT get operation based on the DKS lookup operation is performed that

returns an array of entries (all the files) stored in the target DHT entry;
3. If fragmented, the requested file is assembled by combining the fragments. Copies

of the file are stored in the web-caches of the nodes involved in the operation.

3.1 Implementation of a Translator

A Translator is a stand-alone node that serves as a web server for web-clients accessing
web-sites hosted in DOH. Translator receives HTTP requests and redirects the clients
to DOH-nodes. Translator provides the following functionality: (1) maintains a cache
of information on DOH nodes (IP addresses, load and RTT times) and on other
Translators (to retrieve information from their caches); (2) provides load balancing
so that it redirects HTTP requests to DOH-Nodes based on their load and network
congestion; (3) displays Node information to Publishers in a human-readable format.

Each Translator redirects the clients to DOH nodes as described above except
of a special case when the requested URL refers to doh webcache.xml indicating
that a Publisher asks for an IP address of a Node to upload content. In this case,
Translator replies with an XML page that contains information on Nodes from its
own Translator-cache. From this file the Publisher can choose a node to connect to.



4 Preliminary Evaluation

In this paper, we present results of preliminary evaluation of the approach, leaving
more detailed evaluation to our future work. The DOH prototype has been used to
evaluate small-scale configuration mostly in order to verify the design, whereas a spe-
cially developed DOH simulator has been used to evaluate impact of different design
choices (such as the use of content caches, the granularity of content distribution) on
the system performance and reliability of DOH with varies (large) configurations.

In our experiments and simulation, the performance is measured as a service time
that is the time from receiving a request to sending a reply. A single stand-alone Jetty
web-server (without DHT), has been chosen as a baseline. We assume the synthetic
workload formed of streams of HTTP requests issued by the number of concurrent
independent clients, each of which sends a random sequence of requests to retrieve
different randomly selected files from different randomly selected sites with a specified
intensity. To generate random sequences of requests, we assume the Zipf distribution,
as suggested in [8] for the distribution of incoming page requests in the Web.

4.1 Preliminary Evaluation of the DOH Prototype

We used the prototype mostly in order to validate the DOH design. The evaluation
testbed included several Pentium 3, 500 MHz computers with 256 MB RAM running
Linux (Red Hat 9.3). We report results of two series of experiments. In the first
series, 50 files of the mean size of 10Kb of 6 web-sites were uploaded to a DOH-node.
In the second series, the content was ”heavier”: 18 domains, 47 directories, and 503
files (mean size is still 10Kb). The number of nodes varied from 1 to 6 nodes.

As expected, our experiments have shown that the DOH performance is very
sensitive to the use of file caches in DOH-nodes when increasing the number of nodes,
i.e. increasing the level of distribution of web-sites in DOH. These results suggest
that it is worth to make more efforts to find an caching strategy. Evaluation of
the prototype has also shown that the performance of DOH heavily depends on the
performance of the underlying DKS network: over 90% of the time used by the system
consumed by DKS-related activities when the file size is increased to 4Mb.

We have also preliminary evaluated three different strategies of storing files in
DHT: file-, directory-, and site-wise - in order to see whether the system performance
is sensitive to the strategy used, and which of the strategies is the best with respect
to performance. Remind that the three placement strategies use different parts of a
URL as a key to determine a DOH-node responsible for the content pointed to by
the URL. Unfortunately, the evaluation results for small-scale system configurations
show that there is no clear best candidate to use in all cases studied. If published web
pages are changing rapidly or if the load of the network is small, then the file-wise
approach yields the best results. If there are seldom changes in the stored sites or the
load is high, then the directory-wise or even the site-wise approaches are better to
use. The system can perform even better if it can support a combination of at least
two of the placement strategies, and DKS indeed supports this kind of flexibility.

A full-scale evaluation of the prototype should be done on configurations larger
than the setups we could afford for now. In our future work we intend to evaluate large
more realistic configurations of the prototype (with large number of nodes and clients).
Our future plans also include further performance optimization of the prototype.



