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ABSTRACT

Large scale document digitization projects continue to motivate interesting

document understanding technologies such as script and language identification,

page classification, segmentation and enhancement. Typically, however, solutions

are still limited to narrow domains or regular formats such as books, forms,

articles or letters and operate best on clean documents scanned in a controlled

environment. More general collections of heterogeneous documents challenge the

basic assumptions of state-of-the-art technology regarding quality, script, content

and layout. Our work explores the use of adaptive algorithms for the automated

analysis of noisy and complex document collections.

We first propose, implement and evaluate an adaptive clutter detection

and removal technique for complex binary documents. Our distance transform



based technique aims to remove irregular and independent unwanted foreground

content while leaving text content untouched. The novelty of this approach is in

its determination of best approximation to clutter-content boundary with text like

structures.

Second, we describe a page segmentation technique called Voronoi++ for

complex layouts which builds upon the state-of-the-art method proposed by

Kise [46]. Our approach does not assume structured text zones and is designed

to handle multi-lingual text in both handwritten and printed form. Voronoi++

is a dynamically adaptive and contextually aware approach that considers com-

ponents’ separation features combined with Docstrum [64] based angular and

neighborhood features to form provisional zone hypotheses. These provisional

zones are then verified based on the context built from local separation and high-

level content features.

Finally, our research proposes a generic model to segment and to recognize

characters for any complex syllabic or non-syllabic script, using font-models. This

concept is based on the fact that font files contain all the information necessary

to render text and thus a model for how to decompose them. Instead of script-

specific routines, this work is a step towards a generic character and recognition

scheme for both Latin and non-Latin scripts.
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Chapter 1

Introduction

Recent advances in search technology, decreases in storage costs, and a

general improvement of information access through the Internet, have rekin-

dled interest in the mass digitization of existing document repositories for access

purposes. Historically, large scale digitization projects have focused on special

collections and have invested considerable effort in providing extensive and accu-

rate metadata, with relatively little reliance on automated processing. Automated

document processing has been reserved primarily for conversion tasks where the

goal is to completely convert hardcopy to an alternative electronic representa-

tion of the original source. Typically these automated techniques are the most

successful for known domains or structured page formats such as forms, arti-

cles or letters, although considerable progress is being made in the processing of

heterogeneous collections.

There are a number of large scale digitization projects that continue to ad-

vance the field [1, 2, 3, 4, 5] and drive interesting triage problems such as script

and language identification, page classification, segmentation and enhancement.

They are however still typically focused on a known class of documents such as

newspapers, census records or historical books. The Google Books project, for

example, is only focused on published books, and are scanned in a fairly con-
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trolled environment [2]. An alternative class of problems involves access to more

general heterogeneous collections, where a much more diverse set of documents

are captured, and perhaps with much less regard for quality. Typical applications

may include litigation support, large scale capture of collections for triage and

storage or simply document image management in office environments.

With the goal of accessing collections that may be many orders of magnitude

larger than current digital libraries, the document analysis community will need

to continue to focus on a number of difficult problems that arise from these

more diverse, lower quality images. These collections challenge some of the basic

assumptions on which state-of-the-art algorithms are based, including reasonable

quality, consistent, structured layout and known script or language.

The first challenge is the quality of document images being produced as a

result of scanning. Mass data scanning and the transmission of document images

through low-bandwidth networks for storage and access may require high speed

scanning and data reduction in the form of reduced resolution, reduced image

depth and image compression. High speed scanners often produce artifacts such

as page borders, skew or intensity variations. Many images produced are scanned

as binary or automatically thresholded and saved as binary images, instead of

gray-level or color. Generic thresholding often amplifies problems in subsequent

phases, introduces various forms of noise, allows background pattern to flow into

foreground contents, exacerbates touching and broken characters and leads to an

overall degradation in document quality. State-of-the-art automated analysis

assumes noise to be ‘separable’ from content in one or more feature spaces, like
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intensity (for bleed-through), boundary (marginal noise) or sparseness (for salt-

and-pepper). Techniques like region growing and morphological analysis have

proved to be sufficient for noise removal for only in the latter cases. In this thesis,

we will consider noise types in binary documents which tend to directly affect

text in the foreground in irregular ways. The challenge is to detach and preserve

text and eventually remove noise from the document.

The second challenge involves mixed content and layout. Handwritten doc-

uments are becoming increasingly visable in the document analysis community

as progress continues to be made. Such free-form handwritten documents along

with handwriting-annotated printed text documents are challenging the assump-

tion of structured layouts and separable text regions. Non-Manhattan layouts

resulting from such documents are far more complex than business letters or

journal pages. The advancement of desktop publishing introduces additional

challenges of layout analysis and text zone extraction from figures, diagrams,

tables and other non-text regions. Rule-lines, local skew at the word or character

level and different text-orientations within the same document lead to complexi-

ties in page segmentation and text-line extraction.

The third challenge arises from a desire to process and access content on a

global scale. Commercial and state-of-the-art OCR systems deal with each script

independently using script-specific character segmentation followed by script-

dependent recognition routines. Each new script brings along unique challenges,

making the vision of a generic Optical Character Recognition harder. It is very

difficult to adapt the system to an unknown script, that may vary over time,
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without knowing the details of its character-set composition and grammar. On

the other hand, scripts of some less-commonly-taught or low density languages

are often not addressed by commercial vendors for economic reasons. Limited

amounts of annotated data and complex interaction between strokes in these

scripts make the training of new classifiers challenging, prompting new ways to

bootstrap systems to deal with them.

A typical document analysis work-flow is depicted in Figure 1.1 and covers

two phases of our research. In phase one, a noisy multi-lingual document con-

taining both machine-print and handwritten text is processed to identify zones

of uniform content. Typically a document goes through preprocessing including

normalization, enhancement, noise removal and a zone-extraction process where

it is segmented into zones and each zone is classified by its type. Content-specific

applications are then applied to each zone, e.g. the text zones are then typically

passed to recognition. In the second phase, a character training model is built us-

ing ground-truth data of a given script. These models are then used to recognize

appropriate content.

In this thesis, we focus on fundamental research topics in Noise Detection

and Removal, Page Segmentation and Zone Classification as well as the Character

Segmentation and Recognition for low density languages.
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Figure 1.1: Modules of a document analysis system.

1.1 Noise Detection and Removal

1.1.1 Problem Definition and Challenges

Observed images often deviate from the ideal images that were produced by

the source. These deviations may manifest themselves on the physical document

in or after production or during scanning, transmission, storage or conversion

from one form to another and are collectively refered to as noise. Irrelevant

content, such as rule-lines, can also be viewed as noise, making the problem of

detection and removal very much application dependent.

Document analysis algorithms such as page segmentation and character

recognition typically work best on clean documents and often rely on connected
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components as basic units, which unfortunately are sensitive to various types of

noise.

Types of Noise: Document noise such as rule-lines [82, 9], bleed-through [92],

stray-marks or clutter [15, 10] may be present before the scanning process, while

many other types of document noise are introduced at later stages.

Clutter noise [10, 33] may also appear during the scanning process, due to

the improper alignment of the document paper with the scanner bed or due to

generic thresholding applied after scanning process. Similarly, bleed-through can

also appear during scanning for thin paper and as a result of light reflecting off

the scanner’s backing.

Salt-n-pepper has been one of the most prevalent kind of noise in document

images. Also known as bipolar noise, it is an impulsive noise which appears as

randomly distributed small components over an image formed due to dithering

binarization [22] and can be composed of one or more pixels. However, by

definition, they have been assumed to be much smaller than the size of wanted

content and, therefore, the most prominent techniques for removing salt-n-pepper

noise use a small median filter [22, 87, 65], kFill window [73] or a morphological

operator of size 3X3 or smaller [79].

Noise in binary document images can be viewed as dependent or indepen-

dent of the underlying document content. Ink blobs, salt-n-pepper [28], stray

marks and marginal noise [33] are, in general, independent of location, size or

other properties of text data in the document image. Recorded images that have
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this type of noise, can be expressed as the sum of true image I(i, j) and the noise

N(i, j) as R(i, j) = I(i, j) + N(i, j). Such noise can also be referred to as independent

noise with respect to the content. On the other hand, when the noise is included

inside the spatial frequency domain of the image and can not be suppressed with-

out a priori knowledge of the content, it is referred to as dependent noise [94].

Blur, pixel-shift or bleed-through [92], manifest themselves differently depending

on the content. Such dependent noise is comparatively more difficult to model,

is mathematically non-linear and often multiplicative.

Document cleaning can be performed in two fundamental ways. One ap-

proach is to extract the information content out of an image, leaving non-content as

noise [88], [99], [97] while the other approach is to detect and remove noise from an

image, resulting in a clean document. The former approach is often used in cases

where there is a limited number of content types. In particular, there has been a

lot of research in extracting text from images [88], [89], [99], [97]. However, for

varied content such as text, logos, figures, stamps, diagrams, equations, drawings

or halftones, individual extraction processes may be required [70], [88], [104], [30],

which makes this approach less practical. In addition, these individual extrac-

tion processes are typically dependent on zone layout analysis, which in turn are

dependent on a clean document for good results.

Detecting and removing noise is generally based on its properties like its

shape, position, frequency, gray-values, density or periodicity of occurrence in the

document. Unwanted punched holes exhibit regularity in their shapes, marginal

noise [33] show regularity in their positions, while rule-lines [101], [103] show
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periodicity in their positions and consistency in direction. On the other hand,

noise such as ink blobs, complex background binarized patterns are denser than

text, whereas salt-n-pepper [28, 12] is impulsive noise and is sparser than content

pixels. If noise shows a consistent behavior in terms of these properties, it is

easier to detect it and separate it from content. Ozawa and Nakagawa [68], Wang

and Tang [92], Negishi et. al. [62] use gray-level to distinguish foreground from

background. Fan et. al. [33] assumes length, position and neighborhood of noise

to detect and remove it. Liang et al. [50] depend on periodicity of noise to get rid

of it. However, there has been little work reported on the removal of noise which

does not adhere to a consistent shape, position or size and which tends to interact

with text in the foreground in irregular ways.

1.1.2 Contributions

In this thesis, we will consider noise in binary documents which appears

as unwanted foreground content and tends to directly interact with text in irreg-

ular ways. We propose a novel technique for the identification and removal of

unwanted foreground content in form of clutter and Stroke-like Pattern Noise

(SPN). The challenge is to detach and preserve text and eventually remove noise

from the document. Our detection and removal process is independent of noise

position, size, shape and connectivity with text.

Figure 1.2a shows an image with clutter present around the handwritten

text. Removal of the clutter’s connected component (after detection) may lead to
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(a) (b) (c)

Figure 1.2: (a) Document image showing clutter connected with ruled-lines and
text. (b) Single connected component of clutter (c) Output image after
noise detection and removal.

more than 70% of text-content removal as it is attached to the clutter in irregular

fashion (Figure 1.2b). Morphological operations are known to degrade text. Our

proposed pixel-based techniques remove clutter restrictively by preserving the

text-content as shown in Figure 1.2c.

1.2 Page Segmentation and Zone Classification

1.2.1 Problem Definition and Challenges

With the advancements in information and communication technology and

success in document understanding, there is a growing expectation that all forms

of paper documents can be scanned, interpreted, indexed and treated as a le-

gitimate form of media (like magnetic tapes and optical discs) which is both
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machine and human readable [64]. This has led to the variety of paper docu-

ments scanned today being much more diverse than was typical several years

ago. New scripts, more complex, non-Manhattan, computerized page layouts

and various font styles are making this vision challenging. Furthermore, a larger

percentage of handwritten material is being acquired which does not adhere to

traditional layout constraints. Character recognition as well as established pre-

processing modules such as noise removal, layout analysis and zone classification

are effected negatively by this increase in complexity.

Another challenge involves mixed content and layout. Mixed handwritten

and machine-printed documents are becoming increasingly visable in the docu-

ment analysis community as progress continues to be made on processing them.

Free-form handwritten documents along with handwriting-annotated printed

text documents are challenging the assumption of structured layouts and separa-

ble text regions. Non-Manhattan layouts resulting from such documents are far

more complex than business letters or journal pages. The advancement of desk-

top publishing introduces additional problems of layout analysis and text zone

extraction from figures, diagrams, tables and other non-text regions. Ruled lines,

local skew at the word or character level and different text-orientations within the

same document lead to complexities in page segmentation and text-line extrac-

tion.
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1.2.1.1 Page Segmentation

Current page segmentation algorithms make use of typical assumptions of

uniformity in line, word and character spacing on a page. These assumptions

fail however for handwritten and noisy documents where the size of compo-

nents vary drastically due to cursive nature of handwriting, leading to over or

under-segmentation. These algorithms lack the ability to dynamically adapt lo-

cal variations in the size, orientation and distance of components within a page.

Moreover, it is not necessary that components within a zone are either linearly

separated or are of similar size. Instead, local patterns inside a zone are more

likely to be consistent. At the same time, two adjacent regions of similar patterns

can form distinct zones (e.g. two vertical columns on a page). Hence, a zone could

be differentiated from its neighbors based on both its separation and its content.

Voronoi based approaches [46] achieve this by using the area of components as

a content-property. Clearly, area property is neither a necessary nor a sufficient

condition for content differentiation and a more robust mechanism of computing

a zone’s pattern is required. Figure 3.1 compares state-of-the-art algorithms and

the properties they use to make decisions on segmentation.

1.2.1.2 Zone classification

Identifying the content of document zones, that have previously been seg-

mented, is a fundamental component of modern document analysis systems. For

example, identifying a zone type allows the application of content-specific algo-
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Figure 1.3: Comparing various algorithms based on the component features they
use for segmentation.

rithms such as Optical Character Recognition (OCR). More importantly, zone type

identification is crucial to indexing and retrieval of large document databases.

Broadly speaking, content analysis algorithms can be classified as one of

three main approaches – (1) zone detection, (2) page classification or (3) zone

classification .

Detection approaches, emphasize finding specific instances of zones, such as

text regions [98], logos [26], mathematical expressions [100] or tables [41], without

requiring segmentation of the page. Page classification approaches, assume the

content of the entire page is of a single type (e.g. title page or index page) and a

classifier is used to determine the page content [24][32]. Finally, zone classification

approaches assume that the page is segmented into zones of independent content.

Low level image features are extracted from each zone and a statistical classifier

is used to label the different zones into one of possible content types (e.g. text,

math, etc.) [93].
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1.2.2 Contributions

In this thesis, we first develop a hybrid page segmentation approach which

first estimates zone boundaries dynamically, then considers context to selectively

prune them. The first hypothesis phase applies a deterministic approach for non-

Manhattan layouts, which builds upon Kise et. al.’s work using Area Voronoi Dia-

grams [46]. Instead of linear relations between distance and area ratio of connected

components, we dynamically determine these relations locally and consider an-

gular and neighborhood features from Docstrum based features [64] to improve

accuracy. The zone boundaries, however, are not removed unless sufficient ev-

idence is found. Instead, low confidence boundaries are marked and kept for

further validation. The second validation phase, introduces a contextually-aware

improvement based on zone separation and content-type. This phase considers

the low-level component relationship features from the hypothesis phase and

high-level features based on the zone-content to evaluate a possible zone-merger

using a semi-supervised clustering technique.

It improves page segmentation especially for handwritten documents, where

the size of components vary drastically due to the cursive nature of writing, lead-

ing to over or under-segmentation using state-of-the-art techniques. Zone-based

evaluations performed on sets of printed and handwritten documents, in English

and Arabic scripts with multiple font types and sizes, show that we achieve an

accuracy improvement by 74% over the accuracy reported in [46]. Figure 1.4

illustrates page segmentation results using Voronoi and Voronoi++.
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(a) (b)

Figure 1.4: Page Segmentation (a) using Voronoi (b) using Voronoi++.

Second we propose a new combination scheme of structural and texture

features to represent each region for zone classification. Partial Least Squares

(PLS) [95] is then used to reduce the dimensionality of the feature space and

find discriminating features. Rather than using the classic one-against-all or one-

against-one approach for zone classification, a new hybrid approach seeking to

improve the classification accuracy will be shown to give better results.
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1.3 Character Segmentation and Recognition

1.3.1 Problem Definition and Challenges

There are many commercial omnifont, script dependent recognizers on the

market, including ABBYY’s FineReader, Nuance’s OmniPage and Sakhr’s Auto-

matic Reader. Such recognizers generally make assumptions about the language,

script and/or document quality, try to recognize a wide variety of fonts, sizes and

script properties and are developed with extensive training with large numbers of

training samples. Despite ongoing research on non-Latin script recognition, most

of the commercial OCR systems focus on Latin based languages. Efforts on non-

Latin scripts are quite focused and continue to be tailored for specific scripts using

their inherent features explicitly. The resulting systems are often costly and do

little to advance the field. Non-Latin scripts primarily pose two major challenges

as compared to Latin scripts. The first challenge is the inherent complexity of

the scripts in terms of recognizable glyphs and word compositions. This directly

affects the segmentation of words into meaningful recognizable units, glyphs

or characters. The second challenge is the unavailability of a large training set

covering enough samples of each recognizable unit, especially for low-density

languages.
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1.3.1.1 Segmentation complexities

The literature often distinguishes between the recognition of scripts with

isolated characters and scripts which are connected. With isolated scripts, char-

acters are written to be separable (although they may touch due to degradation)

while connected scripts can not be easily segmented. Casey and Lecolinet de-

fine four approaches to word recognition [23]. This covers scripts with isolated

characters as well as connected scripts.

1. The first is dissection based where the word image is decomposed into

classifiable units, glyphs or characters, before feature extraction and clas-

sification. Due to its disconnectivity from recognition module, any errors

performed at the segmentation stage magnify recognition failures.

2. The second method classifies subsets of spatial features collected from a

word image as a whole. Segmentation hypotheses are generated and choos-

ing the best hypothesis along the word gives the best recognition result. This

approach generally performs better than the previous one, due to the con-

struction of a lattice with possible segmentations. However, the challenge

is to come up with a minimal number of possibly correct hypotheses.

3. The third involves over-segmenting the word image using physical feature

points. Although these techniques do fairly well in the handwriting domain,

they have not yet been established in printed-character domain.

4. The fourth method recognizes an entire word as a unit and is a holistic strat-
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egy. While the first three are segmentation based recognition approaches,

this is a segmentation-free approach. Though this approach bypasses the

complexities of character segmentation, it involves large amounts of train-

ing data and is limited to a predefined lexicon. This approach is generally

not applied to languages like English, where a comparatively small charac-

ter set gives rise to a much larger vocabulary. Therefore, for English, the

ratio of number of classes required in a segmentation-free approach to that

in segmentation-based approach is much larger than for other scripts.

