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Abstract
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atomicity violations). Existing memory consistency models rule out some possible failures, but are limited by
depending on subtle programmer-defined locking code and by providing unintuitive semantics for incorrectly
synchronized code. Stronger memory consistency models assist programmers by providing them with easier-
to-understand semantics with regard to memory access interleavings in parallel code. This dissertation
proposes a new strong memory consistency model based on ordering-free regions (OFRs), which are spans of
dynamic instructions between consecutive ordering constructs (e.g. barriers). Atomicity over ordering-free

regions provides stronger atomicity than existing strong memory consistency models with competitive
performance. Ordering-free regions also simplify programmer reasoning by limiting the potential for
atomicity violations to fewer points in the program’s execution. This dissertation explores both software-only
and hardware-supported systems that provide OFR serializability.
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ABSTRACT 

 

STRONG MEMORY CONSISTENCY FOR PARALLEL PROGRAMMING 

Christian DeLozier 

Joseph Devietti 

Correctly synchronizing multithreaded programs is challenging, and errors can lead to program 

failures (e.g., atomicity violations).  Existing memory consistency models rule out some possible 

failures, but are limited by depending on subtle programmer-defined locking code and by 

providing unintuitive semantics for incorrectly synchronized code.  Stronger memory consistency 

models assist programmers by providing them with easier-to-understand semantics with regard to 

memory access interleavings in parallel code.  This dissertation proposes a new strong memory 

consistency model based on ordering-free regions (OFRs), which are spans of dynamic 

instructions between consecutive ordering constructs (e.g. barriers).  Atomicity over ordering-free 

regions provides stronger atomicity than existing strong memory consistency models with 

competitive performance.  Ordering-free regions also simplify programmer reasoning by limiting 

the potential for atomicity violations to fewer points in the program’s execution.  This dissertation 

explores both software-only and hardware-supported systems that provide OFR serializability. 
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1 INTRODUCTION 

Despite decades of research progress, writing correct and efficient multi-threaded programs 

remains an open challenge.  Multi-threaded applications are becoming increasingly common on 

all execution platforms, including the cloud, mobile devices, and even embedded systems [30].  

Given the pervasiveness of multi-threaded code and increasing complexity of systems, 

programmers must be able to manage the complexity of developing parallel applications. 

Writing a parallel program can be divided into two subtasks: identifying the parallelism in 

a problem and properly expressing that parallelism in an implementation.  Programmers are 

creative and generally good at identifying parallelism in problems, but they frequently make 

mistakes while trying to express that parallelism.  This dissertation focuses on helping the 

programmer properly express parallelism.  Properly expressing parallelism requires both writing 

code that implements a parallel task and coordinating the execution of that code so that the 

parallel execution produces a correct result.  Without proper coordination, parallel applications 

can suffer from bugs such as data-races and atomicity violations that can lead to program 

crashes or silent data corruption. 

 

Figure 1.1: An atomicity violation that may occur when processing money transfers 
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 As an example, consider the problem of processing transfers of money from one bank 

account to another.  Processing one transfer at a time is safe but does not take advantage of 

multi-core hardware.  To improve performance, transfers can be processed concurrently in 

multiple threads, but a multi-threaded implementation must ensure that transfers to or from the 

same accounts are not processed concurrently.  Figure 1.1 demonstrates how transferring money 

in parallel may lead to an error.  If Alice and Bob each transfer $100 to Carol and those transfers 

are processed concurrently, Carol could end up with less money than she expects.  To process 

each transfer, the machine would read Carol’s account balance, add $100 to that balance, and 

then save the new balance.  If the balance reads happen at the same time, Carol may end up 

with $600 instead of $700.  Parallel programming models must help the programmer reason 

about concurrent executions in order to avoid bugs. 

A system’s memory consistency model is a key factor in helping the programmer 

understand how a parallel execution executes on a multi-core system. The memory models for 

languages like Java [52], and C++ [11], and for various hardware architectures [51, 66, 68] permit 

aggressive optimization, but tend to be complex and inaccessible to most programmers due to 

the fact that they allow instructions to be interleaved in ways that a programmer may not expect. 

Systems with a Sequentially Consistent model [10, 16, 53, 76] give parallel executions sequential 

interleaving semantics, but do so at instruction granularity, which remains complex.  Yet stronger 

models have semantics that execute coarse-grained, parallel code regions atomically and as a 

sequential interleaving [8, 28, 48, 67].  Reasoning about a system with region interleaving 

semantics is much simpler than reasoning about instruction interleaving [61]. 

 Region-based systems for enforcing strong memory consistency must decide how to 

define the coarse-grained code regions that are interleaved during an execution.  Some systems 

define regions arbitrarily [53] or implicitly [67] according to program sub-structures. The size of 

such regions is limited by architectural parameters and features of the program unrelated to 

parallelism.  Other systems [8, 48] define regions in terms of programmer-provided 
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synchronization operations, such as synchronization-free regions [48, 61] (SFRs), release-free 

regions [8] (RFRs), and interference-free regions [28].  The size of regions determines how safe 

the execution will be and how easy it is for a programmer to reason about the parallel execution. 

This work proposes a new region-based memory consistency model.  The key insight is 

to provide coarse regions by default that are not as dependent on the correctness of the 

program’s synchronization as prior models.  Thus, the need to trust programmer-defined locking 

code, which can often be incorrect even in well-tested applications, is largely eliminated from the 

process of writing a parallel application.  The programmer defines a thread’s work and defines the 

points when threads’ operations must explicitly form an order – at thread creation and completion, 

condition wait, and barrier wait.  The sequence of dynamically executed instructions between 

ordering primitives is referred to as an ordering-free region (OFR).  A program is OFR serializable 

if a program’s behavior is equivalent to a serialization of atomically-executed ordering-free 

regions.  Although OFR serializability is defined as the serialization of regions, the implementation 

does not necessarily need to serialize all ordering-free regions and can instead execute them 

partially or completely in parallel, as long as the illusion of serialization is preserved. 



4 

 

 

Figure 1.2: Comparison between OFR serializability and prior models 

 Figure 1.2 provides a visual comparison of the atomicity provided by various region-

based memory consistency models.  EnfoRSer [67], DRFx [53], and Conflict Exceptions [48] are 

all synchronization-free region (SFR) models, which enforce regions based on the acquisition and 

release of locks.  Valor [8] is based on release-free regions (RFRs), which enforce regions only at 

lock release boundaries.  OFRs provide more atomicity and precision than both SFR and RFR 

models.  Later sections provide both quantitative and qualitative evaluations to support this claim. 

Ordering-free regions provide a number of benefits to the programmability of parallel 

applications.  The main benefit is that OFRs provide more atomicity than existing strong memory 

consistency models by enforcing atomicity across larger regions of code and more memory 

locations.  Within an OFR, every memory location accessed by a thread is accessed atomically 

(without conflicting interference from another thread).  Runtime systems based on ordering-free 

regions can help inform the necessary locking synchronization in a parallel application, and an 

initial user study indicated that novice programmers are better at applying correct synchronization 
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with the assistance of reports from an ordering-free region system than with the assistance of 

reports from data-race detection systems. 

The subsequent chapters of this dissertation are organized as follows.  Chapter 2 

discusses background and related work that informed the design and implementation of ordering-

free regions.  Chapter 3 introduces ordering-free regions and formalizes the guarantees provided 

by ordering-free regions.  Chapter 4 describes and compares multiple implementations or 

ordering-free regions, including the benefits and drawbacks of each implementation.  Chapter 5 

introduces hardware support for ordering-free regions.  Chapter 6 provides examples and 

experiences in applying ordering-free regions to existing parallel applications through multiple 

case studies and experiments.  Chapter 7 compares the performance of various implementations 

of software-only and hardware-supported implementations of ordering-free regions.  Chapter 8 

describes possible avenues for future work, and chapter 9 concludes the dissertation. 

This dissertation draws on multiple published works.  The Java implementation of OFR 

serializability, MAMA (Mostly Automatic Management of Atomicity), described in section 4 and 

evaluated in sections 6 and 7, was originally presented at WoDet 2014 [20].  Hardware support 

for OFR serializability included in sections 4 and 5 was originally proposed in the ORCA 

(Ordering-Free Regions for Consistency and Atomicity) technical report [23].  The technical report 

on ORCA also included an evaluation of the usability and performance of ordering-free region 

serializability with hardware support, as discussed in sections 6 and 7.  SOFRITAS (Serializable 

Ordering-Free Regions for Increasing Thread Atomicity Scalably) was presented at ASPLOS 

2018 [22].  Section 3 defines ordering-free regions and related terms as described by SOFRITAS, 

and section 4 provides details on the implementation of SOFRITAS.  Sections 6 and 7 include the 

evaluation of SOFRITAS.  The memory allocator described in section 4 was first introduced by 

TMI [21], which was presented at MICRO 2017.  The remaining content is original work. 



6 

 

2 BACKGROUND 

Strong memory consistency based on ordering-free regions is motivated by several areas of prior 

work on multithreaded programmability. This section provides a brief overview of each of these 

related areas of work and discusses recent works on each topic. 

2.1 MEMORY CONSISTENCY 

The memory consistency model of a system specifies how memory accesses in a parallel 

system will behave, as observed by the programmer [2].  Strong memory consistency models 

require memory accesses to behave as if they had been executed serially.  Weak memory 

consistency models permit memory accesses to be reordered with respect to the serial order.  

Memory accesses can be reordered by compiler and hardware optimizations that can improve the 

performance of both serial and parallel executions.  However, reordering memory accesses can 

be confusing to the programmer because an application may produce results that do not seem 

like they should be possible.  

One of the strongest memory consistency models is sequential consistency. Sequential 

consistency requires that “the result of an execution is the same as if the operations of all the 

processors were executed in some sequential order, and the operations of each individual 

processor appear in this sequence in the order specified by its program” [42]. In general, 

sequential consistency prevents loads and stores from being reordered with other loads and 

stores. Weaker consistency models permit more reorderings of loads and stores because 

reordering loads and stores can improve the overall performance of the system.  x86 

architectures implement total-store order, which allows loads to be reordered, but not stores.  

More relaxed consistency models, such as those implemented by ARM processors, permit 

reordering both loads and stores. 
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Many approaches to providing strong atomicity focus on enforcing sequential 

consistency. Several schemes have been proposed for detecting sequential-consistency 

violations with custom hardware support [27, 55, 62].  These systems detect violations of 

sequential consistency and halt the program. Enforcing sequential consistency forms a baseline 

for other strong memory consistency models. Other systems provide sequential consistency for a 

parallel execution [10, 16, 53, 76]. These systems require hardware modifications to existing 

systems because current processors do not support sequential consistency. 

2.2 DATA-RACES AND ATOMICITY VIOLATIONS 

Although sequential consistency is a useful property, it only prevents incorrect results due to 

memory reorderings.  Parallel programs must still use synchronization to avoid data-races and 

atomicity violations.  A data-race occurs when two memory operations on different threads 

access the same location, one of the accesses is a write, and there is no happens-before 

ordering between the two memory operations.  A happens-before ordering is a chronological 

ordering between two threads due to some operation, such as a lock acquire or a barrier.  

An atomicity violation occurs when a set of memory accesses on one thread does not 

have a happens-before ordering with a set of memory accesses performed by another thread or 

threads and at least one of the memory accesses in both sets is a write to the same location.  

Data-races can be considered atomicity violations, but not all atomicity violations are data-races.  

Figure 2.1 demonstrates an atomicity violation where each memory location (str and length) is 

properly protected by a lock, but the set of memory accesses performed by both threads exhibit 

an atomicity violation due to the lack of a happens-before ordering between the sets of accesses.  

The reads of str and length by Thread 1 need to occur within the same critical section to be 

ordered with the writes performed by Thread 2.  No data-race will be detected in the code 

because each access has a happens-before ordering with all other accesses due the acquisition 

of lock L. 



8 

 

 

Figure 2.1: An atomicity violation found in Firefox 

Many prior works have developed systems for detecting data-races and atomicity 

violations [17, 18, 31, 33, 44–46, 49, 62, 77].  Data-race detectors generally use vector clock 

algorithms to determine when a happens-before ordering does not exist between pairs of memory 

accesses.  Atomicity violation detectors use heuristics to decide where atomic regions should 

start and end, allowing atomicity violations to be detected when the application’s synchronization 

provides less atomicity than might be necessary. 

2.3 STRONG MEMORY CONSISTENCY MODELS 

There have been several proposals of strong memory consistency models that help catch bugs 

and simplify program reasoning.  Although sequential consistency can help the programmer to 

understand a parallel execution, it still forces the programmer to reason about how individual 

instructions can be interleaved.  Region-based memory models group instructions into regions of 
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code and allow the programmer to reason about the interleaving of regions rather than the 

interleaving of individual instructions.  As Figure 1.2 shows, strong memory consistency models 

can be characterized along two dimensions: the granularity of the code regions at which 

serializability is guaranteed, and the precision with which serializability violations are detected.  

Ordering-free regions improve upon prior work along both dimensions. 

 

Figure 2.2: Code that demonstrates that programmer-defined acquires and releases may 

not match the required atomicity of an application 

Synchronization-free regions [48, 61] (SFRs) span a region of instructions from one 

dynamic synchronization operation to the next.  For example, a critical-section (between a lock 

and unlock operation) forms a synchronization-free region.  Synchronization operations 

considered by synchronization-free regions include lock operations, barrier waits, condition 

variable waits, thread joins, thread creates, and other such operations.  Release-free regions [8] 

(RFRs) strengthen the atomicity provided by synchronization-free regions by ending 

regions on release operations only. Only a subset of synchronization operations are considered 

to be release operations, including lock releases, barrier waits, condition variable waits, and 

thread creates.  More generally, a release operation forms a happens-before order with other 

synchronization operations that occur later than itself in a trace of a program’s execution [28].  All 



10 

 

operations that are not considered release operations are acquire operations. Interference-free 

regions [28] (IFRs) provide stronger atomicity than both synchronization-free regions and release-

free regions. The interference-free region for a memory location extends from the acquire 

operation prior to the memory access to the first release operation that occurs 

after that access. The IFR for a memory location can be extended in both directions (of the 

execution trace) if it can be proven that the synchronization that formed a region should not affect 

the memory location.  For example, in Figure 2.2, the IFRs for str and length match the critical 

regions that contain them. If the program used another variable x before, between, and after 

these two critical sections, the IFR for x would extend through the entire listed program because x 

should not be affected by the synchronization present in the program. Although IFRs offer 

stronger atomicity than both SFRs and RFRs, using IFRs in practice can be difficult because 

determining a memory location’s IFR requires a trace of the application’s execution, which is not 

available at runtime. 

2.3.1  LENGTH AND WIDTH OF REGIONS 

Region-based parallel programming models like synchronization-free regions, release-free 

regions, and ordering-free regions all provide atomicity over both instructions and memory 

locations.  The length of the region is the number of dynamic instructions between the start and 

end of the region.  In general, longer regions provide more atomicity but can lead to more 

conflicts between regions.  Ordering-free regions (OFRs), which will be defined in Section 3, tend 

to be longer than SFRs and RFRs because ordering constructs tend to be used less frequently in 

existing parallel applications than lock acquires and releases.  The width of a region is the 

number of memory locations that are atomic within the region, meaning that no other concurrent 

region can access those memory locations in a way that conflicts with the atomicity required by 

the region.  For SFR, RFR, and OFR models, the width of the region is related to the length in 

that all memory location accessed by the dynamic instructions will be accessed atomically.  Other 
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models, such as data-centric synchronization, may not protect all memory locations within each 

region and have regions that are less wide. 

2.4 SERIALIZABILITY 

A parallel execution is serializable If it is equivalent to some serial execution.  

Serializability is a desirable safety property for parallel applications because it is easier for 

programmers to reason about serial code than to reason about parallel code.  Strong memory 

consistency models enforce region serializability.  An execution is region serializable if the 

parallel execution of its regions, as defined by the region-based memory consistency model, is 

the same as some serial execution of its regions.   

The concepts of atomicity and serializability are not only found in parallel programming.  

Databases and distributed systems have similar notions of atomicity and serializability, and one 

common implementation of serializability in these systems is conflict-serializability.  Conflict-

serializability requires that the parallel schedule of transactions is equivalent to a serial schedule 

with the same transactions such that all conflicting operations in the serial and parallel schedules 

occur in the same chronological order. 

Two-phase locking (2PL) enforces conflict-serializability [6]. In two-phase locking, locks 

can only be acquired in a growing phase and released in a shrinking phase. With this approach, 

locks cannot be acquired after any lock has been released. While there are more refined notions 

of serializability than 2PL, they are expensive to maintain and do not offer much additional 

flexibility [6].  Ordering-free regions employ an algorithm based on 2PL. 

