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Abstract 
The goal of this paper is to show lhat instruc- 

tion level parallelism (ILP) and data-level parallelism 
(DLP) can be merged in a sangle architecture to exe- 
cute vectorizable code at a performance level that can 
not be achieved using either paradigm on its own. We 
will show that the combination of the two techniques 
yields very high performance at a low cost and a low 
complexity. We will show that this architecture can 
reach a performance equivalent to a superscalar pro- 
cessor that sustained 10 instructions per cycle. We  
will see that the machine exploiting both types of paral- 
lelism improves upon the ILP-only machine by  factors 
of 1.5-1.8. We also present a study on the scalabil- 
ity of both paradigms and show that, when we increase 
resources to reach a 16-issue machine, the advantage 
of the ILPsDLP machine over the ILP-only machine 
increases up to 2.0-3.45. While the peak achieved IPC 
for the ILP machine is 4 ,  the ILPSDLP machine ex- 
ceeds 10 anstructions per cycle. 

1 Introduction 
Historically, there have been two different ap- 

proaches to high performance computing: instruction- 
level parallelism (ILP) and data-level parallelism 
(DLP). The ILP paradigm seeks to  execute several in- 
structions each cycle by exploring a sequential instruc- 
tion stream and extracting independent instructions 
that can be sent to  several execution units in parallel. 
The DLP paradigm, on the other hand, uses vector- 
ization techniques to specify with a single instruction 
(a vector instruction) a large number of operations to  
be performed on independent data. 

The ILP paradigm has been exploited using com- 
binations of several high performance techniques: 
superscalar out-of-order execution [a, 211, decou- 
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pling [17, 121, VLIW execution [20, 61 and multi- 
threading [l,  19, 71. The current generation of micro- 
processors all use superscalar execution coupled with 
a complex memory hierarchy based on several cache 
levels to  attempt executing several instructions per 
cycle. VLIW processors have long been researched 
but have not reached the mass market due to  their 
software compatibility problems. Multithreading is a 
technique being actively researched that might appear 
in commercial products in a few processor generations. 

Measurements of actual performance of appli- 
cations running on machines exploiting the ILP 
pa,radigm [ 5 ] ,  show that the actual IPC achieved falls 
very short of the theoretical peak performance of the 
machine. Many studies have pointed out that this 
lack of performance can be due to  different effects, 
such as cache Misses, i-cache misses, branch mispre- 
dictions, memory dependences, lack of program par- 
allelism, etc.) 

The DLP paradigm has been exploited using vec- 
tor instruction sets and appears primarily in parallel 
vector supercomputers [16, 11, 131. The DLP model 
has many advantages: a small number of instructions 
can specify many independent operations, yields sim- 
ple control units, has efficient instructions to  access 
the memory system and can be easily scaled up to  
execute many operations per cycle. The main draw- 
back of the DLP paradigm is that it is not as general 
purpose as the ILP paradigm. It can provide large 
speedups mostly for highly regular, vectorizable, ap- 
plications. Interestingly enough, the ILP and DLP 
paradigms have been always exploited independently. 

The goal of this paper is to  show that ILP and 
DLP can be merged in a single architecture to exe- 
cute regular vectorizable code at a performance level 
that can not be achieved using either paradigm on its 
own. We will try to  show that the combination of 
the two techniques yields very high performance at a 
low cost and a low complexity: the resulting architec- 
ture has a relatively simple control unit, tolerates very 
well memory latency and can be easily partitioned into 
regular blocks to  overcome the wire delay problem of 
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future VLSI implementations. Also, the control sim- 
plicity and the implementation regularity both help 
in achieving very short cycle times. Moreover, we will 
show that this architecture can be scaled up very eas- 
ily, while scaling up an ILP processor is very costly 
in terms of hardware (and, at some point, may even 
not be feasible Even if one scales up a superscalar, 
we will show t k at their performance falls behind the 
performance of the machine exploiting both ILP and 
DLP. 

