
Kennesaw State University
DigitalCommons@Kennesaw State University

Master of Science in Computer Science Theses Department of Computer Science

Summer 8-3-2018

An IoT System for Converting Handwritten Text to
Editable Format via Gesture Recognition
Nidhi patel

Follow this and additional works at: https://digitalcommons.kennesaw.edu/cs_etd

Part of the Digital Circuits Commons, Digital Communications and Networking Commons, and
the Hardware Systems Commons

This Thesis is brought to you for free and open access by the Department of Computer Science at DigitalCommons@Kennesaw State University. It has
been accepted for inclusion in Master of Science in Computer Science Theses by an authorized administrator of DigitalCommons@Kennesaw State
University. For more information, please contact digitalcommons@kennesaw.edu.

Recommended Citation
patel, Nidhi, "An IoT System for Converting Handwritten Text to Editable Format via Gesture Recognition" (2018). Master of Science
in Computer Science Theses. 13.
https://digitalcommons.kennesaw.edu/cs_etd/13

https://digitalcommons.kennesaw.edu?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/cs_etd?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/cs?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/cs_etd?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/260?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/263?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/cs_etd/13?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@kennesaw.edu

An IoT System for Converting Handwritten Text to

Editable Format via Gesture Recognition

Master’s Thesis

By

Nidhi Patel

MSCS Student

Kennesaw State University

Department of Computer Science

In fulfillment of the Requirements for the Degree of

Master of Science in Computer Science

May 2018

1

An IoT System for Converting Handwritten Text to

Editable Format via Gesture Recognition

This thesis is approved for recommendation to the Graduate Council.

Jing (Selena) He
Thesis Advisor, Committee Member

Chih-Cheng Hung
Professor, Committee Member

Mingon Kang

Professor, Committee Member

2

DEDICATION

To almighty lord: Shiv , Saibaba

To my mother: Bina Patel

To my brothers: Riken Patel and Yogi Patel

The loving memory of my father

(who dreamt for this): Jayanti Bhai Patel

To all my benevolent and supporters

3

ACKNOWLEDGEMENTS

With all respect, I would like to thank my thesis advisor Dr. Selena He, for her guidance,

motivation and mentorship. Her inspirational quote “Conquer the problems, do not let the

problems conquer you” has given me strength to withstand all my challenges in this new

environment. Thanks for being patient with me also handling me with being calm and

compose. I am also thankful to my committee members for sparing their precious time.

Finally, I am so grateful to Kennesaw State University for helping me financially to do my

research work.

4

List of Figures
Number

3.1 Architecture of Proposed System 31

3.2 Visual representation of system architecture 32

3.3 (a) Lecture’s body hides few text of board 32

3.3(b) Locating Lecture’s body and removing it 32

3.3(c) Few text is missed because of lecture’s body removal 33

3.4(a) Lecture’s body hides few text of board 33

3.4(b) Locating lecture’s body in removing it 33

3.4(c) Text is recollected which is missed after lecture’s body removal 33

3.5 Arrangement of board and Raspberry Pi 35

3.6(a) Contours on video streaming 36

3.6(b) Hand gesture on countour box 36

3.7 Hand Shadow 37

3.8 Improper Lightning 37

3.9 alternative ways to show hand gestures for number 1, 2, 3, 4 39

3.10 Raspberry Pi with Camera 41

3.11 (a) Raspberry Pi, Laptop connection to ethernet 43

3.11(b) Laptop connection to LED TV 43

3.12 IoT system built to transfer data file 44

3.13 Constant Power Supply to Raspberry Pi 45

3.14(a) Mounting of Raspberry Pi through chair. 46

3.14(b) Example of mounting device 46

3.15 Regular 3- layer Neural Network 50

3.16 Convolutional Neural Network 50

4.1 Convexity Defect 53

4.2 Our approach for Hand gesture recognition 54

4.3 Hand Gesture 55

4.4 Region of Interest for hand gesture 55

4.5 Region of Interest kept above the white board 57

5

4.6 ROI box beside board 57

4.7 Shadow in hand gesture 58

4.8 After applying thresholding 61

4.9 Image with Contours 62

4.10 Convex hull 63

4.11 Convexity Defect 64

4.12 Gap affects the height of convexity depth 64

4.13 Shows the code snippet 65

4.14 Two finger gesture 66

4.15 Three finger gesture 67

4.16 Four finger gesture 67

4.17 Five finger gestures 68

4.18 Steps followed for image to text conversion 71

4.19 Sample Images from MNIST test dataset 74

4.20 Sample of EMNIST dataset 75

4.21 Original Image 77

4.22 Line Segmentation 77

4.23 word segmentation 78

4.24 Character Segmentation 78

4.25 binarization of original images. 79

4.26 Pre-processing segmentation 80

4.27 Model of Convolutional Neural Network 81

4.28 Convolutional layer and input layer 82

4.29 5x5 input connected to single unit of a feature map 83

4.30 Image to text conversion for mathematical equation 87

4.31 Pre-processing Task 88

4.32 Symbol Segmentation 88

4.33 Output of Recognize Text 89

4.34 Desktop Application 90

5.1 Arrangement of entire system 91

6

5.2 Image to text conversion 92

5.3 Image captured by Raspberry Pi 93

5.4 Data File 94

5.5 Desktop Application 95

5.6 Function of “EDIT_TEXT” button 96

5.7 Function of “EDIT_IMAGE” button 97

5.8(a-g) shows clear background, fist and one figure hand gestures 98

5.9 “OK” gesture 103

5.10 Simple Text Conversion 106

5.11 Simple Text Conversion 107

5.12 Simple Text Conversion 108

5.13 Simple Text Conversion 109

5.14 Complex Text Conversion 110

5.15 Complex Text Conversion 111

5.16 Complex Text Conversion 112

5.17 Simple Text Conversion 113

5.18 Simple Text 114

5.19 Complex Text Conversion 115

5.20 Complex Text Conversion 116

5.21 Complex Text Conversion 117

5.22 Complex Text Conversion 118

5.23 Mathematical Equation Image to Text Conversion 119

5.24 Mathematical Equation Image to Text Conversion 120

5.25 Mathematical Equation Image to Text Conversion 121

5.26 Mathematical Equation Image to Text Conversion 122

5.27 Mathematical Equation Image to Text Conversion 123

5.28 Mathematical Equation Image to Text Conversion 124

5.29 Mathematical Equation Image to Text Conversion 125

5.30 Mathematical Equation Image to Text Conversion 126

6.1(a) Average Time for Text Conversion (with number of inputs) 129

7

6.1(b) Average Time for Text Conversion 129

6.2 Results for Text Conversion 134

6.3 Accuracy for Text Conversion 135

8

List of Tables
Number Title Pg.No

4.1 Calculated values to clearly distinguish all same gestures 69

4.2 Message displayed when gestures are recognized 70

4.3 Alphabets 72

4.4 Numerals 72

4.5 Special Character 73

6.1 Require time for execution 127

6.2 Average time for text conversion 128

6.3 Cost of System 130

6.4 Accuracy Parameter 132

6.5 Results for gesture recognition 132

6.6 Results for Text Conversion 133

9

ABSTRACT

Evaluation of traditional classroom has led to electronic classroom i.e. e-learning. Growth

of traditional classroom doesn’t stop at e-learning or distance learning. Next step to electronic

classroom is a smart classroom. Most popular features of electronic classroom is capturing

video/photos of lecture content and extracting handwriting for note-taking. Numerous techniques

have been implemented in order to extract handwriting from video/photo of the lecture but still the

deficiency of few techniques can be resolved, and which can turn electronic classroom into smart

classroom.