Conflicts that violate the serializability of a parallel execution can either be detected or 

avoided.  Prior work on strong memory consistency models [8,47,60] detects violations of region 

serializability to report data races to the programmer.  With this fail-on-conflict approach, the 

application exits and reports the violation of serializability to the programmer when one occurs.  

Conflict-serializability avoids conflicts rather than detecting them by serializing regions before a 
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conflict occurs.  Serializing the execution to avoid a conflict can automatically prevent a bug, but 

too much serialization can decrease performance. 

 

Figure 2.3: Demonstration of fail-on-conflict semantics and conflict serializability 

Figure 2.3 demonstrates both a fail-on-conflict approach and conflict serializability.  In the 

fail-on-conflict approach, an exception is raised when one region conflicts with another.  The fail-

on-conflict approach brings the programmer into the loop by indicating that a conflict exists.  With 

conflict serializability, regions that would otherwise conflict can be serialized instead, preventing 

the conflict at runtime.  Conflict serializability requires knowing how long the threads must be 

serialized to prevent the conflict from affecting the program’s required semantics.  Ordering-free 

regions rely on an algorithm based on 2PL to implement conflict serializability when possible.  In 

the event that conflict serializability fails, ordering-free regions fall back to the fail-on-conflict 

approach and ask the programmer for help. 
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3 ORDERING-FREE REGIONS 

This dissertation introduces a new strong memory model based on ordering-free regions (OFRs). 

Ordering-free regions function similarly to other strong memory consistency models such as 

SFRs, RFRs, and IFRs.  Ordering-free regions rely on conflict serializability as much as possible 

and only fail-on-conflict when necessary.  Unlike these prior models, ordering-free regions do not 

rely on programmer-defined lock acquires and releases to define region boundaries. 

DEFINITION 3.0.1: Ordering-Free Region 

The ordering-free region for a memory access to a location extends from the previous ordering 

construct to the next ordering construct, chronologically, in the dynamic execution of the program. 

 

Figure 3.1: The ordering-free region for a variable 

In the example above, the ordering-free region for x extends from the barrier wait before the write 

to x until the barrier wait after the write to x. 

DEFINITION 3.0.2: Ordering Constructs 

Ordering constructs are defined as barrier waits, condition variable waits, thread exits, and 

thread joins.  These constructs all indicate that the waiting thread needs one or more other 

threads to make progress before it continues its execution. 

Ordering-free regions conservatively approximate the atomicity that a parallel program 

might require.  Although it is theoretically possible that a program could require atomicity that 

spans an ordering construct, it is difficult in practice to find an application with this requirement. 
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An initial study of 780K lines of parallel code from the PARSEC benchmark suite [7], memcached, 

apache, and pbzip2 found that none of the applications studied required atomicity over an 

ordering construct on any of the tested inputs.  More generally, requiring atomicity across an 

ordering construct may lead to a deadlock in the case that thread T1 is waiting for thread T2 to 

perform some action, but thread T1 also holds a lock that thread T2 requires.  Thus, ordering 

constructs seem to be a reasonable delimiter for the atomicity required by most parallel 

programs. 

DEFINITION 3.0.3: OFR Serializability 

An execution is OFR serializable if the dynamic, parallel execution of ordering-free regions is 

conflict serializable. 

To enforce OFR serializability on a parallel execution, the accesses to all memory 

locations must occur atomically between ordering constructs. To this end, each memory location 

x is associated with a lock Lx. Before each memory access to x by a thread T, T acquires Lx if T 

does not already hold Lx. At the end of an OFR, when T encounters an ordering construct – a 

fork, join, wait, or barrier – T releases all the locks it holds. If T is ever unable to acquire a lock, 

Lx, then some other thread U must have accessed x in U’s current OFR. T’s inability to acquire Lx 

indicates a memory conflict between T and U.  Prior consistency models raise an exception on 

T’s access to x because of the memory conflict, but OFR serializability instead tracks a 

dependence from T to U and waits until U releases Lx, avoiding unnecessary exceptions on 

conflicts that do not compromise serializability. 

This algorithm constructs the ordering-free region for each variable as shown in Figure 

3.1.  If the thread T is able to acquire the lock Lx within an OFR, no other thread has made a 

conflicting access within that OFR.  Otherwise, the lock acquire of Lx by T would fail.  After T 

acquires Lx, no other thread can acquire the lock until T releases it at the barrier_wait().  

Therefore, T has atomicity over x between the two calls to barrier_wait(), which is what is required 

by ordering-free region serializability. 
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This simple algorithm does not account for read-sharing, which is common in parallel 

applications.  In order to support read-sharing, the lock Lx that protects each memory location x is 

a reader-writer lock.  A reader-writer lock permits multiple threads to acquire a read lock 

concurrently but only a single thread can hold an exclusive write lock.  A reader-writer lock only 

permits an exclusive writer if there are no concurrent readers.  With reader-writer locks, a 

dependence between threads only exists when the accesses by the threads to the location x 

conflict, meaning that one of the accesses must be a write.  This use of reader-writer locks 

(instead of mutex locks) increases parallelism by allowing read-sharing of data, which is crucial 

for performance and scalability. 

DEFINITION 3.0.4: OFR Exceptions 

An OFR exception occurs when a cyclic dependence exists between two threads within 

concurrent OFRs.  An OFR exception indicates that the two OFRs are not OFR serializable. 

 

Figure 3.2: A scenario in which an OFR exception will be raised 

OFR serializability triggers an OFR exception when executing OFRs have at least two 

conflicts and the conflicts form a cycle in the conflict graph [6].  An OFR exception indicates that 

the program permitted an unserializable execution of its regions and that its OFRs must be 

divided into smaller atomic regions to permit additional region interleavings.  An OFR exception 

suggests how to avoid the same exception in future executions.  Figure 3.2 demonstrates two 

OFRs that are not OFR serializable and raise on OFR exception when executed concurrently.  In 

this example, T0 acquires a read lock on Lx when it loads the value of x.  T1 then acquires a read 
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lock on Lx when it loads the value of x, causing Lx to be in a shared read state.  T0 then acquires 

a write lock on Ly and stores a new value to y.  T1 attempts to acquire a write lock on Ly but is 

unable to because T0 already holds a write lock on Ly.  Finally, T0 attempts to acquire a write lock 

on Lx but is unable to because Lx is in a shared read state, which conflicts with T0’s attempt to 

acquire a write lock.   

An OFR exception indicates that the atomicity enforced by OFR serializability is too 

strong for the program.  The atomicity must be relaxed to prevent the exception in future 

executions.  Examining the code in Figure 3.2, the exception can be prevented by either (1) 

releasing the lock on y in T1, (2) releasing the lock on x in T0, (3) releasing both locks, or (4) 

ensuring that x and y are updated together by changing x to use mutex locking or altering the 

order of stores in T0.  The choice of how to prevent the exception in future executions is made by 

the programmer using a small annotation API described in the next section.  The programmer 

must examine the code that caused the exception and determine how much atomicity is required 

for each of the memory locations involved. 

3.1 ORDERING-FREE REGIONS API 

Programming with ordering-free regions requires a small API that allows programmers to refine a 

program’s region specification and optimize performance. 

A Release() annotation refines a program’s region specification, sub-dividing a region into 

smaller regions, e.g., to eliminate an exception. The basic Release() annotation explicitly releases 

a specified location’s lock and we include “syntactic sugar” API calls that batch release locks on 

objects and arrays.  ReleaseObject() releases the locks on all fields of an object, and 

ReleaseArray() releases the locks on all elements of an array. 

A RequireMutex() annotation associates a mutex lock with a memory location, rather than 

a reader-writer lock to avoid upgrade cycles.  A post-dominator compiler analysis can often 

identify cases that might require a mutex and avoid the need for the programmer to manually add 
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RequireMutex() annotations.  However, due to the need to be conservative, the programmer does 

occasionally need to add these annotations manually. 

An EndOFR() annotation ends an ordering-free region before execution reaches an 

ordering operation.  The EndOFR() annotation can be used when the atomicity requirements of 

thread allow the bulk release of all locks held by that thread.  For example, pipeline parallel 

applications tend to perform operations on an object and then pass that object to the next stage 

of the pipeline for further processing.  When this hand-off between pipeline stages occurs, 

ownership of the object transfers completely from the earlier pipeline stage to the later pipeline 

stage.  Therefore, the earlier pipeline stage can release all of its locks on the object to allow those 

locks to be acquired by the later stages of the pipeline.  These locks could be individually 

released using Release() annotations, but the EndOFR() annotation can instead be used to batch 

release all of the locks instead. 

A ContinueOFR() annotation specifies that its containing region should not end at the 

next ordering operation executed. ContinueOFR() would be useful when a program requires 

atomicity coarser than an OFR (although we never encountered such a situation). ContinueOFR() 

can also be useful to improve performance by avoiding frequent lock releases at region 

boundaries. For example, in canneal, not releasing locks at a barrier does not affect correctness 

because Release() annotations release all locks that cause OFR exceptions. 
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3.2 PROOF OF CORRECTNESS 

This section shows formally that OFR serializability enforces conflict serializability. The following 

definitions are used to support the arguments and can be assumed from this implementation of 

ordering-free regions. 

DEFINITION 3.2.1: OFR Locking 

Ordering-free regions associate a single reader-writer lock Lx with each memory location x. 

DEFINITION 3.2.2: OFR Acquire 

No access to a memory location x by a thread T proceeds without first holding the location’s lock 

in the correct mode for the access (i.e., read vs. write mode). 

DEFINITION 3.2.3: OFR Release 

No lock Lx is released by a thread until the end of the thread’s current ordering-free region. 

DEFINITION 3.2.4: OFR Deadlock Detection 

OFR serializability performs precise cyclic lock waiting (i.e. deadlock) detection. 

THEOREM 3.2.5: Exception-Free Serializability 

If an execution of OFRs is free of OFR exceptions, then the execution is conflict serializable. 

Proof by contradiction.  Assume that an OFR exception-free execution was not conflict 

serializable.  This proof assumes two ordering-free regions, but the argument generalizes to 

arbitrary-length conflict cycles. 

If an execution is not conflict serializable, then the definition of conflict serializability for 

OFRs implies that there is a set of conflicts between OFRs that form a cycle in the conflict graph. 

Consider Oi and Oj, two OFRs from different threads that both access a location x leading to a 

conflict. By (3.2.1) and (3.2.2), OFR serializability ensures Oi and Oj acquire the lock for x in the 

correct mode before each access. By the definition of a conflict, one (or both) of Oi or Oj is writing 

x and by (3.2.2) the writer(s) must hold the lock in write mode before the write. By (3.2.3), 
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whichever region successfully acquired x’s lock continues executing, holding the lock until its 

region ends. The region that did not acquire x’s lock waits until the lock is released. 

By the assumption that the execution is not conflict serializable, there is another conflict 

between Oi and Oj on another arbitrary location y.  As with x, one region acquires y’s lock and 

one waits. If the same region acquires y’s lock as acquired x’s lock, then that region completes 

and releases both locks; in the absence of other conflicts, the regions serialize, violating the 

assumption that the execution is not conflict serializable.  If, instead, the region that acquires y’s 

lock was not the one that acquired x’s lock, the regions deadlock, each waiting for the other to 

release its lock. By (3.2.4), OFR serializability precisely detects this deadlock and reports an 

exception, violating the assumption that the execution was exception-free. Thus, the assumption 

leads to a contradiction, proving that an exception-free execution is conflict serializable. 

THEOREM 3.2.6: Unserializability of OFR Exceptions 

If an execution triggers an OFR exception, then the execution is not conflict serializable. 

Proof. As above, this proof covers the two OFR case, but the argument generalizes to arbitrary 

conflicts.  Assume an OFR exception has been generated. By (3.2.4), an OFR exception 

corresponds to OFR serializability detecting that two regions are mutually waiting for one another 

to release locks: region Oi waits for Oj to release a lock on location x and Oj waits for Oi to release 

a lock on location y. By (3.2.2), if a region proceeds it will next immediately access the location 

protected by the lock it waits for. At least one region’s imminent access to each variable is a write, 

because pairs of reads would be allowed to execute concurrently, by (3.2.1).  Consequently, the 

regions’ impending accesses form two conflicts, one on x and one on y. Furthermore, by (3.2.1) 

and (3.2.4), because the regions cyclically wait to acquire locks, the corresponding access 

conflicts are also cyclic.  A case-based analysis shows that an OFR exception indicates a 

violation of conflict serializability.  By the definition of conflict serializability [6], a conflict graph 

cycle indicates a violation of conflict serializability. 
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Case 1.  In the single variable case, an OFR exception may be triggered by Oi and Oj acquiring a 

lock on x in read-mode and then attempting to upgrade to write-mode.  This violates conflict 

serializability because both threads are attempting to both read and write to the same location x. 

Case 2.  With two variables, x and y, there are multiple, similar cases that may result in an OFR 

exception.  In all of these cases, Oi writes to either x or y, and Oj writes to the opposite location.  If 

both Oi and Oj write to the same location and do not incur an upgrade cycle, as in Case 1, the 

OFRs will serialize on one of the writes.  Therefore, the OFRs must write to opposite locations.  

By the same logic, each OFR must read from the location that it does not write to because writing 

to both locations would also cause the OFRs to serialize.  These conflicting read-write pairs 

violate conflict serializability. 

Note that the correctness proof is sound and complete – an execution free of exceptions is 

conflict serializable and an exception indicates that an execution is not conflict serializable. By 

contrast, prior work [8, 47, 66] provided a weaker correctness argument – an exception-free 

execution is serializable, but an exception corresponds only to a conflict, indicating a data-race, 

but not a violation of conflict serializability. 
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3.3 QUANTIFYING ATOMICITY 

While OFRs have intuitive benefits over finer-grained atomic regions, it may be the case that 

these advantages do not materialize due to the structure of real programs.  To quantify atomicity, 

it is necessary to consider both the length and width of regions as described in Section 2.3.1. 

 

Figure 3.3: Number of breaks in atomicity for each model 

Figure 3.3 shows the number of times that atomicity is broken in each programming 

model.  Sequential consistency (SC) logically breaks atomicity after each memory access.  

Conflict Exceptions (CE, representative of SFRs) breaks atomicity at each lock acquire and 

release.  Release-free regions (RFR) break atomicity at each lock release.  IFRs extend CE and 

RFR to not break atomicity if the memory location will be accessed in the next region.  OFRs 

break atomicity at each ordering construct.  As shown, CE, RFR, IFR, and OFR break atomicity a 

similar number of times when considering only the length of regions.  Thus, it is necessary to 

consider the width of regions to properly quantify the amount of atomicity provided by each of 

these programming models. 

By considering both the length and width of regions, the atomicity of each model can be 

quantified by examining how many variables (width) are protected by a region of a given size 
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(length).  The following CDF plots quantify the atomicity of three parallel applications: 

blackscholes, ferret, and fluidanimate.  The length and width of all regions R were recorded.  The 

length of the region R is the number of dynamic instructions included in that region.  The width of 

the region R is the number of memory locations accessed within that region.  These plots detail 

how many regions have a width of w as a fraction of all regions as a cumulative distribution 

function.  The width metric captures the ability of a consistency model to enforce atomicity across 

memory locations, reducing the probability of multi-variable atomicity violations.  In these CDFs, 

curves that rise more gently indicate greater atomicity, as there are a substantial proportion of 

wide regions and a small proportion of low-width (narrow) regions. Curves that rise steeply 

indicate that most regions are narrow. 

 

Figure 3.4: CDF plot showing the length and width of regions in blackscholes 
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 Figure 3.4 quantifies the amount of atomicity provided by SFRs, RFRs, and OFRs on 

blackscholes.  On this application, the amount of atomicity provided is the same for all three 

models because blackscholes is an embarrassingly parallel application, meaning that it requires 

no lock acquires or releases.  Therefore, the three models use the same regions. 

 

Figure 3.5: CDF plot showing the length and width of regions in ferret 

Figure 3.5 quantifies the amount of atomicity provided by SFRs, RFRs, and OFRs on 

ferret.  ferret is a pipeline parallel application that passes objects from one stage of the pipeline to 

the next.  Each stage of the pipeline executes in parallel and performs disjoint work from all other 

pipeline stages.  Objects are passed from one stage to the next using a queue that employs 

ordering constructs to prevent threads from dequeuing from an empty queue or enqueuing into a 

full queue.  Most regions applied by SFRs and RFRs are quite small in ferret.  The regions used 

by OFRs tend to be slightly larger, both in length and in width. 
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Figure 3.6: CDF plot showing the length and width of regions in fluidanimate 

Figure 3.6 quantifies the amount of atomicity provided by SFRs, RFRs, and OFRs in 

fluidanimate.  fluidanimate uses complex, fine-grained locking that causes frequent region 

boundaries for SFRs and RFRs while OFRs are considerably wider due to infrequent barrier 

synchronization. 