This paper tries to make the case that, given 
enough transistor resources, both paradigms should 
be implemented together in the same chip. Our 
view of the future is that ,  in a first step, vector co- 
processors will appear closely coupled to a superscalar 
CPU. When enough real estate becomes available, a 
vector pipeline will be introduced in most micropro- 
cessors. The tasks assigned to  this vector pipeline will 
be the traditional vectorizable floating point applica- 
tions plus the ever-growing number of computationally 
and bandwidth intensive media tasks: 3D rendering, 
MPEG processing, DSP functions, encryption, etc. 

2 Strengths of the DLP model 
Exploiting DLP has many advantages that can 

be classified in three areas: Instruction fetch band- 
width, memory system performance (latency and 
bandwidth), and datapath control. This section will 
outline the benefits of using a vector instruction set in 
each of these areas. 

Instruction fetch bandwidth. The main differ- 
ence between a vector and a scalar instruction is that 
the vector instruction contains a higher semantic con- 
tent in terms of operations specified. This difference 
translates into a myriad of related advantages. First, 
to perform a given task, a vector program executes 
many fewer instructions than a scalar program, since 
the scalar program has to  specify many more address 
computations, loop counter increments and branch 
computations that are typically implicit in vector in- 
structions (section 4 provides quantitative support for 
this claim). As a direct consequence, the instruction 
fetch bandwidth required, the pressure on the fetch en- 
gine a.nd the negative impact of branches are all three 
reduced in comparison to  an ILP processor. Also, a 
relatively simple control unit is enough to  dispatch 
a large number of operations in a single go, whereas 
a superscalar processor devotes an always increasing 
part of its area to  manage out-of-order execution and 
multiple issue. This simple control, in turn, can po- 
tentially yield a faster clocking of the whole datapath. 

Memory system performance. Due to the ever 
increasing gap between memory and CPU speed, cur- 
rent superscalar micros need increasingly large caches 
to keep up performance. Nonetheless, despite out-of- 
order execution, non blocking caches and prefetching, 
superscalar micros do not make an efficient use of 
their memory hierarchies. The main reason for this 
inefficient use comes from the inherently predictive 
model embedded in cache designs. Whenever a line 
is brought from the next level in the memory hier- 
archy, it is not known if all data will be needed or 
not. Moreover, it is very uncommon for superscalar 

machines to sustain the full bandwidth that their first 
level caches can potentially deliver. Since load/store 
instructions are mixed with computation and setup 
code, dependencies and resource constraints prevent a 
memory operation to  be launched every cycle. 

In contrast, in the DLP style of accessing memory 
every single data item requested by the processor is 
actually needed. There is no implicit prefetching due 
to lines. Moreover, the information on the pattern 
used to access memory is conveyed to  the hardware 
through the stride information and it can be used to  
improve memory system performance [ 151. 

Memory Latency: When it comes to  memory la- 
tency, a vector memory instruction can amortize long 
memory latencies over many different elements. By 
using some ILP techniques coupled with a DLP en- 
gine, up to 100 cycles of main memory latency can be 
tolerated with a very small performance degradation 
[8, 10, 91. 

Memory Bandwidth: Regarding memory band- 
width, a DLP machine can make a much more effective 
usage of whatever amount of bandwidth it is provided 
with. While a superscalar processor requires extra is- 
sue slots and decode hardware to  exploit more ports t o  
the first level cache, a DLP machine can request sev- 
eral data items with a single memory address. For ex- 
ample, when doing a stride-1 vector memory access, a 
DLP machine need not send every single address to  the 
memory system. Simply sending every Nth address, a 
bandwidth of N words per cycle can be achieved. 

Datapath Control. In order to  scale current su- 
perscalar performance up to, my, 20 instructions per 
cycle, an inordinate amount of effort is needed. The 
dispatch window and reorder buffers required for such 
a machine are very complex. The wakeup and select 
logic grows quadratically with the number of entries, 
so the larger the window the more difficult is to build 
such an engine [14]. If current superscalars use 4-wide 
dispatch logic and barely sustain 1 instruction per cy- 
cle, a superscalar machine that sustained 20 opera- 
tions per cycle seems not feasible. 

