99 research outputs found

    Using smartphones as a proxy for forensic evidence contained in cloud storage services

    Get PDF
    Cloud storage services such as Dropbox, Box and SugarSync have been embraced by both individuals and organizations. This creates an environment that is potentially conducive to security breaches and malicious activities. The investigation of these cloud environments presents new challenges for the digital forensics community. It is anticipated that smartphone devices will retain data from these storage services. Hence, this research presents a preliminary investigation into the residual artifacts created on an iOS and Android device that has accessed a cloud storage service. The contribution of this paper is twofold. First, it provides an initial assessment on the extent to which cloud storage data is stored on these client-side devices. This view acts as a proxy for data stored in the cloud. Secondly, it provides documentation on the artifacts that could be useful in a digital forensics investigation of cloud services

    A comparison of forensic evidence recovery techniques for a windows mobile smart phone

    Get PDF
    <p>Acquisition, decoding and presentation of information from mobile devices is complex and challenging. Device memory is usually integrated into the device, making isolation prior to recovery difficult. In addition, manufacturers have adopted a variety of file systems and formats complicating decoding and presentation.</p> <p>A variety of tools and methods have been developed (both commercially and in the open source community) to assist mobile forensics investigators. However, it is unclear to what extent these tools can present a complete view of the information held on a mobile device, or the extent the results produced by different tools are consistent.</p> <p>This paper investigates what information held on a Windows Mobile smart phone can be recovered using several different approaches to acquisition and decoding. The paper demonstrates that no one technique recovers all information of potential forensic interest from a Windows Mobile device; and that in some cases the information recovered is conflicting.</p&gt

    Enhancing security incident response follow-up efforts with lightweight agile retrospectives

    Get PDF
    Security incidents detected by organizations are escalating in both scale and complexity. As a result, security incident response has become a critical mechanism for organizations in an effort to minimize the damage from security incidents. The final phase within many security incident response approaches is the feedback/follow-up phase. It is within this phase that an organization is expected to use information collected during an investigation in order to learn from an incident, improve its security incident response process and positively impact the wider security environment. However, recent research and security incident reports argue that organizations find it difficult to learn from incidents. A contributing factor to this learning deficiency is that industry focused security incident response approaches, typically, provide very little practical information about tools or techniques that can be used to extract lessons learned from an investigation. As a result, organizations focus on improving technical security controls and not examining or reassessing the effectiveness or efficiency of internal policies and procedures. An additional hindrance, to encouraging improvement assessments, is the absence of tools and/or techniques that organizations can implement to evaluate the impact of implemented enhancements in the wider organization. Hence, this research investigates the integration of lightweight agile retrospectives and meta-retrospectives, in a security incident response process, to enhance feedback and/or follow-up efforts. The research contribution of this paper is twofold. First, it presents an approach based on lightweight retrospectives as a means of enhancing security incident response follow-up efforts. Second, it presents an empirical evaluation of this lightweight approach in a Fortune 500 Financial organization's security incident response team

    Rethinking Security Incident Response: The Integration of Agile Principles

    Get PDF
    In today's globally networked environment, information security incidents can inflict staggering financial losses on organizations. Industry reports indicate that fundamental problems exist with the application of current linear plan-driven security incident response approaches being applied in many organizations. Researchers argue that traditional approaches value containment and eradication over incident learning. While previous security incident response research focused on best practice development, linear plan-driven approaches and the technical aspects of security incident response, very little research investigates the integration of agile principles and practices into the security incident response process. This paper proposes that the integration of disciplined agile principles and practices into the security incident response process is a practical solution to strengthening an organization's security incident response posture.Comment: Paper presented at the 20th Americas Conference on Information Systems (AMCIS 2014), Savannah, Georgi

    Security Incident Response Criteria: A Practitioner's Perspective

    Get PDF
    Industrial reports indicate that security incidents continue to inflict large financial losses on organizations. Researchers and industrial analysts contend that there are fundamental problems with existing security incident response process solutions. This paper presents the Security Incident Response Criteria (SIRC) which can be applied to a variety of security incident response approaches. The criteria are derived from empirical data based on in-depth interviews conducted within a Global Fortune 500 organization and supporting literature. The research contribution of this paper is twofold. First, the criteria presented in this paper can be used to evaluate existing security incident response solutions and second, as a guide, to support future security incident response improvement initiatives

    Recovering Residual Forensic Data from Smartphone Interactions with Cloud Storage Providers

    Full text link
    There is a growing demand for cloud storage services such as Dropbox, Box, Syncplicity and SugarSync. These public cloud storage services can store gigabytes of corporate and personal data in remote data centres around the world, which can then be synchronized to multiple devices. This creates an environment which is potentially conducive to security incidents, data breaches and other malicious activities. The forensic investigation of public cloud environments presents a number of new challenges for the digital forensics community. However, it is anticipated that end-devices such as smartphones, will retain data from these cloud storage services. This research investigates how forensic tools that are currently available to practitioners can be used to provide a practical solution for the problems related to investigating cloud storage environments. The research contribution is threefold. First, the findings from this research support the idea that end-devices which have been used to access cloud storage services can be used to provide a partial view of the evidence stored in the cloud service. Second, the research provides a comparison of the number of files which can be recovered from different versions of cloud storage applications. In doing so, it also supports the idea that amalgamating the files recovered from more than one device can result in the recovery of a more complete dataset. Third, the chapter contributes to the documentation and evidentiary discussion of the artefacts created from specific cloud storage applications and different versions of these applications on iOS and Android smartphones

    Medical Cyber-Physical Systems Development: A Forensics-Driven Approach

    Full text link
    The synthesis of technology and the medical industry has partly contributed to the increasing interest in Medical Cyber-Physical Systems (MCPS). While these systems provide benefits to patients and professionals, they also introduce new attack vectors for malicious actors (e.g. financially-and/or criminally-motivated actors). A successful breach involving a MCPS can impact patient data and system availability. The complexity and operating requirements of a MCPS complicates digital investigations. Coupling this information with the potentially vast amounts of information that a MCPS produces and/or has access to is generating discussions on, not only, how to compromise these systems but, more importantly, how to investigate these systems. The paper proposes the integration of forensics principles and concepts into the design and development of a MCPS to strengthen an organization's investigative posture. The framework sets the foundation for future research in the refinement of specific solutions for MCPS investigations.Comment: This is the pre-print version of a paper presented at the 2nd International Workshop on Security, Privacy, and Trustworthiness in Medical Cyber-Physical Systems (MedSPT 2017

    In-the-wild residual data research and privacy

    Get PDF
    As the world becomes increasingly dependent on technology, researchers endeavor to understand how technology is used, the impact it has on everyday life and the life-cycle and span of digital information. In doing so, researchers are increasingly gathering `real-world' or `in the wild' residual data, obtained from a variety of sources without the explicit consent of the original owners. This data gathering raises significant concerns regarding privacy, ethics and legislation, as well as practical considerations concerning investigator training, data storage, overall security and disposal. This paper surveys recent studies of residual data gathered in the wild and analyses the challenges that were faced. Taking these insights, the paper presents a compendium of practices for addressing the issues that arise in in the wild residual data research. The practices presented in this paper can be used to critique current projects and assess the feasibility of proposed future research
    • …
    corecore