Overall, the theoretical benefits of OFRs manifest more clearly in programs with more 

complicated parallel structure, which are arguably the programs likeliest to suffer from 

concurrency bugs.  From this analysis, there appears to be no significant difference in atomicity 

between SFRs and RFRs, suggesting that the practical benefits of moving from SFRs to coarser-

grained RFRs are limited.  However, OFRs clearly provide longer and wider regions than both 

SFRs and RFRs, indicating that they provide increased atomicity for parallel programs. 
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4 IMPLEMENTING ORDERING-FREE REGIONS 

The following section discusses the tradeoffs and decisions in implementing a system that 

enforces atomicity based on ordering-free regions.  These implementations feature a few 

common components that are required to implement OFR serializability.  Each implementation 

requires a lock design that permits high-performance execution and a shadowspace design that 

allows efficient retrieval of locks as needed.  Similarly, each implementation requires the common 

API of runtime functions for managing OFR serializability.  A distributed deadlock detector is used 

to detect and report OFR exceptions, and some amount of allocator and compiler support may be 

required to identify allocations, loads, stores, and other functions of interest. 

4.1 Overview 

This section examines and discusses three runtime systems that implement OFR serializability.  

MAMA [20] was implemented as part of our initial investigation into the applicability of OFR 

serializability to parallel applications.  This software-only runtime system leveraged the 

RoadRunner [32] framework to associate locks with data and provided insights into how future 

implementations could be made more efficient.  From our experiences with the MAMA prototype, 

we believed that hardware support would be necessary for a reasonably efficient implementation 

of OFR serializability.  We also decided to implement future systems in C and C++ instead of 

Java due to our desire to use LLVM for compiler optimizations.  ORCA [23] introduced hardware 

support for OFR serializability.  We used the Pin [50] dynamic binary instrumentation tool to apply 

OFR serializability to C and C++ applications in a simulated environment.  Although ORCA 

enforces OFR serializability at low performance overheads, the need for new hardware support 

was undesirable.  SOFRITAS [22] provides OFR serializability using a software-only runtime 

system and simple compiler instrumentation.  SOFRITAS builds upon both MAMA and ORCA to 

provide OFR serializability efficiently in a software system. 
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4.2 Locks 

Implementing ordering-free regions using locks requires a highly efficient lock design.  As 

described in Section 3, the system that enforces OFR serializability requires that a thread holds a 

lock in the correct mode on each access to a memory location protected by that lock.  This 

functionality does not necessarily have to be implemented using locks, but the systems designed 

for this dissertation all rely on locks in their implementations.  These locks must be efficient 

enough to limit the overheads of associating a lock with every memory location and acquiring 

those locks on every memory access. 

Table 4.1: Characterization of memory accesses and lock acquires 

Benchmark Memory Accesses Reads (%) Writes (%) Acquires (%) 

blackscholes 7.1 Billion 85.13% 14.87% 2.81% 

bodytrack 95.7 Billion 93.23% 6.77% 3.39% 

canneal 21.6 Billion 96.07% 3.93% 23.49% 

dedup 3.1 Billion 98.97% 1.03% 28.79% 

ferret 187.9 Billion 89.43% 10.57% 5.91% 

fluidanimate 228.7 Billion 88.00% 12.00% 20.17% 

streamcluster 428.3 Billion 99.57% 0.43% 51.46% 

swaptions 196.0 Billion 76.58% 23.42% 0.00% 

gups 500 Million 40.00% 60.00% 80.00% 

kmeans 3.2 Billion 91.73% 8.27% 15.12% 

pagerank 1.2 Billion 93.61% 6.39% 25.30% 

histogram 3.8 Billion 62.50% 37.50% 0.00% 

kmeans 14.8 Billion 99.80% 0.20% 1.13% 

linear_regression 4.9 Thousand 17.57% 82.43% 2.46% 

matrix_multiply 2.0 Billion 99.95% 0.05% 0.05% 

pca 16.1 Billion 99.80% 0.20% 0.42% 

reverse_index 2.1 Billion 99.56% 0.44% 49.26% 

string_match 1.4 Billion 34.55% 65.45% 0.00% 

word_count 740.5 Million 97.46% 2.54% 0.49% 

 

 Table 4.1 characterizes the memory accesses performed by 19 parallel applications.  

These access characteristics heavily influenced the lock designs used to implement OFR 

serializability.  The Memory Accesses column lists the total number of memory accesses 
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performed by each application.  The number of accesses is abnormally low for linear_regression 

because most of the memory accesses performed by this application are to a read-only mapped 

memory region holding file input, which can be safely ignored by the OFR algorithm considering 

that all accesses must be reads.  The accesses shown for gups are round numbers due to the 

synthetic nature of the benchmark.  The second two columns show the percentage of Reads and 

Writes over all memory accesses.  Reads tend to be more common, but some application like 

gups and string_match do exhibit a larger number of writes than reads.  For this reason, the locks 

used to implement OFR serializability should be biased toward reads but still allow for efficient 

writes.  The final column (Acquires) shows the percentage of memory accesses that cause a lock 

acquire under OFR serializability.  The non-acquire memory accesses simply check to see if the 

lock is currently held in the correct permission.  Aside from a few outliers, the percentage of 

acquires tends to be low compared to checks.  Thus, the lock design should be biased toward 

fast checks but still permit relatively fast acquires when possible. 

Table 4.2: Characterization of lock acquires as reads or writes 

 

 Table 4.2 characterizes the modes that locks are acquired in to enforce OFR 

serializability.  Although the applications are more likely to favor read acquires over write 
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acquires, there are many applications that instead favor write acquires over read acquires.  

Therefore, the lock designs should not heavily bias to one type of acquire over the other.  In 

general, the locks used to implement OFR serializability attempt to optimize for common case 

transitions between lock states.  For example, threads may use the same variables in successive 

ordering-free regions.  In this case, the lock should be designed to allow the thread to efficiently 

reacquire the locks that it held in the previous OFR. 

 Aside from being efficient, the locks used to implement OFR serializability must provide 

the features necessary to interact with the rest of the OFR runtime system.  First, both reader-

writer and mutex locks must be available, whether the same lock implements both or two 

separate lock types are used.  Neither reader-writer nor mutex locks avoid strictly more 

deadlocks, so both types must be available to the runtime system.  Second, the locks must 

indicate the current owners and state to allow the system to detect cycles, which in turn are 

forwarded to the user as exceptions.  Unlike conventional locks used in multithreaded systems, 

OFR locks cannot simply indicate whether the lock is currently held or not.  OFR locks are similar 

to re-entrant locks that track which thread currently holds the lock and allows a simple check 

rather than an acquire if the current owner attempts to acquire the lock a second time. 

4.2.1 Eager or Lazy Releases 

The OFR execution model discussed thus far eagerly releases all locks at every ordering 

construct, which is sufficient to guarantee 2PL serializability of OFRs but comes with a large 

performance tax.  Eagerly releasing locks at all ordering constructs can be accomplished in a 

number of ways.  In any implementation, logically, a list of locks held by each thread must be 

maintained in some way, or the lock structures must be designed to make such a list 

unnecessary.  A naïve solution might simply maintain a per-thread list of every lock the thread 

has acquired.  This solution would require additional overhead on every lock acquire, and eagerly 

releasing locks would require a list traversal to release every lock held by the thread.  A per-
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thread version number could also be added to each lock to identify which locks have been 

acquired in the current ordering-free region, but this solution would increase the size and 

complexity of the locks substantially (similarly to maintaining a vector clock for data-race 

detection. 

 Alternatively, locks can be released using a lazy policy that only releases locks when 

another thread attempts to acquire them.  This lazy release policy holds locks across ordering 

constructs.  Locks can still be released by threads waiting at an ordering construct: if a thread T0 

holds a lock Lx and is blocked at a barrier, another thread T1 can steal Lx. T0’s OFR serializability 

is preserved because the OFR in which T0 acquired Lx must have ended, as T0 is at an ordering 

construct.  Lazy releases do not compromise OFR atomicity, and in fact strengthen it – in the 

absence of steals, a variable’s atomicity is preserved across multiple OFRs.  A subtlety of lazy 

releases is that a dependence cycle may not violate 2PL serializability.  Consider the case in 

which a thread T0 holds a lock Lx on some location x and does not release that lock at the end of 

its ordering-free region O1.  If another thread T1 similarly holds a lock Ly on location y and does 

not release that lock at the end of its ordering free region O’1, T0 and T1 may deadlock if T0 

attempts to acquire Ly in its new OFR O2 and T1 attempts to acquire Lx in its new OFR O’2.  Both 

threads have moved on to new ordering-free regions O2 and O’2, but the lazy release of locks has 

caused a dependence cycle that would not have existed if locks had been eagerly released. 

 Precisely supporting lazy releases would require an implementation similar to a vector-

clock, which would be unlikely to provide improved performance.  In practice, it is possible to use 

a more targeted form of lazy releases that does not require a full vector clock.  Both pipeline 

parallelism and barrier-based synchronization can be supported by a scalar stage that enables 

lazy releases of locks between ordering-free regions. 
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Figure 4.1: Pipeline stages using staged locking to lazily pass locks from one stage of the 

pipeline to the next.  Stage is shown in parentheses 

 Figure 4.1 demonstrates how stages can be used to lazily transfer locks from one stage 

of a pipeline to the next.  This pattern is found in applications like dedup and ferret which pass 

objects through a parallel pipeline.  Within the same stage, locks cannot be stolen.  For example, 

T0 and T1 would not be able to steal each other’s locks.  If T0 and T1 produce an OFR exception, it 

is a true exception and not generated due to the structure of the parallelism.  T2 and T3 can steal 

locks from T0 and T1 because they are part of a later stage of the pipeline and often receive data 

that T0 and T1 are no longer using.  Supporting pipeline parallelism with a scalar stage requires a 

small stage due to the limited number of pipeline stages that will practically be used in most 

parallel applications.  The programmer must indicate via an annotation which threads belong to 

which pipeline stages.  Staging annotations are untrusted and are verified at runtime: an incorrect 

staging annotation that contradicts the program’s sharing patterns will trigger an OFR exception 

to support straightforward debugging.  However, pipeline parallelism is not the only type of 

parallelism that can be aptly supported by a scalar stage. 
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Figure 4.2: Stages of a barrier-based application 

Parallel applications often use barriers to delimit phases of the parallel algorithm.  Such 

applications also lend themselves to the use of a scalar stage for lazy lock releases.  Figure 4.2 

demonstrates how locks can be passed from one stage of a barrier-based application to the next.  

As shown, some memory locations (e.g. x) may be locked by the same thread in subsequent 

stages.  In these cases, the stage is updated when the lock is tested for proper permissions.  In a 

barrier-based application, a thread may steal a lock from another thread if the current stage of 

execution is greater than the scalar stage indicated by the lock.  A thread can steal locks held by 

a thread in a previous stage, but not from its own stage or future stages.  This use of stages 

assumes that all threads that are sharing data participate in the same barriers and therefore have 

matching stages.  Unlike pipeline stages, barrier stages can be automatically identified at runtime 

(i.e. as each barrier_wait() occurs). 
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4.2.2 Debugging Metadata and Annotation Suggestions 

To apply OFR serializability to a parallel application, the programmer must properly apply 

annotations from the OFR API to the code.  A runtime system can assist the programmer with this 

task by providing suggestions based on the behavior of locks.  However, the runtime system must 

use additional metadata to provide useful suggestions, and therefore this functionality is generally 

used for debugging and not during production. 

 When a dependence cycle occurs, the execution of the two or more threads involved will 

stop precisely at the lines of code that complete the cycle.  Although the information found on 

those lines of code may be useful to the programmer, it may not identify the root cause of the 

dependence cycle.  To locate the root cause, the programmer needs to know where the data 

associated with each lock was last accessed by that lock’s owner.  In debugging mode, locks 

track the last read and last write source-code location for each memory location.  This information 

can be represented as an integer that maps to a source-code file and line number.  This 

information is updated on each read or write to a memory location.  When a dependence cycle is 

detected, the runtime system will suggest that the programmer place a Release() annotation at 

either the last read or last write line of source-code, depending on structure of the dependence 

cycle.  The runtime system can also suggest RequireMutex() annotations in the case of read-to-

write upgrade dependence cycles. 

 The behavior of the runtime system can also provide useful suggestions to the 

programmer to improve the performance of the application under OFR serializability.  By 

examining lock contention, the runtime system can identify instances in which the application 

serializes on accesses to some memory location and suggest that the programmer add a 

Release() annotation to avoid unnecessary serialization.  The runtime system can also identify 

frequent lock reacquires, which may indicate that a ContinueOFR() annotation can be applied.  

These performance suggestions should be carefully considered by the programmer so to not 

compromise safety for performance. 
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4.3 Shadowspace 

Efficiently checking and acquiring locks in a system that provides OFR serializability requires an 

efficient mapping from each memory location to its associated lock.  Locks are stored in a 

shadowspace that corresponds to the memory allocated by a parallel application.  Multiple 

design choices can influence the runtime and space overheads of retrieving locks, including the 

granularity of mapping, the flexibility of mapping, and the use of a monolithic or distributed 

mapping. 

4.3.1 Mapping Granularity 

The mapping granularity of the shadowspace affects both the efficiency and the usability of 

ordering-free regions.  A coarse mapping may provide better performance, but a coarse mapping 

may also cause false OFR exceptions to be generated. 

 

Figure 4.3: Example demonstrating how a coarse mapping leads to a false OFR exception 

 Figure 4.3 shows how a coarse mapping can lead to a false exception.  The example 

assumes a mapping from each set of 2 bytes to a lock.  T0 accesses byte 0 and then byte 2 while 

T1 accesses byte 3 and then byte 1.  Due to the lock mapping, this access pattern causes T0 to 

acquire LA and then attempt to acquire LB while T1 acquires LB and then attempts to acquire LA, 

leading to a cycle.  With a byte-to-lock mapping, there would be no cycle in the lock acquires 

because the bytes accessed by T0 and T1 do not overlap. 
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 In C and C++, there is no mapping provided from bytes of data to their structure.  By 

default, the runtime system does not know the structure of objects in memory.  Thus, a 

straightforward way to map data to locks in C and C++ is to choose a fixed mapping from some 

number of bytes to a lock.  Many parallel applications do not access data at byte granularity, but 

some do.  For the applications that only access data at word (4-byte) granularity, a shadowspace 

mapping from words to locks would be appropriate to save space.  However, for the applications 

that access data at byte granularity, a byte to lock mapping is necessary to avoid false 

exceptions.  The evaluation of the systems used to enforce OFR serializability quantifies the 

tradeoff between byte and word mappings. 

 Languages like Java provide details on the structure of objects in memory that are 

available to a runtime system [32].  By default, Java maintains mappings of bytes and words to 

the fields and elements that comprise objects and arrays.  Therefore, Java permits a more 

coarse-grained mapping than C and C++ because the runtime system is aware of the granularity 

at which the application will access data.  The system can still choose a coarse or fine-grained 

mapping for locks in Java.  For objects, the system can choose to either map from fields to locks 

or from objects to locks, and for arrays, the system can choose to either map from array elements 

to locks or from arrays to locks.  These mappings have the same tradeoffs as byte and word 

granularity mappings for C and C++. 
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Figure 4.4: The lock shadowspace can be coarse or fine-grained 

 Figure 4.4 shows the granularity of mappings available in both C++ and Java.  In Java, 

object fields and array elements can be mapped to locks because the runtime system is aware of 

the structure of data.  In C++, only groups of bytes can be mapped to locks because the runtime 

system does not maintain mappings of bytes to structures.  Java also permits an inline 

instrumentation that adds locks next to the fields or array elements that those locks protect.  In C 

and C++, there is no guarantee that the code will not create a pointer and walk over the bytes of 

an object, so it is generally not safe to add locks to objects or array inline.  Thus, a lock 

shadowspace for C and C++ applications should be disjoint from the memory being shadowed. 
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4.3.2 Rigid or Flexible Mapping 

As mentioned in the previous section, associating locks with memory locations in C and C++ 

necessitates the use of a shadowspace that is disjoint from program memory.  This disjoint 

shadowspace can be structured as either a rigid or flexible mapping from program memory to the 

lock shadowspace. 

 

Figure 4.5: Rigid mapping from data to locks 

 A rigid mapping uses arithmetic to translate from each program memory address to the 

address of a corresponding lock.  A rigid mapping requires a fixed lock format and a specific 

memory layout.  Figure 4.5 demonstrates how a rigid mapping translates from data addresses to 

lock addresses.  Using a fixed mapping requires few arithmetic instructions and limits the work 

necessary to check the state of a lock. 