Gader and Mohamed [59] proposed a combination scheme of segmentation-

based and segmentation-free word recognition. The segmentation-free technique

constructs a continuous density hidden Markov model for each lexicon string. The

segmentation-based technique uses dynamic programming to match word images

and strings. The combination module uses differences in classifier capabilities to

achieve significantly better performance.

In addition to isolated vs. connected, scripts can also be broadly classi-

fied based on word-composition into syllabic and non-syllabic. In non-syllabic

scripts, characters are horizontally (or vertically) separable glyphs whereas in

syllabic scripts, glyphs appear as syllables, which are in turn a complex combi-

nation of one or more characters. Sometimes, characters fuse together to form

new shapes, called ligatures (conjuncts) (Figure 1.5). Cambodian (Khmer) and

many South-East Asian scripts are examples of syllabic scripts. The pres-

ence of language-specific constructs, in the domain of syllabic scripts, such as

17



(a) (b)

Figure 1.5: (a) Syllable (b) Conjunct for Cambodian script.

shirorekha (Devanagari), modifiers (South-East Asian scripts), writing order or

irregular word-spacing (Arabic and Chinese) require different approaches to seg-

mentation. Asian scripts, for example, share many common properties yet pose

some unique challenges for segmentation. For example, in Burmese (Figure 1.6a),

a vowel can be used with diacritics to create other vowels. Figure 1.6b shows a

word in Devanagari where characters are combined together to form a word. A

character’s appearance is affected by its ordering with respect to other characters,

the font used to render the character, and the application or system environment.

Figure 1.6c shows the word al-arabiyyah, in Arabic, at three stages of render-

ing. The first line shows the individual letters, the second line shows it with

the bidirectional display mechanism and the third line renders the letters using

a glyph shaping mechanism according to context. While conventional vertical

or horizontal profiling methods fail to segment characters directly from words,

character segmentation from syllables using only connected component analysis

itself is a complex task which is highly correlated with the script characteristics.

Table 1.1 compares 4 scripts based on their features:
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(a) (b) (c)

Figure 1.6: (a) Burmese script (b) Devanagari character composition (c) Arabic
Word rendering.

Table 1.1: Comparison of 4 scripts based on their properties

Script Continuous Syllabic
English
Khmer

√

Devanagari
√ √

Arabic
√ √

1.3.1.2 Limited availability of annotated data

In order to cover all the recognizable units (syllables, conjuncts or char-

acters), systems typically need a much larger training set for syllabic scripts as

compared to non-syllabic scripts. This is because syllabic scripts tend to have a

larger character set and an even larger syllabic or conjunct set produced as a result

of these atomic character-combinations. For example, Devanagari has 37 conso-

nants and 16 vowels. These can appear in isolation as characters within a word

or theoretically every consonant can combine with any vowel to form a syllable.

In addition, two or more consonants can combine to form a conjunct, making the

number of recognizable units much larger. Unfortunately, low-density languages
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like Khmer, which have properties similar to South-East Asian scripts, come with

very limited ground-truth data. Hence representation of every recognizable unit

can not be guaranteed.

1.3.2 Contributions

In this thesis, we propose a generic character segmentation scheme using

font files. The concept is based on the fact that font files contain all the infor-

mation necessary to create the glyphs and thus a model for how to decompose

them. Instead of script-specific segmentation routines, this work is a step towards

a generic character segmentation and recognition scheme for both Latin and non-

Latin scripts. Figure 1.7 shows three scripts with very different compositional

rules. In Latin scripts, like English (Figure 1.7a), characters align themselves in

linear fashion. In Indic scripts, like Bengali and Hindi (Figure 1.7c), a single

word can be divided into three layers - upper, middle and lower, and vowels

can combine with consonants in a bidirectional fashion. Cambodian script (Fig-

ure 1.7b) allows characters to combine in bidirectional fashion, without forming

distinguishable layers. This work aims to create a generic framework to segment

characters in such diverse scripts.

1.4 Organization

The thesis is organized as follows. Each module is described in one chapter

along with its evaluation and results. Chapter 2 describes the noise detection and

20



(a) (b)

(c)

Figure 1.7: (a) Linear segmentation in Latin script (b) Complex bidirectional seg-
mentation in Cambodian script (c) Successive horizontal and vertical
segmentations in Indic scripts.
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removal technique and page segmentation and zone classification is described in

Chapter 3. This is followed by font-based character segmentation and recognition

approach in Chapter 4. Chapter 5 summarizes the thesis and its contributions

and discusses the possible additional work in these areas.
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Chapter 2

Noise Detection and Removal

2.1 Background and State-of-the-art

2.1.1 Clutter

In our work, clutter is used as a general term to refer to unwanted foreground

content which is typically larger and much denser than text in binary images. It

can result from numerous sources. While some forms of clutter like punched

holes (Figure 2.1 a), ink seeps (Figure 2.1 b), ink blobs (Figure 2.1 c) and copier

borders typically are present before the scanning process, other types of marginal

noise may result from the scanning of bound or skewed documents (Figure 2.1

a, f for example), where the gap between the gutter and scanner or between

edges of paper and scanner bed causes lighting variations. Other scanning and

binarization artifacts may give rise to clutter as well (Figure 2.1 d, e). Clearly,

clutter is predominantly text independent and irregular.

One of the major issues with clutter is its connectivity with text. Clutter often

touches or overlaps some parts of the text. In the case of rule-line documents with

clutter, a single connected component connecting clutter, ruled lines and text

may be present (Figure 2.2). Complete removal of the connected component

in such cases may result in tremendous loss of content while morphological
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(a) (b)

(c) (d)

(e) (f)

Figure 2.1: Examples of clutter.
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operations can degrade the text because the density of noise is much higher than

that of the text. Our goal is to determine clutter-content boundary accurately

so that the clutter can be fully removed while preserving the underlying text.

While aggressive clutter removal may lead to content loss, conservative removal

may leave traces of clutter behind, giving rise to dependent noise as shown in

Figure 2.3.

(a) (b)

Figure 2.2: (a) Clutter Image (b) Image showing a single connected component
with text and clutter.

As far as we know, there has been no collective work on the detection

and removal of all forms of clutter, without removing or further degrading the

attached text in binary document images. Fan, Wang and Kay [33] detect and
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Figure 2.3: Dependent noise left after inaccurate clutter removal.

remove marginal noise regions based on three assumptions of shape, length and

position. Image resolution is first reduced to get rid of text pixels, and regions of

marginal noise are detected using shape, length and position requirements. The

noisy region is then enclosed in an approximate rectangular shape which is then

enlarged in consecutive steps until it encounters the first background pixel in the

original resolution image. The enclosing portion of the polygon is the maximum

portion of marginal noise that can be removed without removing the attached

content. The technique does fairly well at removing only the marginal noise

without the attached text but assumes a linear boundary of separation between

marginal noise and content. Another problem is that the footprint or shape of

clutter-boundary may be different from the one obtained after image down-sizing

or morphological erosion.

Figure 2.4 illustrates the difference. Moving from the boundary towards

the interior of the clutter, the first marked line is the boundary of maximum
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erosion which erodes the text and still preserves the footprint of the clutter-

boundary. Reduced clutter, if dilated by the same amount from this boundary,

covers original clutter completely thereby separating the clutter from its attached

text. The second line is the boundary of the clutter obtained after aggressive

erosion or down-sizing the image. If we were to enlarge (dilate) this eroded

clutter up to the first encountered background pixel, we will end up on third

boundary. The removal of clutter up to this boundary will leave parts of clutter

along with content. These chunks left behind become dependent on text and

hence much more difficult to remove, as shown in Figure 2.3.

Figure 2.4: The Figure shows three lines on clutter. The first is the desired or actual
boundary of separation between clutter and content. The second is
the boundary of the clutter after erosion. The third is the boundary
obtained after enlarging the eroded clutter up to the first encountered
background pixel.

Shafait and Breuel [80] use black and white filters as well as positions of

connected components to remove border noise from document images. Rectan-

gular windows are moved in specific corner areas of a document image and the
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percentage of black pixels is calculated. Whenever the percentage is above (black

filter) or below (white filter) a given threshold, window-areas are classified as

border noise or gutters between borders and text-regions respectively. Decisions

to remove border noise is then based on the positions of these classified areas.

Parameters like the rectangular window-size, thresholds for black and white fil-

ters, and the expected areas of border noise, make this approach dependent on a

given resolution, font-size and specific to border-type clutter only. This approach

also assumes a linear white-gutter boundary separating clutter and text-regions.

Stamatopoulous et al. [84, 85] rely on vertical and horizontal projection

profiling methods to determine the linear boundary of separation between clutter

(in form of border) and text. Unfortunately, any text attached to the border is

removed in the process of noise removal. Le et al. [49] use rule-based classification

of blank, textual and non-textual blocks based on the percentage of black pixels,

locations, projection profiles and crossing counts. They also assume a linear white-

gutter boundary separating clutter and text-regions, failure of which results in

text-loss during noise removal. Both of these approaches rely on the average

character heights determined from the document image based on the connected

components. For noisy documents depicted in Figure 2.2, characters may not

appear as individual components.

Avila and Lins [15] remove marginal noise regions by using a restrictive

flood-fill algorithm. The basic algorithm moves outside in from the noisy sur-

rounding border towards the document using a flood-fill technique. In order to

restrain the flow into the content, a predefined stroke-width threshold (α) and
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a predefined text-size threshold (β) are used. The idea is depicted in Figure 2.5.

Although the algorithm tries to identify a non-linear boundary between noise and

content, the predefined thresholds restrict its usage across diverse documents of

varying resolution, scripts and font-sizes. Table 2.1 summaries the state-of-the-

art algorithms, their basic technique and the assumptions they make towards

clutter-noise removal.

Figure 2.5: Figure depicts restrictive flood fill algorithm from [15]. α shows the
stroke-width threshold, while β shows the font-size threshold. These
thresholds help in determining if flood-fill is encroaching content-
pixels.

In contrast, our technique aims at determining clutter-content boundary

precisely on all forms of clutter. The advantages of our approach over the prior

art are:

1. Position independence: Our approach is not limited to the marginal noise

and attempts to clean clutter appearing at any position in the document.

2. Size independence: In accordance with the definition of clutter, as long as
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Table 2.1: State-of-the-art algorithms for clutter removal.

Author(s) Noise
Type

Technique Assumptions and Limi-
tations

Fan, Wang and
Kay [33]

Marginal
Noise

Resolution reduction
and polygonal enclo-
sure of noisy borders
based on margin’s
position and shape

Approximate deter-
mination of boundary
of separation between
clutter and text

Shafait and
Breuel [80]

Textual
and
Non-
textual
border

Black and white filters
and positions of con-
nected components

Specific to a given res-
olution, font-size and
border-type clutter only.
Also assumes a linear
white-gutter boundary
separating clutter and
text-regions

Stamatopoulous
et al. [84, 85]

Textual
and
Non-
textual
border

Projection Profiling Linear boundary of
clutter-text separation.
Attached text is re-
moved during noise
removal

Le et al. [49] Marginal
Noise

Rule-based classifica-
tion of blank, textual
and non-textual blocks
based on the percentage
of black pixels, loca-
tions, projection profiles
and crossing counts

Linear white-gutter
boundary separating
clutter and text-regions

Avila and
Lins [15]

Marginal
Noise

Restrictive flood-fill Pre-defined text-size
and stroke-width
thresholds
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its size is larger than text, our technique is able to detect and remove it. In

particular, we do make an assumption of clutter being at least two times

larger than the text’s stroke width (details in Section 2.2.1.3).

3. Shape independence: Unlike marginal noise, clutter can appear in various

other forms, as illustrated in Figure 2.1. Our technique attempts detection

and removal of all forms of clutter and is independent of the inclusion of

any other type of noise.

4. Precise clutter-content boundary: Minimal dependent noise, in the form of

clutter pixels close to the text, is left behind during clutter removal - defining

a precise clutter boundary.

5. Minimal content degradation: Our intermediate step of residual image aims

at locating and processing clutter components only. This does not degrade

text in the document image.

2.1.2 Stroke-like Pattern Noise

Stroke-like Pattern Noise (SPN) [51] is of magnitude (size) similar to that of

text-diacritics and tends to directly affect text in the foreground in irregular ways,

as shown in Figure 2.6.

SPN is independent noise with respect to the content [10]. In general, it

is independent of location, size or other properties of text data in the document

image. In spite of being independent, due to its similarity to diacritics, its presence
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Figure 2.6: Stroke-like Pattern Noise, resembling diacritics, present around text
components.

near textual components can change the meaning of a word, especially in Arabic

documents.

This noise is formed primarily due to the degradation of underlying page

rule lines that interfere with the foreground text. These degraded rule lines are

severely broken, not straight and interact significantly with text. (Figure 2.7a).

Another major source of formation are the blurring edges of clutter noise [10, 15]

which remain after clutter removal approaches (Figure 2.7b). Stray marks in

handwritten documents, some highly degraded and unperceivable background

content can be other sources of such noise, as shown in Figures 2.7c, 2.7d.

As degraded rule-lines, these line components are broken and degraded

to a degree that they cannot be perceived in straight lines even by the human

eye. This makes techniques like Hough transform, projection profiles not suited

for their removal. Their shape and size similarity to smaller text components,

prohibits morphological processing based removal approaches because the suc-
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(a) Rule-line degradation (b) Clutter residues

(c) Marks (d) Degraded Background

Figure 2.7: Examples of Stroke-like Pattern Noise.
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cessive erosion and dilation steps needed, tend to degrade text. Their similar

spatial frequency to text renders median filtering approaches ineffective. With

tremendous amount of research being done for salt-n-pepper noise and rule-line

removal, this type of noise has thus been neglected as either aberrations or too

degraded to model.

Document cleaning can be performed in two fundamental ways. One ap-

proach is to detect and remove noise from an image, and the other approach

is to extract information content from the image, leaving non-content as noise

behind. The former approach is prefered when the noise can be differentiated

from text using their independent set of features. For example, clutter [10, 15],

rule-lines [101, 103], salt-n-pepper noise [12, 73, 28] and marginal noise [33] ex-

hibit properties quite different from the textual content. On the other hand, SPN

cannot be removed without apriori knowledge of the textual content. This leads

to the latter approach which aims at understanding content.

There has been a lot of work on extracting text components from a document

image. However, the majority of the work has been focused on extracting text

from colored documents or from background patterns. Using depth as an added

dimension, all these algorithms benefit from gray-scale or color histogram analysis

in order to differentiate text from background patterns [97, 83]. There has not been

much work in differentiating handwritten (or printed) text in binary document

images from stroke-like pattern noise (SPN).

Classifying all the text components and SPN in one step using a binary clas-

sifier entails using an extensive set of features capturing both shape and context
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information at component-level. Apart from generating a detailed feature-set,

this approach suffers from script-specific associations of smaller text components

to the bigger ones. In order to cover all the recognizable units, across scripts,

systems need a much larger training set. Limited amounts of annotated data

at pixel level for many low density languages and complex interaction between

strokes prompt for new ways to bootstrap systems to perform similar tasks.

This chapter is organized into two sections, one each for Clutter and Stroke-

like Pattern Noise. Section 2.2 describes the problem definition, clutter detection

and removal. Section 3 extends this approach to propose a generic noise removal

model in which several forms of noise can be removed iteratively, without inter-

fering in the detection and removal of clutter. This is followed by experiments

and evaluation in Section 2.2.2. Section 2.3.1 outlines the proposed content un-

derstanding approach for Stroke-like Pattern Noise and Section 2.3.2 describes

the two phases of the proposed approach. This is followed by evaluation in

Section 2.3.3.

2.2 Clutter

2.2.1 Clutter Detection and Removal

Distance transforms are generic and accurate and the map obtained after

distance transforms can be used to perform image analysis in two passes, unlike

morphology which is recursive. Given an image, our first task is to determine if it

contains clutter. For efficiency, clean documents should bypass the noise removal
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process. If an image contains clutter, only the clutter components are extracted

(Section 2.2.1.3) and passed through clutter removal (Section 2.2.1.4) to ensure

that non-clutter components are not processed for noise removal, preserving their

quality and enhancing efficiency of the approach. As illustrated in Figure 2.4, it

is important to determine the best boundary approximation between clutter and

content. A bad approximation can result in dependent noise or content deletion.

Figure 2.8 shows the phases of clutter removal from an image.

Figure 2.8: Clutter Detection and Removal Flowchart.

2.2.1.1 Background: Distance Transform approach

The proposed algorithm is based on histograms of distance transforms to

predict the best approximation to clutter-content boundary. The histograms are

based on integer bins, which requires integer approximations to distance trans-

form. Let p be a pixel in the document image I, located at (x, y) position, where

0 ≤ x < image height and 0 ≤ y < image width. Let d(pi, p j) be a positive definite,

symmetric and triangular measure of the distance from pixel pi to p j [75] such as

the Euclidean distance. Rosenfeld and Pfaltz [75] proved that octagonal distance
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do is a better approximation to Euclidean distance than city block, square, hexagonal

and ceil of Euclidean distance functions. Furthermore, nearest integer to Euclidean

and floor of Euclidean are not distance functions as they violate triangular property.

Octagonal distance is defined as:

do = max([2(|xi − x j| + |yi − y j| + 1)/3],max(|xi − x j|, |yi − y j|)) (2.1)

Distance Transform [19] associates distances to every pixel of a set P from other

sets as follows:

DP(p) = min
qεI

(do(p, q) + f (q)) (2.2)

where initially,

f (q) =


∞ if q ε P

0 otherwise
For binary images, there are only two sets of pixels, depending on foreground

(fg) background (bg) pixels:

I = {P,P′}, P = {p|I(p) = f g}, P′ = {p′|I(p′) = bg}

The distance transform is used both for detection and removal. We define DI

as the foreground distance transform of image I, where foreground pixels are

labeled by their distance to the closest background boundary and all background

pixels are labeled 0. DI′ is defined as the background distance transform of image

I, where background pixels are labeled by their distance to the closest foreground

boundary and all foreground pixels are labeled 0. The distance transform can be

computed efficiently with a two pass algorithm presented in [74].
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2.2.1.2 Pre-processing

Distance transformations on the foreground pixels labels each pixel with its

nearest distance to the background. With the goal of finding the optimal bound-

ary between clutter and attached content, presence of any small opening inside

clutter will effect the distance transform map inside it. Unfortunately, clutter does

not always form a smooth boundary with the background. This means, as we

move out from the center of clutter towards a point on its boundary, instead of

a contrasting edge (clean step function in terms of foreground and background),

the clutter may have a fragmented appearance (Figure 2.9a). Figure 2.10 shows

distance transform values along a path from center of clutter (max) to a point on

its boundary (min), in the presence and absence of fragmentation. Distance trans-

form produces an appearance of phantom clutter-edges due to this fragmentation

which affects later stages of clutter detection and removal.