4.2 Performance Evaluation using the DOH Simulator

As we continue improving and optimizing performance of the DOH prototype and,
in particular, the DKS P2P middleware, we have developed an accurate simulator of
DOH in order to evaluate the impact of different design choices (such as the use of
caches in nodes, different strategies of storing files in DHT: file-, directory-, and site-
wise, prefetching, different replication schemes and the number of replicas) and system
changes (nodes leave the network, new nodes join the network) on the overall system
performance and reliability. The simulator is based on timing estimates obtained from
experiments on the DOH prototype and a stand-alone Jetty web-server.

In our simulation, we assume the following workload: a random sequence of re-
quests with the predefined rate (1000-5000 requests/sec) is issued by several clients
to retrieve different randomly selected files from different randomly selected sites; the
content stored in DOH includes 18 sites, i.e. about 100 directories with about 10 files
in each directory; the average file size is assumed to be 30 Kb (concurring with the
average file size in the Web, as shown in [5]); the ratio of TTL for files in node caches
varies from 0% (no cache) to 100% (always in the cache) of the simulation time. The
cache TTL defines how long a file stays in a cache before it’s removed from the cache.

The average service time has been computed based on timing estimates obtained
from experiments on the DOH prototype with smaller configurations and the Jetty
web-server. We assume that there are three major factors that affect the service time:
(1) the current load of the server, (2) the size of the requested file, and (3) whether
the file is cached or not. The service time was computed as follows:

Ts = 2 + Load × 0.85 + Miss × (15 + 2 × fileSize + H × 100 × log
2
N)

Here Ts is the service time in ms; Load is the number of parallel requests served;
Miss ∈ 0, 1 indicates whether the cache misses (Miss = 1) or hits (Miss = 0);
fileSize is the size of the requested file in Kbytes; H ∈ 0, 1 indicates whether the file
is stored locally in one of the local DHT buckets (H = 0) or remotely (H = 1) and a
number of hops is required to find and fetch the file from DHT- the probability that
H = 1 is f/N , where f is the number of replicas per file in DKS; N is the number
of nodes. Numeric constants (in ms) in the formula are average times obtained from
experiments on the prototype and the stand-alone Jetty web-server.

We have evaluated the effect of different design choices on the performance of
DOH. Figure 2 shows plots of the service time as the function of the number of nodes
for different TTL of cached content and different strategies of placement of content to
the distributed hash table of DOH. As expected, it has been observed that the service
time is sensitive to the use of caches: the service time is shorter if cached content
stays longer in the cache (i.e. the higher cache hit ratio). The service time degrades
as the number of nodes increases because of the increase in the DKS lookup latency.
However the service time degrades slower when TTL of cached content is high. This
result suggests that it is worth to make more efforts to find (more) efficient caching
strategies. Plots in Figure 2 also show that DOH with the directory-wise placement
(Figure 2 (b)) serves faster than DOH with the file-wise placement (Figure 2 (a))
because the directory-wise placement is used in combination with prefetching: when
a file is fetched from DHT the entire directory is prefetched to the cache of the
requesting node.



(a) file-wise placement of content in DHT (b) directory-wise placement of content in DHT

Fig. 2: Effect of the use of caches on performance of DOH with different number of nodes,
different TTL ratio and different DHT placement strategies. Request rate is 2500 req/sec.

We have compared performance of DOH with different number of nodes and a
stand-alone web server (indicated in plots as cases where the number of nodes is 1).
Figure 3 shows plots of the service time for different request rates in DOH with the
directory-wise content placement and different number of nodes. The TTL of cached
content is assumed to be 30 sec. Even though the DOH performance degrades as the
number of nodes increases, the service time of DOH with the large number of nodes
scales better than the service time of a single web-server for high request rates.

(a) (b)

Fig. 3: Performance of DOH with the directory-wise DHT placement strategy. The cache
TTL ratio is 30% of 100 sec of the simulation time (i.e. a file stays in the cache 30 sec)

As expected, in the case of low workload, the DOH network with the small number
of nodes performs slower than a stand-alone Jetty server because of an extra overhead
introduced by the DKS middleware (implemented in Java), that causes increase of
the average service time in DOH as the number of nodes increases. However, as the
request rate increases, DOH shows better performance scalability than a stand-alone



Jetty server: the DOH’s service time does not increase as fast as the service time
of the stand-alone Jetty. For example, at the request rate 600 req/sec (100 parallel
requests), the average response time for Jetty is 87ms compared to 110ms for DOH.
However at service rate of 1170 req/sec (200 parallel requests), the average response
time for Jetty is 171ms compared to 135ms for DOH.