 

Figure 4.6: A lock trie maps data addresses to lock addresses 

A more flexible translation process would admit different lock representations for different 

memory locations, e.g., more space-efficient mutex locks and contention-aware locks for 

frequently-accessed locations. To provide this flexibility, we explored an alternative shadowspace 

design that uses a four-level trie (like a page table) to map data to locks.  Figure 4.6 
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demonstrates how a lock trie maps data addresses to lock addresses.  The bytes of the data 

address are used to index tables that store pointers to lower level tables.  The lowest level of 

tables stores the locks.  This approach requires more instructions to access locks compared to 

the fixed mapping approach.  However, the trie approach allows flexible lock formats and flexible 

mappings from data to locks.  For example, this mapping would allow a single lock to protect a 

large set of data addresses.  The performance evaluation of OFR serializability in later sections 

examines the performance tradeoffs associated with using a lock trie instead of a fixed mapping. 

4.3.3 Lock and Shadowspace Design: MAMA 

MAMA [20] provides OFR serializability for Java applications.  As an initial investigation into OFR 

serializability, the locks and shadowspace used to implement MAMA were not heavily optimized 

but were rather meant to show that OFR serializability was a feasible model for parallel 

applications.  MAMA’s reader-writer locks consist of a single integer for the current writer’s thread 

ID (or -1 if none exists) and a bitmap of current readers, which is implemented as an 

ArrayList<Integer>.  MAMA relies on RoadRunner’s fine-grained metadata to associate locks with 

data.  RoadRunner associates a shadow variable with every field of an object and every element 

of an array.  The naïve lock implementation used by MAMA suffers from high performance 

overheads and has been significantly improved upon by both ORCA and SOFRITAS. 

4.3.4 Lock and Shadowspace Design: ORCA 

ORCA [23] enforces OFR serializability efficiently using hardware support.  The locks and 

shadowspace used for ORCA are designed to fulfill the requirements set forth in Section 4.2.  

However, the hardware support included with ORCA provides optimizations on top of the lock 

implementation in software. 
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Figure 4.7: Design of ORCA's reader-writer locks 

Figure 4.7 shows the lock design for ORCA’s reader-writer locks. ORCA’s locks are designed to 

allow fast ownership checks in hardware.  2 state bits list the current state of the lock, which can 

be unowned, exclusive reader, shared readers, or exclusive writer.  This state field is loaded into 

a cache to facilitate fast lock checks, as will be discussed in Section 5.  An additional 28 owner 

bits store a bitmap identifying the current owners of the lock.  The 32-bit stage field is used to 

support lazy releases without suffering from additional OFR exceptions.  The mutex bit is set 

when the corresponding lock must be used as a mutex instead of as a reader-writer lock.  The 

STL bit is used to indicate that the lock was protecting an STL data structure and should be 

acquired and released on entry and exit from STL methods.  All updates to the lock structure rely 

on atomic compare-and-swap operations to atomically update the metadata. 

 ORCA permits both fixed and flexible lock shadowspaces.  The proposed hardware 

support relies on a fixed lock format for address translation.  As an alternative, a software trie 

could be used to permit flexible lock mappings and formats.  The flexible lock trie suffers from 

additional runtime performance overheads compared to using fixed hardware translation. 

 The ORCA lock design suffers from a few critical flaws.  The hardware designed to 

support ORCA loads the state bits into a cache, but the state bits are distributed across multiple 

bytes of memory.  To load 64 locks worth of state into the cache, the hardware must perform 64 
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loads of data.  The owner field limits the total number of threads that can be used by an 

application to 28, which may not be enough threads.  For example, ferret requires a 16-byte lock 

to allow for a larger owner field because it uses 65 total threads.  Expanding the owner field to 

accommodate larger thread counts would quickly become infeasible.  The lock design used by 

ORCA also necessitates a lazy release policy for high-performance because clearing all ORCA 

locks would require iterating over the lock shadow-space and zeroing out all owned locks. 

Although the lazy release policy yields performance benefits, it weakens runtime properties of an 

ORCA execution because an OFR exception can be thrown due to lazy releases rather than due 

to a violation of OFR serializability.  Although lazy releases can provide some amount of runtime 

performance optimization, the stage field requires 4 bytes of memory and could suffer from 

wraparound issues due to integer overflow.   

4.3.5 Lock and Shadowspace Design: SOFRITAS 

To remedy the drawbacks of ORCA’s locks, SOFRITAS [22] adopted a new lock design in order 

to avoid the need for a lazy release policy. The SOFRITAS lock design specifically targets an 

eager release policy that clears all locks currently owned by a thread at each ordering construct. 



40 

 

 

Figure 4.8: SOFRITAS distributed lock implementation 

SOFRITAS’s locks are designed to support efficient lock ownership checks, as these checks 

vastly outnumber lock acquires on most programs.  Figure 4.8 shows the structure of the locks 

used by SOFRITAS to enforce OFR serializability. Each lock is split into disjoint structures: 16 

bits of global metadata and 2 bits (per-thread) of thread-local permissions.  Thread-local 

permissions indicate whether or not a thread can currently read from or write to a location.  For 

each location, a thread can have read, read and write, or no permissions because a thread with 

exclusive write access also has exclusive read access.  Local permissions are only ever updated 

by their corresponding thread, though they may be read by remote threads.  A thread T’s lock 

ownership checks need consult only T’s local permissions. Thus, thread-local metadata can be 

read without synchronization.  The locks for adjacent memory locations map to adjacent global 

metadata, and to adjacent local permissions for a given thread, ensuring that spatial locality 

among a thread’s data accesses translates to good locality for its lock accesses as well. 

The mutex bit is set by RequireMutex() and ensures that a lock is always acquired with 

write permissions.  The updating bit acts as an internal lock over the lock’s state, and is held 
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while updating any lock state, including thread-local permissions. The updating bit avoids writer 

starvation as once a writer is able to set the updating bit, no new readers can arrive. 

To motivate the rest of the SOFRITAS lock design, we first discuss how to enable 

efficient lock releases.  Resetting global metadata on each lock release would require maintaining 

a prohibitively expensive list of every lock acquired during an OFR. Instead, only local 

permissions are updated on a release. This admits an efficient implementation of bulk releases 

via the madvise system call, using the MADV_DONTNEED flag to zero a thread’s entire local 

permissions space.  madvise has been used in prior works to efficiently save and restore state 

from a memory-mapped file in parallel applications [28,53].  The madvise system call is available 

as part of the Linux operating system.  Using the MADV_DONTNEED flag with the madvise 

system call causes the operating system to unmap the physical pages of memory allocated to a 

specified address range.  Subsequent reads to an unmapped page returns 0 without allocating a 

new physical page, and subsequent writes to an unmapped page causes the operating system to 

allocate a new, zeroed page of physical memory.  SOFRITAS allocates memory with mmap using 

the MAP_ANONYMOUS flag to enable this zero-fill-on-demand behavior. 
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Figure 4.9: SOFRITAS lock state transitions 

Global metadata can become stale in that it may reflect state that has changed due to a 

release operation.  In fact, the global metadata will be stale unless the lock has been acquired by 

some thread in its current OFR.  The definitive state of a lock is recorded in local permissions, 

and global metadata serves as a conservative summary of local permissions.  Figure 4.9 details 

the state transitions performed by SOFRITAS locks.  The held bit is set when a thread acquires 

the lock and remains set thereafter, allowing first-acquires to avoid checking any local 

permissions. The writer bit indicates that a lock is held with write permissions (otherwise it is in a 

read state), and the tid field identifies the exclusive writer, or reader, or identifies the lock as read-

shared. Together, the writer and tid fields identify when a lock is (or was just) in an exclusive 

state, so an acquiring thread examines just one thread’s local permissions during a state 

transition. Upon examining local permissions, an acquiring thread t can determine whether global 

metadata is stale, i.e., whether the lock is actually still held by its supposed owner. The only case 

where all local permissions must be consulted is for a read-shared to write-exclusive transition 

(heavy arrow in Figure 4.9), where the writer waits for all readers to release their locks. 
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4.4 Deadlock Detection 

In order to detect dependencies between threads within an OFR, all implementations use a 

distributed deadlock detection algorithm [13] to detect conflict cycles.  Only waiting threads run 

cycle detection, putting the work of deadlock detection off the execution’s critical path.  For 

completeness, a summary of the deadlock detection algorithm is included below. 

ALGORITHM 4.3.1: Distributed Deadlock Detection 

 
atomic nextK 
atomic K 
 
AcquireLock: 
    Attempt to Acquire Lock 
    If Lock Not Acquired: 
        Snapshot(K) 
        Init() 
        Attempt to Acquire Lock 
 
Init: 
    If CompareAndSwap(nextK,nextK + 1): 
        Detect(K) 
 
Detect(K): 
    Graph G 
    For Each Thread T: 
        S = ReadSnapshot(T,K) 
        AddEdges(G,S) 
    FindCycles(G) 
    Finish(K) 
 
Finish(K): 
    Increment K 
 

 

 The distributed deadlock algorithm described in Algorithm 4.3.1 allows deadlock 

detection on threads without interfering with threads that are not deadlocked.  For each K, one 

deadlocked thread will be able to perform the compare-and-swap operation on nextK and 

become the thread that performs deadlock detection.  Each thread maintains a snapshot of its 

state at the K that it deadlocked at.  This snapshot is valid for all K greater than the K at which the 
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thread snapshot was created.  The use of a distributed deadlock detection algorithm prevents 

false OFR exceptions by ensuring that stale state is not used for deadlock detection. 

 Like data-races, atomicity violations, and other bugs in parallel programs, deadlocks are 

schedule dependent [58].  Even with many runs, it can be difficult to detect all bugs in a parallel 

application due to the exponential number of possible schedules.  Despite best efforts, it may not 

be possible to detect all deadlocks (i.e. OFR exceptions) that may occur.  To ameliorate this 

problem, we adopt a methodology for testing a wide variety of schedules.  All parallel applications 

are tested with multiple inputs to provide greater code coverage. 

 

Figure 4.10: Number of OFR exceptions generated after N runs 

We adopt the Lockout deadlock injection tool [41] which can increase the likelihood of 

deadlocks by orders of magnitude.  We use Lockout to bias execution towards possible 

dependence cycles.  Lockout represents the order in which threads acquire locks as a graph, 

searches for cycles, and inserts pauses in the execution whenever a lock along a cycle is 

acquired. These pauses increase the likelihood that a cycle will manifest. We apply Lockout to 50 

executions on each application.  This process did expose some exceptions, but after the fifth run 
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of bodytrack and the eighth run of dedup no further exceptions arose, suggesting that good 

schedule coverage had been achieved.  Figure 4.10 shows the number of deadlocks detected 

after N runs for memcached.  After 15 runs, no further deadlocks were detected.  Although it is 

possible that further OFR exceptions could be lurking in these programs, these are vastly 

preferable to lingering data races or atomicity violations in a conventional programming model 

which can silently corrupt memory and cause the application to produce an incorrect result. To 

prioritize availability over correctness during deployment, an OFR program can be run with an 

OFR exception handler that logs exceptions and continues execution, similar to a conventional 

programming model but with the advantage of exception logs for post-mortem debugging. 

4.5 Allocator Support 

Implementing OFR serializability requires knowledge of the allocations performed by the parallel 

application - the shadowspace must mirror the program’s allocations.  Thus, the runtime system 

needs some way to hook into the memory allocations made by the application. 

 ORCA relied on hooks inserted by the Pin [50] dynamic binary translation tool to catch 

function calls to malloc, new, free, delete, and other functions used for memory allocation in C 

and C++.  Although these hooks were sufficient to simulate the ORCA hardware support, 

dynamic binary translation is too slow to use in a software-only system that aims for low runtime 

performance overheads. 

 

Figure 4.11: SOFRITAS allocates memory via tcmalloc 
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Figure 4.11 details how the SOFRITAS allocator hooks into application memory 

allocations.  SOFRITAS uses a modified version of the tcmalloc allocator [34].  Calls to sbrk and 

mmap for large memory allocations are redirected to the SOFRITAS runtime from the tcmalloc 

allocator.  The tcmalloc allocator manages free-lists and other structures required to efficiently 

allocate memory to a parallel application.  The SOFRITAS allocator manages the larger memory 

allocations that the tcmalloc allocator would otherwise request from the operating system using 

sbrk and mmap.  This design allows the SOFRITAS runtime to be made aware of all memory 

allocations performed by the parallel application without having to reimplement an efficient 

application-level memory allocator.  A similar approach has been used in prior memory allocation 

systems for composing memory allocators [5]. 

4.6 Compiler Support 

In order to implement OFR serializability, the runtime system needs to be able to perform a lock 

acquire before every load and store in the parallel application.  ORCA implemented this 

functionality with dynamic binary instrumentation via Pin [50].  However, this functionality was not 

fast enough to implement a software-only system like SOFRITAS.  SOFRITAS instead relied on a 

compiler instrumentation using LLVM to instrument loads and stores in the parallel applications.  

Using a compiler to instrument the code allows for optimizations that affect which loads or stores 

need to be instrumented.  For example, simple optimizations can detect and eliminate redundant 

lock acquires within basic blocks.  The following sections describe the SOFRITAS compiler 

implementation and the optimizations applied during instrumentation. 

4.6.1 Basic Instrumentation 

Immediately before each load or store instruction, the SOFRITAS compiler inserts calls to 

perform a read or write acquire, respectively.  The call inserted is a simple function call that gets 

expanded into the code required to acquire a lock in the SOFRITAS runtime system.  A small 
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portion of the acquire function is inlined, as ownership checks outnumber acquires for most 

programs.  For non-aligned locations, checking lock ownership requires 9 assembly instructions; 

4-byte aligned locations can be checked in 7 instructions because the needed thread-local 

permissions are always the low-order 2 bits and so masking is simple. 

ALGORITHM 4.5.1: Inline ASM Lock Check 

 
movq %r14, %rdi 
subq _memoryStart(%rip), %rax 
movq _locksStart(%rip), %rdx 
movw (%rdx,%rax,2), %si 
movzwl %si, %esi 
cmpl $2, %esi 
jne acquireFailed 
 

 

 Algorithm 4.5.1 shows the inline assembly for an aligned load check.  If the check fails, a 

non-inlined call to acquire the lock is performed. 

 The SOFRITAS compiler also inserts hooks to identify the start and end of the main() 

function in the application.  These hooks allow the SOFRITAS runtime to initialize its data 

structures before the application starts and clean them up with the application exits.  The compiler 

replaces calls to pthread function with special version of those function calls (e.g. 

pthread_barrier_wait with SOFRITAS_barrier_wait) in order to identify the beginning and end of 

ordering-free regions in the application. 

4.6.2 Optimizations 

The SOFRITAS compiler applies multiple optimizations from prior work to the instrumentation 

required to enforce OFR serializability [4,19].  The SOFRITAS compiler elides instrumentation for 

locations that do not escape the stack.  If a load or store has already been instrumented within a 

function, the compiler attempts to remove instrumentation on subsequent accesses to the same 

location.  This optimization is conservative in a few ways. Alias analysis must determine that the 
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two locations must alias.  Further, subsequent accesses must be instrumented if the associated 

lock may be released between the two accesses (e.g., by a call to pthread_condition_wait). 

 

Figure 4.12: Subsequent access optimization for read-write upgrades 

Many of the parallel applications studied required atomic updates on counters.  With a 

naive instrumentation, a counter update is instrumented as both a load and a store. Using this 

instrumented will likely lead to an upgrade dependency cycle between multiple threads that 

successfully acquire a read lock on the counter and then attempt to acquire a write lock.  To 

prevent this common scenario, any load that is post-dominated by a store is instrumented as a 

store instead.  Figure 4.12 demonstrates how this subsequent access optimization removes a 

lock acquire and replaces the original AcquireRead with an AcquireWrite. This optimization often 

reduces the need for RequireMutex() annotations because the compiler can identify situations 

that may lead to an upgrade deadlock.  However, the compiler analysis is conservative, and the 

programmer may be required to add RequireMutex() annotations when the analysis fails. 

We briefly investigated the possibility of optimizing lock acquires on arrays using the 

SOFRITAS compiler.  In many cases, a loop accesses sequential elements of an array and 

therefore sequentially acquires locks on that array.  As a proof-of-concept, we identified “hot” 

code in the fluidanimate benchmark that acquired locks while looping over arrays and removed 

the acquires on the arrays.  The single-threaded performance gains of manually removing all of 

the array accesses were not large, so we did not pursue this optimization further.  We instead 

investigated the possibility of using read-only annotations as described in the next subsection. 
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4.6.3 Annotations 

As a further optimization on one parallel application, we attempted to apply annotations for 

marking read-only memory locations using the SOFRITAS compiler [19].  These compiler 

annotations simply mark a variable as read-only in the source code and then attempt to 

propagate the read-only marking from the initial annotation across function calls and returns. 