In this thesis, we present a real-time IoT system to convert handwritten text into editable

format by implementing hand gesture recognition (HGR) with Raspberry Pi and camera. Hand

Gesture Recognition (HGR) is built using edge detection algorithm and HGR is used in this system

to reduce computational complexity of previous systems i.e. removal of redundant images and

lecture’s body from image, recollecting text from previous images to fill area from where lecture’s

body has been removed. Raspberry Pi is used to retrieve, perceive HGR and to build a smart

classroom based on IoT. Handwritten images are converted into editable format by using OpenCV

and machine learning algorithms. In text conversion, recognition of uppercase and lowercase

alphabets, numbers, special characters, mathematical symbols, equations, graphs and figures are

included with recognition of word, lines, blocks, and paragraphs. With the help of Raspberry Pi

and IoT, the editable format of lecture notes is given to students via desktop application which

helps students to edit notes and images according to their necessity.

10

INDEX
Sr.No Title Pg.No

1 Abstract 9

2 Chapter 1 INTRODUCTION 11

 1.1 Introduction 11

 1.2 Motivation 12

 1.3 Problem Statement 13

 1.4 Research methodology 14

 1.5 Contribution 14

 1.6 Organization of Thesis 16

3 Chapter 2 LITRATURE REVIEW 17

 2.1 Hand Gesture Recognition 17

 2.2 Image to Text Conversion 20

 2.3 Existing Systems for transcribing lecture notes 26

4 Chapter 3 ARCHITECTURE OF SYSTEM& CHALLANGES 31

 3.1 Gesture Recognition 33

 3.2 Raspberry Pi 40

 3.3 Handwritten image to text 46

5 Chapter 4 IMPLEMENTATION OF SYSTEM 52

 4.1 Gesture Recognition 52

 4.2 Deep machine learning for image to text conversion 71

 4.3 Mathematical Equation 87

 4.4 Text file Conversion 89

6 Chapter 5 RESULTS 91

 5.1 Entire System Results 91

 5.2 Gesture recognition Results 98

 5.3 Image to Text Conversion Results 106

7 Chapter 6 EVALUATION 127

 6.1 Evaluation of system by considering TIME factor 127

 6.2 Evaluation of system by COST factor 130

 6.3 Evaluation of system by ACCURACY factor 131

8 Chapter 7 CONCLUSION & FUTURE WORK 136

9 REFERENCES 137

11

CHAPTER 1

INTRODUCTION

 Introduction chapter contains the concise presentation of the proposed system, description of

motivation to build this system, problem statement and research methodology of the system.

1.1 Introduction

In this world of technology, traditional class method is rarely being utilized as most of the

lectures are being taught through Power Point slides (PPTs). Job of lectures has been soothed aged

ago since when PPTs came into pictures and students stressed has been reduced to recollect what

was explained in class since world wide web has come into picture. With the help of PPTs, video

capturing, internet and websites job of lecturer and students has got relief as electronic classroom

came in picture. Electronic classroom provides all the class materials, homework, class video

recordings are posted on websites. Form here the growth of classroom technologies stared evolving

electronic which led to smart classrooms.

With the advent of the technology, to take notes of lectures needs much less work since the

recording and synchronization are all automated. Many useful tools for improving accessibility of

lectures have been established. With the help of that tools lectures are now termed as “Multimedia

lectures” as students can refer to lecture in the form of video, audio and text.

Advances have been connected to naturally translate educator's lecture and process the

interpretation to secure close verbatim lecture transcripts for students [47], [45], [46]. The

advantages of creating lecture transcripts have appeared to improve both learning and educating.

Students could compensate for missed lecture and additionally to verify the exactness of their own

12

notes amid the lectures they took. Combined with a recorded sound/video lecture track and

duplicates of the lecture slides, students could reproduce the lecture material for imitating the

lecture at their own learning pace. These lecture transcripts and extra sight and sound chronicles

likewise empower educators to audit their own teaching performance and lecture substance to help

them to enhance singular instructional method [47].

1.2 Motivation

Doubtlessly, technology has made classroom environment “smart” but these all technology has

soothed the job of lecturer. Whether the lecture videos stored and shared via clouds or lectures are

taught in class with the help of power point presentation or smart board application, still students

need to note down what they have grasped from the lecture. Students got stuck in the middle of

taking complete notes and giving careful consideration to the instructor. This implies students

invest quite a bit of their time and efforts on taking notes [24], [47], [45], [46]. Most of the time

students try to note down entire speech spoken by the teacher but if they fail to write entire speech

of instructor then they will definitely try to make brief notes on emphasized or importance

sentences spoken by instructor [24]. Hence, by making the process of lecture note automated we

can add one more fascinating feature in building of smart classroom. Numerous techniques have

been implemented in order to extract handwriting from video/photo of the lecture but still the

deficiency of few techniques can be resolved. Existing systems has deficiency like complex

computation, high cost to build system, less accuracy of image to text conversion, less efficiency

of hardware tools used, fail to convert mathematical formulas, figure, graphs along with entire text

blocks, fail to provide editable text notes. Consequently, taking this situation as an inspiration we

propose a simplest, cheapest and more accurate framework that helps students to get lecture notes

in editable format, which will be useful to students to sort out, condense, and better understand

13

lecture data, recording content for later contemplating, self-directed learning through the dynamic

procedure of note taking, and essentially remaining mindful amid class. Moreover, the proposed

framework will assist numerous students with inabilities that can't compose lecture notes without

human help.

In this thesis, we present an Internet of Things (IoT) system to convert handwritten text into

editable format by implementing hand gesture recognition(HGR) with Raspberry Pi and camera.

