
A Case for Merging the ILP and DLP Paradigms

Francisca &uintana* Roger Espasat Mateo Valero

Computer Science Dept.
U. de Las Palmas de Gran Canaria

Computer Architecture Dept.
U. Politkcnica de Catalunya-Barcelona

{ paqui ,roger ,mat eo} @ac. up c.es
http://www.ac.upc.es/hpc

Abstract
The goal of this paper is to show lhat instruc-

tion level parallelism (ILP) and data-level parallelism
(DLP) can be merged in a sangle architecture to exe-
cute vectorizable code at a performance level that can
not be achieved using either paradigm on its own. We
will show that the combination of the two techniques
yields very high performance at a low cost and a low
complexity. We will show that this architecture can
reach a performance equivalent to a superscalar pro-
cessor that sustained 10 instructions per cycle. We
will see that the machine exploiting both types of paral-
lelism improves upon the ILP-only machine by factors
of 1.5-1.8. We also present a study on the scalabil-
ity of both paradigms and show that, when we increase
resources to reach a 16-issue machine, the advantage
of the ILPsDLP machine over the ILP-only machine
increases up to 2.0-3.45. While the peak achieved IPC
for the ILP machine is 4 , the ILPSDLP machine ex-
ceeds 10 anstructions per cycle.

1 Introduction
Historically, there have been two different ap-

proaches to high performance computing: instruction-
level parallelism (ILP) and data-level parallelism
(DLP). The ILP paradigm seeks to execute several in-
structions each cycle by exploring a sequential instruc-
tion stream and extracting independent instructions
that can be sent to several execution units in parallel.
The DLP paradigm, on the other hand, uses vector-
ization techniques to specify with a single instruction
(a vector instruction) a large number of operations to
be performed on independent data.

The ILP paradigm has been exploited using com-
binations of several high performance techniques:
superscalar out-of-order execution [a, 211, decou-

*This work was supported by the DGUI of Canarian Au-

tThis work was supported by the Ministry of Education of
tonomous Comunity, Spain

Spain under contract TIC 0429/95 and by the CEPBA.

pling [17, 121, VLIW execution [20, 61 and multi-
threading [l, 19, 71. The current generation of micro-
processors all use superscalar execution coupled with
a complex memory hierarchy based on several cache
levels to attempt executing several instructions per
cycle. VLIW processors have long been researched
but have not reached the mass market due to their
software compatibility problems. Multithreading is a
technique being actively researched that might appear
in commercial products in a few processor generations.

Measurements of actual performance of appli-
cations running on machines exploiting the ILP
pa,radigm [5] , show that the actual IPC achieved falls
very short of the theoretical peak performance of the
machine. Many studies have pointed out that this
lack of performance can be due to different effects,
such as cache Misses, i-cache misses, branch mispre-
dictions, memory dependences, lack of program par-
allelism, etc.)

The DLP paradigm has been exploited using vec-
tor instruction sets and appears primarily in parallel
vector supercomputers [16, 11, 131. The DLP model
has many advantages: a small number of instructions
can specify many independent operations, yields sim-
ple control units, has efficient instructions to access
the memory system and can be easily scaled up to
execute many operations per cycle. The main draw-
back of the DLP paradigm is that it is not as general
purpose as the ILP paradigm. It can provide large
speedups mostly for highly regular, vectorizable, ap-
plications. Interestingly enough, the ILP and DLP
paradigms have been always exploited independently.

The goal of this paper is to show that ILP and
DLP can be merged in a single architecture to exe-
cute regular vectorizable code at a performance level
that can not be achieved using either paradigm on its
own. We will try to show that the combination of
the two techniques yields very high performance at a
low cost and a low complexity: the resulting architec-
ture has a relatively simple control unit, tolerates very
well memory latency and can be easily partitioned into
regular blocks to overcome the wire delay problem of

217
0-8186-8332398 $10.00 0 1998 IEEE

http://www.ac.upc.es/hpc

future VLSI implementations. Also, the control sim-
plicity and the implementation regularity both help
in achieving very short cycle times. Moreover, we will
show that this architecture can be scaled up very eas-
ily, while scaling up an ILP processor is very costly
in terms of hardware (and, at some point, may even
not be feasible Even if one scales up a superscalar,
we will show t k at their performance falls behind the
performance of the machine exploiting both ILP and
DLP.