ALGORITHM 4.5.3: Read-Only Arrays in Streamcluter 

 
float dist(Point p1, Point p2, int dim) 
{ 
  int i; 
  float result=0.0; 
  for (i=0;i<dim;i++) 
    result += (p1.coord[i] - p2.coord[i])*(p1.coord[i] - p2.coord[i]); 
  return(result); 
} 
 

 

 Algorithm 4.5.3 displays code from streamcluster that heavily benefits from a read-only 

annotation.  In the dist function, the coord arrays are read-only.  In fact, the coord arrays are only 

written as part of the application’s initialization.  With read-only annotations, the compiler was 

able to eliminate the instrumentation on the accesses to the coord array.  We investigated why 

the automated read-only analysis failed to identify the coord array as read-only and found that 

alias analysis could not properly differentiate the coord array from another float member of the 

Point class.  The getelementptr operations generated by the LLVM compiler were too similar to 

differentiate between the access to an array and the access to a scalar float.  We tested this 

hypothesis by changing the data type of the cost variable to a double and found that LLVM’s type-

based alias analysis was then able to differentiate between the cost and coord members of Point. 
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4.7 Working with Libraries 

Using a library with an application running with OFR serializability involves a few extra steps for 

the library writer. Library writers should identify library objects, so that a reader-writer lock can be 

associated with each one.  Library API calls should be annotated as logical reads or writes of a 

library object.  For example, inserting into a set counts as a write, while checking for a given set 

element is a read.  This allows read-only operations to run in parallel.  This approach to library 

integration allows legacy code to be reused safely with minimal effort.  As a proof of concept, we 

have created the necessary annotations for C++ STL containers as many applications use these. 

Crucially, OFR serializability still provides coarse-grained atomicity for accesses to library objects: 

the lock on a set will be held until the end of the OFR.  This provides natural atomicity across 

library API calls, making it straightforward to, e.g., atomically insert multiple elements into a set 

via individual insert calls.  Internally, a library can use arbitrary synchronization idioms for 

correctness, including locks and atomic operations. 

Libraries can also be rewritten and recompiled to use OFR serializability internally.  Library 

developers should add annotations such that proper use of the library will not lead to a deadlock 

under the OFR serializability model.  Library code using OFR serializability can be composed with 

application code using OFR serializability just like modules in a single application can be 

composed together.  In a few of the applications we evaluated (e.g. bodytrack), library code is 

compiled and linked as part of the application. 
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4.8 Summary 

This section of the dissertation introduced the implementation tradeoffs involved in designing a 

runtime system for enforcing OFR serializability.  In practice, we implemented three such 

systems: MAMA, ORCA, and SOFRITAS.  MAMA was our initial test case of using OFR 

serializability in Java.  We then implemented the ORCA system that relied on hardware support to 

apply OFR serializability to C and C++ applications.  Finally, we implemented a software-only 

system called SOFRITAS to demonstrate that OFR serializability was feasible on commodity 

hardware.  Both ORCA and SOFRITAS relied on different implementation trade-offs to enforce 

OFR serializability with low performance overheads.  The locks, shadowspace, and other 

implementation methods used to implement ORCA and SOFRITAS differed in many ways.  In 

Sections 6 and 7, we will discuss and compare the usability and performance of the MAMA, 

ORCA, and SOFRITAS systems. 
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5 HARDWARE SUPPORT for ORDERING-FREE REGIONS 

Under OFR serializability, when a thread accesses a memory location x, it must hold the lock for 

x (acquiring it if necessary).  In a conventional software system, these lock operations could 

impose a prohibitive cost. However, they are cheap with targeted hardware support, just as in the 

case of other rich abstractions like virtual memory, memory safety [24, 59] or data-race freedom 

[24]. In this section we describe how hardware support to translate from memory locations to 

locks and a dedicated lock cache accelerate frequent OFR lock operations. 

 Sections 5.1, 5.2, and 5.3 discuss the hardware support designed for the ORCA system.  

Section 5.4 proposes extensions and modifications to the hardware design to better support the 

SOFRITAS lock and shadowspace designs. 

5.1 Address Translation 

On every memory access to a location x, ORCA needs to find the corresponding lock. To make 

this operation fast, ORCA restricts applications to a 60-bit virtual address space, stealing the 

high-order 4 bits of the address space to store locks.  260 bytes of virtual memory are more than 

sufficient for the 48-bit physical addresses modern systems support.  Each ORCA lock occupies 

8B and a data address x translates to a lock address as follows. 

Lx = (x << 3) OR (1 << 63) 

This simple calculation is performed by the ORCA hardware in fixed-function logic. If the OS or 

application runtime (e.g., a copying garbage collector) moves data in virtual memory, the locks 

must be moved as well to maintain the fixed data to lock mapping.  Paging does not affect the 

data to lock mapping and both program data and locks can be paged transparently. 
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Figure 5.1: Translation from data to lock with hardware support 

 Figure 5.1(a) demonstrates how ORCA’s hardware address translation computes lock 

addresses from program memory addresses.  ORCA’s locks require 8 bytes of lock memory for 

every byte of application memory.  ORCA’s fixed mapping requires a rigid lock format and 

address space setup.  Performing this fixed translation in hardware requires that the starting 

addresses for the heap and lock shadowspace are at fixed locations for every application. 

5.2 Caching 

After translating a memory address to its lock’s address, ORCA checks whether the executing 

thread has sufficient ownership to perform the memory access. ORCA maintains a reader-writer 

lock for every byte of program memory. These locks occupy 8 bytes, as shown in Figure 5.1(b). 

Each lock’s state field records whether the lock is unheld, held in read-only mode, or held in 

read/write mode. If the lock is held, the owners field tracks the thread ID of the writer or a bitmap 

of readers. The mutex bit is used by mutex locks and the stage field is used for ORCA’s staged 

locking optimization. 
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Figure 5.2: Lock cache design 

The time and memory overhead of accessing ORCA’s full lock representation on every 

memory access would be prohibitive. Similar to other hardware-enforced safety properties that 

maintain extensive metadata, program access patterns induce substantial spatial and temporal 

locality on lock accesses that can be exploited by standard caching techniques. We also find that 

lock ownership checks substantially outnumber lock acquires, so ORCA uses a dedicated 

hardware lock cache to accelerate these ownership checks. The lock cache compresses each 8B 

lock down to just 2 bits, for significant efficiency gains. The lock cache allows the majority of 

ownership checks to occur in parallel with the data cache access, hiding check latency. The lock 

cache also prevents lock words from polluting the data cache, and eliminates the dynamic 

instructions that would be required for software ownership checks. 

 

Figure 5.3: Flow-chart of lock cache operations 

The lock cache maps a data address x to the ownership state of the corresponding lock 

lx with respect to the currently-running thread. A lock in the lock cache is represented as just 2 

bits, encoding one of three possible lock states: unheld, held in read-only mode, or held in 

read/write mode. These 2-bit entries are packed together in a lock cache line to amortize tag 
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overhead (Figure 5.2): an n-byte lock cache line holds information for 4n locks which correspond 

to 4n contiguous bytes of program memory. 

The operation of the lock cache is outlined in Figure 5.3. Memory accesses that hit in the 

lock cache with correct lock ownership (the common case) require no further work. Memory 

accesses that miss in the lock cache trigger a lock cache fill in hardware, which uses the data to 

lock mapping described in Section 5.3.1.  Memory accesses that hit in the lock cache, but have 

incorrect ownership status, invalidate copies of the lock cache line in both local and remote lock 

caches (see below), and then raise a trap to invoke a software acquire routine. The acquire 

routine loads the lock into the data cache and manipulates the lock using standard atomic 

instructions. After the acquire, the lock’s new state is cached in the lock cache. 

Lock caches are read-only for simplicity. Thus, lock cache evictions do not require 

writebacks. To keep the lock cache state up-to-date, lock cache lines must be invalidated in 

several circumstances, all of which are dynamically rare. When a thread T releases a lock L, only 

T’s ownership information changes so only T’s local lock cache line containing L needs to be 

invalidated. When a thread T acquires L, it must invalidate its local lock cache line and, to support 

lock stealing, must also invalidate remote copies of the lock cache line.  Updates to a thread’s 

stage invalidate its lock cache entries to ensure that software will correctly update the scalar clock 

of any locks held by the thread. On context switches, a core’s entire lock cache must be 

invalidated, as the lock cache contains ownership information for only the currently-scheduled 

thread.  We model these costs in our simulations and find them to be tolerably low. 

5.3 ISA Support 

ORCA adds two new instructions to the ISA to support the lock cache and fast translation from 

data to lock addresses. The OFRInvalidate instruction invalidates the line in the local lock cache 

corresponding to a data address x (if such a line exists). An OFRInvalidate instruction is part of 

the software implementation of Release(). 
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ORCA also adds an OFRLoadLock instruction that takes an address x and loads the 

corresponding lock l into the data cache. OFRLoadLock eliminates the extra instructions needed 

by software to compute lock addresses. OFRLoadLock uses the same hardware translation logic 

used for lock cache fills. ORCA does not require hardware implementations of lock acquire and 

release, deferring these infrequent operations to software to avoid the virtualization and fairness 

complexities of implementing reader-writer locks in hardware. ORCA does require a fixed lock 

format to allow hardware to fill lock cache lines, and communicates with the ORCA runtime via a 

user-level trap on memory accesses that hit in the lock cache with incorrect ownership. 

5.4 Extending ORCA Hardware to SOFRITAS 

The hardware support discussed thus far in this section pertains only to the ORCA hardware-

support system for enforcing OFR serializability.  The SOFRITAS software system makes 

multiple improvements over the ORCA system in terms of lock and shadowspace design.  This 

section discusses how to modify the ORCA hardware for the SOFRITAS runtime system. 

 Given that SOFRITAS uses distributed locks instead of ORCA’s monolithic locks, the 

hardware address translation needs to be modified to account for thread IDs.  Rather than 

mapping addresses to a single lock shadowspace, hardware support for SOFRITAS needs to 

map data addresses to a different lock shadowspace for each thread.  Supporting a variable 

number of threads also requires a more flexible hardware design than what was used for ORCA – 

lock shadowspace addresses cannot be hard-coded in hardware.  As designed, the hardware 

does not need to be aware of the global metadata for each lock.  The hardware would only need 

to directly interact with the thread-local metadata in order to perform fast lock checks. 

 A lock cache supporting SOFRITAS would be more efficient than the lock cache for 

ORCA.  For ORCA, the lock cache needs to load 64 different bytes of memory to load each lock 

state into the lock cache.  With SOFRITAS, the lock cache can simply load the correct amount of 

memory to cover a line in the lock cache directly from the thread-local shadowspace.  The thread-
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local shadowspace is already formatted in the same way that the lock cache expects data to be 

formatted, so the hardware does not need to parse the state of the lock from the shadowspace. 

 Hardware support for SOFRITAS would likely require an additional instruction to inform 

the hardware of the start address for each thread-local shadowspace.  Otherwise, the ISA 

support for the lock cache would remain the same. 
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6 APPLYING ORDERING-FREE REGIONS TO APPLICATIONS 

Using ordering-free regions with parallel applications requires some effort from the programmer 

(in the form of annotations), but ordering-free regions provide a number of benefits that make 

writing parallel applications easier.  OFR serializability can detect and prevent data-races and 

atomicity violations that exist in parallel applications, some of which cannot be detected by a 

conventional data-race detector.  OFR serializability is generally easy to apply to parallel 

applications, which is shown in a set of case studies of real applications.  A small user study 

indicated that OFR exception are easier to use for novice programmers than reports from a data-

race detector.  In the following section, we evaluate the usability and programmability of ordering-

free regions on parallel applications. 

 

Figure 6.1: Workflow for applying ordering-free regions to an application 

 Figure 6.1 shows the programming model for using ordering-free regions with parallel 

applications.  The programmer expresses the parallelism inherent in the problem they are trying 

to solve in parallel.  With the help of a HW/SW runtime system, the programmer applies 

annotations to the code to prevent OFR exceptions.  The HW/SW system assists the programmer 
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by acquiring locks (by default), detecting cycles, and suggesting annotations.  A deadlock injector 

can be applied to attempt to discover additional OFR exceptions.  Once the programmer feels 

that sufficient deadlocks have been discovered, the application can be deployed.  We applied this 

approach to multiple benchmark suites across three implementations of OFR serializability: 

MAMA, ORCA, and SOFRITAS.  The following section provide an evaluation of the usability of 

each of these systems. 

6.1 Annotations 

To evaluate the usability of OFR serializability against a standard parallel programming model, 

we measured the annotation burden of applying OFR serializability to multiple benchmark suites 

in Java, C, and C++.  For the C and C++ applications, we compared the number of annotations 

against the number of pthreads annotations required for the same applications. 

6.1.1 MAMA 

Table 6.1: Lines of code and static synchronization in Java benchmarks 

Benchmark LoC synchronized volatile wait() notify() run() join() Barrier 

crypt 314 0 0 0 0 2 2 0 

lufact 461 0 0 0 0 1 1 1 

lusearch 124,105 440 21 18 27 1 1 0 

matmult 187 0 0 0 0 1 1 0 

moldyn 487 0 0 0 0 1 1 1 

montecarlo 1,165 0 0 0 0 1 1 0 

pmd 60,062 15 2 0 0 0 0 0 

series 180 0 0 0 0 1 1 0 

sor 186 0 0 0 0 1 1 1 

sunflow 21,970 43 0 0 0 2 2 0 

xalan 172,300 107 0 6 8 1 1 0 
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Table 6.2: Dynamic synchronization in Java benchmarks 

Benchmark synchronized volatile wait() notify() run() join() Barrier 

crypt 0 0 0 0 14 14 0 

lufact 0 0 0 0 7 7 29952 

lusearch 1327134 1E+06 64 64 7 7 0 

matmult 0 0 0 0 7 7 0 

moldyn 0 0 0 0 7 7 2424 

montecarlo 0 0 0 0 7 7 0 

pmd 322 0 0 0 0 0 0 

series 0 0 0 0 7 7 0 

sor 0 0 0 0 7 7 1600 

sunflow 770 0 0 0 14 14 0 

xalan 4448917 0 8 1704 7 7 0 
 

Tables 6.1 and 6.2 detail the number of lines of code and synchronization used in the 

original versions of 11 Java benchmarks from the Java Grande [70] and DaCapo [9] benchmark 

suites.  Both statically and dynamically, atomicity synchronization (synchronized and volatile) are 

significantly more common than ordering synchronization (wait, notify, run, join, and Barrier).  

Within these two suites, there are a few benchmarks that exhibit point-to-point ordering 

synchronization, using wait and notify, such as lusearch and xalan.  There are also applications 

that use barrier ordering, such as lufact, moldyn, and sor.  These applications were part of an 

initial study of the feasibility of OFR serializability and offered a diverse set of synchronization 

characteristics. 
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Table 6.3: Dynamic deadlocks and lock releases for Java applications 

 Deadlocks Lock Releases 

Benchmark Safe Liveness Performance 

crypt 5,250,330 0 0 

lufact 4,240,434 2,977 12,583,386 

lusearch 250 0 43 

matmult 700,405 0 0 

moldyn 2,019,626 178 0 

montecarlo 647,279 0 143,362 

pmd 3,442 0 1,915,602 

series 15 0 0 

sor 4,508,422 4,058 0 

sunflow 262,448 1 27,948 

xalan 19,908 0 0 
 

To evaluate the effectiveness of MAMA, we applied the algorithm to multiple parallel 

benchmarks and recorded where deadlocks occurred in the target program.  The Safe column of 

Table 6.3 details the dynamic deadlocks that occurred during the execution of the benchmark 

suite under MAMA.  As the first investigation into OFR serializability, MAMA did not batch release 

locks at ordering constructs but rather detected all deadlocks and released locks when it was safe 

to do so (e.g. when one thread was waiting on an ordering construct).  The majority of deadlocks 

occurred while one of the threads was either joined, waiting on a condition variable, at a barrier, 

or exited.  Thus, most deadlocks could be broken with confidence that MAMA was not breaking 

the atomicity required by the program.  In later implementations of OFR serializability (ORCA and 

SOFRITAS), these deadlocks would be automatically broken using either lazy or eager lock 

releases at ordering constructs.  The Liveness and Performance columns list how many locks are 

dynamically released to avoid deadlocks and serialization, respectively.  In the Java applications, 

lock releases to avoid serialization were common because many of the applications use the main 

thread as a worker thread.  This pattern requires releasing locks on the main thread after 

initialization to avoid serializing the other worker threads after the main thread’s execution.  
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Table 6.4: Static annotations needed for Java benchmarks 

Benchmark Liveness Performance 

crypt 0 0 

lufact 1 4 

lusearch 0 4 

matmult 0 0 

moldyn 3 0 

montecarlo 0 28 

pmd 0 4 

series 0 0 

sor 1 0 

sunflow 1 3 

xalan 1 0 
 

Table 6.4 details the number of static annotations required to support OFR serializability 

in the Java benchmarks.  The annotations are partitioned into two categories: liveness and 

performance.  Liveness annotations were required to break OFR exception that occurred during 

execution.  Performance annotations were added to prevent unnecessary serialization.  lufact, 

moldyn, sor, and sunflow required annotations for liveness. Despite the number of dynamic 

deadlock breaks that were required for these benchmarks, the number of static annotations to 

perform these deadlock breaks is just seven across all benchmarks. In lufact, sor, and moldyn, 

deadlocks occur despite these benchmarks not having any synchronized blocks in the original 

code because these benchmarks all use barriers for synchronization. In each of these 

benchmarks, it is safe to break the deadlocks that occur because the overlapping reads and 

writes are synchronized by the barrier. 