Hand Gesture Recognition (HGR) is built using edge detection algorithm and HGR is used in this

system to reduce computational complexity of previous systems i.e. removal of redundant images

and lecture’s body from image, recollecting text from previous images to fill area from where

lecture’s body has been removed. Raspberry Pi is used to retrieve, perceive HGR and to build a

smart classroom based on IoT. Handwritten images are converted into editable format by using

OpenCV and machine learning algorithms. In text conversion, recognition of uppercase and

lowercase alphabets, numbers, special characters, mathematical symbols, equations, graphs and

figures are included with recognition of word, lines, blocks, and paragraphs. With the help of

Raspberry Pi and IoT, the editable format of lecture notes is given to students via desktop

application which helps students to edit notes and images according to their necessity.

1.3 Problem Statement

Motivated by converting traditional handwriting notes into editable electronic notes which can

be shared among students, we propose to design and implement the following system:

 Given the photos of the recorded handwriting to Raspberry Pi as an input, Raspberry Pi can

convert them into editable electronic notes, save them on the private clouds, and share among

students via desktop application. To be specific, we propose to use static hand gesture as a signal

14

to Raspberry Pi to take an image of blackboard. By using Optical Character Recognition(OCR)

the taken images will be converted into editable text files and also will be uploaded on a private

cloud. Moreover, a desktop application is built to provide electronic notes to the students, where

they can download notes, upload their own edition of electronic notes into group forum.

1.4 Research methodology

The steps mentioned below has been performed to pursue research:

1. Perform comprehensive literature research on gesture reorganization,

2. Perform comprehensive literature research on converting natural hand writing images into

text,

3. Identify weaknesses in existing system to get lecture notes and find better approaches for

proposed system to work efficiently,

4. Explore different image to text conversion algorithms and choose the most optimal image

to text conversion technique using machine learning,

5. Explore the technique to capture static hand gestures through Raspberry Pi and Raspberry

Pi Camera Module,

6. Build the desktop application,

7. Assemble the system, solder the components using IoT concept,

8. Evaluate the proposed framework for performance, accuracy and efficiency.

1.5 Contribution

Each of the issues described in the problem statement are thoroughly addressed. The contribution

of this thesis is as follows:

1. With scrutiny, the static hand gesture recognition is implemented. A new approach and

term has been defined to improve deficiency of existing algorithm of hand gesture

15

recognition. Our new method helps in recognizing all 31 combinations of hand fingers

gestures with clear differentiation among “OK” gesture, 3 fingers gesture, clear

background, one finger, fist and thumb. This gesture recognition has been implemented on

continuous video streaming.

2. For image to text conversion deep machine learning algorithm have been used. A

convolutional neural network has been designed, trained and tested by our own to

recognize Letters (A to Z, a to z), numbers (0 to 9), special characters (&, *, ^ etc.), with

recognition of blocks, lines, paragraphs and words. For figures (ex: mathematical figures),

mathematical formulas and graphs, we have used image processing technique by using

Open CV and tesseract.

3. The extracted text and equations are letter appended to editable text format. This editable

text format is called as data files in our system. Providing this data file to students in their

desktop application is as a totally new approach that we have introduced to distinguish our

system form existing system.

4. To make cheapest and efficient IoT based smart classroom, Raspberry Pi 3B has been used.

Raspberry Pi, student’s computer and google drive have been connected to one internet

network. Hence, “input images” and editable format of “data file” will be stored in google

drive via Raspberry Pi so that all the student in class can get input images and data files

into their desktop application.

5. A desktop application will be built for students where they get input images and data files

within fraction of time in class itself and they can alter and store according to their

individual preferences without losing concentration towards lecturer’s explanation.

6. The accuracy of hand gesture recognition, accuracy of handwritten images to text

16

conversion, accuracy and efficacy of entire system has been improved in comparison with

existing systems.

1.6 Organization of Thesis

 In this thesis, chapter 2 presents the literature review. Chapter 3 presents the architecture

of system and technical challenges encountered during designing the system. Chapter 4 presents

the implementation of the system. Chapter 5 provides evaluation and results of the system followed

by conclusion and future work.

17

CHAPTER 2

LITRATURE REVIEW

This chapter provides literature review. The sub section of this chapter gives literature review on

hand gesture recognition and handwritten image to text conversion.

2.1 Hand Gesture Recognition

For 2D and 3D hand gesture recognition there are numerous methods and techniques

available. In these numerous techniques there few frequently used techniques are: vision based

approaches, depth based approaches, instrumented(data) glove approaches, colored markers

approaches and convexity depth approaches. To see in more detail about all the 2D in 3D hand

gesture recognition techniques, method and tools refer our own survey paper [1]. The subsection

2.1.1 shows the literature review of hand gesture recognition techniques used by different

researchers and the subsection 2.1.2 shows the deficiency existing method of hand gesture

recognition and what we are doing to remove that deficiency of existing methods.

2.1.1 Literature review on Hand gesture recognition

In paper [57] they used Fusing frame images approach. Hierarchical identification model

is used for recognition. But this approach is only able to find rough hand gesture recognition. And

the accuracy of this approach is 90%. In [57] SVM classifier is used and the accuracy of this

approach is 99.2%. In [59] they used Hidden Markov model (HMM) technique and they also

include machine learning in that. By applying some modification in normal system, they got 93.7%

correct recognition.

In [35] images are captured to communicate between human and computers. In vision

based approach only camera(s) are required to capture images no requirement for other devices.

Digital cameras are used to capture hand images. Captured images are further processed and

18

analyzed by using the vision based techniques. Different kind of cameras can be used like

monocular, fish eye, time of flight and infrared cameras etc. [35].

In paper [34], researchers have used vision baes technique, through vision based

techniques, recognition of the represented alphabets and numbers are being so easy. This approach

is very easy, natural and well-situated to use so this approach is very popular [34]. Here human

and computer interact directly. In contrast, many gesture challenges [28] are raised. Variations of

lights, other object which are of skin color, illumination changes, complex background are such

challenges in this approach. Besides that, recognition time, robustness, velocity and computational

efficiency [27] are more challenging task here.

In papers [28] [29] [30], for capturing hand position and motion sensor devices are used in

instrumented data glove approach. Numerous kinds of sensors are existing like mount bases, multi-

touch screen and vision based sensors. Coordinates which are exactly provide palm and finger’s

location; orientation and configuration are perfectly calculated in this approach [28] [29] [30].

Reaction speed is fast and it has high accuracy rate. Main requirement of this approach [30] is

physically the user must be connected with computer. This limitation is barrier to interaction

between users and computers. These devices are very costly [30] and not much efficient for virtual

reality.

In paper [31], to locate palm and fingers and to direct tracking process, human hand is worn

with some colors in colored marker approach [31]. For forming hand shape necessary geometric

features are extracted using this functionality [31]. The color glove shape has small regions with

different colors. Three different colors are used to represent the finger and palms as applied in [32]

where a wool grove is used. It’s very easy to use and quite cheap compare to instrumented data

19

glove [32]. Still human computer interaction is not that much natural in this technology [31]. That’s

the main limitation of this approach.