On the other hand, a vector engine can be easily 
scaled to higher levels of parallelism by simply repli- 
cating the functional units and adding wider paths 
from the vector registers to  the functional units. All 
this without increasing a single bit the complexity or 
the pressure on the decode unit. The semantic con- 
tents of the vector instructions already include the no- 
tion of parallel operations. 

3 Methodology 
This study will compare the relative merits of the 

ILP and ILP+DLP models using both trace-driven 
simulation and data gathered from hardware counters 
during real executions. We use instruction and mem- 
ory traces from a Convex C3400 vector machine [4] 
and from a Mips RlOOOO microprocessor [21]. Traces 
on the Convex machine where gathered using the Dixie 
tool, while the RlOOOO measurements were obtained 
using the SimpleScalar toolset [3]. We start by briefly 
describing our benchmarks, the relevant aspects of 
both architectures, and then we discuss our perfor- 
mance measures. 
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II #insns I #OPS I % I avg. I Parameters 
Program 1) s I V I  ..v- I Vect I VL I 
swm256 11 6.2 I 74.5 I 9534.3 I 99.9 I 127 I 

Latency 
Scal I Vect 

hydro2d 41.5 39.2 3973.8 
nasa7 1 152.4 1 6::: 1 3911.9 1 !ilq 1 ii 1 
su2cor 152.6 26.8 3356.8 
tomcatv 125.8 916.8 87.9 
wave 676.5 41.3 1807.2 72.8 
mdljdp2 1495.9 89.1 3731.3 71.4 

Table 1: Basic operation counts for the Specfp92 
programs on the vector machine (Columns 2-4 
are in millions). 

read x-bar 
write x-bar 
add 
mu1 
logiclshift 
div 
sqrt 

3.1 Benchmarks 
It is very important to make clear that this study 

focuses on highly vectorizable code. Our goal is to  
show that for this type of programs, the merge of ILP 
and DLP techniques leads to very high performance. 
It is not our claim that a DLP engine will provide 
speedups for non-regular code (programs such as gcc 
or li, from the Spec suite). Therefore, it is reasonable 
that,  for our study, we select those programs that show 
an acceptable degree of vectorization. 

We have chosen as our workload the Specfp92 
benchmarks. We compiled all of them on the Convex 
machine and we selected the 7 programs that achieved 
at least 70% vectorization. 

Table 1 presents some statistics for the selected pro- 
grams. Columns two and three present the total num- 
ber of instructions issued by the decode unit, broken 
down into scalar and vector instructions. Column four 
presents the number of operations performed by vec- 
tor instructions. Each vector instruction can perform 
many operations (up to 128), hence the distinction be- 
tween vector instructions and vector operations. The 
fifth column is the percentage of vectorization of each 
program. We define the percentage of vectorization as 
the ratio between the number of vector operations and 
the total number of operations performed by the pro- 
gram (i.e., column four divided by the sum of columns 
two and four). Finally column six presents the aver- 
age vector length used by vector instructions, and is 
the ratio of vector operations and vector instructions 
(columns four and three, respectively). 
3.2 Architectures 

In order to  have some common ground in which 
both types of architecture were similar, the first deci- 
sion was to  have similar functional units in both nia- 
chines. We chose functional units close to the ones 
present in the RlOOOO and we use the RlOOOO latencies 
in all cases. Table 2 summarizes all latencies present 
in the architecture. 

(int /fp) (int /fp) 
2 
2 

- 
- 

112 112 

112 1 12 
512 512 

3419 3419 
3419 3419 

ILP architecture 

We have taken an approximate model of an RlOOOO 
processor as an example of a machine that exploits 
ILP. We have obtained the measurements for the ILP 
machine both from RlOOOO hardware counters during 

Table 2: Latency in cycles for the functional 
units in the architectures under study. 