This paper tries to make the case that, given
enough transistor resources, both paradigms should
be implemented together in the same chip. Our
view of the future is that , in a first step, vector co-
processors will appear closely coupled to a superscalar
CPU. When enough real estate becomes available, a
vector pipeline will be introduced in most micropro-
cessors. The tasks assigned to this vector pipeline will
be the traditional vectorizable floating point applica-
tions plus the ever-growing number of computationally
and bandwidth intensive media tasks: 3D rendering,
MPEG processing, DSP functions, encryption, etc.

2 Strengths of the DLP model
Exploiting DLP has many advantages that can

be classified in three areas: Instruction fetch band-
width, memory system performance (latency and
bandwidth), and datapath control. This section will
outline the benefits of using a vector instruction set in
each of these areas.

Instruction fetch bandwidth. The main differ-
ence between a vector and a scalar instruction is that
the vector instruction contains a higher semantic con-
tent in terms of operations specified. This difference
translates into a myriad of related advantages. First,
to perform a given task, a vector program executes
many fewer instructions than a scalar program, since
the scalar program has to specify many more address
computations, loop counter increments and branch
computations that are typically implicit in vector in-
structions (section 4 provides quantitative support for
this claim). As a direct consequence, the instruction
fetch bandwidth required, the pressure on the fetch en-
gine a.nd the negative impact of branches are all three
reduced in comparison to an ILP processor. Also, a
relatively simple control unit is enough to dispatch
a large number of operations in a single go, whereas
a superscalar processor devotes an always increasing
part of its area to manage out-of-order execution and
multiple issue. This simple control, in turn, can po-
tentially yield a faster clocking of the whole datapath.

Memory system performance. Due to the ever
increasing gap between memory and CPU speed, cur-
rent superscalar micros need increasingly large caches
to keep up performance. Nonetheless, despite out-of-
order execution, non blocking caches and prefetching,
superscalar micros do not make an efficient use of
their memory hierarchies. The main reason for this
inefficient use comes from the inherently predictive
model embedded in cache designs. Whenever a line
is brought from the next level in the memory hier-
archy, it is not known if all data will be needed or
not. Moreover, it is very uncommon for superscalar

machines to sustain the full bandwidth that their first
level caches can potentially deliver. Since load/store
instructions are mixed with computation and setup
code, dependencies and resource constraints prevent a
memory operation to be launched every cycle.

In contrast, in the DLP style of accessing memory
every single data item requested by the processor is
actually needed. There is no implicit prefetching due
to lines. Moreover, the information on the pattern
used to access memory is conveyed to the hardware
through the stride information and it can be used to
improve memory system performance [151.

Memory Latency: When it comes to memory la-
tency, a vector memory instruction can amortize long
memory latencies over many different elements. By
using some ILP techniques coupled with a DLP en-
gine, up to 100 cycles of main memory latency can be
tolerated with a very small performance degradation
[8, 10, 91.

Memory Bandwidth: Regarding memory band-
width, a DLP machine can make a much more effective
usage of whatever amount of bandwidth it is provided
with. While a superscalar processor requires extra is-
sue slots and decode hardware to exploit more ports t o
the first level cache, a DLP machine can request sev-
eral data items with a single memory address. For ex-
ample, when doing a stride-1 vector memory access, a
DLP machine need not send every single address to the
memory system. Simply sending every Nth address, a
bandwidth of N words per cycle can be achieved.

Datapath Control. In order to scale current su-
perscalar performance up to, my, 20 instructions per
cycle, an inordinate amount of effort is needed. The
dispatch window and reorder buffers required for such
a machine are very complex. The wakeup and select
logic grows quadratically with the number of entries,
so the larger the window the more difficult is to build
such an engine [14]. If current superscalars use 4-wide
dispatch logic and barely sustain 1 instruction per cy-
cle, a superscalar machine that sustained 20 opera-
tions per cycle seems not feasible.

On the other hand, a vector engine can be easily
scaled to higher levels of parallelism by simply repli-
cating the functional units and adding wider paths
from the vector registers to the functional units. All
this without increasing a single bit the complexity or
the pressure on the decode unit. The semantic con-
tents of the vector instructions already include the no-
tion of parallel operations.

3 Methodology
This study will compare the relative merits of the

ILP and ILP+DLP models using both trace-driven
simulation and data gathered from hardware counters
during real executions. We use instruction and mem-
ory traces from a Convex C3400 vector machine [4]
and from a Mips RlOOOO microprocessor [21]. Traces
on the Convex machine where gathered using the Dixie
tool, while the RlOOOO measurements were obtained
using the SimpleScalar toolset [3]. We start by briefly
describing our benchmarks, the relevant aspects of
both architectures, and then we discuss our perfor-
mance measures.