Two prominent methods are worth considering but have shortcomings:

1. Median-filtering [28]: The fragmentation is a continuous flip-flop of pixels

in background and foreground. Median filtering assumes a much higher

frequency of one set of pixels. Hence, this method is not suitable for the

problem.

2. Morphological closing: This is challenging due to the two unknowns - the

size of the structuring element and number of passes required.

We use distance transform based closing. A background distance transform

(DI′) is first applied on the image. Each opening is labeled with its maximum
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(a) (b)

Figure 2.9: (a) shows a clutter with fragmented boundary (b) shows a clutter with
smooth boundary with the background.

distance, refered to as the radius of the opening. The most frequent radius is

chosen from the histogram and all background pixels with distances less than

this radius are converted to foreground producing an image Ic.

Figure 2.9b shows the pre-processed result of clutter in Figure 2.9a. This

process also affects and thickens the text in Ic. The marked clutter components

from Ic are then overlaid on the original image I, keeping the text in I uneffected,

while filling up the clutter openings.

2.2.1.3 Clutter Detection

Clutter, by definition, is larger than the maximum text-stroke width present

in the document, whereas thickness of ruled-lines, salt-n-pepper, stray-marks or

bleed-through can be of the order of text-stroke width. It is interesting to note

that this property of clutter differentiates it from other types of noise and text.
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Figure 2.10: Figure shows foreground distance transform values along a path
from center of the clutter to its boundary in case of (a) a fragmented
boundary (b) smooth boundary.

The clutter detection process is independent of the general shape, and only

requires that the size is twice as large as the stroke-width. Foreground distance

transform labels each foreground pixel with a distance to the closest background

boundary. The foreground pixels, with associated distances less than half of the

maximum transform distance in the image, are converted to background. This

results in an image called the residual (Figure 2.11(b)). It can be computed as

follows:

1. Perform distance transform DIo on the original binary image Io, as illustrated

in Equation 2.2

2. Calculate the maximum value dtMax = max(DIo)

3. Set all pixels p with DIo(p) < dtMax/2 to background. The residual image Ih

is obtained.

Clean text and cluttered documents can be differentiated on the basis of
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Figure 2.11: (a) An image with clutter and text. (b) The distance transform on the
image with distances normalized to gray values [0-255] (c) Result of
residual process.

what kind of residual image they produce. In a cluttered image, the residual

process will remove all text and non-clutter noise pixels from the document and

will leave behind only a core of each clutter component. On the other hand, in the

absence of any clutter, text strokes will be reduced to half their maximum width,

maintaining a text-like pattern (albeit broken). The basic differentiating properties

of a clean and clutter image are thus enhanched through this residual process,

hence producing better differentiating features. The features of these residual

images are calculated using the properties of their connected components shown

in Table 2.2. These properties of residual images, Ih, are used as features

to detect if the original image, Io, contains clutter. We train a 2-class SVM on

two sets of residual images from clean and clutter documents. Since number of

instances � number of features, we use an RBF Kernel [25]. The residual of test

image is then classified as having or not having clutter. Figure 2.14 shows the

clutter detection and removal model. Once a residual image Ih is classified as

having clutter, its components are replaced with the corresponding (and larger)
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Table 2.2: Differentiating properties of residual images of clean and clutter docu-
ment.

Features of CC Clean Image
Residual

Clutter Image Residual

Number High Low
Average size Low High
Variance in size by average
Size

Low At extremes (zero or high)

Variance in positions of
centroids of CC

High Low

Average ratio of area by
perimeter

Low High

Ratio of CC before and af-
ter residual

Close to 1 High

connected components from the original image Io. Resulting image Ic has only

these candidate clutter components from their original image Io.

2.2.1.4 Clutter Removal

Our goal is to identify those pixels of the clutter components which belong

to the clutter, and isolate the non-clutter (text) pixels if there are any. During

clutter removal, we reverse the process to determine the point at which the clutter

boundary meets the text like pixels. We observe that if we “regenerate” the clutter

according to the distance transform from the residual components obtained in

the previous step, by introducing the pixels from the original component for

successive distances, then the clutter pixels will be encountered at roughly the

same rate in every step, as when we removed them. This is evident when we

examine the number of regeneration steps that would be required to encounter
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each unique foreground distance contour.

As we approach the text-clutter boundary, this no longer holds true, because

as we encounter text contours, the number of steps required for regeneration

increases significantly where the text protrudes from the clutter. Alternatively, we

can consider for an original removal step how many regeneration steps (unique

distances) would be required to regenerate it. The original removal step (or

distance contour) at which this number increases sharply is the minimum distance

ρ from clutter’s boundary at which all text is completely removed and the shape

of the boundary is best preserved (Figure 2.12).

This process can be summarized as follows:

1. Compute DIc

2. Compute DIh′

3. ∀ p ε {Ih′ ∩ Ic},

d = DIc(p),

Contour set C(d) = C(d) ∪ DIh′(p)

4. f (d) = |distinct(C(d))|

As shown in Figure 2.13, moving outwards towards the boundary of clutter-

component, there is a sharp rise in f (d) at ρ. This function is a monotonically

decreasing function. f ′(d) is the rate of change of the function, which slows down

at ρ. If g(x) = f ′′(d), ρ is the index of first maxima of g(x).

d
dx

(g(x)) = 0,
d2

dx2 (g(x)) > 0 (2.3)
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(a) Clutter Image (b) Foreground distance transform. Each col-
ored contour consists of pixels with similar
distance from the background (clutter com-
ponent’s boundary)

(c) Removing pixels with DT < half of the max-
imum

(d) Obtaining Residual Image

(e) Overlaying residual image on removal steps
(contours). The darker contour is the near-
est contour to the clutter’s irregular bound-
ary which does not intrude in content. This
is the best approximation to the clutter-
content boundary

(f) Selecting three removal steps (distance con-
tours) at various distances from clutter’s
boundary

(g) Regeneration steps from residual image (h) Regeneration steps overlaid on the selected
removal steps

Figure 2.12: Clutter Removal Process.
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(i) Number of regeneration steps overlapping
with 8th removal step = 3

(j)

(k) Number of regeneration steps overlapping
with 4th removal step = 14

(l)

(m) Number of regeneration steps overlapping
with 2nd removal step = 158

(n) Number of regeneration steps grow expo-
nentially at the removal step separating
clutter from the text pixels

(o) (p) Best approximation to the clutter-text
boundary at 3rd removal step

Figure 2.12: Clutter Removal Process.
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(q) Regenerating clutter in 3 steps from the best
approximated boundary

(r) Removing the detected clutter from the orig-
inal image

Figure 2.12: Clutter Removal Process.

It is not important that residual components maintain the exact shape of the

clutter. The point of first sudden drop in the function can predict the distance

from the real boundary. The depth of the drop is proportional to the length of

the text-branch. Once this distance ρ is obtained, shrinking and expanding the

clutter-component by this distance, identifies the clutter without its text-branches.

If ρ is zero, these operations are not performed, as there is no text attached to the

clutter and the clutter component can directly be removed.

1. Image Id is obtained by removing all pixels p from Ic such that DIc(p) ≤ ρ.

Marked Pixels MP = {FG(Id)}

2. Compute DId′ . MP = MP ∪ {p ε Id′ s.t. DId′ ≤ ρ}

3. From Io, set MP to background. Clutter from Io is removed while preserving

the text

It is important to note that since identified clutter pixels are eventually removed

from original image Io, any affect on text pixels due to pre-processing (Section

2.3.2) is not reflected in the final image. The final image has no text degradation

and is clean of clutter which was originally present in the image.
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Figure 2.13: Frequency graph showing a sharp rise at ρ.

In a peculiar case, where several clutter components of sizes in multiples

of each other occur in the same document, the first residual process may remove

the smaller clutter components (along with the text) and may leave only the

core of the biggest clutter component in the residual image. The clutter removal

process following that, is oblivious to the smaller clutter components and cleans

only the biggest clutter component. The resulting clean image is again checked for

clutter (through residual process and clutter detection). This process is performed

iteratively until a residue of a clean document is detected, as shown in Figure 2.14.
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Figure 2.14: Clutter Detection and Removal.
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2.2.2 Evaluation

We use two metrics to evaluate our clutter removal approach. The first

is a pixel-based metric based on the percentage of clutter pixels removed. The

second is purposive, where we evaluate the improvement in successive stages of

document processing due to clutter removal.

2.2.2.1 Datasets

We evaluated the clutter detection and removal approach on a dataset of

printed and handwritten documents in English and Arabic scripts from four

different sources. The various forms of clutter discussed in the Section 2.1 interacts

with the text in various ways:

1. No text interaction: Clutter that appears as marginal noise due to scanning

of skewed document or because of the gap between the edges of paper and

the scanner bed, is around the content and generally does not interact with

text. This type of clutter (as shown in Figure 2.1a,d) is easiest to detect and

remove without compromising any content.

2. Word-level interaction: Ink seeps, smudges and blobs typically interact

with text at the word-level (Figure 2.1c). Detection of this type of clutter is

often challenging. Since the text attached is comparable to clutter’s size, the

precise determination of the clutter boundary is important.

3. Content-level interaction: When clutter appears all over the document due
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to bad thresholding or due to document degradation in historic documents,

it interacts with a lot of foreground content (as shown in Figure 2.1b,d). If

the document has ruled lines (Figure 2.2), a huge loss in content may appear

if text attached to clutter is not saved during clutter-elimination.

The datasets used are as follows:

1. Arabic Noisy Handwritten (D1): This dataset consists of handwritten Arabic

text, stamps, logos and figures with noise in the form of stray marks, clutter

and salt-n-pepper. The zones are polygonal.

2. English Machine-Print (D2): The second dataset is from the University of

Washington III(UW-III) database [39]. The database consists of 1600 English

document images and is widely used in the document analysis community.

It contains 10 different zone types - chemical drawing, small text, sym-

bols, drawing, halftone, logo or seal, map, math, table and large text. The

selected documents were primarily scanned publications or journals with

rectangular zones.

3. Complex English (D3): The third dataset consists of highly degraded and

noisy English documents. The documents consist of forms, handwriting

annotated printed text, tabular columns, letters and memos. The zones are

primarily polygonal.

Apart from these clutter datasets, we used two clean datasets. Two important

reasons to use them were the availability of text-line annotation for purposive

evaluation and for training clean documents for clutter detection.
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4. Arabic Clean Handwritten (D4): The dataset was clean with primarily text-

lines as the only content.

5. Arabic Clean Mixed (D5): The dataset consists of textual content, stamps,

signatures and noise in the form of rule-lines and speckle.

2.2.2.2 Pixel-based Evaluation

Protocol and Results: In order to evaluate clutter detection separately, we sam-

pled a representative set of 50 images with all forms of clutter and a set of 50 clean

images from our dataset. We divide the set of 100 images into a training and

testing set in ratio 3:2. 30 images from each set are used for training. Clutter

detection pixel-level precision and recall on the remaining 40 images is reported

as 92.5% and 100% respectively (Table 2.3).

For clutter removal, we used the LAMP’s xml-based GEDI tool [105] for

pixel-based labeling and visualization producing ground-truth and result files

(containing polygonal zones) in the GEDI XML format specification [53]. GEDI

is a public domain ground-truth editor and document interface for scanned text

documents. It’s interface maintains a one to one correspondence with XML files

and the corresponding image files. Different types of zones can be created and

visualized using a custom set of attributes. Each image is labeled into clutter

and non-clutter (text, ruled-lines etc.) pixels. Since clutter components are much

larger than text components, clutter pixels occupy 80.6% of the pixels in the

dataset. We calculate precision and recall of our clutter removal algorithm using
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the following metrics to evaluate the effective gain in accuracy.

PrecisionN =
Noise Pixels Removed
Total Pixels Removed

=
TP

TP + FP

RecallN =
Noise Pixels Removed

Total Noise Pixels
=

TP
TP + FN

We achieved precision and recall accuracy of 99.41% and 92% respectively for

clutter-pixels. The results are depicted in the Figure 2.15 and Table 2.4. The high

value of precision highlights the restrictive nature of our approach which does

not consume text pixels during removal. The 8% error in recall is primarily due to

the severe fragmentation in clutter components, especially near their boundaries.

Clutter Detection
Recall 100%

Precision 92.5%
Table 2.3: Detection Accuracy.

Clutter Removal
Recall 92%

Precision 99.41%

Table 2.4: Removal Accuracy. Figure 2.15: Pixel Distribution.

Figure 2.16 shows the clutter removal results of images in Figure 2.1. Fig-

ure 2.17 shows the removal of clutter after precise detection of non-linear clutter-

text boundary.

Performance: Clutter removal performance was measured across different im-

age resolutions and foreground content for 200 document images from above
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Figure 2.16: Results of our clutter removal approach: The left side shows the
cluttered images and the right side shows the corresponding cleaned
images as a result of our clutter removal approach.
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Figure 2.16: Results of our clutter removal approach: The left side shows the
cluttered images and the right side shows the cleaned images as a
result of our clutter removal approach.
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(a) (b) (c)

Figure 2.17: (a) Clutter document image (b) One big connected component con-
taining clutter and majority of content (c) Clutter removed with text
preserved.

datasets. We verified that the performance varies linearly with these two param-

eters and does not grow exponentially for better quality or dense content images

(Figure 2.18). On average clutter removal algorithms take 14 seconds on an Intel

3.00GHz (single core), 1GB RAM system under normal usage conditions.

(a) (b)

Figure 2.18: Performance varies linearly with image size and foreground content.
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2.2.2.3 Purposive Evaluation

A second evaluation measures the impact of clutter removal in successive

stages of the document processing chain. In document processing, the next step

after noise removal is often text extraction, followed by word segmentation and

finally character recognition. Clearly, text-extraction or line segmentation is the

stepping stone to later stages. Any error in this stage will effect successive ones. In

order to evaluate the effect of clutter noise in documents, we compared in-house

line segmentation algorithms on clean and clutter documents.

We used a component-based handwritten Arabic text-line segmentation al-

gorithm using Affinity propagation [48]. This is a graph-based method for ex-

tracting handwritten text lines in monochromatic Arabic document images.

Adding clutter: We randomly sampled 250 images of cleaner handwritten Ara-

bic data containing mainly textual content (D4) and 200 images of noisy hand-

written Arabic data containing textual content, stamps, signatures and noise in

the form of rule-lines and speckle (D5).

Clutter is added to all 450 images in two forms:

1. Border clutter

2. Random number of clutter blobs of random sizes at random places interact-

ing with text

Clutter detection and removal is performed on these images to produce a clean

dataset.
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Protocols and Results: On cleaned documents, we noted an improvement of

8% in the case of the pure-handwriting dataset (D4), while an improvement of

approximately 2% in inherently noisy mixed-dataset (D5). This also underlines the

sensitivity of the line segmentation algorithm on other forms of noise (ruled-line,

speckle) as well.

Table 2.5: Purposive evaluation of clutter on line segmentation algorithm.

D4 D5

Noisy Clean Noisy Clean

Precision 82.00% 90.36% 46.36% 49.58%

Recall 79.58% 86.32% 39.32% 41.66%

2.2.2.4 Error Analysis

The clutter removal process cleans up majority of the clutter from a doc-

ument image. However, there are primarily two sources of errors, which effect

clutter’s recall (precision is very high):

Stroke-like noise protrusions: The restrictive nature of clutter removal algo-

rithm treats any stroke-like protrusions, with width similar to that of text, as text

and errs by preserving them during removal (Figure 2.20). In order to avoid

such residual noise, one possible solution is to extract features of the detected

text-pixels, based on which a decision to delete or retain them can be made.
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Figure 2.19: Line segmentation results on clutter and cleaned images.
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(a) (b)

Figure 2.20: (a) Text-line image of spiral bindings at the top of the document
image are treated as text (b) Clutter removal fails at removing text-
line protrusions.

Fragmentation: Fragmented boundaries of clutter produces an appearance of

phantom clutter-edges as discussed in Section 2.2.1.2. While our pre-processing

step creates a contrasting edge for majority of cases, it fails to address highly

variant fragmentation mixed with Stroke-like Pattern Noise (Figure 2.21).

(a) Clutter with severly fragmented boundary (b) Clutter removed without pre-processing
step

(c) Clutter removed after pre-processing

Figure 2.21: Stroke-like Pattern Noise is left behind after complete clutter removal
process.
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2.3 Stroke-like Pattern Noise

2.3.1 Prominent Text Components

Intuitively, text has the following distinguishing characteristics: 1) text pos-

sesses certain frequency and orientation information; 2) text shows spatial cohesion

- a set of strokes appear together to form words or phrases [97]. At component-

level, many of these stroke components, in cohesion, contain prominent textual

features like length, critical points, cusps, arcs and curves. Such text components

with independent features are called prominent text components (PTC). PTCs can

be identified as text components individually and do not require any neighboring

context. However, many smaller components, like diacritics, use their positions

with respect to PTCs and stroke-widths to identify themselves as textual content.

These two properties of the smaller components are tightly coupled with the

prominent textual components (Figure 2.22).

Figure 2.22: Red (dark gray) and black components depict PTCs and non-PTCs
respectively.
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2.3.2 Noise Removal using a Content Understanding Technique

We use the above listed text properties to devise a two-phased component-

based divide-and-conquer approach to extract text components from a noisy

binary document image using a minimal set of training samples. In the first

phase, we classify prominent text components (PTCs) using a supervised classi-

fication approach. Aiming at the script-independent features of text strokes, a

generalized feature set is devised to classify the PTCs using a limited training

dataset. Later, based on the stroke-width and cohesiveness properties of these

components, smaller text components are filtered out from the noise components

using unsupervised k-means clustering.

2.3.2.1 Supervised Prominent Text Component Classification

Prominent text components exhibit script-independent and context-independent

properties to distinguish themselves from other types of content in a binary im-

age. Apart from area, perimeter, convex-area of each component, orientation of

the fitted ellipse, it’s major and minor axis lengths and eccentricity, four more

feature descriptors are defined as follows in order to measure the independent

shape properties [6].