It has been observed that for each request rate there is the certain number of
nodes, at which the system shows minimum response time, i.e. there is no improve in
service time when increasing the number of DOH nodes beyond a certain value. We
believe that this effect depends on the distribution of content in DHT and on how
the content is cached in DHT nodes. We intend to study this in our future work.

The simulator suggests that DOH will perform well with service times smaller then
300ms, if the request rate is smaller than approximately 1200 requests per second per
node.

Thus, our preliminary evaluation has shown that DOH would be able to handle a
flash crowd; however the price the users of the system would have to pay is that the
page retrieval under normal workloads would be sligthly slower than in the case of a
stand-alone web server.

5 Some Related Work

Many P2P systems, like those proposed in [22], [25], [17], [23], and [26], have been
used for creating DHTs. However, the reason for choosing DKS for building our P2P
CDN prototype is manifold. There are two main arguments for choosing DKS. First,
DKS provides local atomic joins and leaves. By serializing all joins and leaves, DKS
guarantees that the DHT will never be in an inconsistent state. Second, DKS uses
symmetric replication that allows for concurrent lookups. With symmetric replica-
tion, several replicas are placed evenly (symmetrically) in the DHT rather than on
a set of consecutive nodes on the structured P2P ring. Symmetric replication allows
improving lookup time as well as reliability of the DHT. It also allows the client to
get more than one result when doing a lookup. This feature can be used in a voting
protocol of the client which needs to be sure that the retrieved object not has been
tampered with. To our best knowledge, no other P2P overlay network provides these
features of DKS described above.

Systems like Globule[19], SCAN[7] and CoralCDN[12], all propose P2P content
delivery networks similar to the one presented in this paper. For example, the authors
of Globule[19] make the observation that local web space is cheap, and therefore
it could be traded for non-local space, creating replicas on different other servers
(called slaves [19]) over the world. However, in Globule, negotiation for the replication
space, its configuration and management are not handled automatically but rather
by a human administrator, whereas DOH is autonomous and has the ability to self-
organize when a node joins/leaves the system. SCAN, which is a P2P CDN proposed
in [7], uses Tapestry[26] as an underlying P2P network. One of the main goals of
SCAN is to keep the number of replicas at a minimum to reduce overhead. This may
cause sites to be unavailable whenever the master copy is unavailable for some time.
CoralCDN[12] uses the Coral[13] implementation of a Distributed Sloppy Hash Table
to keep references to the master copy (or valid cached copies) on different nodes. In
CoralCDN, as in SCAN, if the master copy of a site becomes unavailable for Coral,



the site will soon become unreachable. In contrast to SCAN and CoralCDN, DOH
presented in this paper uses symmetric replication provided by DKS[15] to improve
availability of hosted web-sites. Furthermore, in CoralCDN the URLs needs to be
”coralized”3 to be a part of the overlay network, i.e. CoralCDN is not even initally
transparent to the end-users, which is one of the major design goals of DOH. PAST[24]
is a storage utility built on top of Pastry[23] and shares many of the key ideas with
the DOH system presented in this paper. However, as stated in [24] ”PAST does
not provide facilities for searching, directory lookup, or key distribution”, which are
features already implemented in our DOH prototype. Open Content Network (OCN)
[18] exemplifies an effort to build a P2P CDN. OCN extends the HTTP protocol to
create a Content-Addressable Web and, unlike DOH, uses a browser plug-in for its
clients to recognize it. The authors claim that OCN is a P2P CDN, however it is
more traditional P2P file-sharing system than a typical CDN because clients are also
involved in content distribution. OCN is designed for handling large files and uses
the clients extensively to distribute files, as most of existing P2P file-sharing systems
do. DotSlash[27] is described by the authors as being a rescue system for web servers
during hotspots. The authors of DotSlash do share the same motivation for developing
a P2P CDN as in this paper: to help web servers survive a flash crowd. DotSlash does
not store content globally (i.e. does not distribute and/or replicate a web-site among
nodes as it is done in DOH) but all servers will store their own content. When a flash
crowd occurs, an overlay network with rescue servers will be created, and the ”hot
objects” will be cached at these servers during the flash crowd. This network will be
abandoned when workloads are back to normal. In contrast to DotSlash, DOH allows
to distribute content of a web-site and its replicas among nodes making the web site
more available for intensive concurrent requests.