218

II #insns I #OPS I % I avg. I Parameters
Program 1) s I V I ..v- I Vect I VL I
swm256 11 6.2 I 74.5 I 9534.3 I 99.9 I 127 I

Latency
Scal I Vect

hydro2d 41.5 39.2 3973.8
nasa7 1 152.4 1 6::: 1 3911.9 1 !ilq 1 ii 1
su2cor 152.6 26.8 3356.8
tomcatv 125.8 916.8 87.9
wave 676.5 41.3 1807.2 72.8
mdljdp2 1495.9 89.1 3731.3 71.4

Table 1: Basic operation counts for the Specfp92
programs on the vector machine (Columns 2-4
are in millions).

read x-bar
write x-bar
add
mu1
logiclshift
div
sqrt

3.1 Benchmarks
It is very important to make clear that this study

focuses on highly vectorizable code. Our goal is to
show that for this type of programs, the merge of ILP
and DLP techniques leads to very high performance.
It is not our claim that a DLP engine will provide
speedups for non-regular code (programs such as gcc
or li, from the Spec suite). Therefore, it is reasonable
that, for our study, we select those programs that show
an acceptable degree of vectorization.

We have chosen as our workload the Specfp92
benchmarks. We compiled all of them on the Convex
machine and we selected the 7 programs that achieved
at least 70% vectorization.

Table 1 presents some statistics for the selected pro-
grams. Columns two and three present the total num-
ber of instructions issued by the decode unit, broken
down into scalar and vector instructions. Column four
presents the number of operations performed by vec-
tor instructions. Each vector instruction can perform
many operations (up to 128), hence the distinction be-
tween vector instructions and vector operations. The
fifth column is the percentage of vectorization of each
program. We define the percentage of vectorization as
the ratio between the number of vector operations and
the total number of operations performed by the pro-
gram (i.e., column four divided by the sum of columns
two and four). Finally column six presents the aver-
age vector length used by vector instructions, and is
the ratio of vector operations and vector instructions
(columns four and three, respectively).
3.2 Architectures

In order to have some common ground in which
both types of architecture were similar, the first deci-
sion was to have similar functional units in both nia-
chines. We chose functional units close to the ones
present in the RlOOOO and we use the RlOOOO latencies
in all cases. Table 2 summarizes all latencies present
in the architecture.

(int /fp) (int /fp)
2
2

-
-

112 112

112 1 12
512 512

3419 3419
3419 3419

ILP architecture

We have taken an approximate model of an RlOOOO
processor as an example of a machine that exploits
ILP. We have obtained the measurements for the ILP
machine both from RlOOOO hardware counters during

Table 2: Latency in cycles for the functional
units in the architectures under study.

real executions and from execution-driven simulations
using the Simplescalar Toolset [3]. In particular, we
have used the out-of-order simulator which supports
out-of-order issue and execution based on the Register
Update Unit 181. This scheme uses a reorder buffer

of pending instructions. Each cycle the reorder buffer
retires completed instructions in program order to the
architected register file. We have set up the simulator
to support the RlOOOO number and type of funcional
units, as well as their latencies (shown in table 2).
The processor memory system consist of a load/store
queue. Loads are dispatched to the memory system
when the address of all previous stores are known.
Stores are included in the queue if the store is specu-
lative. Loads may be satisfied by either the memory
system or a previous store still in the queue if they
have the same address. The memory model consist of
an L1 data cache and an L1 instruction cache. Both
of them are non-blocking and have been configured
with the size and replacement policy of the RlOOOO
L 1 caches (32 Kb). The main memory latency has
been set to 40 cycles. The simulator performs specu-
lative execution. It supports dynamic branch predic-
tion with a branch target buffer with 2-bit saturating
counters. The branch misprediction penalty is three
cycles.

to automatica I ly rename registers and hold the results

ILP+DLP architecture

The architecture exploiting both ILP and DLP is de-
rived from a simplified version of the Convex C3400.
A C3400 processor has a scalar and vector unit. The
vector unit consists of two functional units (one is fully
general purpose and the other only performs add-like
operations) and one memory access unit. All these
functional units are connected to a single vector reg-
ister file which is organized in banks. It has 4 banks
which hold 2 vector registers each. The vector regis-
ters hold 128 elements of 64 bits. Each bank has 2 read
ports and 1 write port. The machine implements fully
flexible chaining except for loads, which can not be
chained to a computation. See [4] for further details.