In paper [62] Statistic learning theory is used with nonlinear SVM and Bag features. This

approach is much effective and got accuracy up to 97%. But it has some limitation that it not need

segmentation and hand tracking. In [52] distance measurement is done between two hand gestures

based on shape and texture. For that they are using Novel distance metric to overcome the partial

matching problem. This approach is 98% appropriate for all kind of input data.

In paper [22], the convexity defect approach has been used to identify hand gesture

recognition. To recognize hand palm first contour function has been applied then after extracting

hand region, convex hull algorithm has been applied to find hand area, 6 convexity defects points

are used for hand figure recognition, tightness of hand gesture (⸹) has been counted for feature

extraction.

In paper [33] also the convexity defect approach has been used to identify hand gesture

recognition. In this paper to recognize hand gestures after image acquisition of hand they have

applied skin color detection method to acquired images. After that they have used erode and

dilation noise removal methods. After noise removal, they have found contours and convex hull

foe hand region. After finding convex hull, they have found 7 convexity defects to recognize

fingers of the hands.

In paper [44] the convexity defect approach is used to identify hand gesture recognition,

same procedure as paper [22], [33] has been used but in paper [44] 5 convexity defect point has

used to recognize fingers but the position of convexity defect point is totally different than paper

[22].

20

2.1.2 Our approach for hand gesture recognition

We are using convexity defect points method to recognize fingers as paper [22], [33], [44]

but our convexity defect point is totally different form theirs , we are using area ratio and hand

area to clearly distinguish among “OK” gesture , 3 finger gesture , thumb , one finger, fist , clear

background with 100% accuracy of recognition.

2.2 Image to text conversion

2.2.1 Literature review of Image to text conversion

In paper [81], Singh, Gurpreet, and Manoj Sachan have presented a technique for the

recognition of isolated offline handwritten characters of Gurmukhi script. They have presented a

technique based on Multi-Layer Perceptron (MLP) Neural Network model as it uses generalized

delta learning rules and easily gets trained in less number of iterations. The proposed method in

this paper detect graphical symbols by identifying lines and characters from the image. The

performance rate is upto 98.96 %.

In paper [83], Meng, Hann, and Daniel Morariu has presented Khmer Character

Recognition (KCR) system. The system is integration of two artificial neural network techniques

to work together namely self-organization map (SOM) and multilayer perceptron. They have used

backpropagation algorithm to make the machine learn. The system is being implemented in matlab

environment. The average recognition of trained dataset resulted 65% of correct predictions and

untrained dataset is approximately only 30% correct prediction with noise rate. The KCR system

is expected to be able to work with offline handwritten Khmer character.

In paper [84], Fanany, Mohamad Ivan proposed a workflow and a machine learning model

21

for recognizing handwritten characters on form document. The learning model is based on

Convolutional Neural Network (CNN) as a powerful feature extraction and Linear Support Vector

Machines (SVM) as a high-end classifier. The proposed method is more efficient than modifying

the CNN with complex architecture. The recognition rate achieved by the proposed method are

98.85% on numeral characters, 93.05% on uppercase characters, 86.21% on lowercase characters,

and 91.37% on the merger of numeral and uppercase characters. The pre-processing, segmentation

and character recognition are integrated into one system. The output of the system is converted

into an editable text.

In paper [85], Impact of grid based approach in offline handwritten word recognition is

experimented. The study is experimented on handwritten word comprising of 28 district names of

Karnataka state. The proposed method first divides the input word into four grids and for each grid

the popular subspace learning approach i.e., Principal Component Analysis is applied for better

representation. For classification purpose, distance measure technique i.e., Euclidean distance is

computed. The experiment result revealed that the proposed grid based approach with subspace

learning approach outperforms standard PCA approach.

In paper [86], Nair, Pranav P., Ajay James and C. Saravanan have implemented a

handwritten Malayalam character recognition system. The proposed method uses CNN to extract

and classify Malayalam characters. This method is different from the conventional method that

requires handcrafted features that needs to be used for finding features in the text. The

classification of 6 malayalam characters is being done. They have stated that both Sample

generation and CNN modelling are time consuming tasks and it also requires a CUDA enabled

GPU for parallel processing. CNN provides higher accuracy for malayalam characters.

22

In paper [82], Kajale, Renuka, Soubhik Das, and Paritosh Medhekar has proposed a method

for intelligent character recognition using classifiers and transferring the data to excel sheet. For

hand written character recognization, they have used supervised machine learning. It gives

accurate results even when the dataset becomes extensively large due to multiple language

scripts.They have used a dataset of 200 samples for 36 alpha numerals and further 100 for special

characters. The result shows upto 95 % accuracy for alpha numerals and special characters.

Vani, M. Shyni Beaulah and R. Deepalakshmi [87] has created an application interface for

OCR using artificial neural network as a back end to achieve high accuracy in recognition of

characters. They have used isolated character database consisting of English characters, digits and

keyboard special characters for training and testing. The system can classify 30 characters per

second. The network of connections and weights obtained by back propagation learning is readily

implementable on commercial digital signal processing hardware. Preliminary results on

alphanumeric characters show that the method can be extended to larger tasks.

In paper [88], Roy, Partha Pratim, Youssouf Chherawala, and Mohamed Cheriet have

presented a verification based re-ranking approach using Deep Belief Networks (DBNs) for

handwritten word recognition. A recurrent neural network based sequential text recognition system

is used at first to provide the N-best recognition hypotheses of word images. Word hypotheses are

aligned with the word image to obtain the character boundaries. Then a verification approach using

a DBN classifier is performed for each character segments. DBNs are recently proved to be very

effective for a variety of machine learning problems. Finally, the N-best recognition hypotheses

list is reranked according to the new score.

The numeric representation of a 2D image is known as a Digital image. Advanced pictures

23

go about as a fundamental and key medium for passing on, extricating data and utilizing the data

as an essential contribution for machine learning and machine vision applications. Optical

Character Recognition (OCR) is the sub-space of Pattern Recognition domain. OCR in early days

mainly use for two problems, first was utilized to extend the use of telecommunication and also it

was utilized as a guide for the visually impaired. The examination and research of character

recognition began in 1870 when C.R Carrey of Massachusetts created the retina scanner which

was image transmission framework. Current and progress OCR version did not show up until 1940.

In business and industries, the data processing played most important role during year

1950. At that time punch cards were used to feed data in to computers. Machines were so large

and require so many installations. Moreover, their maintenance cost is so high and at the same

time they were so slow. To overcome some limitations of that from1960 to 1965 the first-

generation OCR system was developed which contain some limited character shapes.