real executions and from execution-driven simulations 
using the Simplescalar Toolset [3]. In particular, we 
have used the out-of-order simulator which supports 
out-of-order issue and execution based on the Register 
Update Unit 181. This scheme uses a reorder buffer 

of pending instructions. Each cycle the reorder buffer 
retires completed instructions in program order to  the 
architected register file. We have set up the simulator 
to  support the RlOOOO number and type of funcional 
units, as well as their latencies (shown in table 2). 
The processor memory system consist of a load/store 
queue. Loads are dispatched to  the memory system 
when the address of all previous stores are known. 
Stores are included in the queue if the store is specu- 
lative. Loads may be satisfied by either the memory 
system or a previous store still in the queue if they 
have the same address. The memory model consist of 
an L1 data cache and an L1 instruction cache. Both 
of them are non-blocking and have been configured 
with the size and replacement policy of the RlOOOO 
L 1  caches (32 Kb). The main memory latency has 
been set to 40 cycles. The simulator performs specu- 
lative execution. It supports dynamic branch predic- 
tion with a branch target buffer with 2-bit saturating 
counters. The branch misprediction penalty is three 
cycles. 

to automatica I ly rename registers and hold the results 

ILP+DLP architecture 

The architecture exploiting both ILP and DLP is de- 
rived from a simplified version of the Convex C3400. 
A C3400 processor has a scalar and vector unit. The 
vector unit consists of two functional units (one is fully 
general purpose and the other only performs add-like 
operations) and one memory access unit. All these 
functional units are connected to  a single vector reg- 
ister file which is organized in banks. It has 4 banks 
which hold 2 vector registers each. The vector regis- 
ters hold 128 elements of 64 bits. Each bank has 2 read 
ports and 1 write port. The machine implements fully 
flexible chaining except for loads, which can not be 
chained to a computation. See [4] for further details. 

The ILP+DLP architecture (see f i g ,  1) is derived 
from this baseline machine by adding out-of-order ex- 
ecution and re ister renaming, in a very similar way 
as the RlOOOO El ] .  Instructions flow in-order through 
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Figure 1: The ILP+DLP architecture. 

the Fetch and Decode/Rename stages and then go 
to  one of the four queues present in the architec- 
ture based on instruction type. At the rename stage, 
a mapping table translates each virtual register into 
physical register. There are 4 independent mapping 
tables, one for each type of registers: A, S, V and 
mask registers. When instructions are accepted into 
the decode stage, a slot in the reorder buffer is also al- 
located. Instructions enter and exit the reorder buffer 
in strict program order. 

In the ILP+DLP machine each vector register has 
1 dedicated read port and 1 dedicated write port. The 
original banking scheme of the register file can not be 
kept since it would induce a lot of port conflicts. 

Table 2 presents the latencies of the various func- 
tional units present in the architecture. The mem- 
ory system is modeled as follows. There is a single 
address bus shared by all types of memory transac- 
tions (scalar/vector and load/store) , and physically 
separate data busses for sending and receiving data 
to/from main memory. Vector load instructions (and 
gather instructions) pay an initial latency and then re- 
ceive one datum from memory per cycle. Vector store 
instructions do not result in observed latency because 
the processor sends the vector to  memory and does 
not wait for the write operation to  complete. We use 
a value of 50 cycles as the default memory latency. 

All instruction queues are set at 16 slots. The ma- 
chine has a 64 entry BTB, where each entry has a 
2-bit saturating counter for predicting the outcome of 
branches. Also, an &deep return stack is used to pre- 
dict call/return sequences. Both scalar register files 
(A and S) have 64 physical registers each. The mask 
register file has 8 physical registers. 
3.3 The EIPC measure 

To be able to  compare the performance of the ILP 
machine and the ILP+DLP machine we define the fol- 
lowing indicator of performance: 

(1) 
total M I P S  RlOOOO instructions 

ILP+DLP cycles 
EIPC = 

RlOOOO RlOOOO 
Program instrs. cycles 

hydroad 

nasa7 
sulcar 6348 
tomcatv 
bdna 

- avg. - 

0.4 
0.8 

0.8 

Table 3: Performance of the benchmarks when 
run on an RlOOOO processor. Second column is 
number of executed instructions (in millions). 
Third column is total execution cycles (in mil- 
lions) and column IPC is the ratio of columns 
2 and 3. 