The ILP+DLP architecture (see f i g , 1) is derived
from this baseline machine by adding out-of-order ex-
ecution and re ister renaming, in a very similar way
as the RlOOOO El] . Instructions flow in-order through

219

Figure 1: The ILP+DLP architecture.

the Fetch and Decode/Rename stages and then go
to one of the four queues present in the architec-
ture based on instruction type. At the rename stage,
a mapping table translates each virtual register into
physical register. There are 4 independent mapping
tables, one for each type of registers: A, S, V and
mask registers. When instructions are accepted into
the decode stage, a slot in the reorder buffer is also al-
located. Instructions enter and exit the reorder buffer
in strict program order.

In the ILP+DLP machine each vector register has
1 dedicated read port and 1 dedicated write port. The
original banking scheme of the register file can not be
kept since it would induce a lot of port conflicts.

Table 2 presents the latencies of the various func-
tional units present in the architecture. The mem-
ory system is modeled as follows. There is a single
address bus shared by all types of memory transac-
tions (scalar/vector and load/store) , and physically
separate data busses for sending and receiving data
to/from main memory. Vector load instructions (and
gather instructions) pay an initial latency and then re-
ceive one datum from memory per cycle. Vector store
instructions do not result in observed latency because
the processor sends the vector to memory and does
not wait for the write operation to complete. We use
a value of 50 cycles as the default memory latency.

All instruction queues are set at 16 slots. The ma-
chine has a 64 entry BTB, where each entry has a
2-bit saturating counter for predicting the outcome of
branches. Also, an &deep return stack is used to pre-
dict call/return sequences. Both scalar register files
(A and S) have 64 physical registers each. The mask
register file has 8 physical registers.
3.3 The EIPC measure

To be able to compare the performance of the ILP
machine and the ILP+DLP machine we define the fol-
lowing indicator of performance:

(1)
total M I P S RlOOOO instructions

ILP+DLP cycles
EIPC =

RlOOOO RlOOOO
Program instrs. cycles

hydroad

nasa7
sulcar 6348
tomcatv
bdna

- avg. -

0.4
0.8

0.8

Table 3: Performance of the benchmarks when
run on an RlOOOO processor. Second column is
number of executed instructions (in millions).
Third column is total execution cycles (in mil-
lions) and column IPC is the ratio of columns
2 and 3.

EIPC stands for “Equivalent IPC” where IPC in-
dicates the number of instructions executed per cycle
in the machine. To compute this measure of perfor-
mance, we run the 7 programs on a MIPS RlOOOO
processor. Using its hardware performance counters,
we counted the total number of instructions executed
(graduated) for each program. The result is shown in
table 3. Table 3 also shows the total number of cycles
required to execute each program (in millions) and the
resulting IPC (the ratio of columns 2 and 3).

The intuitive sense of the EIPC measure is simple:
an EIPC of 10 indicates that a superscalar machine
should sustain a performance of 10 instructions ex-
ecuted each cycle to match the performance of the
ILPSDLP machine introduced in this paper. Note
that “real” IPC’s (obtained dividing RlOOOO instruc-
tions by RlOOOO cycles) are directly comparable to
EIPC’s. Both measures are giving an idea of the
amount of parallelism extracted when executing the
same task. Here, a task is a full program and EIPC
allows a cycle-time independent comparison between
two relatively different architectures.
4 Instruction Level Comparison of the

ILP and ILPfDLP models
We start by comparing the ILP and ILP+DLP

models looking at the number and types of instruc-
tions executed. While number of instructions is not
directly a performance measure, i t will allow us to
show that much of the DLP success is based on its
greater semantic contents.
4.1 Number of instructions

In a DLP processor, a single vector instruction can
specify many operations (in our case, up to 128).
Therefore, in order to specify all the computations re-
quired for a certain program, much less instructions
are needed.

For example, consider a loop moving 256 words of
data from array A to array B. In a ILP machine, a
typical loop would consist of about 5 instructions: a
load, a store, an addition to increment the address
pointer, a subtraction to decrement the loop counter

220

1 DLP
BI Scalar

Figure 2: A comparison of the number of
instructions executed on the ILP machine
(R10000) and a DLP machine (Convex C34).

and a compare-and-branch instruction. To move 256
words, the loop would execute 256 x 5 = 1280 instruc-
tions. On the other hand, a DLP machine, would also
have the same 5 instructions in the loop. But, the load
and store would be vector instructions each responsi-
ble of moving 128 elements. Thus, the DLP version
of the loop would require just two iterations and, in
total, would have executed about 10 instructions to
perform the same task.

