831 research outputs found

    Telemetry downlink interfaces and level-zero processing

    Get PDF
    The technical areas being investigated are as follows: (1) processing of space to ground data frames; (2) parallel architecture performance studies; and (3) parallel programming techniques. Additionally, the University administrative details and the technical liaison between New Mexico State University and Goddard Space Flight Center are addressed

    A case for merging the ILP and DLP paradigms

    Get PDF
    The goal of this paper is to show that instruction level parallelism (ILP) and data-level parallelism (DLP) can be merged in a single architecture to execute vectorizable code at a performance level that can not be achieved using either paradigm on its own. We will show that the combination of the two techniques yields very high performance at a low cost and a low complexity. We will show that this architecture can reach a performance equivalent to a superscalar processor that sustained 10 instructions per cycle. We will see that the machine exploiting both types of parallelism improves upon the ILP-only machine by factors of 1.5-1.8. We also present a study on the scalability of both paradigms and show that, when we increase resources to reach a 16-issue machine, the advantage of the ILP+DLP machine over the ILP-only machine increases up to 2.0-3.45. While the peak achieved IPC for the ILP machine is 4, the ILP+DLP machine exceeds 10 instructions per cycle.Peer ReviewedPostprint (published version

    A Dynamically Reconfigurable Parallel Processing Framework with Application to High-Performance Video Processing

    Get PDF
    Digital video processing demands have and will continue to grow at unprecedented rates. Growth comes from ever increasing volume of data, demand for higher resolution, higher frame rates, and the need for high capacity communications. Moreover, economic realities force continued reductions in size, weight and power requirements. The ever-changing needs and complexities associated with effective video processing systems leads to the consideration of dynamically reconfigurable systems. The goal of this dissertation research was to develop and demonstrate the viability of integrated parallel processing system that effectively and efficiently apply pre-optimized hardware cores for processing video streamed data. Digital video is decomposed into packets which are then distributed over a group of parallel video processing cores. Real time processing requires an effective task scheduler that distributes video packets efficiently to any of the reconfigurable distributed processing nodes across the framework, with the nodes running on FPGA reconfigurable logic in an inherently Virtual\u27 mode. The developed framework, coupled with the use of hardware techniques for dynamic processing optimization achieves an optimal cost/power/performance realization for video processing applications. The system is evaluated by testing processor utilization relative to I/O bandwidth and algorithm latency using a separable 2-D FIR filtering system, and a dynamic pixel processor. For these applications, the system can achieve performance of hundreds of 640x480 video frames per second across an eight lane Gen I PCIe bus. Overall, optimal performance is achieved in the sense that video data is processed at the maximum possible rate that can be streamed through the processing cores. This performance, coupled with inherent ability to dynamically add new algorithms to the described dynamically reconfigurable distributed processing framework, creates new opportunities for realizable and economic hardware virtualization.\u2

    Alternative packet switch architectures for a 30/20 GHz FDMA/TDMA geostationary communication satellite network

    Get PDF
    This study has investigated alternatives for realizing a packet-based network switch for deployment on a communication satellite. The emphasis was on the avoidance of contention problems that can occur due to the simultaneous arrival of an excessive number of packets destined for the same downlink dwell. The study was to look ahead, beyond the current Advanced Communications Technology Satellite (ACTS) capability, to the next generation of satellites. The study has not been limited by currently available technology, but has used university and commercial research efforts as a basis for designs that can be readily constructed and launched within the next five years. Tradeoffs in memory requirement, power requirement, and architecture have been considered as a part of our study

    ACOTES project: Advanced compiler technologies for embedded streaming

    Get PDF
    Streaming applications are built of data-driven, computational components, consuming and producing unbounded data streams. Streaming oriented systems have become dominant in a wide range of domains, including embedded applications and DSPs. However, programming efficiently for streaming architectures is a challenging task, having to carefully partition the computation and map it to processes in a way that best matches the underlying streaming architecture, taking into account the distributed resources (memory, processing, real-time requirements) and communication overheads (processing and delay). These challenges have led to a number of suggested solutions, whose goal is to improve the programmer’s productivity in developing applications that process massive streams of data on programmable, parallel embedded architectures. StreamIt is one such example. Another more recent approach is that developed by the ACOTES project (Advanced Compiler Technologies for Embedded Streaming). The ACOTES approach for streaming applications consists of compiler-assisted mapping of streaming tasks to highly parallel systems in order to maximize cost-effectiveness, both in terms of energy and in terms of design effort. The analysis and transformation techniques automate large parts of the partitioning and mapping process, based on the properties of the application domain, on the quantitative information about the target systems, and on programmer directives. This paper presents the outcomes of the ACOTES project, a 3-year collaborative work of industrial (NXP, ST, IBM, Silicon Hive, NOKIA) and academic (UPC, INRIA, MINES ParisTech) partners, and advocates the use of Advanced Compiler Technologies that we developed to support Embedded Streaming.Peer ReviewedPostprint (published version