6 Conclusions and Future Work

In this paper we have presented an approach to building a content delivery network as
a structured P2P system of web-servers. This approach allows improving availability
and scalability of a web site due to the load distribution, multiple access points, and
replication. Such content delivery P2P network of collaborative web-servers can be
used as a Web-hosting environment to host several web-sites. This approach can also
be considered as one inexpensive solution to the problem of a flash crowd[1].

To validate, and preliminary evaluate our approach we have developed a system
prototype called DOH (DKS Hosting system) based on the DKS P2P middleware that
integrate the Jetty web-servers in a scalable content delivery network (web-hosting
system). Each node in the DOH network is a DKS-node, i.e. is a part of the DKS
overlay network, has a web server (to retrieve files) and an FTP server (to down-
load/upload files). The network also includes Translators which are client contact
points to the DOH network. Translators are used to distributed requests among
DOH nodes in order to achieve load balancing. A Translator redirects web clients to
DOH nodes based on the nodes’ load and network congestion. Each Translator main-
tains a cache of information about nodes (including their load and RTT times) that
are known to be in the system. The Translator-cache is also used to help a content
provider to find nodes to login to, when uploading content using FTP.

3 See [12]



DOH stores files in a Distributed Hash Table (DHT) provided by DKS so each
node is able to retrieve the requested files from the DHT and cache them locally for
future requests. Thus when a sudden traffic surge occurs, there will not only be one
server (DHT-node) serving all the requests but a network of cooperating web servers
helping each other by dividing the load.

We have evaluated the prototype for small-scale DOH configurations. To prelim-
inary evaluate medium- and large-scale setup we have developed a DOH simulator
based on timing estimates obtained from the performance experiments on the pro-
totype. Evaluation results show that DOH performs better than a stand-alone web-
server in the case of the high request rate (a large number of simultaneous requests)
and the response time in DOH scales better than the response time in a single web-
server, so the approach is valid for solving the intended problem of a flash crowd.
However, as expected, with a low request rate, the single web-server outperforms
DOH. Experiments also show that performance of DOH is very sensitive to the use of
caches. We can also expect that explicit replication supported in DKS will improve
performance of the prototype.

Two scenarios of performance has thus been identified: during low and high re-
quest rate, and both needs to be addressed in our future work which also includes
more detailed performance evaluation, including assessment of impact (if any) of repli-
cation on service time; improving the caching mechanism in order to improve system
performance; extending the system design to support dynamic contents (web-based
applications). There are many issues to be considered when extending the system
for dynamic contents, e.g. how to deploy and replicate applications, how to handle
transactions, states, and failures; how to store the state to achieve failover. We leave
answering all these questions to our future work.

References

1. Adler, S.: The Slashdot Effect: An Analysis of Three Internet Publications [Online]
http://ssadler.phy.bnl.gov/adler/SDE/SlashDotEffect.html (2005)

2. Akamai Technologies, Inc. [Online] http://www.akamai.com/
3. Alima, L.O.,El-Ansary, S., Brand, P., Haridi, S.: DKS(N, k, f ): A Family of Low

Communication, Scalable and Fault-Tolerant Infrastructures for P2P Applications, In
The 3rd Int workshop CCGRID2003, Tokyo, Japan, (2003)