Although this is a very simple example, it shows
the instruction efficiency advantage of exploiting the
DLP paradigm. Although severalcompiler optimiza-
tions (loop unrolling, for example) can be used to
lower the overhead of the add, decrement and branch
instructions in the ILP code, vector instructions are in-
herently more expressive. Having vector instructions
allows a loop to do a task in less iterations. This im-
plies less computations for address calculations and
loop control. It also directly translates into less pres-
sure in the fetch and decode units and less pressure on
the I-cache (fewer instructions per loop).I

Figare 2 presents a comparison of the total number
of instructions executed on the ILP machine (R10000)
and a DLP machine (Convex C34) for each of our
benchmark programs. In the RlOOOO case, we use the
values of graduated instructions gathered using the
hardware performance counters. In the C34 case, we
use the traces provided by Dixie. As it can be seen,
the differences are huge. Obviously, as vectorization
degree decreases, this gap is diminished. It is inter-
esting to note that the ratio of number of instructions
can be larger than 128. These extra instructions cor-
responds to the overhead that the scalar machine has
to pay due to a larger number of loop iterations.

n v

9 30

5
0

Y

E
.I

10
E-c

0

DLP
R 10000
(Reg-L1)
RlOOOO
(Ll-L2)
R 1 0000
(L2-Mem)

8

0

Figure 3: Comparison of total memory traffic in
the DLP and ILP machines.

4.2 Memory Traffic
Figure 3 compares the total memory traffic gener-

ated by DLP and ILP machines. Here, we understand
memory traffic as the total number of 64-bit words
moved up and down through the memory hierarchy.
In the DLP case, since there are no caches at all, all
data transfers are between registers and main mem-
ory. In the ILP case, data transfers can occur at three
different levels: registers to L1 cache, L1 to L2 cache
and L2 cache to main memory. For the ILP machine,
we are presenting the data gathered using the Pow-
erchallenge RlOOOO hardware counters, which has an
L1 of 32 Kb and an L2 of 2Mb. For each program, the
first bar plots the total DLP traffic and the follow-
ing bars plot traffic at the three levels of the memory
hierarchy of the ILP machine.

Several things can be pointed out from figure 3.
First, let’s concentrate only in the RlOOOO memory
traffic. A couple of programs (wave and mdljdp2)
mostly fit in the L1 cache. This is deduced from the
fact that the traffic between L1 and L2 and between
L2 and main memory is very small when compared to
the Register to L1 traffic. Programs su2cor, hydro2d
and nasa7, fit inside the L2 cache but not inside L1.
This can be seen because they move almost the same
amount of data (and, sometimes, more) between reg-
isters and L1 and between L1 and L2. Moving more
data between L1 and L2 than between registers and L1
indicates poor spatial locality and/or cache conflicts.
Programs swm256 and tomcatv show a relatively high
fraction of L2 to Main memory traffic, although they
seem to achieve a good reuse of the data present in
L1.

Comparing the DLP bars against the first RlOOOO
bar (register-L1) we see two different behaviors. In 4

221

programs, swm256, hydro2d, tomcatv and mdljdp2,
the data movement specified by load/store instruc-
tions present in the program is larger in the DLP case
than in the RlOOOO case. This was expected, since the
original C34 machine only has 8 vector registers, forc-
ing a lot of spill code that adds to the minimum traffic
necessary to carry out the programs computations. It
is interesting, though, than in the other 3 programs
the DLP machine actually requests less words from
memory than the R10000.

Even though the vector memory traffic might be
greater in some cases, if we consider the three bars cor-
responding to the R10000, the picture changes. The
height of the Ll-L2 and L2-Mem bars gives an idea
of the first and second level cache misses. Each cache
miss has a certain cost in terms of cycles that can make
the importance of these bars very high. Meanwhile,
the vector traffic can be evenly distributed across long
vector loads, that help compensate memory latency.

5 IPC comparison
We now turn to the performance of the two models

under study from an IPC perspective. We will com-
pare an ILP processor which is a close model of the
RlOOOO to the out-of-order dynamic scheduling vector
architecture described in sectioii 3.2 (the ILP+DLP
machine). We use trace driven simulation for the
ILP+DLP machine and execution driven simulation
for the superscalar machine. We will compare IPC to
EIPC as defined in section 3.3.