EIPC stands for “Equivalent IPC” where IPC in- 
dicates the number of instructions executed per cycle 
in the machine. To compute this measure of perfor- 
mance, we run the 7 programs on a MIPS RlOOOO 
processor. Using its hardware performance counters, 
we counted the total number of instructions executed 
(graduated) for each program. The result is shown in 
table 3. Table 3 also shows the total number of cycles 
required to execute each program (in millions) and the 
resulting IPC (the ratio of columns 2 and 3). 

The intuitive sense of the EIPC measure is simple: 
an EIPC of 10 indicates that a superscalar machine 
should sustain a performance of 10 instructions ex- 
ecuted each cycle to  match the performance of the 
ILPSDLP machine introduced in this paper. Note 
that “real” IPC’s (obtained dividing RlOOOO instruc- 
tions by RlOOOO cycles) are directly comparable to  
EIPC’s. Both measures are giving an idea of the 
amount of parallelism extracted when executing the 
same task. Here, a task is a full program and EIPC 
allows a cycle-time independent comparison between 
two relatively different architectures. 
4 Instruction Level Comparison of the 

ILP and ILPfDLP models 
We start by comparing the ILP and ILP+DLP 

models looking at the number and types of instruc- 
tions executed. While number of instructions is not 
directly a performance measure, i t  will allow us to  
show that much of the DLP success is based on its 
greater semantic contents. 
4.1 Number of instructions 

In a DLP processor, a single vector instruction can 
specify many operations (in our case, up to  128). 
Therefore, in order to  specify all the computations re- 
quired for a certain program, much less instructions 
are needed. 

For example, consider a loop moving 256 words of 
data from array A to  array B. In a ILP machine, a 
typical loop would consist of about 5 instructions: a 
load, a store, an addition to increment the address 
pointer, a subtraction to  decrement the loop counter 
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1 DLP 
BI Scalar 

Figure 2: A comparison of the number of 
instructions executed on the ILP machine 
(R10000) and a DLP machine (Convex C34). 

and a compare-and-branch instruction. To move 256 
words, the loop would execute 256 x 5 = 1280 instruc- 
tions. On the other hand, a DLP machine, would also 
have the same 5 instructions in the loop. But, the load 
and store would be vector instructions each responsi- 
ble of moving 128 elements. Thus, the DLP version 
of the loop would require just two iterations and, in 
total, would have executed about 10 instructions to  
perform the same task. 

Although this is a very simple example, it shows 
the instruction efficiency advantage of exploiting the 
DLP paradigm. Although severalcompiler optimiza- 
tions (loop unrolling, for example) can be used to 
lower the overhead of the add, decrement and branch 
instructions in the ILP code, vector instructions are in- 
herently more expressive. Having vector instructions 
allows a loop to  do a task in less iterations. This im- 
plies less computations for address calculations and 
loop control. It also directly translates into less pres- 
sure in the fetch and decode units and less pressure on 
the I-cache (fewer instructions per loop).I 

Figare 2 presents a comparison of the total number 
of instructions executed on the ILP machine (R10000) 
and a DLP machine (Convex C34) for each of our 
benchmark programs. In the RlOOOO case, we use the 
values of graduated instructions gathered using the 
hardware performance counters. In the C34 case, we 
use the traces provided by Dixie. As it can be seen, 
the differences are huge. Obviously, as vectorization 
degree decreases, this gap is diminished. It is inter- 
esting to note that the ratio of number of instructions 
can be larger than 128. These extra instructions cor- 
responds to  the overhead that the scalar machine has 
to pay due to  a larger number of loop iterations. 

n v 

9 30 

5 
0 

Y 

E 
.I 

10 
E-c 

0 

DLP 
R 10000 
(Reg-L1) 
RlOOOO 
(Ll-L2) 
R 1 0000 
(L2-Mem) 

8 

0 

Figure 3: Comparison of total memory traffic in 
the DLP and ILP machines. 