Then second generation came with the system which able to recognize machine and hand printed

characters. But it had very limited number of character sets. Systems in middle 1970s represent

the third generation OCR system. These was able to overcome the problems of previous era

machine but still was very luxurious and limited to marketable use. Today the OCR is used

commercially and also available for the people. OCR system been feasible for economical purpose

but still the OCR system are not able to match the human reading ability and development is still

going on.

Ravina Mithe [11] developed new system where the functionality of Optical Character

Recognition and Speech Synthesis are combined. They conclude that environment variation in real

photo is affecting the reliability of OCR system. They also elaborate process and usage of this

system. Réjean Plamondon [12] done survey on both the modes of OCR called online mode and

24

offline mode. The nature of handwritten language is briefly discussed in this paper. Fred W. M.

Stentiford [4] provided deep analysis on feature extraction stage of an OCR application. If we add

some tilted as well as unscaled character data at the time of training, the efficiency and flexibility

of the system is increased.

Amarjot Singh [5] performed the survey of application of OCR system in different fields.

This paper concentrated majorly on three applications of OCR defeating CAPTCHA, storage of

data for institutional or business purposes, musical note recognition. Youjie Qiu [7] proposed an

algorithm for license plate extraction based on vertical edge detection and morphological

operations. License plate is extracted by finding Region of Interest (ROI) in this paper. After that

outer shape feature analysis is performed and finding texture feature of the license plate.

Patrik Berggren [8] studied and researched various Sudoku solving algorithms in their thesis. This

thesis considered and evaluated three algorithms: Backtracking, Advance Backtracking with rule

based solving technique and Boltzmann machine. The thesis also analyzes the difficulty rating of

Sudoku and ways to generate a Sudoku Puzzle.

 Researcher always wants to make the efficient and robust system for recognition just

because of that OCR system matters a lot for them. They always concentrate on one area like

normal OCR or segmentation, though the task of focusing on Intelligent Character Recognition

(ICR) [21] is too tough. Dynamic template creation and matching is requiring for that. They have

to convert character to text very accurately. A texture character of microscopic image which is

related to roughness of surface is discussed and various approaches for that is also mentioned in

[25] there. According to surface roughness various parameters have been change regularly. They

also perform so many efforts to capture characters from paper forms.

25

It is very difficult to develop a system in which recognize character automatically transfer

to excel sheet. Most important phase in character recognition is Segmentation. So many efforts are

made to improve accuracy of this phase. Segmentation is discussed in [28] in which they used

trained classifier to segment the connected characters in text-based CAPTCHAs. Modified form

of SVM [30] in which freedom chain is used is discussed and features are extracted using this

SVM in [30].

Krishnamurthy [29] and the team members are discussing the hybrid approach with both

the classifier (supervised and unsupervised). They used fuzzy k-Nearest Neighbor and fuzzy c-

means as base classifiers for individual feature sets in this hybrid approach. Final feature vector

for the k-NN classifier is formed using this both classifiers.

One of the best deep learning architecture is Convolutional Neural Network (CNN). Currently,

CNN is become a state of the art of handwriting characters recognition. Modified CNN is used in

[26] with two training feedbacks, one is reconstruction feedback and second is classification

feedback. They got 99.59% accuracy on MNIST dataset.

Elleuch [23] combines a CNN with another end classifier. For recognizing hand-written

Arabic character, the kernel SVM is used as an end classifier. Hey slightly modify the architecture

of CNN and also the SVM approach. SVM is better just because it has good generalization ability

than neural network on standard CNN. Neural network is working with the Empirical Risk

Minimization (ERM) principle while SVM working with Structural Risk Minimization (SRM)

principle.

Some learning changes the CNN with a variety of advancement to increasing the accuracy

rate and the practice time. Some of them change the input data to get better the accuracy rate of

CNN method. Mega et al. [7] have joint GLCM (Gray- Level Co-occurrence Matrix) and CNN for

26

cattle classification. Feature Extraction uses a GLCM method to extract contrast, energy, and

homogeneity feature of the image and it is used as input of CNN. Kwolek [8] has changed the

architecture of CNN by merging CNN and Gabor filter to detect the facial region. The proposed

method gives classification performance better than original CNN.

2.2.2 Our approach for image to text conversion.

 We have built, trained and tested our Convolutional Neural Network for classification of

handwritten images.

2.3 Existing Systems for transcribing lecture notes

 There have been numerous researches performed to provide lecture content to students in

many different formats such as audio, video and audio to text, lecture images to text. Section 2.3.1

describes various lecture transcribing lecture notes.

2.3.1 Existing system

F. H. Yeh and his team [8] introduce robust handwriting extraction and lecture video

summarization technique. Researchers have implemented a system to extract the handwriting from

blackboard. This system efficiently extracts handwritings from blackboard even if there is a

variation of light in classroom or instructor stands in front of blackboard. The system summarizes

and indexes video so that videos can be used for e-learning application. To locate the boundary of

the blackboard, K-mean segmentation has been used in each frame of video. The image in lecture

videos are convert from RGB color space to CIELAB color space (L* a* b*) color space. For

blackboard, two-color channels (a* and b*) have been used. Connected component technique has

been applied to extract lecture’s body.

The adaptive thresholding has been used to extract handwriting from the blackboard. Time

sequence information from video has been used to extract accurate handwriting and to remove

27

noise from the images. Some disadvantage of this system is, they have to remove lectures body in

order to get proper result of handwriting extraction, they have to check when the lecturer erased

entire board and new writing started. Moreover, there will be many handwriting images for same

theory until and unless that theory is not erased. So, many redundant images will be generated for

same theory. Only the last image which is captured before erasing the board will contain entire

theory. Hence, except last picture all the captured pictures will be in vain. The images of extracted

handwriting are not in editable format.

Markus Wienecke, Gernot A. Fink and Gerhard Sagerer [9] proposed new approach

towards automatic video-based whiteboard reading. This paper has mentioned all the technical

challenges of handwriting extraction. They have also introduced that how to recognize lines,

blocks, paragraph from the image. This paper has procedure steps for handwriting conversion as:

Extracting Text Regions, Preprocessing, Feature Extraction, and Statistical Modeling &

Recognition. Character error rate is of 29.5%. The accuracy of text conversions is low.

Conversation of mathematical formula is not mentioned. Appropriate results of image to text

conversion have not been shown so that one cannot judge how accurately the system works.