In some cases, we explicitly broke the atomicity guarantees of MAMA in order to allow 

increased parallel execution. In lufact, lusearch, montecarlo, pmd, and sunflow, we identified 

shared counter variables that were updated atomically, requiring that the locks for these variables 

be released early to allow the threads to execute in parallel. In montecarlo and sunflow, we also 
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identified locks that were acquired for static initialization and could thereafter be downgraded to 

read-shared. 

Our experiences in applying OFR serializability to Java applications with MAMA lead to 

many of the design choices made in implementing ORCA and SOFRITAS.  We identified that 

deadlocks were extremely common at ordering constructs and realized that these deadlocks 

could be automatically broken.  In ORCA and SOFRITAS, ordering constructs end the ordering-

free region and release all locks, leading to better usability of the systems. 

6.1.2 ORCA and SOFRITAS 

Table 6.5: Ordering and atomicity annotation for pthreads and ORCA/SOFRITAS 

  pthreads SOFRITAS 

App Ordering Atomicity Mutex Release End/ContinueOFR 

blackscholes 2 - - - - 

bodytrack 17 34 3 20 - 

canneal 3 13 1 7 1 

dedup 9 13 5 18 1 

ferret 8 7 2 7 1 

fluidanimate 16 10 5 20 - 

streamcluster 30 6 - 11 - 

swaptions 2 - - - - 

gups 2 2 - 1 - 

pagerank 2 10 - 7 - 

histogram 2 - - - - 

kmeans 2 - - - - 

linear_regression 2 - - - - 

matrix_multiply 2 - - - - 

pca 2 4 - 3 - 

reverse_index 2 4 1 2 - 

string_match 2 - - - - 

word_count 2 - - - - 

pbzip2 34 103 7 10 - 
 

Table 6.5 reports the annotation burden for enforcing atomicity with standard pthreads primitives 

and the annotation burden for refining coarse atomic regions with SOFRITAS.  The annotations 
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required for ORCA closely match the annotations required for SOFRITAS, though a small number 

of additional annotations may be required due to false exceptions caused by ORCA’s lazy release 

policy.  The Ordering column gives the number of ordering constructs used in each application. 

bodytrack, canneal, fluidanimate, and streamcluster use barriers, and bodytrack, dedup, and 

ferret condition variable waits.  The Atomicity column reports the number of atomicity constructs 

(lock and unlock calls) present in the pthreads version of each application. Systems that provide 

SFR and RFR consistency require the same atomicity and ordering constructs as pthreads.  

The next three columns in Table 6.5 report the number of annotations required for 

refining the coarse atomicity provided by SOFRITAS.  The Mutex column shows the number of 

RequireMutex() annotations required. In all cases, SOFRITAS correctly suggested that a 

RequireMutex() annotation is required by examining the lock state when an OFR exception 

occurs.  If a lock has multiple shared readers and at least one thread is attempting to acquire 

write privileges, a RequireMutex() annotation is almost certainly required.  The SOFRITAS 

compiler’s post-dominator analysis avoids the need for 13 additional mutex annotations. 

The Release column reports the number of Release() annotations required for each 

application. In most cases, the number of Release() annotations closely corresponds to the 

number of atomicity constructs required for the pthreads version of the application. The disparity 

between the number of necessary release annotations and pthreads locks can be explained by 

two major factors. First, the pthreads applications often use coarse-grained locking to protect data 

structures, whereas SOFRITAS automatically uses fine-grained locking for all memory locations. 

For example, dedup uses hash-table and memory-buffer structures that are protected by coarse-

grained locking in the pthreads version. Second, atomicity violations exist in some of the 

PARSEC benchmarks that are not prevented by the existing pthreads synchronization. We 

discuss these atomicity violations more in Section 6.2. 

The End/ContinueOFR column reports the number of EndOFR() or ContinueOFR() 

annotations that were added.  dedup and ferret both exhibit pipeline parallelism such that each 
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stage of the pipeline performs some actions and then enqueues data for the next stage of the 

pipeline.  Each enqueue operation represents the end of the thread’s atomic actions on the 

enqueued data, so we use a single EndOFR() annotation in each benchmark to represent this. 

canneal represents a different case in which Release() annotations handle all of the necessary 

release for the benchmark, making the batch lock release operations at each barrier wait 

superfluous. To improve the performance of canneal, we add a single ContinueOFR() annotation 

to the barrier wait to prevent the batch lock release. This optimization yields a 4x speedup. 

Table 6.6: Qualitative ease of adding OFR annotations 

App Easy Hard 

blackscholes - - 

bodytrack 20 - 

canneal 7 - 

dedup 18 - 

ferret 4 3 

fluidanimate 20 - 

streamcluster 11 - 

swaptions - - 

gups 1 - 

pagerank 7 - 

histogram - - 

kmeans - - 

linear_regression - - 

matrix_multiply - - 

pca 3 - 

reverse_index 2 - 

string_match - - 

word_count - - 

pbzip2 10 - 
 

Table 6.6 characterizes the relative ease of adding OFR annotations to the parallel 

applications.  When an OFR exception occurs, the SOFRITAS runtime system attempts to 

suggest the correct location and type of annotation that is required to properly refine the coarse 

atomicity provided by SOFRITAS.  The Easy column reports the number of annotation 
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suggestions that we found to be easy to place using the suggestions provided by SOFRITAS. 

These annotations were either located at the exact line suggested by SOFRITAS or close to the 

suggested line. 

 

Figure 6.2: A "Close" annotation suggestion 

Figure 6.2 demonstrates an annotation suggestion that was close to the suggested line.  

In the close cases, SOFRITAS suggested placing an annotation inside of control-flow, and we 

determined that the annotation should be placed after the control-flow structure to cover multiple 

paths.  If we automatically placed the annotation suggested by the SOFRITAS runtime, similar 

deadlocks would occur on the opposite control-flow path, leading to additional deadlocks and 

annotations. 

The Hard column reports the number of annotations that were difficult to place. These 

annotations were localized to the queue used by ferret. These difficult-to-place annotations arise 

due to interleavings caused by existing annotations. Internally, the queue relies on head and tail 

pointers that are protected by mutexes.  Initially, SOFRITAS correctly suggests a release 

annotation on the tail pointer. Once this annotation has been added, one of the two suggestions 

provided by SOFRITAS on the next OFR exception may be incorrect due to interleavings caused 

by the existing annotation. For ferret, the programmer must understand that checking whether the 

queue is empty must be atomic with removing an item from the queue. Even though not all the 

suggestions provided by SOFRITAS are exactly correct, any incorrect suggestions still point to 

the correct source-code files and data-structures, providing the programmer with a reasonable 

starting point for resolving the OFR exception. Further, one of the two suggestions is correct, 

leaving the programmer with a multiple-choice question of how to resolve the OFR exception. 
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Beyond a comparable annotation burden, SOFRITAS precisely suggests a fix via a fail-

stop exception for missing annotations. By contrast, missing locks in pthreads and other models 

[8, 48] are not fail-stop and do not help fix code.  Missing locks in pthreads and other models can 

lead to memory corruption and application crashes with no usable debugging trace. 

6.2 Bug Detection 

By analyzing SOFRITAS’s annotations and serialization of OFRs, we identified 7 existing 

atomicity violations in PARSEC benchmarks.  Specifically, we found atomicity violations in the 

pthreads versions of bodytrack, ferret, fluidanimate, and streamcluster.  We verified each of these 

violations by directly instrumenting the code to ensure that an atomicity violation did in fact exist. 

For 6 of these violations, SOFRITAS automatically prevents the bugs from manifesting as failures 

by correctly enforcing OFR serializability without any programmer involvement. The remaining 

violation (in fluidanimate) initially raised an OFR exception. SOFRITAS precisely reported the 

annotations needed to resolve the OFR exception with no need for manual reasoning. 
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6.2.1 bodytrack 

 

Figure 6.3: Inheritance diagram for construction bug in bodytrack 

We give an illustrative example of SOFRITAS’s ability to automatically prevent atomicity 

violations from bodytrack.  Figure 6.3 demonstrates a chain of constructor calls that leads to a 

bug in bodytrack.  In bodytrack, the WorkPoolPthread class inherits from the WorkerGroup class, 

which in turn inherits from ThreadGroup and Runnable. In its constructor, the WorkerGroup class 

passes its this pointer to ThreadGroup::CreateThreads, which spawns threads and calls the 

virtual run() method on the WorkerGroup object. In order to call the virtual method, each thread 

must read the vptr (virtual table pointer). The main thread simultaneously writes to the vptr as 

WorkPoolPthread finishes construction. Although this is defined by the C++ standard [38] for 

single-threaded code, this behavior constitutes an atomicity violation on accesses to vptr. 

SOFRITAS automatically prevents this atomicity violation with no annotations required by 
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preventing the child threads from accessing the virtual table pointer until the object has finished 

construction and the main thread has joined on the thread pool. 

6.2.2 fluidanimate 

 

Figure 6.4: Data-race found in fluidanimate 

Figure 6.4 lists code that leads to a data-race in fluidanimate.  In this code, the border array is 

meant to identify elements of the data arrays that may be accessed by more than one thread and 

therefore need to be protected by a lock.  However, the border array is computed incorrectly, 

leading to a data-race.  SOFRITAS correctly synchronizes all accesses to the cnumPars array 

and prevents the data-race from occurring.  As future work, attempting to identify non-conflicting 

memory accesses between threads, as the border array in fluidanimate attempts to do, may 

prove to be a useful optimization for SOFRITAS. 
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6.2.3 memcached 

 

Figure 6.5: Buggy interleaving in memcached-127.  Image copied from 

https://github.com/jieyu/concurrency-bugs 

To test SOFRITAS on a larger code base, we examined a known concurrency bug in memcached 

[72,80].  In the memcached-127 bug, a cached item is read and updated in separate critical 

sections.  Both the read and update are protected by the same lock, which prevents existing 
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strong memory consistency models from detecting the bug. We ran SOFRITAS on the 

memcached-127 bug.  With no additional annotations, SOFRITAS detects the concurrency bug 

via an OFR exception and pinpoints the item_replace() function call as the correct location for an 

annotation. 

6.3 Case Studies 

In the process of applying OFR serializability to parallel applications in C and C++, we examined 

a few applications in depth to understand more precisely how they interacted with ordering-free 

regions.  The following subsections provide case studies of dedup, memcached, and pbzip2.  The 

annotation and evaluation of both memcached and pbzip2 were performed by users other than 

the writer of this dissertation as a test of the usability of the system by additional programmers 

(though admittedly somewhat expert users due to their involvement in the project). 
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6.3.1 dedup 

 

Figure 6.6: Example from dedup queue that lead to difficult to use OFR exception reports 

Applying OFR serializability to the queue implementation in dedup presented a few unique 

challenges.  Figure 6.6 illustrates a dependence cycle from dedup where OFR serializability 

suggested incorrect annotations.  This particular example occurred after a release annotation had 

been correctly suggested and placed at the end of insert() and a mutex annotation had been 

correctly suggested and placed on queue.head. The presence of these two annotations leads to a 

new OFR exception for which OFR serializability does not suggest the correct location. 

In the encountered dependence cycle, T1 performs an insert which requires calling 

isFull() to ensure there is space in the queue. At the end of the insert, T1 releases the mutex lock 

on queue.head while holding a read lock on queue.tail. Next, T2 performs a remove, first checking 

that the queue is non-empty. At the end of the remove, T2 gets blocked trying to acquire write 

permissions on queue.tail, which is not protected by a mutex lock (yet). Next, when T1 attempts to 

perform another insert, T1 becomes blocked trying to acquire the lock on queue.head, forming a 

dependence cycle. Based on the last accesses to queue.head and queue.tail, OFR serializability 
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suggests releases in isFull() and isEmpty(). These releases will violate the atomicity of insert() 

and remove(), respectively. The correct solution is to release both queue.head and queue.tail 

after performing either an insertion or removal. However, even in this subtle case, OFR 

serializability directs the programmer to all of the relevant parts of the correct solution.  

dedup was also the only benchmark in which we added releases for performance rather 

than correctness.  Profiling revealed that threads in the early stages of the pipeline were blocking 

on queue locks held by threads in later stages. Four unlock annotations were added to ensure 

that the queue locks are released along all control-flow paths. This optimization yielded a 1.24x 

speedup in dedup with four threads. 

6.3.2 memcached 

We ported memcached using OFR serializability to see how a real-world application works with 

OFR serializability. While OFR serializability requires 182 release annotations to be added to the 

code, the system gave correct suggestions for 155 annotations; the other 27 releases were 

inserted close to where an annotation was suggested. Besides these release annotations, 26 

mutex annotations were added, all of which could be done mechanically with the suggestions 

given. After adding these annotations, we tested memcached using memslap to generate 

requests with 2 to 1024 concurrent users. We ran these tests up to 50,000 times, and 

memcached was able to respond to the requests correctly and in a timely fashion. The 

experience of porting memcached shows that OFR serializability can scale to non-trivial real-

world applications like memcached, and that OFR exceptions can provide accurate annotation 

guidance in large code bases. 

6.3.3 pbzip2 

As a test of using OFR serializability on another real-world application, we ported pbzip2 v.1.1.13 

to use SOFRITAS.  Porting pbzip2 from a pthreads implementation to using SOFRITAS required 
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under 7 hours of real time, including time that was spent building and deploying SOFRITAS on a 

new system.  Annotating pbzip2 required 7 mutex annotations and 10 release annotations, which 

compared favorably to the 103 atomicity annotations required in the pthreads implementation.  

One of the annotations was somewhat difficult to add because the SOFRITAS library had not 

marked pthread_cond_timed_wait() as a function that ends ordering-free regions.  Once the 

runtime system was made aware of this function, the annotations added to pbzip2 were all easy 

to add.  Porting pbzip2 from the original pthreads version to a SOFRITAS-compliant version 

required only 6 hours of work.  In the future, we hope to compare the ported version of pbzip2 to 

a from-scratch parallel implementation under OFR serializability from the bzip2 serial baseline. 

6.4 User Study 

We empirically evaluated the difficulty of inserting Release() annotations through a survey of 45 

computer science graduate students. Participants had to place lock acquires and releases in an 

unsynchronized program to correctly implement atomicity. The code given to participants is listed 

below. Participants were asked to ensure that the setter methods could execute in parallel. The 

survey had two variants of the synchronization task with identical program code. One variant was 

accompanied by OFR exception reports, the other by reports from a data race detector which are 

similar to the exceptions generated by previous memory consistency models [8, 29, 48]. We 

randomized the order of the variants to account for learning effects. 

 

 

 

 

 

 

 



75 

 

ALGORITHM 6.4.1: User Study Sample Code 

 
class Vector3d{ 

  int x,y,z; 

 

  void setX (int newX) { 

    x = newX; 

  } 

 

  void setY (int newY) { 

    y = newY; 

  } 

 

  void setZ (int newZ) { 

    z = newZ; 

  } 

 

  void normalize() { 

    int a = sqrt(x*x + y*y + z*z); 

    x = x / a; 

    y = y / a; 

    z = z / a; 

  } 

} 

 

To correctly synchronize the sample code, participants needed to acquire a lock associated with 

each variable in its setter method (e.g. lock(LX) in setX) and release the lock at the end of the 

method.  For the normalize method, the participants needed to acquire all three locks and release 

them in reverse order, as shown below. 
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ALGORITHM 6.4.2: User Study Solution 

 
class Vector3d{ 

  int x,y,z; 

 

  void setX (int newX) { 

    Lock(Lx); 

    x = newX; 

    Unlock(Lx); 

  } 

 

  void setY (int newY) { 

    Lock(Ly); 

    y = newY; 

    Unlock(Ly); 

  } 

 

  void setZ (int newZ) { 

    Lock(Lz); 

    z = newZ; 

    Unlock(Lz); 

  } 

 

  void normalize() { 

    Lock(LX); 

    Lock(LY); 

    Lock(LZ); 

    int a = sqrt(x*x + y*y + z*z); 

    x = x / a; 

    y = y / a; 

    z = z / a; 

    Unlock(LZ); 

    Unlock(Ly); 

    Unlock(Lx); 

  } 

} 

 

The survey also asked participants to answer 12 questions about parallel programming using 

both data-race detector reports and OFR exceptions.  The survey questions are listed below.  