1. FilledArea: Number of foreground pixels in the bounding box of the com-

ponent with all holes filled in

2. Extent: Ratio of the pixels in the component to the pixels in the bounding

box
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3. Solidity: Ratio of the pixels in the smallest convex polygon that are also in

the component (=Area/ConvexArea)

4. EquivDiameter: Diameter of the circle with the same area as the region

(=sqrt(4 ∗ Area/pi))

These features are normalized by the average size of the connected components

and scaled to the range [0, 1]. The components are labeled as PTCs and non-PTCs

(includes smaller text components and noise) on a limited set of training samples,

and sent to the feature extraction module. LibSvm library [25], is then used to

classify the two set of classes. A selective number of features used over a large

number of components (| f eatures| � |instances|) implied using an RBF Kernel for

classification in order to nonlinearly map data to a higher dimensional space.

After classification, the results are sent to the second-phase to selectively

remove noisy components from the image.

2.3.2.2 Unsupervised Small-Component Classification

In order to filter small text components from a pool of non-PTCs, we com-

pute two characteristics of all components - their stroke-width and cohesiveness

with respect to PTCs. These are computed efficiently using a distance transform

approach [10]. The distance transform labels each pixel of the image with the

distance to the nearest pixel of different gray-value. For a binary image, fore-

ground distance transform, DI, labels each pixel with its nearest distance to the

background pixel, thus producing a distance map with increasing distances from
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the edge of each component to it’s center. Similarly, DI′ is defined as the back-

ground distance transform of image I, where background pixels are labeled by

their distance to the closest foreground boundary and all foreground pixels are

labeled 0. The distance transform can be computed efficiently with a two pass

algorithm presented in [74].

1. Stroke-width: In order to compute this efficiently, we perform a foreground

distance transform. Maximum distance value associated with each con-

nected component (CC) defines its stroke-width (swCC).

swCC = max(DI(p)), ∀ p ∈ {CC} (2.4)

Mode (highest frequency) of stroke-widths for Prominent Text Components

(PTCs) gives the average stroke-width of the document swavg.

2. Cohesiveness: First, an image with only PTCs is created (IPTC). Performing

a background distance transform on that image (DI′PTC
) assigns each back-

ground pixel a minimum distance to the nearest PTC. Cohesiveness (coCC)

for each non-PTC is then defined as the minimum distance value associated

with the underlaid background pixels.

coCC = min(DI′PTC
(p)), ∀ p ∈ {CC} (2.5)

Average distance between each nearest pair of PTC (coavg) is calculated using

a distance adjacency matrix.

Figure 2.23b shows the classified non-PTCs overlaid the distance transform

map of PTCs for our test image in Figure 2.23a. K-means clustering (k = 2) is
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(a)

(b)

Figure 2.23: (a) Stroke-like Pattern Noise, resembling diacritics, present around
text components. (b) Image shows classified non-PTCs (smaller text
and noise components) overlaid the distance transform map of PTCs.
Components nearer the darker regions are closer to the PTCs and vice
versa.
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applied to non-PTCs based on the defined features (| f eatures| = 2). A further

verification step is performed with the following rule:

i f swCC >= swavg & coCC <= ccavg,

classi f y CC as text − component

The small text components are filtered out from non-PTCs leaving the noise com-

ponents behind. The final result after the second phase is shown in Figure 2.24.

Figure 2.24: SPN removal result of the test image in Figure 2.6. The noise compo-
nents are successfully removed.

2.3.3 Evaluation

2.3.3.1 Datasets

The dataset consists of printed and handwritten Arabic binary documents.

Manual ground-truthing being a laborious job at the pixel-level, we use a repre-

sentative set of 50 document images containing Stroke-like Pattern Noise (SPN)
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from the four sources described in Figure 2.7. Only 2 document images are used to

train the SVM for PTC classification to validate our minimal training requirement.

2.3.3.2 Metrics

Pixel-based evaluations are performed in order to assess the accuracy of our

approach. SPN being of the size similar to that of smaller text components, and

PTCs being much bigger in size, SPN occupies 16% of the pixels in the dataset. We

calculate precision and recall of our SPN removal algorithm using the following

metrics to evaluate the effective gain in accuracy.

PrecisionN =
Noise Pixels Removed
Total Pixels Removed

=
TN

TN + FN

RecallN =
Noise Pixels Removed

Total Noise Pixels
=

TN
TN + FP

2.3.3.3 Results

We achieved precision and recall accuracy of 86% and 90% respectively for

noise-pixels (Table 2.25b). In this component-based noise removal approach, even

a few misclassified text-components tend to increase the pixel-level precision error

rate due to their comparitively larger component sizes than noisy ones. Using the

pixel distribution in Figure 2.25a, we also report the precision and recall accuracy

for the remaining text-pixels after noise removal as 98% and 97% respectively.

The results of sample documents of each type are shown in Figure 2.26.
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(a)

SPN Removal
Precision 86%

Recall 90%
(b)

Figure 2.25: Results of Stroke-like Pattern Noise Removal (a) Pixel Distribution
(b) Accuracy.
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Figure 2.26: Results of our SPN removal algorithm: The left side shows the noisy
images and the right side shows the cleaned images as a result of our
SPN removal approach.
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Chapter 3

Page Segmentation and Zone Classification

3.1 Background and State-of-the-art

Current page segmentation algorithms lack the ability to dynamically adapt

to local variations in the size, orientation and distance of components within a

page. In handwritten and mixed content documents, the size of components

vary drastically due to the cursive nature of writing, leading to over or under-

segmentation. The goal of this chapter is to highlight the shortcomings of known

page segmentation algorithms and describe an integrated approach to the seg-

mentation of these complex pages.

The process of identifying the structure of a document image is called layout

analysis, and can be physical (process of dividing the document into physical

homogeneous zones) or logical (process of assigning logical roles and relations to

detected zones). Page segmentation algorithms fall into the category of physical

layout analysis [81] and segment a document page into homogeneous zones, each

consisting of only one physical layout structure such as text, graphics, equations,

logos or stamps.

Physical layout analysis can be based on pixel or texture segmentation [42],

but the general goal is that the final result is a region segmentation. In texture-

based segmentation, isolated points or small areas can be classified without regard
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to the connectivity aspect of an object. In contrast, the work assumes non over-

lapping geometric zones where document components are separated by white

space. Such connected component based approaches use macro level content

information, and can be further classified into Manhattan [60, 96, 16, 20], where

region boundaries can be laid out on a grid, and more arbitrary non-Manhattan

layouts [64, 46, 43].

1. Manhattan layout: There are four representative algorithms for Manhat-

tan layout based page segmentation. The run-length smearing algorithm

(RLSA) presented by Wong et. al [96] is one of the earliest techniques

to segment the page into homogeneous regions. It “smears” within zone

components into each other using the perceived text direction and some

thresholds, forming a single distinct larger component per zone. X-Y Cut

Page Segmentation [60] is a tree-based top-down algorithm, which starts

with the entire page as a root. Based on alternating horizontal and verti-

cal projection profiles of foreground pixels, each node is split recursively

at the largest valley in the profile until minimum formed regions are con-

tained in its leaves. In 2002, Baird devised a top-down Whitespace Analysis

method [16], based on the analysis of the background structure in document

images. It generates a sorted list of maximal elongated white-space rectan-

gles which are unified until a stop rule is satisfied, to generate a sequence

of enclosed segmentations. Constrained text-line detection by Breuel [20]

builds on white-space and X-Y cut, with an added consideration of column-
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separations (gutters) while grouping text-lines. This has a direct advantage

over smearing technique where presence of a known gutter may skew the

thresholds. For documents with known structure, such as books, these

techniques can work very well.

2. Non-Manhattan layout: The focus of this chapter is on more generic non-

Manhattan layouts that are prominent in handwritten or mixed content doc-

uments. Connected component analysis, skew [35, 64, 40] and analysis of

background [69, 14, 63] have been used by researchers to perform page seg-

mentation on non-Manhattan layouts. Of these, O’Gorman [64] and Kise et.

al. [46] are the most widely cited algorithms for geometric page segmenta-

tion on non overlapping zones. O’Gorman’s Docstrum algorithm performs

transitive closure on within-line connected components to obtain lines and

then on lines to form regions. The thresholds for transitivity are based on

the properties of distance and angle of each connected component with it’s

K nearest neighbors [64]. Kise’s algorithm based on Voronoi regions is the

first algorithm to use properties of components (in terms of area) in addition

to their white-space separations. Details in these algorithms highlight their

advantages over previous approaches. Evaluation experiments [81] have

shown that the Voronoi based approach excels on a mixed dataset of both

handwritten and machine printed documents for diverse scripts such as

English and Arabic.
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Figure 3.1: Comparing various algorithms based on the component features they
use for segmentation.

3.1.1 Area Voronoi Based Segmentation

3.1.1.1 Algorithm

The central idea of the original Voronoi algorithm is creation of Voronoi

edges between pairs of connected components using an area based Voronoi tes-

sellation [46]. Each edge of the tessellation bisects two points on the contours of

different components. A physical zone is a fusion of these Voronoi cells, formed

by the elimination of Voronoi edges based on two features:

1. Minimum distance

d(E) = min
1≤i≤m

d(pi, qi) (3.1)

where pi and qi are pair of points on connected components (CCs) P and Q,

constituting ith edge between them

2. Area Ratio

ar(E) =
max o f areas o f 2 CCs
min o f areas o f 2 CCs

(3.2)
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An edge is deleted if it satisfies one of the following two criteria:

d(E)
Td1

< 1 or (3.3)

d(E)
Td2

+
ar(E)

Ta
< 1 (3.4)

where Td1 < Td2, Td1 relates to inter-character spacing, Td2 relates to inter-word/line

spacing and Ta is the area ratio threshold. The set of remaining edges segment the

document image into zones separated by a function of area-ratio and the distance

between the components as shown in Figure 3.2 [46].

Figure 3.2: (a) Document image overlayed with Voronoi region of each compo-
nent (b) Weak edges removed based on listed criteria, result is region
segmentation [46].
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3.1.1.2 Tuning parameters

Voronoi based segmentation requires two primary parameters as input.

Though some default values can be used, they do not always work for all resolu-

tions or content styles, and thus need to be adaptive.

1. Noise Threshold: For noisy documents with salt-and-pepper noise, edges

between smaller noise components and larger text components may persist

due to the high area-ratio as shown in Figure 3.8b. Similarly, edges may per-

sist between diacritics, punctuations and corresponding text components.

In order to avoid this, the user may input a higher noise threshold such

that noisy components or punctuations do not participate in edge forma-

tion, preventing over-segmentation. However, choosing this threshold is

difficult. Choosing a higher threshold than noisy components may skip

smaller or broken text components, thus creating a virtual gap or space at

those positions. This adds to the word or line spacing and extra edges may

appear within text-regions, leading to over-segmentation. Figure 3.3 shows

Voronoi Segmentation of a noisy Arabic handwritten document based on

4 noise thresholds. At threshold 5, even the smallest of noise components

participate in the edge formation, hence avoiding any clear region forma-

tion. As we increase the threshold, the regions get well separated but again

tend to over-segment as higher threshold values start creating virtual gaps

within text-regions. The default value is 20.

2. Ta: The higher the value, the less it discriminates components of different
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(a) Noise Threshold = 5

(b) Noise Threshold = 20

(c) Noise Threshold = 50

(d) Noise Threshold = 150

Figure 3.3: Figures show sensitivity of Voronoi based segmentation at various
noise thresholds (a) 5 (b) 20 (c) 50 (d) 150.
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sizes. The default value is 40.

3.1.2 Docstrum Segmentation

Docstrum (or Document Spectrum) is a representation of a document page

that describes the global structural features of the page that are used for layout

analysis. It is based on bottom-up, k-nearest neighbor clustering of connected

components. Each nearest-neighbor pair i, j is described by a 2-tuple Di j(d, φ)

of the distance d and the angle φ between the centroids of the two components.

It performs transitive closure on within-line components to obtains lines and

then on lines to form regions. The thresholds for transitivity are based on these

properties of distance and angle of each connected component with its K nearest

neighbors [64]. Figure 3.4 [64] illustrates the concept.

The advantage of Docstrum over the Voronoi based approach is its ‘semi-

local’ behavior. This gives the approach a fair amount of independence from

skew, different text spacings and an ability to process local regions of different

text orientations within the same image. Each component looks at K nearest

neighbors to make a decision of its association, unlike Voronoi where decision is

solely nearest neighbor based, averaged out globally. In spite of this, Docstrum

has been designed mainly for text-only documents and doesn’t use any property

of the content other than their separation properties, as shown in Figure 3.1.
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Figure 3.4: Docstrum Segmentation [64], c©1993 IEEE (a) Part of original image (b)
Nearest neighbor vectors overlaid on the image (c) Nearest neighbor
vectors are shown.
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3.1.3 State-of-the-art Limitations

Voronoi-based or Docstrum approaches segment a page based on low-level

features like inter-component distance, angle and size-ratios. Whenever an edge

which separates two components is removed, the respective zones are fused. This

bottom-up page segmentation approach works well when the neighborhood is

small. As the regions grow in size, the consequence of merging two zones based

on only a single edge feature may change the segmentation significantly. Also,

the probability of making a wrong decision increases as the number of edges

separating two regions increase with the components in the regions.

In the process of minimizing intra-class difference (content) and maximizing

inter-class separation (spatial), the challenge is to come up with an unsupervised

segmentation theory of grouping neighboring components based on (a) separa-

tion/spatial properties, (b) content and to make context-aware decisions based on

these properties. There are three main questions that need to be addressed in

designing such a context-aware system:

1. How do we define the local context?

2. How should zone-separation be utilized in accruing context?

3. How should zone-content be utilized in accruing context?

Figure 3.5 adds two columns for local pattern and context properties for a context-

aware segmentation system to our previous Figure 3.1 and compares that with all

the algorithms discussed so far.
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Figure 3.5: Comparing state-of-the-art algorithms and their limitations for a
context-aware feature-space.

Once the regions (or zones) are determined, it is important to identify a

region’s content, based on which specialized processing can take place for each

zone-type. The primary objective is to extract printed text from other zone-types,

for character recognition. In order to achieve this, a novel algorithm for identifying

document zone content has been proposed. Low level feature vectors are first

extracted from document zones. Partial Least Squares (PLS) [95] is then used to

reduce the dimensionality of the feature space and find discriminating features.

Rather than using the classic one-against-all or one-against-one approach for

zone classification, a new hybrid approach seeking to improve the classification

accuracy has been proposed. Support Vector Machines (SVM) are used as the

underlying binary classifier.

This chapter is organized into two sections of Page Segmentation and Zone

Classification. Section 3.2.1 gives an overview of Voronoi++ model and its

context-aware adaptive approach. Section 3.2.2 describes the hypothesis phase
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(dynamically adaptive Voronoi) and Section 3.2.3 details the validation phase

(semi-supervised clustering). This is followed by segmentation-evaluation in

Section 3.2.4. Section 3.3.1 describes our features for zone classification and the

proposed classification method is detailed in Section 3.3.2. This is followed by

classification-evaluation in Section 3.3.3.

3.2 Page Segmentation

3.2.1 Voronoi++ Approach

Our model for document image page segmentation uses inter-component

separation and local pattern features to form zones. These features are accumu-

lated as zones merge together in order to encompass the newer context. The

approach is composed of two phases (Figure 3.6), a hypothesis phase where plau-

sible regions are proposed using low-level features and a validation phase which

verifies the hypothesis using zones’ high-level features to make adjustments.

Each hypothesized zone can be further split, merged with it’s neighbors or left

as-is in the validation phase. We reduce this problem to binary classification by

eliminating the possibility of a further zone-split in the validation phase.

This requires the hypothesis phase to produce an over-segmentation of zones

which are unlikely to be split further. The objective of the hypothesis phase is

to ensure that components belonging to different zones are separated by edges

irrespective of false alarms. Edges are forced between any two components

which may belong to different zones. These edges are formed based on low-level
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features like component separations and variations. This results in an over-

segmented image where two neighboring zones (zi and z j) are separated by a set

of Voronoi edges ei, j. This image is represented as a connected graph G{E,V},

where every zone is represented as a vertex V and any two neighboring zones

are joined by an edge-set E of Voronoi edges ei, j. The edge-set E is associated

with the individual confidences of its edges, returned by the hypothesis phase.

During the validation phase, each vertex is considered with its neighboring vertices

for a possible merger, based on features of vertex V and the edge-set E. The

vertex features are high-level features based on zone-content and are validated

against the low-level features of the edge-set for a possible merger. The problem

then reduces to a graph-reduction problem and final vertices represent zones

distinguishable by either distance or content from their neighboring zones. The

sections below describe the two phases in detail.

3.2.2 Hypothesis Phase

The objective of the hypothesis-phase is to propose regions using low-level

features. These low-level features are calculated based on dynamic adaptation of

component separation and area features to local variations. Based on the decision

on every edge, certain edges are marked provisional in plausible regions. The

plausible regions and the edge-set (G{E,V}) are passed to validation-phase for

further processing.
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Figure 3.6: The two-phased Voronoi++ approach.

3.2.2.1 Dynamic Adaptation

In Kise’s Voronoi based approach, global thresholds Td2 and Ta are deter-

mined statistically from the document’s properties. Td2 is based on the second

most frequent distance associated with the edges, which corresponds to the inter-

word separation of prominent text-size in the document. Td2 and Ta have an

inverse linear relationship with each other, hence neighbors with higher ar need

lower d(E) to form an edge between them (as shown in Figure 3.10a). Typically Ta

is chosen such that it forces an edge between components of drastically different

sizes (ar = Ta) separated by an epsilon (d(E) → 0) distance. Td2 is determined

based on second maxima and does get influenced by local peaks.

Since the global thresholds are determined statistically from a document, a
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Voronoi based approach does fairly well when the document content is consistent

as found in word, line and region separations of machine printed content. This

criteria, however, is not always met. For example, in printed documents, the

spacing between words or characters changes with font-size, text-direction and

zone-type and in handwritten documents, the components belonging to the same

zone may change their sizes drastically due to cursive nature of handwriting.

In order to dynamically adapt these local variations in the size, orientation and

distance of components within a page, the proposed approach either increases

(grouping two or more regions) or decreases the thresholds (splitting a region into

multiple zones). It also boosts Voronoi based approach’s global threshold finding

algorithm by using a more deterministic approach towards a more precise Td2.