4.2 Memory Traffic 
Figure 3 compares the total memory traffic gener- 

ated by DLP and ILP machines. Here, we understand 
memory traffic as the total number of 64-bit words 
moved up and down through the memory hierarchy. 
In the DLP case, since there are no caches at all, all 
data transfers are between registers and main mem- 
ory. In the ILP case, data transfers can occur at three 
different levels: registers to  L1 cache, L1 to  L2 cache 
and L2 cache to  main memory. For the ILP machine, 
we are presenting the data gathered using the Pow- 
erchallenge RlOOOO hardware counters, which has an 
L1 of 32 Kb and an L2 of 2Mb. For each program, the 
first bar plots the total DLP traffic and the follow- 
ing bars plot traffic at the three levels of the memory 
hierarchy of the ILP machine. 

Several things can be pointed out from figure 3. 
First, let’s concentrate only in the RlOOOO memory 
traffic. A couple of programs (wave and mdljdp2) 
mostly fit in the L1 cache. This is deduced from the 
fact that the traffic between L1 and L2 and between 
L2 and main memory is very small when compared to 
the Register to  L1 traffic. Programs su2cor, hydro2d 
and nasa7, fit inside the L2 cache but not inside L1. 
This can be seen because they move almost the same 
amount of data (and, sometimes, more) between reg- 
isters and L1 and between L1 and L2. Moving more 
data between L1 and L2 than between registers and L1 
indicates poor spatial locality and/or cache conflicts. 
Programs swm256 and tomcatv show a relatively high 
fraction of L2 to Main memory traffic, although they 
seem to achieve a good reuse of the data present in 
L1. 

Comparing the DLP bars against the first RlOOOO 
bar (register-L1) we see two different behaviors. In 4 
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programs, swm256, hydro2d, tomcatv and mdljdp2, 
the data movement specified by load/store instruc- 
tions present in the program is larger in the DLP case 
than in the RlOOOO case. This was expected, since the 
original C34 machine only has 8 vector registers, forc- 
ing a lot of spill code that adds to the minimum traffic 
necessary to  carry out the programs computations. It 
is interesting, though, than in the other 3 programs 
the DLP machine actually requests less words from 
memory than the R10000. 

Even though the vector memory traffic might be 
greater in some cases, if we consider the three bars cor- 
responding to  the R10000, the picture changes. The 
height of the Ll-L2 and L2-Mem bars gives an idea 
of the first and second level cache misses. Each cache 
miss has a certain cost in terms of cycles that can make 
the importance of these bars very high. Meanwhile, 
the vector traffic can be evenly distributed across long 
vector loads, that  help compensate memory latency. 

5 IPC comparison 
We now turn to  the performance of the two models 

under study from an IPC perspective. We will com- 
pare an ILP processor which is a close model of the 
RlOOOO to the out-of-order dynamic scheduling vector 
architecture described in sectioii 3.2 (the ILP+DLP 
machine). We use trace driven simulation for the 
ILP+DLP machine and execution driven simulation 
for the superscalar machine. We will compare IPC to 
EIPC as defined in section 3.3. 

We will start comparing a current, state-of-the-art 
4-wide issue superscalar to  the equivalent ILP+DLP 
machine. Then we will look into scalability issue to  see 
how the superscalar machine improves when its fetch 
and decode capability is increased up to  16 instruc- 
tions per cycle. 

5.1 Configurations under study 
Table 4 presents the different configurations we will 

be studying. A configuration is represented by a five- 
tuple of the form: (type,issue,memory,RPC,MPC). 
“Type” indicates whether it is an ILP machine (I) or 
it’s an ILP+DLP machine (ID). “Iss,ue” indicates the 
maximum number of instructions that can be fetched 
and issued per cycle. “Memorf can be either ‘R’ for 
a real memory system (40 cycles for the ILP machine 
and 50 cycles for the ILP+DLP machine) or ‘P’ for 
a perfect main memory system that delivers data in 
1 cycle. “RPC’ indicates the number of computed 
results per cycle for a certain configuration. “ M P C  
stands for memory-per-cycle and is equal to  the num- 
ber of words that can be read or written per cycle. 

