1,428 research outputs found

    Image Segmentation and Multiple skew estimation, correction in printed and handwritten documents

    Get PDF
    Analysis of handwritten document has always been a challenging task in the field of image processing. Various algorithms have been developed in finding solution to this problem. The algorithms implemented here for segmentation and skew detection works not only on printed or scanned document images but for also handwritten document images which creates an edge over other methodologies. Here Line segmentation for both printed and handwritten document image is done using two methods namely Histogram projections and Hough Transform assuming that input document image consists of no major skews. For Histogram Projection to work correct, the document must not contain even slight skews. Hough transform gives better results than the former case. Word Segmentation can be done using the connected components analysis. Here, we first identify connected components in the printed or handwritten document image. A methodology is being used here which detects multiple skews in multi handwritten documents or printed ones. Using clustering algorithms, we detect multiple skew blocks in a handwritten document image or printed document image or a combination of both. The algorithm used here also works for skewed multi handwritten text blocks

    Direct Tensor Voting in Line Segmentation of Handwritten Documents

    Get PDF
    In the vast archives and libraries of the world, countless historical documents are tucked away, often difficult to access. Thankfully, the digitization process has made it easier to view these invaluable records. However, simply digitizing them is not enough – the real challenge lies in making them searchable and computer-readable. Many of these documents were handwritten, which means they need to undergo handwriting recognition. The first step in this process is to divide the document into lines. This article introduces a solution to this problem using tensorvoting. The algorithm starts by conducting voting on the binary image itself. Then, using the local maxima found in the resulting tensor field, the lines of text are precisely tracked and labeled. To ensure its effectiveness, the algorithm’s performance was tested on the data-set delivered by the organizers of the ICDAR 2009 competition and evaluated using the criteria from this contest

    Adaptive Algorithms for Automated Processing of Document Images

    Get PDF
    Large scale document digitization projects continue to motivate interesting document understanding technologies such as script and language identification, page classification, segmentation and enhancement. Typically, however, solutions are still limited to narrow domains or regular formats such as books, forms, articles or letters and operate best on clean documents scanned in a controlled environment. More general collections of heterogeneous documents challenge the basic assumptions of state-of-the-art technology regarding quality, script, content and layout. Our work explores the use of adaptive algorithms for the automated analysis of noisy and complex document collections. We first propose, implement and evaluate an adaptive clutter detection and removal technique for complex binary documents. Our distance transform based technique aims to remove irregular and independent unwanted foreground content while leaving text content untouched. The novelty of this approach is in its determination of best approximation to clutter-content boundary with text like structures. Second, we describe a page segmentation technique called Voronoi++ for complex layouts which builds upon the state-of-the-art method proposed by Kise [Kise1999]. Our approach does not assume structured text zones and is designed to handle multi-lingual text in both handwritten and printed form. Voronoi++ is a dynamically adaptive and contextually aware approach that considers components' separation features combined with Docstrum [O'Gorman1993] based angular and neighborhood features to form provisional zone hypotheses. These provisional zones are then verified based on the context built from local separation and high-level content features. Finally, our research proposes a generic model to segment and to recognize characters for any complex syllabic or non-syllabic script, using font-models. This concept is based on the fact that font files contain all the information necessary to render text and thus a model for how to decompose them. Instead of script-specific routines, this work is a step towards a generic character and recognition scheme for both Latin and non-Latin scripts

    Off-line Arabic Handwriting Recognition System Using Fast Wavelet Transform

    Get PDF
    In this research, off-line handwriting recognition system for Arabic alphabet is introduced. The system contains three main stages: preprocessing, segmentation and recognition stage. In the preprocessing stage, Radon transform was used in the design of algorithms for page, line and word skew correction as well as for word slant correction. In the segmentation stage, Hough transform approach was used for line extraction. For line to words and word to characters segmentation, a statistical method using mathematic representation of the lines and words binary image was used. Unlike most of current handwriting recognition system, our system simulates the human mechanism for image recognition, where images are encoded and saved in memory as groups according to their similarity to each other. Characters are decomposed into a coefficient vectors, using fast wavelet transform, then, vectors, that represent a character in different possible shapes, are saved as groups with one representative for each group. The recognition is achieved by comparing a vector of the character to be recognized with group representatives. Experiments showed that the proposed system is able to achieve the recognition task with 90.26% of accuracy. The system needs only 3.41 seconds a most to recognize a single character in a text of 15 lines where each line has 10 words on average

    An IoT System for Converting Handwritten Text to Editable Format via Gesture Recognition