Zhengyou Zhang and Li-wei He [7] proposed new system for note taking with a camera:

with whiteboard scanning and image enhancement. In this paper they use digital camera and scan

the entire white board and then enhances the images. They have made a user interface where they

give images to students. After that students are free to take photo of that. Boundary of whiteboard

is automatically located and region belongs to whiteboard are crops out. That region is rectifying

into a rectangle, and corrects the color to make the whiteboard completely white. They used robust

technique to stitch multiple overlapping image if single image is not enough to get information.

28

Ali Shariq Imran, Faouzi Alaya Cheikh [6] introduce lecture content classification tool. In

that paper researchers have detected figures, formulas and text from the handwritten text of the

blackboard. In this paper researchers only can recognize which content is text, which is figure and

which is formula. They cannot convert this recognized text, figures, formulas into electronic

editable text format. They have also made user interface tool which can only extract figures, text

and formulas form the handwritten content of blackboard.

Seiji Okuni and his team member [5] proposed robust approach for video Scene

Segmentation Using the State Recognition of Blackboard for Blended Learning. In this paper,

unnecessary video content are removed by researcher from the entire lecture video. Lecturer

behavior is recognized such as up down movement of hands. That is considering as the sign of

content segmentation for students. Event time is noted down and using that segmentation is done

from lecture movie to some shots. They done experiment on various real lectures and got 97%

accurate segmentation.

Marcus LIWICKI and Horst BUNKE [4] introduced new concept for handwriting

Recognition of Whiteboard Notes. They used eBeam interface based on infrared sensing. Rather

than using video camera, this system is much easier to use. Along with that this system is less

vulnerable to problems which occurring due to poor lighting conditions, self-occlusion and low

image resolution.

Szil´ard Vajda [2] introduces a prototype model for recognizing and visualizing mind maps

which are written on white board. This approach acquire image by a camera. Next, they performed

binarization and extraction of connected component is done. Without conceited about any prior

information about the document, its style, layout, etc., the examination starts with connected

components. Then labelling is applying as text, lines, circles or arrows according to trained

29

classifier of neural network based on features. Detection of word is done after identified the patches

of text. According to gravity centre of text it was modelled. Density based clustering is used to

group them into possible words. Hidden Markov Model (HMM) recognizer is applying to

recognize grouped connected components. Average recognition rate of neural network for

different connected components are 95.7%.

Tiecheng Liu and Chekuri Choudary [3] proposed a new technique to extract and

summarize the textual content of teaching videos for recognizing hand writing, provide indexing

and some other applications related with e-learning. For indexing and retrieval most, suitable

elements are the characters and figures which are written on boards. Video summarization is used

to extract small set of key frames. One frame is only process per every 150 frames because

instructional videos are highly redundant in content. To partition instructional video frames into

over-segmented regions, mean shift segmentation is used. Largest region is finding from that

frame. Distribution parameters are estimated for largest frame regions. Total numbers of pixels are

calculated and using some proper threshold value two regions is merged. Luminance (L) and color

components (a and b) are treats separately in this model.

Video key frames are extracted after analyzing the content fluctuation curve. Local maxima

of that curve are located through shifting window algorithm. Using that candidate key frame is

extracted. Further elimination is done based on redundant frames by applying matching the text in

the candidate frames based on the Kth Hausdorff distance between content pixels. Experimentation

is performed on three instructional videos which are recorded in real classrooms. According to that

results they conclude that, proposed algorithm is highly effective in extracting and summarizing

the content of instructional videos.

30

Nael Hirzallah [11] introduced new alternative solution to e-boards. Extraction of lecture

notes which are added or removed by lecturer is implemented using web camera and video

processing. Results of this algorithm are demonstrated under two different scenarios. One is adding

soft notes presented on projector through lecturer and the second one is adding text which are

displayed on white board which are located behind that projector. Brightness variation is the

normal effect occurs during the transition of slides. This was taken as consideration in first scenario

of this algorithm.

 In second scenario movement of lecturer in front of white board is taken in consideration.

Snapshot is taken when lecturer is added or removed notes. However, the lecturer is considered as

an absent in the snapshot. First image is saved as layer zero. In next step one can only take the

difference between successive snapshots. Successive information is represented by the addition of

the layer two, three and so on. To diminish unhelpful action of this algorithm, an effort was made

to eliminate the brightness section and work on the IQ part of the YIQ colour space. Main

advantages of using this algorithm is that, it was applicable for both with and without slide show

as well as white and black boards. Solution given in this paper was much cheaper as $15 worth of

a PC camera and simpler to install if match up with that of the e-boards.

2.3.2 Our proposed system

 Existing systems has deficiency like complex computation, high cost to build system, less

accuracy of image to text conversion, less efficiency of hardware tools used, fail to convert

mathematical formulas, figure, graphs along with entire text blocks, fail to provide editable text

notes to students. Hence, we designed a system to improve all these deficiency and provide high

accuracy and efficiency. The architecture of proposed system is described in next chapter.

31

CHAPTER 3

ARCHITECTURE OF SYSTEM & CHALLANGES

This chapter will give thorough description of the architecture of system, technical

challenges encountered while constructing the system.

The first step of the proposed system is capturing hand gesture. The hand gesture will be

captured and perceived by Raspberry Pi (see figure 3.1 & 3.2). After the gesture is perceived by

Raspberry Pi, the picture of blackboard will be taken by camera attached with Raspberry Pi to

avoid capturing unnecessary images of board. The conversion of handwritten images to text is

done via machine learning programs installed in Raspberry Pi. The hand-written images captured

by camera is called as input images and the text file generated after extracting text from images is

called as data files. The input images and data files are sent to google drive via Raspberry Pi.

Students will have a desktop application installed in their laptops in order to receive the input

images and data file in to their laptops or PC.

Fig 3.1: Architecture of Proposed System

32

Figure 3.1 depicts the system architecture. The detail description of all the system component is

described in sub section of this chapter.

 (a) (b)

Fig 3.2(a) : Hand gesture

Fig 3.2(b) Raspberry Pi

Figure 3.2: Visual representation of system architecture

Figure 3.2 shows visual representation of system architecture. Figure 3.2(a) shows that how a

lecture should give Hand gestures to a Raspberry Pi camera. Also, Figure 3.2(a) shows the

arrangement of Raspberry Pi to capture a gesture. Figure 3.2(b) shows the visual representation

of Raspberry Pi and attachment of camera in Raspberry Pi.

All the subsection mentioned below gives thorough description of all components of

system architecture.

Camera

33

3.1 Gesture Recognition:

3.1.1 Motivation to use Gesture Recognition

The major deficiencies of previous systems are computational complexity and delivering

editable format of lecture notes. For efficient handwriting extraction, systems [3], [8] had

performed few complex techniques in order to remove redundant and unwanted images/video

content, remove lecture’s body form images, recollecting text from previous images which has

been missed from the area where lecture’s body has been removed. Figures 3 and 4 clearly

describes the complexity issue of systems [3], [8] .