We will start comparing a current, state-of-the-art
4-wide issue superscalar to the equivalent ILP+DLP
machine. Then we will look into scalability issue to see
how the superscalar machine improves when its fetch
and decode capability is increased up to 16 instruc-
tions per cycle.

5.1 Configurations under study
Table 4 presents the different configurations we will

be studying. A configuration is represented by a five-
tuple of the form: (type,issue,memory,RPC,MPC).
“Type” indicates whether it is an ILP machine (I) or
it’s an ILP+DLP machine (ID). “Iss,ue” indicates the
maximum number of instructions that can be fetched
and issued per cycle. “Memorf can be either ‘R’ for
a real memory system (40 cycles for the ILP machine
and 50 cycles for the ILP+DLP machine) or ‘P’ for
a perfect main memory system that delivers data in
1 cycle. “RPC’ indicates the number of computed
results per cycle for a certain configuration. “ M P C
stands for memory-per-cycle and is equal to the num-
ber of words that can be read or written per cycle.

As it can be seen, the table is split in two main
sections. First, configurations having a peak IPC of
4 appear. In the second half, configurations with a
peak IPC of 16 are presented. The notation ‘2x4’ in
the vector units indicates that we have 2 independent
functional units that are 4-way deep. This means that,
on one of the functional units, on every cycle 4 inde-
pendent operations from the same pair of vectors are
launched. This is much simpler than actually hav-
ing four independent functional units: when a single
vector add, for example, is initiated, i t will proceed

at four results per cycle until all elements have been
processed.

In the case of the memory port, the notation ‘1x4’
indicates that, for stride-1 accesses, data is brought
from the memory system in blocks of four. For stride-
2 accesses, data arrives in blocks of 2 words and four
all other strides (and for scalar references) data ar-
rives one word per cycle. The implementation is such
that we save many address pins over a configuration
where 4 different ports where available. For stride-1
accesses, our system sends only every fourth address
to the memory system, knowing that, in return, four
words will be sent.

It is important to note that, in all cases, the
ILPSDLP machine is limited to fetching and decoding
4 instructions per cycle and that in the 16-wide con-
figurations we also reduce the total number of results
per cycle of the ILP+DLP machine.
5.2 Issue 4

Figure 4 presents the comparison between the first
four configurations, all of which have a peak perfor-
mance of 4 RPC and can transfer at most 1 memory
word per cycle. The first thing to note is that, in all
but one case, the performance of ILP+DLP is larger
than that of ILP by factors that go from 1.5 up to 1.8.
While IPC for the ILP machine hardly exceeds 1 in
any case, the ILP+DLP machine is for most programs
well over 2.3. When comparing the bars with real a.nd
perfect memory, we see that, while the ILP machine is
very sensible to main memory latency (when increas-
ing latency from 1 to 40 cycles, IPC drops by factors
between 1.1 and 1.8, except in wave) the ILP+DLP
machine experiences almost no difference between a 1
cycle and a 50 cycle main memory latency. Similar
results have already been reported in [lo].

Note that the ILP+DLP machine is very close to its
peak performance. Although the nominal peak perfor-
mance is 4, if we look back to tuble 1 we can see that
for the majority of the time at most three operations
can be running concurrently: two vector functional
units and the memory port. Even though the scalar
units could work in parallel with the other 3 units,
our analysis show that a scalar and vector sections
tend to be disjoint and [I b the fraction of scalar code
is too small to make a significant difference. Thus, the
actual peak is around 3 instructions per cycle. Five
programs reach more than 80% of this peak.

The overall conclusion is that the DLP model allows
a typical superscalar machine to much better exploit
the available parallelism in a program,. providing an
EIPC tha.t is much closer to the theoretical peak.
5.3 Issue 16

We take our baseline ILP machine and increase its
fetch and issue width up to 16 instructions per cycle
and provide enough resources to substantially increase
IPC. In the ILP+DLP machine, on the other hand,
we keep using the same 4-wide issue out-of-order en-
gine, but we provide the machine with more functional
units.

Note that there is a big difference in the effort re-
quired to add these extra resources to both architec-
tures. In the ILP+DLP machine the extra functional

222

Fetch/ Branch Reorder Functional L
Name Issue Pred. Buffer int I fp I vect

4 BTB-512 32 2 1 2 1 -

L2-to-Mem

ix4 50
1x4 1

16 4
12 4
12 4

Table 4: Machine configurations under study: widths 4 and 16 for the ILP machine (I) and
ILP+DLP machine (ID).