4. Apache License, Version 2.0 [Online] http://www.apache.org/licenses/LICENSE-2.0
5. Arlitt, M. F., Williamson, C. L.: Internet web servers: Workload characterization and

performance implications. In IEEE/ACM Trans on Networking, 5(5) (1997) 631-645
6. R. Bhattacharyya [Online] http://www.mycgiserver.com/r̃anab/ftp/ (2005)
7. Chen, Y., Katz, R., Kubiatowicz, J.: SCAN: A dynamic, scalable,

and efficient content distribution network. Proc of Int Conf on Pervasive Computing,
Zurich (2002)

8. Crovella, M. E., Taqqu, M. S., Bestavros, A.: Heavy-tailed probability distributions in
the World Wide Web. In A Pract. Guide To Heavy Tails, Chapman & Hall (1998) 3-26

9. Distributed K-ary System (DKS), [Online] http://dks.sics.se/
10. Eastlake, D., Jones, P.: US Secure Hash Algorithm 1 (SHA1), RFC 3174, 2001.

[Online] http://www.ietf.org/rfc/rfc3174.txt
11. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-

Lee, T.: Hypertext Transfer Protocol - HTTP 1.1, RFC2616, 1999. [Online]
http://www.ietf.org/rfc/rfc2616.txt



12. Freedman, M. J., Freudenthal, E., and Mazi‘eres, D: Democratizing Content Publication
with Coral. In Proc of the 1st Symp on Networked Systems Design and Implementation
(NSDI 2004), San Francisco, USA (2004)

13. Freedman M., Mazi‘eres, D.: Sloppy hashing and self-organizing clusters. In 2nd Int
Peer To Peer Systems Workshop, Berkeley, USA (2003)

14. Jetty Java HTTP Servlet Server [Online] http://jetty.mortbay.org/jetty/index.html
15. Ghodsi, A., Alima, L.O., Haridi, S.: Symmetric Replication for Structured Peer-to-Peer

Systems. In The 3rd Int Workshop on Databases, Information Systems and Peer-to-Peer
Computing, Trondheim, Norway (2005)

16. Iyer, S., Rowstron, A., Druschel, P.: Squirrel: A decentralized, peer-to-peer web cache.
In Proc of the 21st Ann ACM Symp on Principles of Distributed Computing, ACM (2002)

17. Maymounkov, P., Mazi‘eres, D.: Kademlia: A peer-to-peer information system based on
the xor metric. In IPTPS02, Cambridge, MA (2002)

18. Open Content Network, [Online ]http://open-content.net/ (2005)
19. Pierre, G., van Steen, M.: Design and implementation of a user-centered content delivery

network. In Proc. 3rd Workshop on Internet Applications, San Jose, USA (2003)
20. Pierre, G., van Steen, M., Tanenbaum, A. S.: Dynamically selecting optimal distribution

strategies for Web documents. IEEE Trans on Computers, 51(6) (2002) 637–651
21. Postel, J., Reynolds, J.K.: File Transfer Protocol, RFC959, Oct 1985. [Online]

http://www.ietf.org/rfc/rfc959.txt
22. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A scalable content-

addressable network, In Proc of the 2001 Conf on Applications, Technologies, Architec-
tures, and Protocols for Computer Communications, San Diego, USA (2001) 161-172

23. Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object location and routing
for large-scale peer-to-peer systems. In IFIP/ACM Int Conf on Distr Systems Platforms
(Middleware) (2001) 329-350

24. Rowstron, A., Druschel, P.: Storage management and caching in PAST, a large-scale,
persistent peer-to-peer storage utility, In Proc of the 18-th ACM Symposium on Operating
Systems Principles (2001)

25. Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., Balakrishnan, H.: Chord: A Scal-
able Peer-to-Peer Lookup Service for Internet Applications, In Conf on Applications,
Technologies, Architectures, and Protocols for Comp. Communications (2001) 149-160

26. Zhao, B. Y., Kubiatowicz, J. D., Joseph, A. D.: Tapestry: An infrastructure for fault-
tolerant wide-area location and routing. TR UCB/CSD-01-1141, UC Berkeley (2001)

27. Zhao, W., Schulzrinne, H.: DotSlash: A selfconfiguring and scalable rescue system
for handling web hotspots effectively. In Int Workshop on Web Caching and Content
Distribution (WCW), Beijing, China (2004)