    Get PDF
    Evaluation of traditional classroom has led to electronic classroom i.e. e-learning. Growth of traditional classroom doesn’t stop at e-learning or distance learning. Next step to electronic classroom is a smart classroom. Most popular features of electronic classroom is capturing video/photos of lecture content and extracting handwriting for note-taking. Numerous techniques have been implemented in order to extract handwriting from video/photo of the lecture but still the deficiency of few techniques can be resolved, and which can turn electronic classroom into smart classroom. In this thesis, we present a real-time IoT system to convert handwritten text into editable format by implementing hand gesture recognition (HGR) with Raspberry Pi and camera. Hand Gesture Recognition (HGR) is built using edge detection algorithm and HGR is used in this system to reduce computational complexity of previous systems i.e. removal of redundant images and lecture’s body from image, recollecting text from previous images to fill area from where lecture’s body has been removed. Raspberry Pi is used to retrieve, perceive HGR and to build a smart classroom based on IoT. Handwritten images are converted into editable format by using OpenCV and machine learning algorithms. In text conversion, recognition of uppercase and lowercase alphabets, numbers, special characters, mathematical symbols, equations, graphs and figures are included with recognition of word, lines, blocks, and paragraphs. With the help of Raspberry Pi and IoT, the editable format of lecture notes is given to students via desktop application which helps students to edit notes and images according to their necessity

    Character Recognition

    Get PDF
    Character recognition is one of the pattern recognition technologies that are most widely used in practical applications. This book presents recent advances that are relevant to character recognition, from technical topics such as image processing, feature extraction or classification, to new applications including human-computer interfaces. The goal of this book is to provide a reference source for academic research and for professionals working in the character recognition field

    Handwritten Devanagari numeral recognition

    Get PDF
    Optical character recognition (OCR) plays a very vital role in today’s modern world. OCR can be useful for solving many complex problems and thus making human’s job easier. In OCR we give a scanned digital image or handwritten text as the input to the system. OCR can be used in postal department for sorting of the mails and in other offices. Much work has been done for English alphabets but now a day’s Indian script is an active area of interest for the researchers. Devanagari is on such Indian script. Research is going on for the recognition of alphabets but much less concentration is given on numerals. Here an attempt was made for the recognition of Devanagari numerals. The main part of any OCR system is the feature extraction part because more the features extracted more is the accuracy. Here two methods were used for the process of feature extraction. One of the method was moment based method. There are many moment based methods but we have preferred the Tchebichef moment. Tchebichef moment was preferred because of its better image representation capability. The second method was based on the contour curvature. Contour is a very important boundary feature used for finding similarity between shapes. After the process of feature extraction, the extracted feature has to be classified and for the same Artificial Neural Network (ANN) was used. There are many classifier but we preferred ANN because it is easy to handle and less error prone and apart from that its accuracy is much higher compared to other classifier. The classification was done individually with the two extracted features and finally the features were cascaded to increase the accuracy

    Graphonomics and your Brain on Art, Creativity and Innovation : Proceedings of the 19th International Graphonomics Conference (IGS 2019 – Your Brain on Art)

    Get PDF
    [Italiano]: “Grafonomia e cervello su arte, creatività e innovazione”. Un forum internazionale per discutere sui recenti progressi nell'interazione tra arti creative, neuroscienze, ingegneria, comunicazione, tecnologia, industria, istruzione, design, applicazioni forensi e mediche. I contributi hanno esaminato lo stato dell'arte, identificando sfide e opportunità, e hanno delineato le possibili linee di sviluppo di questo settore di ricerca. I temi affrontati includono: strategie integrate per la comprensione dei sistemi neurali, affettivi e cognitivi in ambienti realistici e complessi; individualità e differenziazione dal punto di vista neurale e comportamentale; neuroaesthetics (uso delle neuroscienze per spiegare e comprendere le esperienze estetiche a livello neurologico); creatività e innovazione; neuro-ingegneria e arte ispirata dal cervello, creatività e uso di dispositivi di mobile brain-body imaging (MoBI) indossabili; terapia basata su arte creativa; apprendimento informale; formazione; applicazioni forensi. / [English]: “Graphonomics and your brain on art, creativity and innovation”. A single track, international forum for discussion on recent advances at the intersection of the creative arts, neuroscience, engineering, media, technology, industry, education, design, forensics, and medicine. The contributions reviewed the state of the art, identified challenges and opportunities and created a roadmap for the field of graphonomics and your brain on art. The topics addressed include: integrative strategies for understanding neural, affective and cognitive systems in realistic, complex environments; neural and behavioral individuality and variation; neuroaesthetics (the use of neuroscience to explain and understand the aesthetic experiences at the neurological level); creativity and innovation; neuroengineering and brain-inspired art, creative concepts and wearable mobile brain-body imaging (MoBI) designs; creative art therapy; informal learning; education; forensics
    corecore