Figure 4: EIPC comparison with issue 4.

units are added by partitioning the vector data path
and register file in 4 sections. Each section is com-
pletely independent of all others and, yet, they work
synchronously under control of the same instruction.
In each section we have 1/4 the total register file and
2 functional units. Thus, from the point of view of
control, the extra resources do not require any special
attention. On the other hand, in the ILP machine,
increasing the number of functional units has forced
us to add a 16-wide fetch engine and to implement
a 128-entry reorder buffer. Moreover, the number of
ports into the register files has grown enormously ei-
ther putting in jeopardy the cycle time or introducing
some need for duplicate register files. Finally, the L1
cache in the ILP machine has to be 4-ported, while
the ILP+DLP machine still retains its simple scheme
where only 1 address is sent over the memory port per
cycle.

Fzgure 5 presents the IPC values for all the high end
configurations. As we saw in the previous section, if we
compare "real" configurations, the ILP+DLP machine
outperforms the ILP machine in most cases. In four
programs, swm256, hydro2d, su2cor and tomcatv, the

10

8

E
1 6

E 4

\

U

2

0

0 (1,16,R,16,4)
Gp (1,16,P,16,4)

(W R , 12,4)
(ID,4,P,12,4)

Figure 5: EIPC comparison with issue 16.

speedup of the ILPSDLP machine over the ILP ma-
chine is in the range 2.0-3.45. For programs nasa7
and wave, speedups are more moderate but still sig-
nificant: 1.2 and 1.13, resp. Looking at the bars with
real memory, we see that the ILP machine is typically
below an IPC of 4, while the ILP+DLP machine ex-
ceeds an EIPC of 6 in four cases.

If a perfect memory system is considered for the
superscalar machine, we can see that performance in-
creases significantly. In one case, nasa7, the ILP ma-
chine outperforms the lLP+DLP machine with perfect
memory, but only by a very small margin (less than
6%). In two cases, sum256 and tomcatv, IPC for t8he
ILP machine reaches 6.

6 Summary
This paper has presented data comparing the per-

formance of an architecture exploiting instruction level
parallelism (ILP) and an architecture exploiting both
ILP and data level parallelism (DLP) on a set of highly
vectorizable codes.

We have seen that, at the instruction level, the DLP
paradigm offers substantial savings in terms of instriac-
tions executed and pressure on the fetch engine. Our

223

data shows that a vectorized program can be execute
using 128 times less instructions than a purely scalar
program. We have looked at the memory behavior
of the ILP and DLP machines. Due to the relatively
scarce vector registers, in several cases the DLP ma-
chine required overall more loads and stores than the
ILP machine. Nonetheless, when the cache behavior
model is factored in, that is, when we consider the
fact that a word request can turn into a N-word line
request, we have seen that the DLP machine better
manages its memory hierarchy.

In the second part of this paper, we have performed
an IPC comparison of the two architectures under
study. For roughly equivalent machines able to pro-
duce 4 results per cycle and move 1 memory word per
cycle, we have seen that the ILP+DLP machine out-
performed the ILP machine by factors of 1.5-1.8. If we
increase the available hardware resources by increas-
ing issue width from 4 to 16 and by allowing up to 16
results per cycle and 4 memory words transferred per
cycle, we see that the ILP+DLP machine can make
much better use of the extra resources. The speedup
of the ILP+DLP machine over the ILP machine was
in the 2.0-3.45 range in most cases. Moreover, while
the peak achieved IPC for the ILP machine is 4, the
ILPSDLP machine exceeded an EIPC of 10.

We believe that the results for the ILP+DLP ma-
chine are good enough to consider worth it adding
a vector pipeline to current superscalar microproces-
sors. The tasks assigned to this vector pipeline would
be the traditional vectorizable floating point applica-
tions plus the ever-growing number of computation-
ally and bandwidth intensive media tasks: 3D ren-
dering, MPEG processing, DSP functions, encryption,
etc. We conjecture that an important consequence of
adding the vector pipeline would be that the super-
scalar core need not to be as aggressive as it is nowa-
days. The vector part would take care of highly vec-
torizable programs, while the scalar part would focus
on simple (but fast) execution of the other codes. This
design strategy would allow a very fast clock, based on
the simplicity of the scalar core and on the very regu-
lar and easily pipelineable nature of the vector core.
References
[l] A. Agarwal. Performance Tradeoffs in Multithreaded Pro-

cessors. IEEE Transactions on Parallel and Distributed
Systems, 3(5):525-539, September 1992.