As it can be seen, the table is split in two main 
sections. First, configurations having a peak IPC of 
4 appear. In the second half, configurations with a 
peak IPC of 16 are presented. The notation ‘2x4’ in 
the vector units indicates that we have 2 independent 
functional units that are 4-way deep. This means that, 
on one of the functional units, on every cycle 4 inde- 
pendent operations from the same pair of vectors are 
launched. This is much simpler than actually hav- 
ing four independent functional units: when a single 
vector add, for example, is initiated, i t  will proceed 

at four results per cycle until all elements have been 
processed. 

In the case of the memory port, the notation ‘1x4’ 
indicates that, for stride-1 accesses, data is brought 
from the memory system in blocks of four. For stride- 
2 accesses, data arrives in blocks of 2 words and four 
all other strides (and for scalar references) data ar- 
rives one word per cycle. The implementation is such 
that we save many address pins over a configuration 
where 4 different ports where available. For stride-1 
accesses, our system sends only every fourth address 
to the memory system, knowing that,  in return, four 
words will be sent. 

It is important to  note that,  in all cases, the 
ILPSDLP machine is limited to  fetching and decoding 
4 instructions per cycle and that in the 16-wide con- 
figurations we also reduce the total number of results 
per cycle of the ILP+DLP machine. 
5.2 Issue 4 

Figure 4 presents the comparison between the first 
four configurations, all of which have a peak perfor- 
mance of 4 RPC and can transfer at most 1 memory 
word per cycle. The first thing to  note is that, in all 
but one case, the performance of ILP+DLP is larger 
than that of ILP by factors that go from 1.5 up to 1.8. 
While IPC for the ILP machine hardly exceeds 1 in 
any case, the ILP+DLP machine is for most programs 
well over 2.3. When comparing the bars with real a.nd 
perfect memory, we see that, while the ILP machine is 
very sensible to  main memory latency (when increas- 
ing latency from 1 to 40 cycles, IPC drops by factors 
between 1.1 and 1.8, except in wave) the ILP+DLP 
machine experiences almost no difference between a 1 
cycle and a 50 cycle main memory latency. Similar 
results have already been reported in [lo]. 

Note that the ILP+DLP machine is very close to  its 
peak performance. Although the nominal peak perfor- 
mance is 4, if we look back to  tuble 1 we can see that 
for the majority of the time at most three operations 
can be running concurrently: two vector functional 
units and the memory port. Even though the scalar 
units could work in parallel with the other 3 units, 
our analysis show that a scalar and vector sections 
tend to be disjoint and [ I  b the fraction of scalar code 
is too small to  make a significant difference. Thus, the 
actual peak is around 3 instructions per cycle. Five 
programs reach more than 80% of this peak. 

The overall conclusion is that the DLP model allows 
a typical superscalar machine to  much better exploit 
the available parallelism in a program,. providing an 
EIPC tha.t is much closer to the theoretical peak. 
5.3 Issue 16 

We take our baseline ILP machine and increase its 
fetch and issue width up to 16 instructions per cycle 
and provide enough resources to  substantially increase 
IPC. In the ILP+DLP machine, on the other hand, 
we keep using the same 4-wide issue out-of-order en- 
gine, but we provide the machine with more functional 
units. 

Note that there is a big difference in the effort re- 
quired to add these extra resources to  both architec- 
tures. In the ILP+DLP machine the extra functional 
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Fetch/ Branch Reorder Functional L 
Name Issue Pred. Buffer int I fp I vect 

4 BTB-512 32 2 1  2 1  - 

L2-to-Mem 

ix4 50 
1x4 1 

16 4 
12 4 
12 4 

Table 4: Machine configurations under study: widths 4 and 16 for the ILP machine (I) and 
ILP+DLP machine (ID). 