Increasing word-separation threshold: In order to avoid over-segmentation,

spurious edges should be removed. We achieve this by increasing the word-

separation threshold Td2 locally. This improves the following scenarios:

Avoiding over segmentation of larger text: Larger text has greater word-

separation than the normal sized (more frequent) text that Td2 is based on. ar

still being close to 1, larger font text lines are often over-segmented into zones

containing individual words or characters, as shown in Figure 3.7. We increase

the word-separation threshold by a factor of the smaller of the two component’s
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size to the most frequent component size on the page.

Td2 = Td2 ∗ f ar

f ar =
average area o f components

most f requent area
(3.5)

Figure 3.7: Image showing over segmentation of large fonts and dissimilar text
sizes grouped together.

Angle-based merging: Voronoi weighs two components solely on the basis

of their distance and area ratio. Missing components in degraded documents or

a bad noise threshold can increase inter-character or inter-word gaps at certain

places, thereby forcing edges, as shown in Figure 3.8. Such spurious edges can

be removed by using the perceived text-direction which can be measured using

the angle between two components. Docstrum uses this idea by describing each

nearest-neighbor pair i,j by a 2-tuple Di j(d,Φ) of distance d and angle φ between

centroids of the two components. Since the mass-centroids of similar sized com-

ponents may differ in ordinate positions due to concentration of mass at differing

positions, we use the centroids of characters’ bounding boxes. The overall text-

direction in the document is measured by the most frequent angle αmode between
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a neighborhood pair. The closer an angle is between a neighboring pair to the

frequent angle αmode, the more likely it is to be a false gap. However, this is not

a necessary condition. Text with two columns, for example, defy this concept.

Hence, we calculate the deviation of a neighborhood angle α from αmode as a Gaus-

sian function and allow Td2 to be increased by a maximum factor of K. K should

be chosen such that it restricts two-column merging.

dev = e−
(α−αmode)2

2.σ2 .K

where σ is the deviation allowed (chosen value 30 ◦), K is the factor limit with

which Td2 can be increased. We chose K to be 0.5, allowing Td2 to be increased by

a factor of 1.5.

Td2 = Td2 + Td2.dev (3.6)

Figure 3.8: Text-line direction can help merging the over-segmented regions as
shown above.

Nearest Neighbor based merging: Some languages, such as Arabic, tend to

have a lot of diacritics which, when handwritten, can vary significantly from their
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ideal location. The area ratio of a diacritic with its corresponding consonant/vowel

is often large and the original Voronoi based approach forces edges around such

diacritics. Increasing the noise threshold, may cause diacritics to be eliminated as

noise and hence they do not participate in edge formation. However, as stated in

Section 3.1.1.2, choosing the correct noise-threshold is very difficult.

In our approach, any component smaller than the most frequent component

size is associated to its nearest neighbor and the edge between them is removed.

This removes the possibility of an edge between a diacritic and its corresponding

vowel. Example results are shown in Figure 3.9.

Decreasing word-separation threshold: In order to avoid under-segmentation,

removal of low-confident edges should be avoided. We achieve this by decreas-

ing the word-separation threshold Td2 locally at appropriate places, segmenting

a region into multi-zones. A scenario where this adaptation is necessary is as

follows:

Separating dissimilar text sizes: Section headings tend to merge with

the text if they are separated by distances similar to the inter-line distance of

prominent text and their ar value is low (Figure 3.7). Though ar accounts for the

difference in the areas of the two components, the relation between an increase in

ar and decrease in d(E) is still linear as shown in Figure 3.10a. Hence, an increase

in ar, even by a factor of 4, for example, does not decrease d(E) requirement for

edge-formation by an appropriate amount. As per Equation (3.4), the minimum

distance required between two components, with area-ratio as ar, to form an edge
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Figure 3.9: Illustration of results with and without NN associativity: The left
side shows segmentation results without nearest-neighbor associativ-
ity and the right side shows the corresponding results with nearest-
neighbor associativity.
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is:

dmin

Td2
+

ar

Ta
= 1

=⇒ dmin =
Td2

Ta
(Ta − ar) (3.7)

If Td2 and Ta are constants, dmin decreases linearly with an increase in ar.

We adapt the distance threshold Td2 dynamically with respect to the area-

ratio between two components. Decreasing Td2 by a factor of ar, improves the

chances of edge-formation between dissimilar size components as follows:

Td2 = Td2 − Td2 ∗ ar/Ta (3.8)

Substituting this in equation 4,

d(E)
Td2 − Td2 ∗ ar/Ta

+
ar

Ta
< 1

Solving, we get:

Td2.a2
r − 2.Td2.Ta.ar − T2

a .d(E) + Td2.T2
a < 0 (3.9)

This is an equation of a conic section of the form Ax2 +Bxy+Cy2 +Dx+Ey+F = 0.

Since B2
− 4AC = 0 and C , 0, the curve is indeed a parabola and demonstrates

the parabolic relation. The new relation is depicted in the Figure 3.10b.

Instead of a linear relation between Td2 and Ta, this dynamically adaptive parabolic

relation [11] increases the probability of segmenting text of slightly varying sizes

into separate zones. From Equation 3.9, the minimum distance required between
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Figure 3.10: (a) Linear (b) Parabolic relation between inter-word distance and area
ratio.

two components, with area-ratio as ar, to form an edge is:

Td2.a2
r − 2.Td2.Ta.ar − T2

a .d
′

min + Td2.T2
a = 0

=⇒ T2
a .d

′

min = Td2.a2
r − 2.Td2.Ta.ar + Td2.T2

a

=⇒ d
′

min =
Td2

T2
a

(a2
r − 2Ta.ar + T2

a )

=⇒ d
′

min =
Td2

T2
a

(Ta − ar)2 (3.10)

Comparing Equations 3.7 and 3.10:

d′min

dmin
=

Td2
T2

a
(Ta − ar)2

Td2
Ta

(Ta − ar)

=⇒ d
′

min = dmin(1 − ar/Ta) (3.11)

This shows that with an increase in area-ratio, the dynamically adapted

minimum edge-distance reduces as compared to the originally required minimum

edge-distance, thereby forcing edges between dissimilar sized components. This

also confirms the parabolic relation of the Equation 3.9.
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Word Separation Threshold using Valley-Finding: Voronoi based approach sta-

tistically calculates Td1 and Td2 based on global layout and resolution. The two

global peaks in the frequency distribution of distances associated with edges (d(E))

corresponds to Td1 and Td2 respectively, as shown in Figure 3.11. For such a raw

frequency distribution fr(d), the smoothed distribution f (d) is calculated using a

window size ω, to get rid of local peaks [46]. However, it is not possible to choose

Figure 3.11: Frequency histogram of distances associated with edges.

ω correctly without knowing the real distance between the global peaks, which in

turn depends on the correct value of ω. Hence, local extremas still remain in this

process and subsequently affect global peak determination of Td1 and Td2. This

leads to local extremas being picked, as shown in Figure 3.11. The result is an

over segmentation of the document.

We use an improved ‘valley’ determination approach to divide the bimodal

frequency graph in the middle of two global peaks. The maximas of each half
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then correspond to the thresholds, bypassing the need for a smoothing function.

In order to achieve this, we implemented an improved valley-finding algorithm

by building a global cost function [13]. The goal is to avoid the common problems

associated with typical valley-finding algorithms or reverse-gradient techniques.

This bimodal frequency histogram can be treated as a valley, having foothills

between two mountains. At each point on the histogram, we associate the cost

of leaving the valley from either side. This is the minimum of the costs to reach

either of the boundaries. When moving from a given point to either of the graph’s

boundaries, costs are incremented only when the histogram is increasing. The

point with maximum cost is the point in the valley. This can be expressed as:

CostL(d) =
∑

k≤d,h(k−1)>h(k)

[h(k − 1) − h(k)]

CostR(d) =
∑

k≥d,h(k)<h(k+1)

[h(k + 1) − h(k)]

Cost(d) = min(CostL(d),CostR(d))

Vd = max
d

(Cost(d)) (3.12)

The largest peak on the right of Vd corresponds to Td2. This avoids local peaks

confusion and gives the best estimate of inter-word separation. The improvement

in segmentation is depicted in Figure 3.12.

The Figure 3.13 shows how dynamic adaptation is a step towards our goal

of Voronoi++ as it combines the features from both Voronoi-based and Docstrum

approaches and improves upon them.
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(a) (b)

Figure 3.12: (a) Page Segmentation using the original Voronoi approach (b) Page
Segmentation after finding word separation thresholding using the
improved valley-finding algorithm.

3.2.2.2 Provisional Edges

The approach described so far dynamically adapts to variations but makes

only component-level decisions. Even though two components may trigger adap-

tion due to their sizes, they may result from different content. Likewise, any faulty

adaptation on a single edge may lead to the merging of two genuine zones. We

mark certain edges as provisional in the hypothesis phase. The goal is to retain edges

unless sufficient evidence is collected, label them as provisional and preserve them

for subsequent validation. There are three scenarios where edges are marked
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Figure 3.13: Dynamically Adaptive Voronoi assures both Voronoi and Docstrum
features.

provisional and require contextually-aware features (instead of component-level

local features) to make the correct decisions.

Contradicting decisions: Voronoi++ avoids making binary decisions based at

the component-level. Every edge e is given a confidence (γG) by:

γG =
d(E)
TG

d2

+
ar(E)

Ta
(3.13)

where the word-separation threshold TG
d2 is a globally determined threshold before

dynamic adaptation [11]. As in the Voronoi based approach, an edge is preserved

if γG > 1. After dynamic adaptation, the word-separation threshold TD
d2 is deter-

mined and γD is calculated as described above. If after dynamic adaptation, the

decision on an edge is reversed (i.e. γG > 1 & γD < 1 or γG < 1 & γD > 1), it is

preserved and tagged as provisional. This is because the decision made dynami-

cally based on local properties is kept as a hypothesis for validation. This avoids
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merging of zones due to incorrect adaptation. Figure 3.14 illustrates the scenarios

where this can happen.

Inter-word threshold (Td2): The two peaks in the frequency distribution of dis-

tances associated with the edges correspond to inter-character and inter-word

gaps. v1 corresponds to the distance for the first peak and v2 corresponds to the

distance for the second peak. The aim of determining the correct Td2 is to delete

all edges separating words or lines. The Td2 determination poses two challenges.

The first challenge is to find the correct v2. In Section 3.2.2.1 we proposed a

valley finding approach to better determine v2. The second challenge is to deter-

mine Td2 from v2. The value of v2 is inappropriate as Td2, because some of these

edges (between lines and words) have values slightly larger than v2, as shown in

Figure 3.15. Kise et. al. [46] add a margin to v2 to determine Td2 as follows:

Td2 > v2 (3.14)

f (Td2) = t. f (v2) (3.15)

where t is the parameter for controlling the margin. Since f (d) takes discrete

values, linear interpolation is applied to obtain Td2 which satisfies Equation 3.15.

If multiple values of Td2 are obtained, the smallest one is used. Since t is more of

a subjective parameter, an exact determination of Td2 is not possible. The edges

with distances between the smallest interpolated value of Td2 and the dip after v2

are equally likely to be removable edges (highlighted in Figure 3.15). These weak

edges are also marked as provisional and kept under supervision for removal in
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Figure 3.14: A and B depict increase in Td2 based on larger components, due to
which dissimilar zones have been merged together. C depicts large
components formed due to touching-characters (be, Dec). This in
turn increases Td2 and removes the edge, leading to the fusion of two
columns into a single zone.
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Figure 3.15: Highlighted area shows edges with slightly larger distances than Td2

and may be equally likely to be removed.

the validation-phase.

Inter-character threshold (Td1): Both Voronoi and the proposed dynamically

adaptive scheme remove edges between components separated by inter-character

distances (Equation 3.4) without adaptation. This condition helps prevent edges

within the same zone (i.e. preventing over-segmentation) but may also lead to

removal of edges between distinct zones separated by distances less than inter-

character thresholds as shown in Figure 3.16. In the hypothesis-phase, we do not
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(a) (b)

Figure 3.16: Components belonging to different zones are merged if separated by
less than the character-separation threshold.

want to merge distinct zones at the cost of over-segmentation, so this condition is

removed from segmentation.

Any edges that would have been removed by dynamic adaptation are now

preserved with a provisional label along with the edges which were ‘saved’ from

removal due to adaptation. This results in more edges when compared to the

original Voronoi or the proposed dynamically adaptive scheme (Section 3.2.2.1).
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The hypothesis-phase associates the following low-level features with each edge:

1. distance d(E)

2. confidence γG

3. isProvisional (bool)

3.2.3 Validation Phase: Considering Context

The zones obtained after the hypothesis phase are separated by edges con-

taining low-level inter-component relationship features. The goal of this phase is

to merge zones based on their content similarity as well as the low-level features

separating them. It is important to understand that low-level separation features

are as important as high-level content features. While two adjacent zones may

have similar content, they may still belong to physically separate zones (e.g. two

adjacent columns on a page). The challenge in segmentation is to determine the

correct separation based on local neighborhood patterns. A contextually aware

system has a better chance of determining that instead of a system based on only

low-level features. The validation phase builds context using low-level distance

based features (called Separation context) and high-level zonal content (called

Similarity context). Two zones are merged only if they satisfy the criteria in both

contexts.
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3.2.3.1 Separation Context

Instead of merging two zones based on a single provisional edge, separation-

context determines the percentage of provisional edges separating them in their

edge-set E. However, not all non-provisional edges are of interest for the sep-

aration context. Those non-provisional edges whose confidences are limited

by a factor of maximum provisional edge confidence are labeled critical edges:

γc < K ∗max f (γ f ) where K is a constant chosen to be 2 and γ f is the confidence of

a provisional edge f . All other stronger edges are non-critical edges which do not

contribute in decision making. Two zones are said to be a single zone candidate

Figure 3.17: Non-critical, critical and provisional edges separating two zones.

if the ratio of provisional edges to critical edges is above a threshold:

|ProvisionalSet|
|CriticalSet|

> τ (3.16)

where τ is chosen to be 0.5 based on empirical studies. Figure 3.17 shows provi-

sional, critical and non-critical edges separating two zones.

3.2.3.2 Similarity Context

All candidate zones from the separation context are fed into a feature extrac-

tion module. Broadly there are two types of feature extraction techniques. One
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type tries to represent the structures [44, 76, 52, 34] and another type tries to rep-

resent the textures [66, 93]. For object detection, the former set of techniques have

been quite successful and are generally rotation and size invariant. For zone clas-

sification, however, zones may have the same textual content, which may differ

in size, type or rotation. Hence, texture based features are typically required. We

use a combination of run-length based features and spatial features derived from

foreground and background pixels separately [8]. These signature-like features

encode pixel spatial distribution information and amount of local image texture

(contrast).

Each extracted d-dimensional feature vector is visualized as a data point in

d-dimensional space. If N is the total number of points, the goal is to group them

into c clusters, where c ε [1,N]. As with any clustering problem, determining the

correct c is not a trivial problem. A deeper analysis reveals that this data is not

flat (i.e. it contains hierarchy levels of varying within-cluster distances). While

a figure zone and small-text zone may reveal feature vectors occupying distant

places in the d-dimensional space, features of bold and italics text may lie very

close to each other. This requires a more sophisticated hierarchical clustering

approach with varying within-cluster thresholds. However, if for every feature

vector, an approximate distance to a similar feature vector was known beforehand,

the problem reduces to a semi-supervised clustering. In addition, if we know the

approximate area spanned by similar feature vectors in d-dimensional space, we

have stronger evidence of similarity for every point. Figure 3.18 demonstrates

the concept.
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(a) (b)

Figure 3.18: (a) shows 4 feature-vectors spaced in 2-D. All vectors are separated
from each other by nearly equal distances. (b) shows few similar
feature-vectors to each vector. The clusters become apparent.

To achieve this, we divide each zone into two parts along the length of its

bounding box and N tiles of sizeωX ωwhereω is the most frequent component’s

size (determined from dynamic adaptation). Each zone, along with its 2 halves

and N tiles, is sent to the feature extraction module, generating N + 3 feature

points. These features encode information at various levels and positions in each

zone. Each zone’s feature vector in d-space along with its similar vectors (from

two halves and N tiles) form a set of points called a supervised-neighborhood

κ. The problem now reduces to a semi-supervised clustering problem, where for

each neighboring pair of zones i and j, κi is compared with κ j. If they form two

distinct clusters in d-space, the zone merge is said to have been prevented, else they

are merged. This is not an optimization problem as we do not intend to form two

clusters out of two sets of points. Instead, the goal is to verify if the two sets of

points form two clusters.

Since the classification is unsupervised and the number of feature vectors (of

two zones under validation) are typically less than the dimensionality d of feature

space, the features of the zones can not be mapped to a more discriminative (or
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reduced) feature space using approaches like PCA, LDA or PLS [8]. Instead, if

the distance between the means (µi) of two supervised-neighborhoods is greater

than the sum of their average radii (Ri), the neighborhoods are said to represent

distinct zones, otherwise their zones are merged. In the case of a merge, the new

supervised-neighborhood of the merged zone contains feature vectors from both

zones, thereby encompassing more context.

R1 =
∑
xεκ1

(~x − ~µ1)/||κ1||

R2 =
∑
xεκ2

(~x − ~µ2)/||κ2||

D = ~µ1 − ~µ2

i f R1 + R2 > D, MERGE (3.17)

Figure 3.19 shows a document image at each stage of the Voronoi++ ap-

proach.

3.2.4 Evaluation

3.2.4.1 Metrics

Evaluation of page segmentation algorithms is an important but controver-

sial step for the document analysis community. The primary reason is that it is

difficult to provide a deterministic way to divide a page into zones that everyone

will agree with and that is appropriate for all tasks, especially for complex docu-

ments. While it is evident that two zones with different styles should be separated,

splitting a text-zone between text-lines, for example, is arguably acceptable. A
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(a) Original document image (b) Over-segmented zones with provisional
edges marked in red

(c) Proposed regions after Separation Context,
with critical edges in yellow

(d) Final segmentation after Similarity Context

Figure 3.19: Context-aware phases of Voronoi++.
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two-column document page will have at least two zones, but each column can

be further split at its paragraph or line breaks without affecting reading order or

comprehension. In order to avoid this ambiguity, the accuracy of page segmen-

tation algorithms is often calculated as the percentage of ground-truth text-lines

contained correctly within result zones without split, merge or miss errors [81, 58].