The scoring or scale for the question is listed in parentheses. 
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LISTING 6.4.3: Survey Questions 

 
1. Please rate your expertise in parallel programming. (1-7) 

2. Please define a mutex (lock) as used in parallel programming. (0-1) 

3. Please define a data-race in a parallel program. (0-3) 

4. Please rate how confident you are in your definition of a data-race. (1-7) 

5. Please define a deadlock in a parallel program. (0-2) 

6. Please rate how confident you are in your definition of a deadlock. (1-7) 

7. Given the following code and multiple reports from a data-race detector, please insert 

locks and releases to ensure that the code executes correctly.  The setX, setY, and setZ 

methods should all be able to execute in parallel. (0-1) 

8. Please rate how confident you are that you have fixed all of the bugs in the buggy 

program from question 7. (1-7) 

9. Please rate how easy it was to insert locks into the buggy program in question 7. (1-7) 

10. Given the following code and multiple reports from a deadlock detector, please insert lock 

releases to ensure that the code executes correctly.  The setX, setY, and setZ methods 

should all be able to execute in parallel. (0-1) 

11. Please rate how confident you are that you have fixed all of the bugs in the buggy 

program from question 10. (1-7) 

12. Please rate how easy it was to insert locks into the buggy program in question 10. (1-7) 

 

 

Survey questions 7-9 and 10-12 were reordered on half of the surveys to account for learning 

effects.  Questions 2, 3, and 5 were used to check the participant’s self-rated expertise and were 

meant to identify students who would be more likely to perform well on one of the two variants.  

We summarize the scores from question 2,3, and 5 in the Sum column below. 

Table 6.7: Summary statistics for survey questions 

Question 1 2 3 4 5 6 Sum 7 8 9 10 11 12 

AVG 3.19 0.91 1.36 4.34 1.55 5.39 3.82 0.66 4.30 4.68 0.80 4.48 5.05 

STDEV 1.33 0.29 1.04 1.82 0.76 1.42 1.39 0.48 1.92 1.85 0.41 1.76 1.61 
  

Table 6.7 presents summary statistics for each of the questions in the survey.  On 

average, participants rated their own expertise in parallelism at a 3.19 out of 7.  The questions 

about parallel programming (2,3,5) verified these scores with a sum of 3.82 out of 6 possible 
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points for all of the answers.  Although participants seemed more confident about the definition of 

a deadlock as compared to the definition of a data-race, the results for those two questions were 

not statistically significant. 

 The summary statistics for the questions in which participants were asked to correctly 

synchronize a simple parallel program based on the reports from a data-race and deadlock 

detector seemed to indicate that users had an easier time of synchronizing code with the 

deadlock detector.  However, given the sample size of 45 students, the summary statistics were 

not statistically significant.  To identify whether or not OFR exception reports were useful to 

novice programmers, we dug further into the results. 

The survey partitioned participants into three groups: (i) those who correctly synchronized 

both variants, (ii) those who correctly synchronized one variant but not the other, and (iii) those 

who incorrectly synchronized both variants. Group (i) was experienced enough at parallel 

programming that they were likely able to synchronize the code without assistance from either 

tool. Group (iii) was inexperienced enough at parallel programming that they did not understand 

the basic concepts of synchronization. Thus, we focused on the second group (ii) that got one 

variant correct, but not the other. We define the probability, porca, of getting the OFR exception 

variant correct, but the data race variant incorrect. We define the probability, prace, of getting the 

data race variant correct, but the OFR exception variant incorrect. Our data support the 

fact that porca is significantly greater than prace. To determine the statistical significance of that 

claim, we computed the 95% confidence interval of porca−prace, which is [0.001, 0.271]. The 

relatively greater likelihood of correctly solving the OFR exception variant and not the data race 

variant suggests that using OFR exceptions to add synchronization is easier than using a data 

race detector. We further note that data race reports can encourage “narrowly” fixing a race on an 

individual access without providing sufficient atomicity across accesses, as with the normalize 

method in our survey. Multiple survey participants made this mistake, further highlighting the 

value of OFR serializability. 
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7 PERFORMANCE OF ORDERING-FREE REGIONS 

We evaluated the performance overheads of three runtime systems for enforcing OFR 

serializability on parallel applications.  For each of these systems, we evaluated the runtime and 

space performance overheads as compared to a baseline using standard synchronization. 

7.1 MAMA 

We performed an initial investigation into OFR serializability by implementing MAMA (Mostly 

Automatic Management of Atomicity) [20].  Using the Roadrunner [32] framework, we developed 

a runtime system to dynamically apply OFR serializability to Java applications. RoadRunner’s 

dynamic instrumentation adds overhead but enables us to gather preliminary indications of the 

effectiveness of OFR serializability. MAMA associates a reader-writer lock with each program 

variable. On each variable access, MAMA requires that the accessing thread either already owns 

or acquires the lock for the given variable. 

To gain confidence that the MAMA algorithm works correctly on programs without 

atomicity constructs, we removed the locking from our benchmarks. All synchronized blocks were 

automatically removed by modifying RoadRunner to not insert MONITOR_ENTER and 

MONITOR_EXIT bytecodes. We also manually removed uses of Java’s 

ReentrantReadWriteLock, Java atomics, and concurrent data structures. For example, we 

replaced the PriorityBlockingQueue used by sunflow with a non-concurrent PriorityQueue. After 

this synchronization removal (but prior to applying MAMA), sunflow and xalan produced incorrect 

output, though the other benchmarks produced correct results on multiple trial runs. 

We evaluated MAMA on benchmarks from the Java Grande [70] and DaCapo [9] 

benchmark suites. From the DaCapo suite, only avrora, lusearch, jython, pmd, sunflow, tomcat, 

and xalan run under RoadRunner’s baseline instrumentation. We removed jython from our suite 

because it did not display significant parallelism.  Under MAMA’s instrumentation, avrora and 
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tomcat exhibited bugs that were unable to debug.  We ran all of the benchmarks on a 32-core/64-

thread machine with four Intel Xeon E7-4820 2.0 GHz sockets and 128 GB RAM. For the parallel 

experimental results, all benchmarks were run using 8 threads and pinned to a single socket to 

avoid the performance overheads of data-sharing across multiple sockets. Runtime performance 

overheads were measured using Java’s currentTimeMillis(), and memory overheads were 

measured at the high-water mark using the jvisualvm tool provided by the JDK. We ran 

RoadRunner using fine-grained field and array tracking (one shadow variable per field and one 

shadow variable per array element). For crypt, lufact, sor, montecarlo, sunflow, and xalan, we 

used coarse-grained array tracking but chunked the arrays into 64 buckets to reduce the runtime 

and memory overheads of fine-grained tracking on large arrays. We validated that the 

benchmarks executed correctly using the built-in validation mechanisms of the Java Grande and 

DaCapo benchmarks.  For the performance evaluation, we averaged five runs of each 

benchmark. 

 

Figure 7.1: Runtime of parallel RoadRunner, serialized RoadRunner, parallel MAMA, and 

serial MAMA, normalized to parallel RoadRunner 

We evaluated MAMA’s parallel execution (MAMA-par) against a few different baselines: 

parallel RoadRunner execution (RR-par), serialized RoadRunner execution (RR-ser), and 

serialized MAMA execution (MAMA-ser). We compare MAMA to serialized baselines to verify 

whether MAMA can indeed exploit the parallelism in each workload, and whether MAMA exploits 

enough parallelism to overcome its locking overheads. By comparing the difference between RR-

par and RR-ser with the difference between MAMA-par and MAMA-ser, we can determine 

whether or not MAMA preserves the potential parallel speedup in each benchmark. 
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The results of our evaluation are shown in Figure 7.1.  On average, RoadRunner incurs 

approximately 6x overhead over the uninstrumented programs.  Due to the overheads of locking 

on every variable access, MAMA is never faster than the RR-par baseline. Nevertheless, MAMA-

par is capable of exploiting parallelism in many benchmarks. Compared to the RR-ser baseline, 

MAMA-par is competitive in many cases and performs better than RR-ser on lusearch, 

montecarlo, and series. In these cases, MAMA-par overcomes its locking overheads with 

parallelism. 

Finally, we compared MAMA-par to MAMA-ser to measure the amount of parallelism in 

the execution of the benchmarks under MAMA. In almost all cases, MAMA-par handily 

outperforms MAMA-ser. There are two exceptions. lufact does not scale well with eight threads 

under RoadRunner’s instrumentation (RR-par is slower than RR-ser). xalan does not exhibit 

parallelism under MAMA, even with early lock breaking, though there is clearly parallelism within 

the workload. More investigation is necessary to determine how to unlock xalan’s parallelism. 

 

Figure 7.2: Percentage runtime for various routines and states in MAMA 

Most of the performance overheads of MAMA stem from two sources: testing locks for 

ownership and serialization due to contested locks. Figure 7.2 shows the summed performance 

counters for all threads in each benchmark. In general, the deadlock detector is run infrequently 
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and only when threads are blocked.  Thus, the overheads of deadlock detection are negligible. 

On every variable access, MAMA must check to see if the corresponding lock is already held. In 

the case of read-sharing, MAMA must check to ensure that the thread is one of the read owners 

of the lock. Recording the read owners of a lock is necessary to allow deadlocks to be broken at 

runtime. However, this overhead might be reduced by simply denoting that some thread had read 

ownership of a lock rather than explicitly recording which thread held ownership. For some 

benchmarks, such as xalan, contended locks cause the program’s execution to be serialized. For 

these benchmarks, more investigation is necessary to find ways to allow multiple threads to 

execute under MAMA while still preserving the atomicity of the program as much as possible. 

 

Figure 7.3: Normalized high-water mark memory usage parallel RoadRunner and parallel 

MAMA, normalized to JVM execution 

We also evaluated the memory overheads of MAMA on our benchmark suite. MAMA 

requires a reader-writer lock for every shared variable in the program, which can lead to high 

memory overheads, as shown in Figure 7.3.  The memory overheads for MAMA range from 8x on 

montecarlo to 113x on matmult, as compared to the uninstrumented Java baseline (without 

RoadRunner). Although the array chunking optimization reduces matmult’s memory overheads to 
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just 9.8x, it also results in serialized execution for this workload.  More adaptive array chunking 

could alleviate this time-space tradeoff. MAMA’s memory overheads could possibly be further 

reduced by using a more compact reader-writer lock or by avoiding the need to record all of the 

current readers of the lock. 

7.2 SOFRITAS 

We evaluated SOFRITAS by running and annotating selected benchmarks from PARSEC [7], 

Phoenix [64], approximate computing benchmarks [3], and the real-world pbzip2 v1.1.13. We use 

the native inputs for all PARSEC benchmarks and the largest available input for Phoenix. We 

extend the execution of linear regression by 100 times to yield a reasonable baseline runtime of 

more than a second with 16 threads. We use custom inputs for the approximate computing 

benchmarks that yield a baseline runtime of a few seconds and scale with additional threads. For 

pbzip2 we compress a 200MB .iso file. Our experiments ran on dual 8-core Intel Xeon E5-2630v3 

2.4 GHz CPUs with 128 GB RAM. We compiled all benchmarks using LLVM 3.5.1 with -O3 

optimizations. 
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Figure 7.4: Runtime performance results for SOFRITAS across 1-16 thread counts 

Figure 7.4 presents the runtime slowdown of SOFRITAS over pthreads. For each thread count, 

we normalize to the pthreads execution for the same thread count. Over all thread counts, the 

average runtime slowdown is 1.59x.  Larger runtime slowdowns can generally be attributed to 

frequent ordering, such as barriers or condition waits – fluidanimate, and streamcluster both 

perform a considerable number of batch releases at the end of OFRs. Although SOFRITAS has 

highly-optimized batch releases, clearing the thread-local shadow spaces too frequently can be 

detrimental to performance. For many benchmarks, SOFRITAS provides strong atomicity 

guarantees at less than 2x slowdown. 
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Figure 7.5: Scalability of benchmarks under pthreads and SOFRITAS 

Figure 7.5 compares the scalability of SOFRITAS with pthreads. We show the scalability 

of each application using both pthreads and SOFRITAS. Each pthreads bar is normalized to the 

single-threaded execution using pthreads, and each SOFRITAS bar is normalized to the single-

   pthr   OFR 

   pthr   OFR 
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threaded execution using SOFRITAS. For many benchmarks, SOFRITAS scales similarly to 

pthreads, as can be seen in the matching bar clusters. 

For all the 19 benchmarks, SOFRITAS provides both increased atomicity and a parallel 

speedup over the single-threaded pthreads baseline. Although the absolute speedup using 

SOFRITAS is not as large as the speedup using an expert-synchronized pthreads 

implementation, SOFRITAS yields some performance benefits from parallel execution for many 

benchmarks. 

 

Figure 7.6: Memory overheads for SOFRITAS with 1 byte and 4 byte mappings 

Figure 7.6 reports the memory overhead for SOFRITAS compared to pthreads execution 

with both using 16 threads. Memory usage is recorded using the getrusage system call which 

reports the maximum resident set size during the application’s execution. The 1B bars report the 

overhead for using a 1-byte-per-lock mapping, which is necessary for benchmarks that share 

byte-sized data. In many cases, SOFRITAS can use a wider-granularity mapping of 4-bytes per 

lock, as shown in the 4B bars. The benchmarks without 4B bars (bodytrack, dedup, ferret, 

reverse index) did not run correctly with a 4- byte mapping. 
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SOFRITAS generally consumes less space with the 4B mapping (2.70x on average) than 

with the 1B mapping (4.19x on average). The exceptions fall into two cases. In benchmarks with 

heaps under 50MB, like kmeans, there is not much SOFRITAS metadata to begin with, and the 

fixed costs of SOFRITAS’s other internal data structures magnify the memory overhead. An 

analogous situation arises in benchmarks with large memory regions mapped for I/O, such as 

histogram, linear regression and string match, as there is comparatively little heap on which the 

4B mapping can save space. Moreover, the SOFRITAS runtime system uses simple bump-

pointer allocation to provide pages to the tcmalloc memory allocator. In future work, this allocation 

scheme can be improved to maintain a free page list instead, which should reduce memory 

overheads further. 

7.2.1 Comparison to Other Region-Based Models 

 

Figure 7.7: Comparison of SFR, RFR, and OFR models as implemented by SOFRITAS 

Although SOFRITAS was designed to implement OFR serializability, the framework provided by 

SOFRITAS can also be used to implement SFR and RFR atomicity.  Figure 7.7 provides a 

comparison of the performance of SFR, RFR, and OFR serializability as normalized to the 

pthreads baseline.  We note that the implementation of SFRs and RFRs in SOFRITAS does not 
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include optimizations that have been used in existing work, such as Valor [8].  These 

optimizations allow deferred checking of reads that occur in release-free regions.  With these 

optimizations, the performance comparison would not be quite as stark.   

As shown, OFRs (as implemented in SOFRITAS) entail lower runtime slowdowns than both 

SFRs and RFRs for all benchmarks.  On benchmarks with frequent lock acquires and releases, 

OFRs provide both more atomicity and lower runtime slowdowns. The higher performance cost 

for SOFRITAS using SFRs and RFRs stem from a few sources. First, compiler optimizations are 

limited in scope for SFRs and RFRs compared to OFRs because locks must be reacquired after 

each pthread mutex operation. Second, SFRs and RFRs require more batch lock releases than 

OFRs. SFRs require a batch release at each lock acquire, and both SFRs and RFRs require a 

batch release at each lock release. On average, SFRs exhibit 5.21x slowdown and RFRs exhibit 

4.36x slowdown over all benchmarks.  Valor recently implemented RFR-based atomicity for Java 

with only 1.99x average slowdown for RFRs and 2.04x slowdown for SFRs.  Valor’s results come 

from a managed runtime, making them hard to compare directly to our unmanaged C/C++ 

implementation.  We note, however, that while SOFRITAS’s RFR and SFR run time costs are 

much higher than Valor’s, SOFRITAS’s 1.59x average slowdown is on par with Valor and 

SOFRITAS’s OFRs provide a coarser atomicity guarantee than RFRs.  SFR and RFR models 

require the same number of atomicity and ordering constructs as pthreads and thus require 

similar programmer effort compared to OFRs. 
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7.2.2 Optimizations 

 

Figure 7.8: Overheads of using memset instead of madvise 

As discussed in prior sections, SOFRITAS uses multiple low-level optimizations to reduce 

performance overheads. To efficiently release locks at OFR boundaries, SOFRITAS calls 

madvise instead of using memset.  Figure 7.8 shows the overhead of using memset instead of 

madvise as normalized to the SOFRITAS baseline. On average, using memset incurs an 

overhead of 4.47x over the baseline SOFRITAS system.  On dedup and streamcluster, the 

overheads of using memset are extremely high.  streamcluster suffers from overheads of 26.9x, 

and our experiments on dedup timed out at 50x over the normal runtime for the application. 

 madvise provides a large performance gain over memset because memset always 

zeroes the page, but madvise does not always need to zero out the page.  Instead, the operating 

system maps the madvised page to a read-only zero page.  If the thread attempts to write to the 

madvised page, the operating system will on-demand allocate a new physical page and zero it 

out.  However, if the thread does not write to a page that has been cleared, other threads can 

confirm that locks have been released without triggering a new page allocation (and subsequent 

zeroing) because the checks are read-only. 
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Figure 7.9: Overheads of not inlining lock checks 

SOFRITAS also relies on efficient lock checks, which are much more common than lock 

acquires.  SOFRITAS inlines lock checks for efficiency because frequent function calls can be 

expensive, especially when they involve saving and restoring registers on the stack. Figure 7.9 

shows the overheads incurred by SOFRITAS when no lock checks are inlined. On average, 

SOFRITAS incurs a 1.73x overhead over the baseline system when no lock checks are inlined. 