Fig 3.3(a): Lecture’s body hides few text of board [8].

Fig 3.3(b): Locating Lecture’s body and removing it [8].

Fig 3.3(c): Few text is missed because of lecture’s body removal [8].

Fig 3.4(a): Lecture’s body hides few text of board [3].

Fig 3.4(b): Locating lecture’s body in removing it [3].

Fig 3.4(c): Text is recollected which is missed after lecture’s body removal [3].

34

Figure 3 shows that lecture’s body is hiding text of the blackboard. When the lectures’

body is removed few text is also missing. Figure 4 depicts the same situation. The only difference

between figure 3.3 and 3.4 is “text re-collection”. In figure 3.3(c) few text is missing from where

lecture’s body is missing but in Figure 3.4(c) the missing text because of lecturer body is regained.

In system [2], [8], [5] the time frame has been set in camera to take picture or videos i.e. 1

minute. As per time frame, camera will take pictures at every 1 minute. Hence, there is a possibility

of having text and lecture’s body or only text or only lecture’s body in image. Also, if professor is

explaining some content and he has not written anything on board till 5 minutes then there is

possibly of having 5 same pictures since camera takes picture at every 1 minute. This scenario

clearly shows that researches have to do more complex computation in order to remove lecture’s

body and redundant images. Alternative and very simple solution to reduce this complexity is to

use hand gesture recognition. Whenever lecturer is done writing and explaining entire theorem

then he can show a hand gesture. So that, camera will take picture after recognizing valid gesture.

Hence, gesture recognition will remove most of the computation like: locating lecture’s body in

image, removing lecture’s body from image, capturing redundant images, removing redundancy

of images, sorting out important content of lecture and removing unwanted content, recollecting

text from previous images in order to fill area from where lecture’s body has been removed.

3.1.2 Methodology used for gesture recognition

The main motive to use hand gesture in our system is to remove computation that existing

system do in order to remove lecture’s body from image. Hence, we have used hand gesture

recognition to reduce this computational complexity. This subsection clearly mentions what

methodology we have used in order to remove the computational complexity.

35

1. The Raspberry Pi and its camera is kept exactly in front of the board (see figure 3.5). So

that lecturer can show the gesture to Raspberry Pi.

Fig 3.5: Arrangement of board and Raspberry Pi

Figure 3.5 shows the arrangement of board and Raspberry Pi. The Distance between

Raspberry and board has been reduced in order to take proper picture. Picture has been taken

from top view so that we can clearly see Raspberry Pi and camera.

2. To capture gesture, the video streaming of Raspberry Pi camera is utilized. The contours

are drawn on video streaming (see figure 3.6). The contours drawn on video streaming will

look for a gesture to arrive in a contour box. The moment gestures are captured, the video

Raspberry Pi Camera

Raspberry Pi

36

streaming will close and camera will turn on to capture photo of board. The detailed

description of drawing contours and capturing gesture is described in chapter 4.

 (a) (b)

Fig 3.6(a) : Contours on video streaming

Fig 3.6(b): Hand gesture on countour box

Figure 3.6 shows the contours drwan on video streaming and hand gesture captured in countour

box.

3.1.3 Challenges of Gesture Recognition

Hand gesture recognition has several technical challenges while implementing. The

challenges we mainly faced in order to implement hand gesture recognition are mentioned below.

The recovery of challenges has been thoroughly described in chapter 4.

1. Shadow of Hand

When there is a poor lightning or if lecturer is standing opposite to light than we can have

shadow of hand (see figure 3.7). While perceiving gestures if we have not programmed the

hand recognition properly then there is a possibility of perceiving shadow as a second hand.

Hence, according to attached figure below, poor hand gesture recognition program can

perceive 8 fingers including shadow. Shadow may lead to inaccurate hand gesture recognition.

37

To remove this hand shadow, we are using blurring technique. Detail description of hand

gesture recognition implementation is described in chapter 4.

Fig 3.7: Hand Shadow

Figure 3.7 shows the hand and its shadow when there is poor lighting.

2. Improper Lighting

Lightning is a very important factor while in computer vision. If we do not have

proper light on object that we want to detect then we may end up detecting object with

lowest accuracy (see figure 3.8). Also, pre-processing steps to reduce noise will be

increased in order to detect object with proper features. Hence, lightning plays very crucial

role in this system in order to detect object properly. Chapter 4 describes all pre-processing

steps used in our system to detect hand very accurately even though there is poor lightning.

Fig 3.8: Improper Lightning

38

Figure 3.8 shows poor lightning while capturing gesture.

3. Showing gestures

While showing hand gestures, few people may have long, short, fat, skinny fingers.

If person is handicap or have some natural disabilities then he might can show only few

fingers. Hence, if we show hand gesture for number one then accurate hand gesture

recognition system should recognize all the combination of fingers. We can show 1 finger,

2 fingers, 3 fingers in many different ways (see figure 3.9). An accurate hand gesture

recognition should recognize all five fingers clearly.

 (a) (b) (c) (d) (e)

Fig 3.9(a), 3.9(b): Alternative way to show number 1 with hand gesture

Fig 3.9(c): Alternative way to show number 2 with hand gesture

Fig 3.9(d): Alternative way to show number 4 with hand gesture

Fig 3.9(e): Alternative way to show number 3 with hand gesture

Figure 3.9 shows different alternative ways to show hand gestures for number 1, 2, 3, 4

Number of combinations to show hand gestures are calculated as below:

• Number one

By using permutation combination, with five fingers if we want to show two fingers then we

will have 5 combinations (5𝐶1 =
5

1
= 5) . We aim to recognize all 5 combinations.

39

• Number two

By using permutation combination, with five fingers if we want to show two fingers then we

will have 10 combinations(5𝐶2 =
5×4

1×2
 = 10). We aim to recognize all 10 combinations.

• Number three

By using permutation combination, with five fingers if we want to show three fingers then

we will have 10 combinations (5𝐶3 =
5×4×3

1×2×3
= 10). We aim to recognize all 10

combinations.

• Number four

By using permutation combination, with five fingers if we want to show four fingers then we

will have 5 combinations (5𝐶4 =
5∗4∗3∗2

1∗2∗3∗4
= 5). We aim to recognize all 5 combinations.

• Number five

By using permutation combination, with five fingers if we want to show five fingers then we

will have 1 combination (5𝐶5 =
5∗4∗3∗2∗1

1∗2∗3∗4∗5
= 1). We aim to recognize all 5 combinations.

4. Movement of lecture’s hand

It is very natural to have some hand movements while lecturer is explaining some stuff in

class. It is also normal to have finger pointing to some pictures or object while explaining.