    Technical support for digital systems technology development. Task order 1: ISP contention analysis and control

    Get PDF
    Alternatives for realizing a packet-based network switch for use on a frequency division multiple access/time division multiplexed (FDMA/TDM) geostationary communication satellite were investigated. Each of the eight downlink beams supports eight directed dwells. The design needed to accommodate multicast packets with very low probability of loss due to contention. Three switch architectures were designed and analyzed. An output-queued, shared bus system yielded a functionally simple system, utilizing a first-in, first-out (FIFO) memory per downlink dwell, but at the expense of a large total memory requirement. A shared memory architecture offered the most efficiency in memory requirements, requiring about half the memory of the shared bus design. The processing requirement for the shared-memory system adds system complexity that may offset the benefits of the smaller memory. An alternative design using a shared memory buffer per downlink beam decreases circuit complexity through a distributed design, and requires at most 1000 packets of memory more than the completely shared memory design. Modifications to the basic packet switch designs were proposed to accommodate circuit-switched traffic, which must be served on a periodic basis with minimal delay. Methods for dynamically controlling the downlink dwell lengths were developed and analyzed. These methods adapt quickly to changing traffic demands, and do not add significant complexity or cost to the satellite and ground station designs. Methods for reducing the memory requirement by not requiring the satellite to store full packets were also proposed and analyzed. In addition, optimal packet and dwell lengths were computed as functions of memory size for the three switch architectures

    Strong Memory Consistency For Parallel Programming

    Get PDF
    Correctly synchronizing multithreaded programs is challenging, and errors can lead to program failures (e.g., atomicity violations). Existing memory consistency models rule out some possible failures, but are limited by depending on subtle programmer-defined locking code and by providing unintuitive semantics for incorrectly synchronized code. Stronger memory consistency models assist programmers by providing them with easier-to-understand semantics with regard to memory access interleavings in parallel code. This dissertation proposes a new strong memory consistency model based on ordering-free regions (OFRs), which are spans of dynamic instructions between consecutive ordering constructs (e.g. barriers). Atomicity over ordering-free regions provides stronger atomicity than existing strong memory consistency models with competitive performance. Ordering-free regions also simplify programmer reasoning by limiting the potential for atomicity violations to fewer points in the program’s execution. This dissertation explores both software-only and hardware-supported systems that provide OFR serializability

    BRISC-V: An Open-Source Architecture Design Space Exploration Toolbox

    Full text link
    In this work, we introduce a platform for register-transfer level (RTL) architecture design space exploration. The platform is an open-source, parameterized, synthesizable set of RTL modules for designing RISC-V based single and multi-core architecture systems. The platform is designed with a high degree of modularity. It provides highly-parameterized, composable RTL modules for fast and accurate exploration of different RISC-V based core complexities, multi-level caching and memory organizations, system topologies, router architectures, and routing schemes. The platform can be used for both RTL simulation and FPGA based emulation. The hardware modules are implemented in synthesizable Verilog using no vendor-specific blocks. The platform includes a RISC-V compiler toolchain to assist in developing software for the cores, a web-based system configuration graphical user interface (GUI) and a web-based RISC-V assembly simulator. The platform supports a myriad of RISC-V architectures, ranging from a simple single cycle processor to a multi-core SoC with a complex memory hierarchy and a network-on-chip. The modules are designed to support incremental additions and modifications. The interfaces between components are particularly designed to allow parts of the processor such as whole cache modules, cores or individual pipeline stages, to be modified or replaced without impacting the rest of the system. The platform allows researchers to quickly instantiate complete working RISC-V multi-core systems with synthesizable RTL and make targeted modifications to fit their needs. The complete platform (including Verilog source code) can be downloaded at https://ascslab.org/research/briscv/explorer/explorer.html.Comment: In Proceedings of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA '19

    Multiprocessing techniques for unmanned multifunctional satellites Final report,

    Get PDF
    Simulation of on-board multiprocessor for long lived unmanned space satellite contro
    • …
    corecore