The drawback of this approach, however, is that if the segmentation algorithm

outputs the whole page as one segment, the split and missed errors disappear.

As shown in Figure 3.20, the result zones containing complete text-lines from

different zones are not penalized. In [11] we proposed a zone-based evaluation

method where we compare ground-truth zones with result zones. A result zone

is said to be detected, if its foreground pixels overlap those of ground-truth above

a user specified percentage. This is a much stricter evaluation scheme in terms

of zone detection. However, as stated earlier, this method will not tolerate valid

over-segmentations (at paragraph or line breaks).

A more complete evaluation scheme is now used, which involves ground-

truth at both zone and text-line level. After ground-truthing text-lines, lines

are grouped into the largest possible distinct zones. While it remains a zone-

based evaluation strategy, valid (along-text) zone splits are not penalized. This

split option is configurable and the evaluation tool is used for both split (lenient)

and no-split (strict) options [78]. Due to the current lack of ground-truth data

at text-line level, the split option allows zone-splits irrespective of their validity.

Another option, called the ignore option, ignores all those result zones whose

precision and recall are zero, i.e. if they don’t overlap with any ground-truth
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Figure 3.20: Result zone covering two distinct zones is not penalized using line-
based evaluation.

zone. This avoids penalizing the segmentation algorithms for producing zones at

unannotated regions such as marginal noise and text-borders (partial text-regions

from an adjacent page in case of book scanning).

In order to gauge the effects of the strict and more lenient evaluations of

our approach, we use 3 kinds of evaluation schemes based on the options in our

evaluation tool [77] (Figure 3.21, Table 3.1). The first evaluation scheme E1 does

not penalize the algorithms for producing zones at unannotated regions (ignore-

option: true) while the second evaluation E2 does. The third evaluation scheme E3

allows zone splitting within a ground-truth zone (split-option: true). Precision,
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(a) Evaluation Scheme E1

(b) Evaluation Scheme E2

(c) Evaluation Scheme E3

Figure 3.21: 3 metrics are used for comparing various page segmentation algo-
rithms. The rectangular blocks show ground-truthed zones and
result zones are depicted as polygons. The noise regions are not
ground-truthed.
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Table 3.1: Evaluation Schemes

Evaluation Scheme Description

E1 Ignores segmentation results on unannotated regions

E2 Penalizes segmentation results on unannotated regions

E3 Allows zone splitting within annotated regions

Recall and F1-scores are calculated as follows:

Precision =
True Positives (TP)

True Positives (TP) + False Positives (FP)
(3.18)

Recall =
True Positives (TP)

True Positives (TP) + False Negatives (FN)
(3.19)

F1 =
Precision + Recall

2
(3.20)

The ground-truth and result files (containing polygonal zones) follow the

GEDI XML format specification [53].

In order to separately evaluate the improvements due to the proposed dy-

namic adaptation scheme, without context (Section 3.2.2.1) and with the complete

two-phased context-aware scheme, we compare the final Voronoi++ to both the

original Voronoi system and the Voronoi++ (without context).

3.2.4.2 Datasets

We evaluate the original Voronoi approach and our Voronoi++ approach

against 3 datasets using different configurations of the region-based evaluation

scheme. The 3 datasets (Table 3.2) are:
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Table 3.2: Datasets

Dataset Language Content-
Type

Zone geometry Noise

D1 Arabic Handwritten Polygonal Clutter, rule-lines, salt-n-
pepper, stray-marks

D2 English Machine-
print

Rectangular Clutter, salt-n-pepper

D3 English Machine-
print and
Handwritten

Polygonal Degraded, clutter, salt-n-
pepper

1. Arabic Handwritten (D1): This dataset consists of handwritten Arabic text,

stamps, logos and figures with noise in the form of stray marks, clutter and

salt-n-pepper. The zones were polygonal.

2. English Machine-Print (D2): The second dataset is from University of Wash-

ington III(UW-III) database [39]. It contains 10 different zone types - chem-

ical drawing, small text, symbols, drawing, halftone, logo or seal, map,

math, table and large text. The selected documents were primarily scanned

publications or journals with rectangular zones.

3. Complex English (D3): The third dataset consists of highly degraded and

noisy English documents. The documents consist of forms, handwriting

annotated printed text, tabular columns, letters and memos. The zones

were primarily polygonal.
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(a) Arabic Results (b) English Results

Figure 3.22: Accuracy comparison for Arabic and English datasets. FN = False
Negatives, FP = False Positives, TP = True Positives

3.2.4.3 Experiments and Results

Scripts Comparison: The accuracy results using 50 documents from each dataset

under evaluation scheme are shown in Figure 3.22. For the Arabic dataset

evaluation, Voronoi++ improves the accuracy by over 400 percent, underlin-

ing the limitation and room for improvement of state-of-the-art algorithms for

handwritten non-Latin scripts. Using both content-based and context-aware fea-

tures, Voronoi++ further triples the overall accuracy (precision) over its context-

unaware counterpart for Arabic dataset. It also achieves an improvement of 18%

for English datasets.

Figure 3.23 shows example results of Voronoi, Voronoi++ (no context) and

Voronoi++ from the English D2 set while Table 3.3 shows samples from the Arabic

D1 set.

Metrics Comparison: We compare a subset of 100 English documents (50 from

each English dataset D2 and D3) across the three defined metric schemes (Sec-

tion 3.2.4.1) to evaluate the consistency of Voronoi++ over the traditional Voronoi
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(a) Voronoi

(b) Voronoi++ (no context)

(c) Voronoi++

Figure 3.23: Illustration of results of various segmentation approaches on printed

English dataset.

110



Table 3.3: Illustration of results of various approaches on handwritten Arabic
dataset.

Document A Document B

Vo
ro

no
i

Vo
ro

no
i+

+
(n

o
co

nt
ex

t)
Vo

ro
no

i+
+

111



approach (Figure 3.24). The false-positive zones are filtered based on the split and

ignore flags of the schemes (Figure 3.21). Precisions are compared across schemes

along with the percentage of true-positives, false-positives and false-negatives

zones returned. Voronoi++ consistently performs better in all the evaluation

schemes. Figure 3.25 also depicts Voronoi++ reduces over-segmentation (better

Recall) over Voronoi and, on an average, reduces the number of zones returned

to 50% for English datasets.

Parameter Sensitivity: In Section 3.1.1.2, we illustrated how tuning parameters

effect page segmentation and the challenges involved in choosing the correct

noise threshold for a particular dataset. One of the goals of Voronoi++ was

to remove the dependency on such input parameters and adapt to any dataset

with minimal user intervention or experimentation. In order to verify this, we

evaluated and compared both Voronoi and Voronoi++ over a series of noise-

thresholds on Arabic and English datasets. Both datasets had different resolution

and component sizes. As illustrated in Figure 3.26, accuracy of Voronoi page

segmentation algorithm peaks at different noise thresholds for Arabic and English

datasets (at thresholds 100 and 20 respectively). On the contrary, Voronoi++

performed best at a consistent noise threshold across datasets (threshold 20).

Overall Results: Voronoi++ is also evaluated against Voronoi on a larger set

of 350 randomly selected documents from all the datasets (D1, D2 and D3) using

the first evaluation scheme E1. The overall increase in accuracy is by 74% and
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(a) Results using E1 scheme

(b) Results using E2 scheme

(c) Results using E3 scheme

Figure 3.24: Metrics comparison for English datasets. Voronoi++ improves accu-
racy consistently. FN = False Negatives, FP = False Positives, TP =
True Positives
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Figure 3.25: Number of zones returned from Voronoi++ are closest to those in
ground-truth across different evaluation metrics.

Figure 3.26: Voronoi++ performs best at a consistent noise threshold (=20) across
Arabic and English datasets, whereas Voronoi’s accuracy peaks at
different thresholds for different datasets.
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Figure 3.27: Recall of all approaches against different evaluation schemes.

(a) D1: Document Image (b) D1: Voronoi++ Segmentation

Figure 3.28: Voronoi++ results on various datasets.

the number of false-positives reduced by 73%. Figure 3.27 illustrates the recall

of Voronoi++ is nearly equal to or better than Voronoi. Figure 3.28 shows

sample documents from each dataset and their segmentation using the Voronoi++

approach.

115



(c) D2: Document Image (d) D2: Voronoi++ Segmentation

(e) D3: Document Image (f) D3: Voronoi++ Segmentation

Figure 3.28: Voronoi++ results on various datasets.
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3.2.4.4 Error Analysis

Voronoi++ still makes some errors, and our analysis suggests that they can

be roughly categorized as follows:

Document Quality: Rule-lines, salt-n-pepper noise and severly broken char-

acters either merge dissimlar zones or lead to over-segmentation (Figure 3.29).

A cleaner document has a much better chance of improved segmentation using

Voronoi++.

Ambiguous Ground-Truth: A part of low accuracy can be attributed to inap-

propriate ground-truthing for evaluating component-based (white-space based)

segmentation approaches. Overlapped and nested zones along with zones con-

taining physically separated regions (Figure 3.30) can be seen in our datasets.

Tables and Charts: Tables and Charts are regions which require special defini-

tions of similarity and separation and contradict those for textual or image-based

regions. Tables are composed of similar columns, separated by considerable

white-spaces while charts are composed of dissimilar regions like axes, numbers

and the depicted data. While Voronoi++ outperforms Voronoi in grouping simi-

lar regions in these two categories, it fails in understanding the bigger context of

Tables and Charts as shown in Figure 3.31.
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(a) Rule lines prohibit edge-creation between different
zones

(b) Salt-n-pepper noise tends to produce regions
around dense noise

(c) Severely broken characters convey incorrect
component-size leading to faulty segmentation

Figure 3.29: Faulty segmentation on noisy documents.
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(a) Overlapping Zones (b) Nested Zones

(c) Merged Zones

Figure 3.30: (a), (b) Ambiguous and (c) incorrect ground-truthing for component-

based segmentation.
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(a) (b)

Figure 3.31: Incorrect segmentation for Tables and Charts. (a) Voronoi++ groups
similar-looking parts, but tends to group spatially separated columns
into zones. (b) Voronoi++ groups similar-looking parts, but tends to
separate highly dissimilar parts of an image from the rest.

Abbreviations and Punctuations: Voronoi++ is, sometimes, over-sensitive in

distinguishing abbreviations and punctuations from its neighbors based on their

dissimilar size and pattern (Figure 3.32a).

(a) (b)

Figure 3.32: (a) Smaller-sized punctuations around capitalized abbreviations tend
to make Voronoi++ over-sensitive for certain regions. (b) Over-
segmentation of Mathematical Equations.
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Mathematical Equations: Equations are composed of various dissimilar sym-

bols which are often separated by their sizes and distances as compared to sur-

rounding text (Figure 3.32b).

Separation and Similarity context: Separation and similarity contexts in Voronoi++

sometimes fail to understand the nuances in separate regions as illustrated in Fig-

ure 3.33

(a) (b)

Figure 3.33: (a) Separation context fails due to curved component (b) Similarity
context treats the merged zones similar.
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3.3 Zone Classification

After page segmentation, we obtain a set of zones from a document image.

The next goal is to classify the segmented zones, in order to allow the application

of content-specific algorithms such as Optical Character Recognition (OCR) for

textual zones. We have developed a new combination scheme of structural and

texture features to represent each region for zone classification. We also developed

a novel hybrid classification approach instead of classic one-against-all or one-

against-one approaches to enhance accuracy.

3.3.1 Feature Extraction

The proposed page segmentation method is used to segment the docu-

ment image into a number of zones. Document zones are regarded as image

regions with similar structure and texture. Therefore, both structural and textu-

ral feature extraction techniques are employed. Structural features are run-length

based features derived from foreground and background pixels separately. These

signature-like features encode pixel distribution information in a given zone [93].

Textural features, on the other hand, are based on spatial distribution of all the

pixels (spatial structure) and the amount of local image texture (contrast) [66]. In

the following, {#f/F} denotes the number of extracted features (f) by cumulative

features (F).
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3.3.1.1 Structural Features
Run Length Features: For each zone, run-length features are computed for

each line along four different directions: horizontal (h), vertical (v), left-diagonal

(l) and right-diagonal (r) and are computed for both foreground (0) and back-

ground (1) pixels, as follows [93]:

A run-length < is the number of contiguous foreground or background

pixels in a given direction. Eight bins of run-lengths are created in four directions

for foreground and background pixels. For each bin, the following information

is extracted.

1. Number of run-lengths: {#8/8} |<p
d|

2. Run-length mean features: {#8/16}

rlMeanp
d =

1
|<

p
d|

∑
rl∈<p

d

rl (3.21)

3. Run-length variance features: {#8/24}

rlVarp
d =

∑
rl∈<p

d

rl2

|<
p
d|
− (rlMeanp

d)2 (3.22)

where d ∈ {h, v, l, r} and p ∈ {0, 1}. <p
d denotes run-length bin in dth direction for p

(=0 for foreground, =1 for background) pixel.

Autocorrelation features {#32/56}: For each direction d, a scan from one end of

zone to another, constitutes a pass ρd. Four functions for each direction d = h, v, r, l

are defined based on passes [93].
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1. Function of pass projections. Sum of all foreground run-lengths in a pass is

called pass projection. projd =
∑

rl∈ρd

rl

2. Function of number of pass run-lengths. For each pass, the number of elements

(run-lengths): |ρd|

3. Function of pass means. Mean on each pass: pMeand =
projd
|ρd|

4. Function of pass spatial means. For each run-length (rl) in a pass, position and

length parameters:

posh,rl = xh,s, lengh,rl = xh,e − xh,s,

posv,rl = yv,s, lengv,rl = yv,e − yv,s,

posl,rl = xl,s, lengl,rl = xl,e − xl,s,

posr,rl = xr,s, lengr,rl = xr,e − xr,s,

where for a direction d, (xd,s, yd,s) and (xd,e, yd,e) denote the start and end of a

run-length respectively.

The spatial mean for each pass is:

pSPMeand = 1
projd

(
∑

rl∈ρd

posd,rl ∗ lengd,rl

+ 1
2 (

∑
rl∈ρd

(lengd,rl)
2
− projd))

Two autocorrelation features are computed for each function [93]. The first feature

is the index where the autocorrelation function goes to 10% of its maximum value

and second is the slope of the function at indices close to zero.

Foreground Features {#1/57}: The fraction of foreground pixels to the total num-

ber of pixels in a given zone is also computed. This feature reflects the density of
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pixels in the zone which generally decreases from half-tones to text to diagrams.

3.3.1.2 Texture Features

Texture features compliment structural features because they capture the

spatial (local and global) distributions of zone pixels.

Global Spatial Features {#8/65}: Spatial features are low order statistics that

are used to capture the foreground pixel distribution information [93]. Spatial

features are defined as

spMeand =
1
N

∑
projd∈ξd

wd ∗ projd

spVard =
1
N

∑
projd∈ξd

[projd ∗ (wd − spMeand)2]

(3.23)

where N is the number of foreground pixels, ξd is the set of pass projections and

wd is a weight that depends on the location of a pass within a zone, for each

direction d. Here we use wh = y1, wv = x1, wl = x1 + y1 and wr = y2 − x2, where

(x1, y1) and (x2, y2) define the start and end of a pass respectively.

Local Binary Pattern Features {#256/321}: Local Binary Pattern (LBP) features

are an excellent measure for local distribution of binary textures [66]. They

capture rotation and gray-scale invariant texture properties. A texture T in a local

neighborhood of a binary image is defined as a joint distribution of gray levels of

P > 1 image pixels, as shown in Equation 3.24

T = t(gc, g0, ..., gP−1) (3.24)
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where gray value gc is of the center pixel of local neighborhood and gp(p =

0, ...,P− 1) corresponds to the gray values of P equally spaced pixels on a circle of

radius R > 0 that forms a circularly symmetric neighbor set [66]. LBP exhibit the

following properties.

Gray-scale Invariance: The gray-value of central pixel is subtracted from neighbor-

hood pixels giving T = t(gc, g0−gc, ..., gP−1−gc). Assuming gp−gc are independent

of gc, factorization results in T ≈ t(gc)t(g0 − gc, ..., gP−1 − gc), where expression t(gc)

describes the overall luminance of the image. In order to achieve invariance

with respect to gray-scale shifts in joint difference distribution, only signs of the

differences are considered, as follows

T ≈ t(s(g0 − gc), ..., s(gP−1 − gc))

where s(x) =


1 x ≥ 0

0 x < 0

(3.25)

LBP is then defined by a number as

LBPP,R =

P−1∑
p=0

s(gp − gc)2p (3.26)

and it is invariant against any monotonic transformation of gray scale.

Rotation Invariance: In order to attain rotation invariance, a unique identifier is

assigned to each LBP as follows

LBPri
P,R = min

{
ROR(LBPP,R, k)

}
and k = 0, . . . ,P − 1

(3.27)

where ROR(x, k) performs a circular right-shift on the P-bit number x, k times. It is

observed that over 90% of the texture samples have 0, 1 or 2 bit-transitions (0/1) in
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the neighborhood and hence inclusion of noisy estimates (with bit transitions < 2)

in the dissimilarity analysis degrades performance. Hence, LBP feature operator

is modified as:

LBPriu2
P,R =


P−1∑
p=0

s(gp − gc) U(LBPP,R) ≤ 2

P + 1 otherwise

where U(LBPP,R) captures bit-transitions.

Moreover, a rotation invariant measure of local variance is used, as defined by

the Equation

VARP,R =
1
P

P−1∑
p=0

(gp − µ)2 , µ =
1
P

P−1∑
p=0

gp (3.28)

Both LBPP,R and VARP,R provide a very powerful rotation invariant measure of

local image texture.

3.3.2 Classification

3.3.2.1 Dimensionality Reduction using PLS

Partial Least Squares (PLS) is a statistical technique that was first introduced

in econometrics [95] and later used in other computational fields. It combines

the strengths of Principal Component Analysis (PCA) and Multiple Regression

(MR). Briefly, PLS aims to analyze the relationship between a set of independent

D-dimensionalX ⊂ RD variables (i.e. observations of features) and a set of depen-

dent variables Y ⊂ RC, where C is the dimensionality of the dependent variable

space. As a result, PLS estimates a set of orthogonal latent variables which can

best relate dependent to independent variables. For a detailed discussion of PLS,

the reader is refered to [95].
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We use PLS for two purposes – reducing the dimensionality of the problem

and improving the classification accuracy. Let Y = {a, b} be the set of class labels

for classes ca and cb. Given a set of vectors X from zone types ca and cb and their

associated class labels, we apply PLS to obtain the latent structure Wa,b relatingX

and Y. The latent structure Wa,b is a D × K matrix, where K is the dimensionality

of the latent space and K << D. Hence, a K-dimensional feature vector X̂a,b can

be estimated as shown in Equation 3.29.