7.3 Hardware Support 

Hardware support for ordering-free regions was initially designed for the ORCA system, which 

has multiple design flaws that have been corrected by SOFRITAS.  As future work, we intend to 

design and test hardware-support for the SOFRITAS runtime system.  As a precursor to this 

work, we examine the benefits of using hardware-support for the ORCA system. 

The ORCA architecture simulator is based on the cache modules of the open-source 

PIN-based ZSim simulator [65]. Our baseline configuration is an 8-core system with coherent 

32KB 8-way associative L1 caches, private 256KB 8-way L2 caches, and a shared 8MB 16-way 

L3 cache. All line sizes are 64B.  The simulator models a simple prefetcher that fetches the next 

two cache lines on a miss in parallel with the execution. L1 cache hits take 1 cycle, remote L1 hits 
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15 cycles, L2 hits 10 cycles, L3 hits 35 cycles, and main memory 120 cycles. All other instructions 

take a single cycle.  For our simulations, we use the simmedium inputs for PARSEC. 

On each memory access, the simulator checks the lock cache for lock ownership 

information. Our baseline lock cache is 16KB, direct-mapped, with 64 lock states per line (16B 

lines). A CACTI [37] model 32nm of the lock cache reports an access time of 0.26ns and total 

access energy of 8.8pJ. The area of a lock cache is 76μm2, and lock caches make up 0.001% of 

the area of a four core Intel Sandy Bridge CPU. Because ORCA’s per-byte locks occupy just 2 

bits in the lock cache (an effective 4x compression ratio), a 16KB lock cache readily covers the 

32KB data cache.  Lock cache accesses proceed in parallel with data cache accesses. 

Our main result is that our proposed hardware support enables efficient execution for ORCA. We 

simulated four different hardware and software configurations. Figure 7.10 plots the performance 

of each of these configurations on a simulated 4-core machine, normalized to a simulated 

execution of pthreads. 
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Figure 7.10: Overheads of ORCA configurations.  SwXlat shows performance with flexible 

shadowspace trie.  NoL$ shows performance without the lock cache.  ORCA-Eager shows 

performance of ORCA with eager releases 

The ORCA bar shows ORCA’s performance with hardware support for address 

translation and with the lock cache.  ORCA imposes a slowdown of just 18% on average 

compared to pthreads, with a worst-case slowdown of 44% (bodytrack). bodytrack requires 

comparatively more lock operations than other benchmarks.  These lock operations lead to 

increased pressure in the lock cache and data cache as lock state must be updated frequently. 

canneal and fluidanimate exhibit similar behavior to a lesser extent. 

Lazy releases can be used to improve performance and atomicity in exchange for a few 

false exceptions. The ORCA-Eager bar demonstrates the performance of an implementation of 

ORCA that eagerly releases locks at the end of every OFR. Our modeling of ORCA-eager is 

optimistic in that it assumes no overhead for tracking what locks need to be released, modeling 

only the cost of releasing them. Even given this optimistic modeling, ORCA-Eager exhibits an 

average overhead of 61% compared to the baseline and 40% compared to ORCA with lazy 
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releases. 98% of the OFR exceptions raised by ORCA with lazy releases result from real 

violations of OFR serializability.  SOFRITAS improves upon the naïve implementation of eager 

releases used by ORCA, negating much of the performance overhead of eager releases. 

The SwXlat configuration demonstrates the cost of software lock address translation. In 

this configuration, both the runtime system and the lock cache map memory addresses to lock 

addresses using the translation trie. blackscholes and fluidanimate are particularly affected by the 

extra cache pollution generated by trie accesses. 

NoL$ shows the performance of ORCA with hardware address translation but without the 

lock cache. The data demonstrates that the lock cache is essential in a high-performance ORCA 

implementation. Removing the lock cache greatly increases ORCA’s performance overhead to 

169% on average. The lock cache gives swaptions, canneal and streamcluster an especially 

noticeable performance boost as these workloads suffer from a high data cache read miss rate 

without the lock cache. ORCA pollutes the data cache with its locks due to frequent ownership 

checks on held locks. With the lock cache, these ownership checks are removed, decreasing 

pressure on the data cache. 

 

Figure 7.11: Overview of cycle overheads for ORCA 

Figure 7.11 provides a breakdown of the overheads for ORCA. Blocked time is when a 

thread is serialized waiting for a lock held by another thread. Only canneal and fluidanimate 

exhibit non-trivial serialization, due to conflicting array accesses. Lock time is spent waiting for 
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data-cache accesses to ORCA locks. Such accesses are caused by lock cache misses and when 

a lock needs to be acquired or released. bodytrack exhibits the most lock overhead due to 

frequent lock acquires and releases on its shared data structures. Non-memory time is the cost of 

executing non-memory instructions, which is not significantly affected by ORCA. The remaining 

time (Other) is spent in the memory hierarchy due to program data cache accesses or indirect 

pressure caused by ORCA’s cache pollution. 

 

Figure 7.12: Scalability of ORCA across 1-8 threads 

We measured how ORCA’s performance scales with additional cores, showing that 

ORCA is scalable. Figure 7.12 shows the simulated runtime of the pthreads and ORCA versions 

of each benchmark with one to eight threads, normalized to serial pthreads execution. This graph 

demonstrates that ORCA can readily exploit parallelism, scaling as well as pthreads up to eight 

threads. 

With a single thread, ORCA suffers a performance penalty of 14% on average compared 

to pthreads. This single-thread overhead can be largely attributed to increased pressure in the 

data cache due to first-time lock acquires and lock cache misses, both of which require loading a 

lock into the data cache. With two threads, ORCA provides an average speedup of 1.41x over the 

serial baseline. With four and eight threads, ORCA’s average speedup increases to 2.25x and 

3.09x, respectively. In the best case, streamcluster has a parallel speedup of 8x given eight 
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threads. Thus, ORCA can provide speedups through parallel execution while simultaneously 

providing increased atomicity. 

Figure 7.12 also shows that ORCA’s performance scales very similarly to pthreads. Up to 

eight threads, benchmarks have similar contours for both pthreads and ORCA. canneal does not 

scale well with either ORCA or pthreads because additional threads in canneal are used to 

generate a more precise result with more iterations of the genetic algorithm rather than reducing 

the amount of work done by each thread. Further, canneal’s random access patterns admit little 

cache locality. ferret does not scale to 8 threads because this benchmark uses 8 threads per 

intermediate pipeline stage for a total of 35 threads. This overprovisioning of threads causes 

cache interference as the lock cache stores a per-thread lock status that cannot be shared across 

threads mapped to the same core. Thus, overprovisioning threads causes thrashing in the lock 

cache.  Tagging lock cache lines with thread IDs could help alleviate this issue. 

7.4 Discussion 

Across three separate implementations of OFR serializability, a few results remain constant.  The 

scalability of parallel applications is not limited by OFR serializability.  Up to 16 threads, parallel 

applications continue to scale under OFR serializability.  The overheads for enforcing OFR 

serializability are low enough that the scalability provided by parallel execution yields a speedup 

over serial execution even at low thread counts.  This means that a programmer can readily 

exploit parallel execution using an OFR programming model.  OFR serializability can make 

writing a parallel application easier than it is using pthreads, so novice parallel programmers may 

be more able to exploit parallelism via an OFR programming model than they could with a 

standard parallel programming model. 

 Hardware support is clearly beneficial for lowering the runtime performance impact of 

OFR serializability.  Even with ORCA’s less than ideal runtime system, hardware support lowered 
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the overheads of OFR serializability to just 18%.  With a more efficient software runtime system 

like SOFRITAS, the overheads with hardware support should be even lower. 

 The overheads of a software-only implementation are low due to a number of small 

optimizations that add up to large performance gains.  An initial, unoptimized version of 

SOFRITAS shows 100x overheads on the swaptions benchmark.  With an optimized 

shadowspace layout, aggressive inlining of lock checks, the use of madvise for eager, batch 

releases, and additional compiler and runtime system optimizations, the overhead of SOFRITAS 

on swaptions was lowered to approximately 2x.  This order-of-magnitude decrease was possible 

due to the combination of these optimizations. 
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8 RELATED WORK 

Section 2 discussed related work that can be considered background information regarding 

ordering-free regions.  In this section, we discuss work that is related to ordering-free regions. 

8.1.1 DATA-CENTRIC SYNCHRONIZATION 

Data-centric synchronization schemes explicitly associate locks with data and then assure that 

this locking discipline is automatically enforced. In some systems [15, 73, 74] a programmer 

specifies the variable-to-lock association. This association can also be inferred [40] at the risk of 

missing synchronization. Data-centric synchronization provides atomicity at the granularity of 

function calls, which is sufficient for many critical sections but not all, e.g. the queue 

implementation in the PARSEC dedup benchmark [16]. 

8.1.2  TRANSACTIONAL MEMORY 

Transactional memory (TM) systems leverage programmer-specified atomic blocks [36, 69] that 

can be implemented via optimistic or pessimistic concurrency [26, 54]. Like conventional locking, 

programming with TM involves incrementally strengthening a program’s atomicity.  Transactional 

memory can ease the task of ensuring that code is correctly synchronized by ensuring that all 

memory locations are atomic within the bounds of a transaction.  However, the programmer must 

still properly place the start and end of each transaction to cover the instructions that are required 

for the desired atomicity.  Transactional memory increases the width of regions checking for 

conflicts over all memory locations rather than implicitly associating locks with memory locations.  

Consider the examples provided in Figure 2.1.  In this example, naively replacing locks with 

transaction boundaries will not prevent the bug because the critical region is simply too small to 

provide the required atomicity. 
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The TCC [34] and Automatic Mutual Exclusion (AME) [39] systems place all code inside 

transactions, providing coarse-grained atomicity. However, AME and TCC target new 

programming models (task parallel and parallelization of sequential code, respectively) instead of 

providing stronger guarantees for existing multithreaded code as OFR serializability does. Both 

schemes employ weaker notions of serializability than OFR serializability and incur additional 

complexity due to the use of always-on optimistic concurrency which complicates I/O and other 

system calls. 

8.1.3  COOPERATIVE CONCURRENCY 

Cooperative concurrency [78, 79] systems add yield annotations to a program to document where 

thread interference can arise. Cooperability provides a sound summary of the side effects of a 

program’s existing synchronization but does not automatically enforce atomicity guarantees. 

8.1.4 PROGRAM SYNTHESIS 

Techniques for program synthesis of parallel programs [12, 71, 75] often operate by refining 

overly-coarse atomicity under the guidance of programmer-specified proofs or invariants.  OFR 

serializability’s dynamic approach can scale to at least medium size parallel programs like 

PARSEC benchmarks, beyond the scope that synthesis systems support. 

8.1.5 BARRIER INFERENCE 

Ordering-free regions infer the required atomicity for a parallel program, but the algorithm 

assumes that the ordering synchronization (condition waits, barrier waits, thread start and join) is 

correct.  Prior work has attempted to infer barrier synchronization in parallel applications [1,81].  

These works examine the structure of a program and attempt to infer where ordering 

synchronization should be placed.  This work is complementary to the atomicity inference 

performed by ordering-free regions. 
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9 CONCLUSIONS AND FUTURE WORK 

This dissertation has examined the use of ordering-free region serializability in parallel 

programming.  Ordering-free regions provide more atomicity than previous parallel programming 

models, including sequential consistency, synchronization-free regions, and release-free regions, 

by extending the region of atomicity between consecutive ordering-free constructs.  Ordering-free 

regions are based on the 2PL model of serialization, and the theoretical guarantees provided by 

ordering-free region serializability are at least as strong as those provided by conflict 

serializability.  We discussed the implementation tradeoffs inherent in implementing a runtime 

system that enforces ordering-free region serializability and introduced two such systems: ORCA 

and SOFRITAS.  With ORCA, hardware support was introduced to accelerate the lock checks 

performed frequently in order to enforce ordering-free region serializability.  We examined the 

usability of ordering-free regions as compared to existing programming models, like pthreads, 

and found that using ordering-free regions was at least as easy as writing parallel programs with 

existing models.  In many cases, ordering-free regions provide benefits over conventional 

models, including the ability to easily find and fix data-races and atomicity violations.  In a small 

user study, we found that novice programmers were more likely to correctly use ordering-free 

region exceptions to fix a buggy parallel program than to use data-race reports to accomplish the 

same task.  We measured the performance overheads of three systems for enforcing ordering-

free region serializability and found that the performance overheads were low overall.  The 

scalability of parallel applications under ordering-free region serializability is comparable to the 

scalability of the same applications under a conventional parallel programming model. 

  Ordering-free regions offer an opportunity to ease the burden of writing parallel 

applications, especially for novice parallel programmers.  In today’s world, programmers not only 

need to be able to write applications for multicore processors but also manage the complexity of 

writing applications for heterogeneous systems that include graphics processors, machine 

learning accelerators, field programmable gate arrays, and other complex hardware.  Helping 
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programmers manage this complexity is of the utmost importance.  Of course, everyone thinks 

that their own model for managing the complexity of parallel programming is the necessary 

panacea.  In any case, it seems clear that conventional models are too complex and need to be 

replaced with a safer methodology.  Ordering-free regions are a step in the right direction of 

making parallel programming easier and more reliable. 

 This dissertation has examined many facets of parallel programming with ordering-free 

regions.  There is always more work to be done, and the following subsections discuss directions 

for future work on ordering-free regions. 

9.1 Hardware Support for SOFRITAS 

The SOFRITAS software-only system demonstrated that OFR serializability could be provided in 

software at relatively low runtime overheads of only 1.59x.  Unfortunately, 1.59x is still a high 

overhead in a language like C++ where programmers expect little to no overhead from the 

runtime system.  To further reduce the overhead of OFR serializability, hardware support should 

be designed to fit the SOFRITAS lock and shadowspace designs. 

 Hardware support for SOFRITAS should accomplish a few goals.  First, the hardware 

support should aim to avoid polluting the data cache with locks.  In a software-only system, locks 

are data, and those locks take up space that can otherwise be used for program data in the 

cache hierarchy.  Second, the hardware support should reduce the register pressure and 

complexity of the instrumentation.  In the current design, the SOFRITAS compiler uses additional 

registers to implement lock checks and acquires.  With ISA support, those additional register uses 

can be avoided by using special instructions and possibly special registers to support lock checks 

and acquires. 

 ORCA’s hardware is a reasonable starting point for designing hardware support for 

SOFRITAS.  The ORCA lock cache is designed to support 2-bit lock states and was the 

inspiration for SOFRITAS’s thread-local lock shadowspaces.  In ORCA, loading a line into the 
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lock cache required loading a byte of memory for each 2 bits being loaded into the lock cache.  

With SOFRITAS, a single load can retrieve (at least) 64 bits of lock state from the thread-local 

shadowspace.  As noted in prior sections, the hardware address translation used by ORCA would 

need to be updated to account for the less-rigid shadowspace layout that SOFRITAS assumes. 

 Aside from updating the ORCA hardware to interact with SOFRITAS, other opportunities 

exist in designing hardware support for SOFRITAS.  The lock states used by SOFRITAS 

correspond closely with existing MESI cache coherence protocols.  Prior work has explored using 

cache coherence protocols to accelerate data-race detection [25,55,57,82].  Ordering-free region 

serializability may benefit from similar optimizations.  By attaching lock states to the coherence 

protocol, SOFRITAS may be able to optimize lock acquires for common cases like shared reads. 

9.2 Further User Study 

As part of this dissertation, we have rewritten a number of parallel applications to use ordering-

free regions instead of conventional programming models.  However, we have not examined the 

process and potential benefits of writing parallel programs from scratch with ordering-free 

regions.  Recent work has shown the benefits of developing parallel applications from scratch 

with transactional memory in mind, leading to median speedups of 4.1x over naïve applications 

that use transactional memory [60].  Parallel applications may yield similar speedups when 

developed with ordering-free regions in mind. 

 Aside from the potential performance benefits, further study is needed to assess whether 

or not region-based parallel programming models truly ease the process of writing parallel 

applications from scratch.  We intend to perform a large-scale user study on writing parallel 

applications from scratch with various parallel programming models, including ordering-free 

regions.  By examining how novice programmers write parallel programs from scratch, we hope 

to understand how models like region-based parallel programming can make the task of writing 

parallel applications easier. 
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