[2] D. Anderson, F. J. Sparacio, and F. M. Tomasulo. The
IBM System/360 model 91: Machine philosophy and in-
struction handling. IBM Journal oj Research and Devel-
opment, 11:8-24, January 1967.

[3] D. Burger, T. Austin, and S. Bennett. Evaluating Future
Microprocessors: the Simplescalar Tool Set. Technical
Report CS-TR-96-1308, Computer Sciences Department.
University of Wisconsin-Madison., 1996.

(41 Convex Press, Richardson,Texas, U.S.A. CONVEX Archi-
tecture Reference Manual (C Series), sixth edition, April
1992.

[5] 2. Cvetanovic and D. Bhandarkar. Performance character-
ization of the Alpha 21164 microprocessor using TP and
SPEC workloads. In Proceedings of the Second Interna-
tional Symposium on High-Performance Computer Archi-

tecture, pages 270-280, San Jose, California, February 3-7,
1996. IEEE Computer Society TCCA.

[6] K. Ebcioglu, R. Groves, K.-C. Kim, G. Silberman, and
I. Ziv. VLIW compilation techniquesin a superscalar envi-
ronment. SIGPLAN Notices, 29(6):36-48, June 1994. Pro -
ceedings of the ACM SIGPLAN '94 Conference on Pro-
gramming Language Design and Implementation.

[7] R. J. Eickemeyer, R. E. Johnson, S. R. Kunkel, M. S. Squil-
lante, and S. Liu. Evaluation of multithreaded nniproces-
sors for commercial application environments. In ISCA,
pages 203-212. ACM Press, May 1996.

[SI R. Espasa and M. Valero. Decoupled vector architectures.
In HF'CA-2, pages 281-290. IEEE Computer Society Press,
Feb 1996.

[9] R. Espasa and M. Valero. Multithreaded vector architec-
tures. In HPCA-3, pages 237-249. IEEE Computer Society
Press, Feb 1997.

[lo] R. Espasa, M. Valero, and J. E. Smith. Out-of-order Vector
Architectures. Technical Report UPC-DAC-1996-52, Univ.
Polit&cnica de Catalunya-Barcelona, November 1996.

[ll] A. Iwaya and T. Watanabe. The parallel processingfeature
of the NEC SX-3 supercomputer system. Inll. Journal of
Hagh Speed Computing, 3(3&4):187-197,1991.

[12] L. Kurian, P. T. Hulina, and L. D. Coraor. Memory La-
tency Effects in Decoupled Architectures. IEEE Transac-
tions on Computers, 43(10):1129-1139, October 1994.

[13] W. Oed. Cray Y-MP C90: System features and early
benchmark results. Parallel Computing, 18(8):947-954,
August 1992.

[14] S. Palacharla, N. P. Jouppi, and J. E. Smith. Complexity-
Effective Superscalar Processors. In L4rd Annual Inler-
national Symposium on Computer Architecture, Denv'er ,
Colorado, June 2-4, 1997.

[15] M. Peiron, M. Valero, E. AyguadC, and T. Lang. Vector
multiprocessors with arbitrated memory access. In Ltnd
Annual International Symposium on Computer Architec-
ture, pages 243-252, Santa Margherita Ligure, Italy, June

[16] R. M. Russell. The CRAY-1 computer system. Commani-
cations oj the ACM, 21(1):63-72, January 1978.

[17] J. E. Smith, S. Weiss, andN. Y. Pang. A SimulationStndy
of Decoupled Architecture Computers. IEEE Transaclions
on Computers, C-35(8):692-702, August 1986.

[18] G. S. Sohi. Instruction Issue Logic for High-Performance,
Interruptible, Multiple Functional Unit, Pipelined Com-
puters. IEEE Transactions on Computers, 39(3):349-359,
March 1990.

[I91 D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous
multithreading: Maximizing on-chip parallelism. In ISCA,
pages 191-202. AGM Press, May 1996.

[20] A. Wolfe and J. Shen. A variable instruction stream ex-
tension to the VLIW architecture. In ASPLOS-IV, pages
2-14, Santa Clara, CA, April 1991.

[21] I<. C. Yager. The Mips RlOOOO Superscalar Microproces-
sor. IEEE Micro, pages 28-40, April 1996.

22-24, 1995.

224