X̂a,b = W′

a,bX (3.29)

X̂a,b is then the projection ofX onto the latent structure relating the zone pair {ca, cb}

to their corresponding class labels. The dimensionality of X̂a,b is much smaller

than that of X. Furthermore, X̂a,b better discriminates between ca and cb because

PLS maximizes the covariance between X andY variables.

3.3.2.2 Hybrid Multi-Class Classification

The features extracted as discussed in Section 3.3.1 are combined to create a

D-dimensional feature vector X. The zone identification problem can be formu-

lated as follows: given a D-dimensional feature vector X ⊂ RD, classify X into a set of

C zones type, where C > 2, based on the zone content. 1

Classically, this multi-class problem has been treated by constructing either

C one-against-all binary classifiers or C (C−1)
2 one-against-one binary classifiers

and then using a voting scheme to obtain the required class label, with the lat-

ter method reported to be the most successful one. However, one-against-one
1Note that if C = 2, the problem then is a straightforward binary classification one.

128



methods suffer a principal limitation. If the observation being tested does not

belong to either of the two classes on which the classifier is trained, a vote will be

incorrectly cast, biasing the final classification outcome. In our proposed method,

we use a hybrid of two approaches. Let

ya,b = fa,b(X) (3.30)

be a binary classifier that maps an input vector X into one of the two classes ca or

cb. For all pairs of arbitrary zone classes {ci, c j}, where i, j = 1, . . . ,C and i , j, we

construct two binary classifiers, as shown in Equation 3.31

yi, j = fi, j(X̂i, j)

yi− j,all = fi− j,all(X̂i− j,all)

(3.31)

where X̂i, j is the projection of training vector X onto the latent structure relating

{ci, c j} to the corresponding class labels. X̂i− j,all, on the other hand, is the projection

of X onto the latent structure relating a combination of ci and c j from one side

and all other classes from the other, and their corresponding class labels. Hence,

fi− j,all is two-against-all classifier, which we call the indicator classifier. In order to

solve the multi-class classification problem, we construct C (C−1)
2 one-against-one

classifiers plus C (C−1)
2 indicator classifiers.

At testing time, to determine the zone type of an input vector X, all C (C−1)
2

pairs of classifier must be used. To check if an input vector X belongs to ci or

c j, the vector is first projected onto X̂i− j,all. Subsequently, if fi− j,all indicates that X

does not belong to either ci or c j, then fi, j is not used and no vote is being cast.

Otherwise,X is projected onto X̂i, j and fi, j is used to cast the vote accordingly. The
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class with the maximum number of votes is selected to be zone type of X.

3.3.3 Evaluation

The proposed method was applied to the University of Washington (UW)

dataset. The dataset contains 1690 document images with a total number of 24531

zones. We consider 10 different zones types – chemical drawing, small text and

symbols, drawing, halftone, logo or seal, map, math, ruling, table and large text.

Using SVM as the underlying binary classifier, the hybrid classifier achieves 97.3%

classification accuracy. To our knowledge, the best reported performance on this

dataset is 98.45% of Wang et al. [93]. However, the UW dataset is significantly

unbalanced with 87.9% small text samples, 0.065% logo and seal samples and

0.057% map samples.

In order to further assess our proposed algorithm, we eliminated small text,

logo and seal and map classes from the dataset. The hybrid classifier achieves

a comparable 96.6% accuracy on the remaining 7 classes. No result is available

for a similar experiment from [93]. Moreover, similar experiments show that the

hybrid classification scheme out-performs the classic one-against-one scheme.

Table 3.4 summarizes the results.

1-vs-1 Wang et al. [93] Hybrid
Un-balanced 93.1% 98.45% 97.3%

Balanced 88.2% N/A 96.6%

Table 3.4: Performance Comparison
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Chapter 4

Character Segmentation and Recognition

4.1 Background and State-of-the-art

Current trainable OCR systems typically assume

1. the availability of ground-truth data at character level for training

2. a sufficient number of representative samples of each class and/or

3. the accurate character segmentation is available before recognition

Low-density languages and languages without commercial OCR engines

challenge these assumptions in various ways. In languages with large character

sets, the overall representation of classes typically decreases in typical texts with

some classes having no representation unless a very large amount of training

data is provided. Such data may be difficult to obtain, and not practical for

such languages. Another problem for syllabic languages is that the nature of

their script can not ensure character-level data availability for training and one-

dimensional character segmentation routines fail for two dimensional positioning

of glyphs inside syllables. Broken and touching characters add to the woes and

require a more intelligent character segmentation methodology. With this, a

generic character recognition system suggests the need for a script-independent

specialized character segmentation routine.
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Most systems focus on feature extraction and classification to improve accu-

racy but they require training and the availability of class samples at the character

and/or word levels. The objective of our work is to create a generic script recog-

nizer which can be bootstrapped from font descriptors and can be trained using a

minimal number of samples. Since our research is targeted towards low-density

languages, the availability of large amounts of ground-truth data can not be as-

sumed [55]. For this reason, many techniques such as SVMs and HMMs which

require large amounts of training data, can not be used. In addition, limited user

feedback is a key to the system’s adaptiveness.

4.2 Base Recognition System

The contributions of this work stem from observations about a base system

we have in [55, 54]. This section describes the system which contains three differ-

ent functional components: (1) Hierarchical segmentation (2) Feature Extraction

and (3) Classification

4.2.1 Segmentation

It is often non-trivial to segment characters for complex non-Latin (especially

syllabic) scripts (Figure 4.1a,b), and availability of segmented characters can

not typically be assumed for training purposes. Hence, Maryland researchers

developed a limited user feedback mechanism in which unregistered electronic

text is fed to the training module along with the document image [55]. Text-
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(a) (b)

Figure 4.1: Bigger boxes (dotted) demonstrate syllable-level segmentation while
smaller (solid) ones show character-level segmentation for (a) Devana-
gari script (b) Cambodian script composition.

alignment is accomplished by aligning zones, lines and words in image and

electronic document text in a hierarchical manner. Since the alignment can be

imperfect, only the best-match segments are returned.

In [54] syllabic and non-syllabic scripts require different procedures for

character alignment and segmentation. The user must specify script category

(syllabic or non-syllabic) and its parameters.

The system follows a dissection based character segmentation approach and

each connected component in a word is associated with accents or separate dots

above or below it, to form a glyph. With the assumption that a character won’t be

too wide or too narrow, a glyph satisfying the following conditions is considered

a character if:

1. The aspect ratio falls in the range [rlow, rhigh];

2. The area is larger than Amin;

where rlow, rhigh are the predefined low and high aspect ratio thresholds respec-

tively and Amin is the area threshold (derived from the data, the values were found
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to be 0.2, 1.0 and 5 respectively). Character images are extracted by aligning char-

acters in the ground-truth word-text and document word-image.

4.2.2 Feature Extraction

After character segmentation, each character is processed through a fea-

ture extraction routine where the most descriptive or differentiating features are

extracted and used in training and testing. Feature extraction [37, 90] and clas-

sification [29, 71] form the basis of any training and testing process. Feature

extraction approaches fall into two classes - spatial domain [31] and transform

domain [38, 56] based. Spatial domain approaches derive features directly from

the pixel representation of the pattern. With a transform domain technique, the

pattern image is first transformed into another space using, for example, Fourier,

Cosine, Slant or Wavelet transform and features are derived from the transformed

images [38].

In our system, three feature extraction routines have been developed and

can be used interchangeably:

1. Template initialization: Each character image is first resized to a 32 X 32 vector

map. A probabilistic template is generated from all samples of each class

from the training data [55]

2. Zernike Moments: Moment descriptors have been studied for image recogni-

tion and computer vision since 1960s. Teague [91] first introduced the use

of Zernike moments to overcome the shortcomings of information redun-
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dancy present in the popular geometric moments. Zernike moments are a

class of orthogonal moments which are rotation invariant and can be easily

constructed to an arbitrary order. Khotanzad & Hong [45] showed that

Zernike moments are effective for the optical character recognition (OCR).

3. Directional Features: Templates are rigid, and can result in poor models

for classification for noisy documents. Zernike moments, however, are a

transform-based feature analysis method and more robust to shape vari-

ances, but do not utilize inherit ‘directional’ property of complex scripts.

The relative placement of neighboring pixels is more important than the

overall placement of pixels forming the character. Directional features [44]

record local pixel positions for each contour pixel and generate a feature

vector using that information.

For directional features, the character image is normalized, and the contour

is extracted and mapped to a 64-by-64 mesh. The mesh is divided into 49

(7-by-7) sub-areas of 16-by-16 pixels where each sub-area overlaps eight pix-

els of adjacent sub-area (Figure 4.2). For each sub-area, a four-dimensional

vector (x1, x2, x3, x4) is defined where x1, x2, x3 and x4 record the rela-

tive direction (vertical, horizontal, forward inclined, backward inclined) of

neighboring pixels with respect to each foreground pixel in the sub-area.

Hence, a 49 x 4 = 196 unit long feature vector is produced. Figure 4.2 shows

the directional feature extraction process step-by-step.

135



Figure 4.2: Directional Element Feature Extraction.

4.2.3 Classification

Classifiers like Artificial Neural Network [17] or Support Vector Machines

(SVMs) [7] have been successful at recognizing various non-Latin scripts. These

can work on either spatial or transform based features. Hidden Markov Mod-

els (HMMs) [21, 72] work on a large number of training samples to estimate

probability parameters. They have been quite successful in handwriting and

speech recognition. Fuzzy rules [27], Mahalanobis and Hausdorff distance, and

Evolutionary algorithms [86] are other techniques used for recognition.

We have three different classifier modules in our recognition system, which

can be called interchangeably based on the input parameters, and are known to

do fairly well with limited training data.
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4.2.3.1 Template Matching

Awarding probabilities when template pixel matches with the correspond-

ing pixel in a candidate character image and penalizing otherwise, forms the core

objective of template matching. The template which has the best match is selected

as the class. The candidate character image is binary, while the pixel values of the

template map g(x, y) are in a range [0,Ninst]. The similarity of a character image

f(x,y) and a template gb(x, y) is defined by a weighted similarity.

Sw( f , g) = 1.0 −
1

N2

N∑
x=1

N∑
y=1

ω(x, y)
∣∣∣ f (x, y) − gb(x, y)

∣∣∣
where the weight ω(x, y) is defined as:

ω(x, y) =


1.0 if gb(x, y) is background

g(x,y)
Ninst

if gb(x, y) is foreground

4.2.3.2 Nearest Neighbor Classifier and Weighted Euclidean Dis-

tance

Nearest Neighbor Classifier is used on Zernike Moment features with a sim-

ple weighted Euclidean distance (WED). For each test sample, the classification

is based on the distance between this sample and each class. The feature vector is

in a d-dimensional space and the computed mean and standard deviation feature

vectors for class i are µ(i), α(i), where i = 1...M and M is the number of classes.

For each test sample xεRd, the distance between this sample and each class is

computed using the following formula:

d(i)(x) =
d∑

k=1

∣∣∣∣∣xk−µ
(i)
k

α(i)
k

∣∣∣∣∣
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4.2.3.3 Hierarchical Classification

Kanji and South-East Asian scripts have a large number of symbols. Hence,

one-stage discrimination does not generally suffice. In this approach, two-stage

classification (coarse and fine) is used. The aim of coarse classification is to

cluster similar-looking characters into groups and then perform fine classification

to extract the right class [44].

1. City Block Distance with Deviation (CBDD): Let v = (v1, v2, ...vn) be an n-

dimensional input vector and µ = (µ1, µ2, ...µn) be the standard vector of a

category. The CBDD is defined as:

dCBDD(v) =
n∑

j=1
max

{
0,

∣∣∣v j − µ j

∣∣∣ − θ.s j

}

where s j denotes the standard deviation of jth element, and θ is a constant.

2. Asymmetric Mahalanobis Distance: For each cluster, the correct class is ob-

tained by finding the minimum asymmetric Mahalanobis distance from the

templates in that cluster. The function is given by:

dAMD(v) =
n∑

j=1

1
σ̂ j

2+b
(v − µ̂, φ j)

2

where b is the bias, µ̂ is the quasi mean vector of the samples of the class m,

φ j is the eigenvector of covariance matrix of this category and σ̂ j is the quasi

variance. In case of a tie, N-nearest neighbor is used, with N = 3.
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4.2.4 Additional Challenges

An analysis of results of the system described above shows that a large

number of recognition errors are caused by incorrect character segmentation of

complex syllabic scripts or by touching and broken characters (in degraded doc-

uments). Due to the large glyph set and possible conjunct set of such scripts,

limited ground truth could not cover all the possibilities and hence many classes

had no representation in the ground truth data.

Some of the complex problems in the field of syllabic character segmentation

have already been listed. This implies that the benefits of good feature extraction

modules (followed by classifiers or their combinations) can not be realized until

there is a robust generic solution to the character segmentation problem.

4.3 Font based Intelligent Character Segmentation

4.3.1 Benefits and Font Models

Nearly every script considered has a representative TrueType font. One fea-

ture of a TrueType font file is an explicit, generative model for layout of text. Given

a character, the position of next character can be predicted using the properties of

these fonts. This will be used to aid in segmenting touching characters, group-

ing broken characters and processing glyphs fused or overlapped in syllables.

Another advantage of such an approach is that it does not entail script depen-

dent mechanisms for segmentation and aims at a generic character segmentation
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algorithm for any given script. This method branches off of the second tier of

character segmentation approaches (Section 1.3.1.1) by generating well-defined

component extraction and segmentation hypotheses.

Font-files have a wealth of information [47] and can be used to produce

this generative model. Information in the font-files includes a list of characters,

glyphs of each character, font ascenders and font descenders.

At a given font size, the file also contains the following information for each

character

• Unicode value

• Height and Width

• Horizontal Advance (HA): the horizontal distance between the origins of

present and next character in a word

• Vertical Advance (VA): the vertical distance between the origins of present

and next character in a word

• Bounding Box (BB)

• Left Bearing (LB): the horizontal distance between the left-end of a bounding

box and its origin

• Right Bearing (RB): the horizontal distance between the right-end of a

bounding box and origin

• Combination rules of ligatures
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Many parameters are redundant, as they can be derived from other pa-

rameters. Font-files for similar fonts can be analyzed for consistency in these

model-parameters. Figure 4.3 shows the location of characters for three fonts

of Devanagari script (at the same font size). The fonts place each character or

sub-character glyph at nearly the same position (with respect to a given origin),

hence demonstrating the consistency in these parameters. Similar analysis was

done for non-syllabic scripts.

Figure 4.3: Chart shows locations of 3 different characters of Devanagari script
using 3 structurally similar Devanagari font files.

For a given font face and size, a word is rendered by placing the first character

using its bounding box. Using the horizontal-advance, vertical-advance and

origin of present character, the origin of next character is determined. Using this

origin, the next character is placed in its bounding box and the process is repeated

for the remaining characters in the word. Figure 4.4 shows the process.

Using a group of structurally similar fonts, glyphs can be extracted and

used for training purposes. This eliminates the problem of coverage in the large
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Figure 4.4: The figure above shows rendering of characters in a word in Khmer
using font-models (a) Locating first character (b) Placing character into
its bounding-box (c) Determination of the origin of next character (d)
Determination of next character’s bounding-box (e) Placing the second
character.

alphabets of syllabic scripts with limited ground-truth. The glyphs extracted

can be a substitute for missing or rarer character classes from ground-truth. The

information is then used to segment characters from word-images during training

and testing using the process illustrated above (Figure 4.4).

4.3.2 Training Using Font-files

The following steps describe the process of training a system with limited

ground-truth data (Figure 4.5).

Step 1: A group of similar fonts, resembling the text in documents to be processed,

are provided along with electronic text.

142



Step 2: For each character, the average bounding box, horizontal and vertical-

advance values are computed from the font files.

Step 3: The character glyphs from font files are generated as templates and passed

through the feature extraction routines.

Step 4: Each document image along with its corresponding unregistered electronic-

text ground-truth file, is passed through the segmentation module and a hierar-

chical structure (containing Page Õ Zone Õ Line Õ Word) is created with word-

alignments at it’s root.

Step 5: Each word in this structure is further segmented into characters using

(a) aligned characters in the corresponding ground-truth, (b) font parameters ex-

tracted in step 2, and (c) process explained in Figure 4.4.

Step 6: For each character segmented in the document image, feature extraction

is performed.

Step 7: Classes are modeled using the features of glyphs from training set and font

files. Hence, limited ground-truth data with some unrepresented glyphs suffices,

as those glyphs are processed from the font-files.

4.3.3 Segmentation and Recognition

With the objective of grouping broken characters, segmenting conjuncts

and touching characters, the technique of font-model based intelligent character

segmentation and recognition was developed. As discussed earlier, it falls in

second category of character segmentation with an advantage of reducing the
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Figure 4.5: Character training using font-files.

number of hypotheses by the knowledge of the next character’s position, given

the present character. This is achieved using font parameters.

Algorithm: We first define the following:

ηi : Bounding box of possible component combinations,

where 1 ≤ i ≤ CN
1 + CN

2 + ... + CN
N

ρ j : Bounding box of a predicted character,

where 0 ≤ j ≤ Total number of characters in the language

©i j : Overlap(ηi, ρ j)/minArea(ηi, ρ j)

τ1 : Threshold on©i j

<i j : maxArea(ηi, ρ j)/minArea(ηi, ρ j)

τ2 : Threshold on<i j
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γ : {∀ηi s.t.©i j > τ1}

δ : {∀ηi s.t.©i j > τ1 &< > τ2}

The document image is classified into zones, lines and words. For each

word, connected component analysis is performed. Assuming a maximum of N

uncovered components can be combined together to form a character, there can

be CN
1 + CN

2 + ...+ CN
N possible nodes (ηi) for next character (typically N = 3). Given

the present character, predictions (ρ j) are made for the next-character’s locations

(using font-model). Those ηi which do not overlap (with threshold τ1) with any ρi,

are discarded. The ηi which overlap (with threshold τ1) with any ρ j are inserted

into a set γ. The ηi which enclose any ρ j are inserted into a conjunct set δ. Nodes

of set γ are ranked by their confidences returned from the recognizer. Nodes

of the conjunct set δ are given for a conjunct-test (described later). If they pass

the test, the conjunct is broken into possible characters using Dijkstra’s algorithm

and individual character confidences are returned. Only the first character (along

with its confidence) from every conjunct is kept in the set δ and later pieces

are stacked back into the set of uncovered components. The highest confidence

character is picked from set γ and δ combined. The process is repeated for the

uncovered connected components in the next stage. In case of dead-ends (when

no possible character location coincides with the present connected-component

nodes), back-tracking is performed and the path is pruned (Figure 4.6).