Figure 4: EIPC comparison with issue 4. 

units are added by partitioning the vector data path 
and register file in 4 sections. Each section is com- 
pletely independent of all others and, yet, they work 
synchronously under control of the same instruction. 
In each section we have 1/4 the total register file and 
2 functional units. Thus, from the point of view of 
control, the extra resources do not require any special 
attention. On the other hand, in the ILP machine, 
increasing the number of functional units has forced 
us to add a 16-wide fetch engine and to implement 
a 128-entry reorder buffer. Moreover, the number of 
ports into the register files has grown enormously ei- 
ther putting in jeopardy the cycle time or introducing 
some need for duplicate register files. Finally, the L1 
cache in the ILP machine has to  be 4-ported, while 
the ILP+DLP machine still retains its simple scheme 
where only 1 address is sent over the memory port per 
cycle. 

Fzgure 5 presents the IPC values for all the high end 
configurations. As we saw in the previous section, if we 
compare "real" configurations, the ILP+DLP machine 
outperforms the ILP machine in most cases. In four 
programs, swm256, hydro2d, su2cor and tomcatv, the 
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Figure 5: EIPC comparison with issue 16. 

speedup of the ILPSDLP machine over the ILP ma- 
chine is in the range 2.0-3.45. For programs nasa7 
and wave, speedups are more moderate but still sig- 
nificant: 1.2 and 1.13, resp. Looking at the bars with 
real memory, we see that the ILP machine is typically 
below an IPC of 4, while the ILP+DLP machine ex- 
ceeds an EIPC of 6 in four cases. 

If a perfect memory system is considered for the 
superscalar machine, we can see that performance in- 
creases significantly. In one case, nasa7, the ILP ma- 
chine outperforms the lLP+DLP machine with perfect 
memory, but only by a very small margin (less than 
6%). In two cases, sum256 and tomcatv, IPC for t8he 
ILP machine reaches 6. 

6 Summary 
This paper has presented data comparing the per- 

formance of an architecture exploiting instruction level 
parallelism (ILP) and an architecture exploiting both 
ILP and data level parallelism (DLP) on a set of highly 
vectorizable codes. 

We have seen that,  at the instruction level, the DLP 
paradigm offers substantial savings in terms of instriac- 
tions executed and pressure on the fetch engine. Our 
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data shows that a vectorized program can be execute 
using 128 times less instructions than a purely scalar 
program. We have looked at the memory behavior 
of the ILP and DLP machines. Due to the relatively 
scarce vector registers, in several cases the DLP ma- 
chine required overall more loads and stores than the 
ILP machine. Nonetheless, when the cache behavior 
model is factored in, that is, when we consider the 
fact that a word request can turn into a N-word line 
request, we have seen that the DLP machine better 
manages its memory hierarchy. 

In the second part of this paper, we have performed 
an IPC comparison of the two architectures under 
study. For roughly equivalent machines able to pro- 
duce 4 results per cycle and move 1 memory word per 
cycle, we have seen that the ILP+DLP machine out- 
performed the ILP machine by factors of 1.5-1.8. If we 
increase the available hardware resources by increas- 
ing issue width from 4 to  16 and by allowing up to  16 
results per cycle and 4 memory words transferred per 
cycle, we see that the ILP+DLP machine can make 
much better use of the extra resources. The speedup 
of the ILP+DLP machine over the ILP machine was 
in the 2.0-3.45 range in most cases. Moreover, while 
the peak achieved IPC for the ILP machine is 4, the 
ILPSDLP machine exceeded an EIPC of 10. 

We believe that the results for the ILP+DLP ma- 
chine are good enough to consider worth it adding 
a vector pipeline to  current superscalar microproces- 
sors. The tasks assigned to  this vector pipeline would 
be the traditional vectorizable floating point applica- 
tions plus the ever-growing number of computation- 
ally and bandwidth intensive media tasks: 3D ren- 
dering, MPEG processing, DSP functions, encryption, 
etc. We conjecture that an important consequence of 
adding the vector pipeline would be that the super- 
scalar core need not to be as aggressive as it is nowa- 
days. The vector part would take care of highly vec- 
torizable programs, while the scalar part would focus 
on simple (but fast) execution of the other codes. This 
design strategy would allow a very fast clock, based on 
the simplicity of the scalar core and on the very regu- 
lar and easily pipelineable nature of the vector core. 
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