Conjunct-test: Conjuncts form an integral part of any syllabic script. Many

characters combine to form a single shape. Techniques so far have relied on a
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Figure 4.6: Dynamic Network created during best-path search of word-
recognition (using Font-models).

crude method of aspect ratio threshold to determine if a character is a conjunct

and needs to be broken down further. With font-models, an intelligent conjunct

detection procedure has been developed. A glyph is passed for conjunct-analysis

only if it encompasses the possibility of two or more characters of the given script

under test. This position-analysis can be done only through font-models of a

script, as illustrated in Figure 4.7.
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Figure 4.7: Conjunct Detection. Bigger (dotted) Box shows a possible conjunct
under detection. If two characters (solid boxes) fit in (using font-
model), it may be a conjunct.

4.4 Evaluation

4.4.1 Datasets

Our experiments were performed on two classes of scripts - Latin (non-

syllabic) and Khmer (syllabic). Two datasets for English and one for Khmer were

used with the following properties:

1. Noisy Latin (D1): The first Latin dataset has varying amount of clarity across

the pages which leads to a large number of broken and touching characters

(Figure 4.9). Apart from this, the documents contain noise introduced

during the printing and scanning process. The characters in words are also

skewed and not aligned perfectly with the word’s bottom reference line. This
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imposes additional challenges for character segmentation and prediction of

next-character position using font-models and verifies robustness of our

approach. The closest font is NSimSum.

2. Clean Latin (D2): The second Latin dataset, on the other hand, is a much

cleaner dataset, with a font resembling more closely to Courier New. A single

English document had approximately 2000 characters and 330 words.

3. Khmer (D3): The Khmer dataset contains some documents from a Cambo-

dian Gazetteer and documents scanned from other sources (15 pages total).

These documents are dark and hence suffer badly from touching-characters.

This, combined with the presence of numerous conjuncts in Khmer script,

becomes an ideal dataset for evaluation of our techniques. The closest font to

the documents is of Limon S1. A single Khmer document had approximately

1500 characters and 100 words.

Sample text from English and Khmer document is shown in Figure 4.8. In

each dataset, three to five documents were chosen for training. The goal was

to evaluate our approach with limited user feedback and a limited training set -

which is generally the case for any new script under study.

4.4.2 Metrics and Tools

The text returned by the OCR system is matched against the ground-truth

data using a tool based on the UNLV Evaluation Toolkit [61]. The evaluation tool

prints out an elaborate description of insertion, deletion and substitution errors in
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Figure 4.8: (a) Sample text from English dataset (b) Sample text from Khmer
dataset.

the form of one-to-one, one-to-two, two-to-one or two-to-two confusions. It also

summarizes the most confused characters along with their confusions. Apart from

character confusions, it also lists word-confusion matrices in a similar fashion.

4.4.3 Experiments and Results

4.4.3.1 Feature Extraction

Table 1 compares template matching and directional element feature (DEF)

extraction results, both for Latin and Khmer documents. A weighted similarity

measure (Section 2) was used to classify templates and CBDD was used to classify

the directional feature set.
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Table 4.1: Compares character level accuracy results for Latin and Khmer scripts

using Template and Directional Element Features (DEF).

English Khmer

Accuracy Template Matching DEF Template Matching DEF

Char 86% 93% 84% 89%

4.4.3.2 Character Segmentation

Quite a few of recognition errors in dissection based character segmentation

were due to bad character segmentation. The use of font-models reduced those

errors. Extraction of characters from fused ligatures is still a problem and is

considered for our future work. Figure 4.9 shows the improvements in character

segmentation for both broken and touching characters.

4.4.3.3 Character and Word Recognition

Table 2 summarizes the improvements gained using our font-model based

character segmentation and recognition - for both English and Khmer datasets.

Character accuracies as well as word accuracies have been reported. The accu-

racies reported are using directional feature extraction and the CBDD classifier.

wo/FM stands for WithOut Font Model (following dissection-based segmenta-

tion) and w/FM stands for With Font Model. Due to a much higher word-length

in Khmer, the word-accuracies are low as compared to English. Figure 4.10

compares character recognition for both English and Khmer scripts using the
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(a) (b)

(c)

(d)

Figure 4.9: Improvements of our technique over older dissection based techniques
(a) and (b) show Latin script character segmentation using dissection
font-model based techniques respectively (c) and (d) show results for
Khmer script using dissection and our font-model based techniques
respectively.
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developed feature-extraction systems and font-models.

Table 4.2: Compares dissection and font-model based techniques.

English Khmer

Accuracy wo/FM w/FM wo/FM w/FM

Char 93% 96% 89% 92%

Word 83% 89% 38% 37%

Figure 4.10: Character recognition error rates continue to drop using better feature
extraction methods and an intelligent character segmentation system
using font-files.
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Chapter 5

Summary and Future Directions

5.1 Noise Detection and Removal

Summary: In Chapter 2, we have presented a novel approach toward clutter

detection and removal for complex binary documents. Our distance transform

based approach aimed at the removal of irregular and non-periodic clutter noise

from binary document images and is independent of clutter’s position, size, shape

and connectivity with text. The novelty of this approach is in its restrictive nature

to remove clutter, as text attached to the clutter is neither degraded nor deleted in

the process. Residual image creation, as an intermediate step, helps in detecting

clutter and determining the clutter-content boundary precisely. Clutter detection

and removal accuracies were reported greater than 95% on machine-printed and

handwritten documents of English and Arabic scripts.

We also presented a novel approach to stroke-like pattern noise (SPN) de-

tection and removal for binary document images. Our two-phased approach

aimed at understanding the script-independent prominent text component fea-

tures as the first step in a supervised classification approach. SVM with an RBF

kernel was used to classify these components from the rest using a minimal set

of training samples. Later, based on the cohesiveness and stroke-width features

of these components, smaller text components are filtered out using k-means
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clustering. The novelty of this approach is that it does not aim at script or char-

acter recognition in order to perform text extraction at diacritic level. It also

does not depend on a sufficient number of representative ground-truth samples

at component level for training. Instead, it uses generic script features to divide-

and-conquer components into prominent and dependent ones to achieve noise

removal. SPN (Stroke-like Pattern Noise) removal was tested on a set of Arabic

machine-printed and handwritten documents and precision and recall rates of

98% and 97% respectively were reported.

Figure 5.1 shows image enhancement results after clutter and SPN removal,

and illustrates their respective Voronoi++ segmentations. Clearly, a cleaner doc-

ument image has a better chance to succeed in the later stages of the document

processing pipeline.

Future Directions: This work can be extended in the following ways:

1. Text recognition based clutter removal: Section 2.2.1.2 showed that clutter

may not always form contrasting boundaries with the background. While

avoiding the removal of text, we may also leave some boundary pixels of the

noise in the process (as shown in Figure 5.2a). This is because its not always

necessary that any thin protrusion from the clutter is text. Clutter inherently

may have protrusions from it’s main body. Hence, such prevailing pixels

after clutter removal may give rise to a new form of noise which may be

more difficult to remove. It is important that text identification should be

performed before preservation of a protruded branch.
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(a) Noisy image (b) Voronoi++ segmentation on noisy image

(c) Image with clutter removed (d) Voronoi++ segmentation on image with
clutter removed

(e) Clean image with SPN removed (f) Voronoi++ segmentation on a clean image

Figure 5.1: Noise Removal and Voronoi++ Illustration.
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(g) Noisy image (h) Voronoi++ segmentation
on noisy image

(i) Image with clutter removed (j) Voronoi++ segmentation on
image with clutter removed

(k) Clean image with SPN re-
moved

(l) Voronoi++ segmentation on
a clean image

Figure 5.1: Noise Removal and Voronoi++ Illustration.
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Another assumption being made in clutter removal is that text always pro-

trudes out from clutter’s main body. However, in few cases, it may be

possible that the attached text is ‘along’ the clutter’s boundary. In such

cases, there may not be a discernible ‘knee’ in number of regeneration steps

as stated in Section 2.2.1.4. This suggests the need for a more sophisticated

approach.

2. Rule-Line Removal: Figure 5.2a shows the output of the current clutter

removal system. It is clear from Figures 5.2a,b that unless character compo-

nents are obtained from the resultant image, any meaningful interpretation

or recognition of text is still challenging. Hence, removal of ruled lines

which connect various character components into one, is a necessary goal.

Instead of a pixel-based approach (which tends to be computationally ex-

pensive [9]), a possible enhancement can be done through DSCC (Directional

Single Connected Chains [102]) combined with PTC (Prominent Text Com-

ponents) to remove rule-lines. DSCCs extract the longest sub-components of

a rule-line from a connected component of rule-line and text. The challenge

is to make the system automatically adapt from each document image, by

providing semi-automated cues, in order to avoid the problem of dissimi-

larity between training and test data [102, 9].

3. Generic Noise Detection Model: An individual detection process for each

kind of noise can be expensive, and at the same time, due to various shapes

and forms of noise, it is difficult to identify NOISE as a whole, than reject
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(a) (b)

Figure 5.2: Documents with ruled lines touching character components.

it as NON-CONTENT. Training a generic recognizer on any kind of noise

may not be possible. Larry and Malik [57] designed a single class classifier

which is trained on positive samples only and rejects any sample not in the

trained class as OTHER. Using the same principle, it should be possible to

train a single-class SVM on clean document images, which can then reject a

document with any kind of noise (non-clean). Due to its independent nature

with respect to other types of noise, the clutter removal approach can be

combined with this generic noise removal framework. The residual process

on a clutter document removes anything with similar or smaller width than

text-stroke width. This also removes noise like salt-n-pepper, rule-lines,

bleed-through and stray marks, and hence avoids their interference with

clutter detection and removal processes.

4. Prominent Text Components We would like to extend this approach to
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other scripts and documents with mixed content. The idea of separating

prominent text components first and using their properties to perform con-

text analysis can be utilized in many other domains of document processing,

like rule-line removal, line extraction and word segmentation.

5.2 Page Segmentation and Zone classification

Summary: In Chapter 3 we presented a dynamic approach to content-based

Voronoi page segmentation which makes context-aware decisions using both

low-level inter-component relationship features and high-level zonal content fea-

tures. Our approach consists of a hypothesis phase followed by a validation phase.

The hypothesis phase creates over-segmented zones based on low-level features,

such as component separations and variations, using a dynamically adaptive

approach. We then remove inter-component edges only if the corresponding

(separated) content is similar and spatially close. In case of conflicts in global

or local parameters, edges are left as provisional for further validation. The vali-

dation phase builds context using these low-level features (distance context) and

high-level content features (similarity context). A decision to form zones is then

based on a context-aware system which merges zones only if they are similar in

both contexts. We compared the Voronoi and Voronoi++ (with and without con-

text) approaches using various zone-based evaluation schemes and showed that

the context-aware Voronoi++ performs better than Voronoi and the dynamically

adaptive context-unaware system in all the schemes.
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Future Directions: To improve performance further, a learning approach may

be required. We will attempt to bootstrap the system to learn from its clustering

mistakes. The errors made by the semi-supervised clustering algorithm will be

fed back to the system for further improvement. This should be a self-learning

system which should learn to adapt to separation and similarity contexts. As

we introduce more features per zone, optimization approaches will be useful to

model a better trained system.

Another possible directions of this research are in zone-based document

retrieval, zone detection and document similarity. Document retrieval based on

similar zones (e.g. logos, signatures, seals, stamps) does not typically warrant

the need of already segmented document images. In fact, a query zone instance

can provide cues to segment and extract the regions-of-interest from a database

of document images. Voronoi++ hypothesis-phase is a conservative step in zone

segmentation which produces zones quite unlikely to be split any further. The

features extracted from the query zone instance can help the separation and sim-

ilarity contexts in the validation-phase. A more confident merger of the correctly

hypothesized sub-zones (from hypothesis-phase) can then be performed, in turn

retrieving the document image with the marked zone of interest.

5.3 Character Segmentation and Recognition

Summary: In Chapter 4 we have presented a novel technique to intelligently

segment and recognize characters in complex syllabic scripts, using font-models.
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The approach emphasizes the importance of a good feature extraction module

(directional features over template or Zernike moments). These techniques not

only enhance degraded text-recognition results, but also work with a limited

number of training samples. An intelligent conjunct-detection scheme was also

proposed which is more intuitive than previous approaches. These techniques do

not differentiate syllabic or non-syllabic approaches for segmentation and hence

carry out direct character segmentation from words even for syllabic scripts.

The approach is targeted towards word-based recognition and hence is ready

for language-models. This technique however is slower than dissection-based

segmentation and recognition, as it requires the analysis of recognition results at

every possible segmentation hypotheses. It is also susceptible to mis-recognition

if the font-size of a character changes abruptly within a single word. This is

because the model works on a self-learning approach by tuning its parameters

using the next recognized character.

Future Directions: As illustrated in Section 4.3.3, an intelligent conjunct de-

tection scheme was developed using the combination possibility of two or more

characters using font-files. However, in syllabic languages, conjunct characters

(or syllables) are generally two-dimensional fusions of basic consonants or vow-

els. It is not always possible to segment them by a vertical cut and likewise we

can not train on all possible conjuncts (or syllables), because:

• A potentially large set of conjuncts exist due to multiplicative combinations

of glyphs.
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• In low-density languages, insufficient coverage of conjuncts will result from

limited ground-truth.

• Atomic units of syllabic scripts are still characters, instead of syllables.

Hence, it makes sense to train a classifier on basic units and learn com-

positional rules between them.

Using the same principle, it should also be possible to create templates of com-

posed characters using trained templates of consonants and vowels and compo-

sitional rules from font files.

Composition has been generally argued to be the fundamental to language

[36, 67, 18]. Just like objects and scenes can be decomposed into a hierarchy of

meaningful and generic parts, each word can be decomposed into a hierarchy of

syllables, conjuncts and atomic glyphs. By establishing a compositional represen-

tation, the complexity of object models can be reduced and learning such models

from limited training data becomes feasible. However, a fundamental concept

is to find a trade-off between two extremes: learning high-level objects entails

high intra-category variations while very low-level descriptors fail to capture re-

liable information on the overall object category. For syllabic script recognition,

the primitives can be basic consonants and vowel modifiers, and font-file com-

positional rules can provide us syllables and conjuncts as compositional objects.

Using the training data, the prior assignment of probabilities of these composi-

tional candidates can be computed. This is another potential direction of learning

low-density syllabic scripts where the basic training units can be atomic characters
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and models for conjuncts and syllables can be created as compositional objects.
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Appendix A

Summary of Contributions

1. Clutter Noise Removal

• A distance transform based approach independent of clutter’s posi-

tion, size, shape and connectivity with text.

• Precise determination of clutter-text boundary leading to clutter re-

moval while preserving the attached text.

2. Stroke-like Pattern Noise Removal

• Analysis of noise much similar to text and its effects and interaction

with foreground content.

• A two-phased approach in understanding prominent text components

with independent features and smaller text components with depen-

dent features.

3. Page Segmentation

• A context aware and dynamically adaptive approach to document

page segmentation based on inter-component relationships, local pat-

terns and context features.
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• A two-phased approach where connected components are first com-

bined using their low-level separation features, and later verified based

on the context built from local separation and high-level content fea-

tures.

4. Zone Classification

• Combination scheme of structural and texture features to represent

each region for zone classification.

• A new hybrid approach to improve classification accuracy instead of

classic one-against-all or one-against-one approaches.

5. Character Segmentation and Recognition

• A generic character-segmentation and recognition scheme for syllabic

and non-syllabic languages using font-models.

• Building a character segmentation and recognition system for low-

density languages using a limited training set.
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Appendix B

List of Publications

1. Mudit Agrawal and David Doermann. ”Voronoi++: Context-Aware Dy-

namic Page Segmentation,” Pattern Analysis and Machine Intelligence (PAMI),

2011. (submitted)

2. Mudit Agrawal and David Doermann. ”Clutter Noise Removal in Binary

Document Images,” International Journal on Document Analysis and Recogni-

tion (IJDAR), 2011. (submitted)

3. Mudit Agrawal and David Doermann. ”Stroke-like Pattern Noise Removal

in Binary Document Images,” International Conference on Document Analysis

and Recognition (ICDAR’11), 18-21 Sep. 2011.

4. Mudit Agrawal and David Doermann, “Context-Aware and Content-Based

Dynamic Voronoi Page Segmentation,” 9th IAPR International Workshop on

Document Analysis Systems (DAS ’10), pp. 73-80, Jun. 2010.

5. Wontaek Seo, Mudit Agrawal, David Doermann, ”Performance Evaluation

Tools for Zone Segmentation and Classification (PETS),” 20th International

Conference on Pattern Recognition (ICPR’10), pp. 503-506, 23-26 Aug. 2010.

6. Mudit Agrawal and David Doermann, “Clutter Noise Removal in Binary

Document Images,” 10th International Conference on Document Analysis and
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Recognition (ICDAR’09), pp. 556-560, 26-29 Jul. 2009.

7. Mudit Agrawal and David Doermann, “Voronoi++: A Dynamic Page Seg-

mentation approach based on Voronoi and Docstrum features,” 10th Inter-

national Conference on Document Analysis and Recognition (ICDAR’09), pp.

1011-1015, 26-29 Jul. 2009.

8. Mudit Agrawal, Huanfeng Ma and David Doermann. “Chapter: General-

ization of Hindi OCR using Adaptive Segmentation and Font Files,” Guide

to OCR for Indic Scripts, Springer, 2009.

9. W. Abd-Almageed, Mudit Agrawal, Wontaek Seo and David Doermann,

“Document Zone Classification Using Partial Least Squares and Hybrid

Classifiers,” 19th International Conference on Pattern Recognition, (ICPR’08),

pp. 1-4, 8-11 Dec. 2008.

10. Mudit Agrawal and David Doermann, “Re-Targetable OCR with Intelli-

gent Character Segmentation,” 8th IAPR International Workshop on Document

Analysis Systems (DAS ’08), pp. 183-190.
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