Lecturer cannot control his body movements while explaining. If there a class with having all

handicap and disable students then it is very obvious that lecturer may can use sign language

to explain.

 In our system, we use hand gesture recognition to click picture of board. Hence, we need

to identify that which gesture lecturer made to capture picture and which gesture lecturer made

to explain some stuff. We first thought to use motion sensors to capture gestures. If we use

40

motion sensor for hand gesture recognition then it will sense all the hand gestures made by

lecturer. If senor senses all the movements then camera will take thousands of unnecessary

white-board images including lecture’s body in images. Hence, we discarded the idea of using

motion sensor as it is not fulfilling our motivation to reduce computation complexity of

existing system. Instead of reducing computation complexity, motion sensors are increasing

our computational complexity by taking many pictures of whiteboard and including lecture’s

body. Hence, we decided to recognize hand gesture with camera that can provide continuous

video streaming. Also, by implementing Region of Hand (ROI), we are allowing lecturer to

make as many movement of hand they want to make while explaining a theorem to student.

The detail description of ROI is given in chapter 4.

3.2. Raspberry Pi

3.2.1 Motivation to use Raspberry Pi

This section will give the main motivation to use Raspberry Pi in this system.

1. Price

With the help of Raspberry Pi we can build project in any field of computer science. For

example, IoT based projects, computer vision projects and many more. We are using

Raspberry Pi in our system to build highly inexpensive IoT based smart classroom. The

price of Raspberry Pi model 3B is 35$ and price of Raspberry Pi 5 mega pixel camera is

15$. Hence, the total cost to build this system is 50$. Now let say we want to install this

system into 10 class then total price will be 500$ which much cheaper than the price of

smart interactive white board. The price range of smart interactive white board is 1000$-

7000$* per class. Hence, interactive smart white board will be very costly to install in every

class.

41

Figure 3.10: Raspberry Pi with Camera

Figure 3.10 Raspberry Pi model 3B & 5 mega pixel camera

*Price range information has been taken from: https://homeschoolbase.com/smart-board-cost/

2. Size

With the help of internet and Raspberry Pi we can connect all the devices available in entire

classroom to one network and all the devices can interact with each other. There is no need

of using computers with high computational quality and long wires to connect sensors,

cameras and other devices of classroom like smart chairs, e-boards to a computer.

Raspberry Pi is as strong as computer with smaller size like a credit card.

3. Raspberry Pi specification

Raspberry Pi has below mentioned technical specification:

• CPU: Broadcom BCM2837 SOC 64-bit quad-core

• Memory: 1 GB of RAM

• Wi-Fi Support: 802.11n Wireless LAN

• Bluetooth: 4.1 Bluetooth Low Energy (BLE)

• USB Ports: 4-USB ports to connect mouse, keyboards etc.

https://homeschoolbase.com/smart-board-cost/

42

• Ethernet Port: Ethernet port to use internet and set up Raspberry Pi for the first time

with monitor.

• GPIO Pins: Raspberry Pi 3 supports 40 GPIO Pins General Purpose Input Output.

These digital input/output pins can be used to drive LED, Switches, and Sensors

etc.

• Full HDMI Port: Support HDMI port (High-Definition Multimedia Interface)

which can be used to quickly connect raspberry pi to HDMI Monitor. With HDMI

Cable and Monitor we can add Screen to Raspberry Pi.

• Micro SD card slot: The Micro SD Card will hold the operating system which will

boot while we power on Raspberry Pi 3. In next tutorial, we will learn how to setup

and prepare SD card with Raspbian OS.

• Audio/Video: Combined 3.5mm audio jack and composite video

• Display interface (DSI): enable us to interface Display Module

• Camera interface (CSI): enable us to interface Camera Module

• Graphics Support: Video Core IV 3D graphics core for advance graphics

capabilities.

3.2.2 Initial Installation of programs into Raspberry Pi

In this system Raspberry Pi is a very crucial device. All programs of this system are installed

in Raspberry Pi such as gesture recognition program, image to text conversion program,

connection to google drive program (see figure 3.11). To initially install all the programs into

Raspberry Pi, we are connecting Raspberry Pi to the laptop via Ethernet. After that, to monitor the

functionality of installed programs, we are connecting laptop to LED (Liquid Crystal Display) TV.

43

 (a) (b)

Fig 3.11(a): Raspberry Pi, Laptop connection to ethernet

Fig 3.11(b): Laptop connection to LED TV

3.2.3 Utilization of Raspberry Pi

Raspberry Pi is used in this system to capture gestures and images of white-board. As

mentioned in section 3.1.2, Raspberry Pi is kept in front of white-board. The lecturer will show

gestures in contour box of video streaming. As soon as the gesture is captured and perceived, the

Raspberry Pi will capture the image of board. The captured images through Raspberry Pi is called

as “input images” in our system. Machine learning programs installed in Raspberry Pi will extract

text from the input images. This extracted text will later be stored in editable format of text file

which we call as “data file” in our system.

This data files and input images are now provided to student’s desktop application. A small

Internet of Things system (IoT) is created by connecting Raspberry Pi, Google Drive and Student’s

desktop to one network (see figure 3.12). Raspberry Pi transfers data file to google drive, and

students retrieve data file from google drive. From capturing gestures till sending data file to

google drive all the process are done with the help of Raspberry Pi. Hence, Raspberry Pi is very

important device in this system.

44

Fig 3.12: IoT system built to transfer data file

Figure 3.12 shows the architecture of IoT system. The Raspberry Pi, Google Drive and Desktop

Application is connected through one network (Wi-Fi). Raspberry Pi will send data files and input

images to google drive. Students will retrieve the input images and data files form google drive

via desktop application.

3.2.4 Challenges of Raspberry Pi

 1. Constant Electricity Supply

Raspberry Pi needs to be constantly connected to power supply till it is working. Hence, if

we want to install this system in every classroom then we need to make sure that there

should be a power supply to a Raspberry Pi. In this system, Raspberry Pi should be kept in

front of board hence if power outlet is not nearby then we can use spike busters to give

power supply to Raspberry Pi (see figure 3.13).

Wi-Fi

Raspberry Pi Google Drive Desktop Application

Data File Data File

45

Fig 3.13: Constant Power Supply to Raspberry Pi

Figure 3.13 shows that Raspberry Pi needs constant power supply till it is working.

2. Mounting of Raspberry Pi

In this system, Raspberry Pi needs to be in front of board with constant power

supply. Hence, Raspberry Pi should be mounted in such way that it can capture entire board

image. Also, while doing such arrangement we need to keep in mind that Raspberry Pi is

constantly connected with power supply. Right now, our system is in experimental phase,

hence we are using chair to keep Raspberry Pi (see figure 3.14). While utilizing this system

professionally in every class we may need some mounting devices that can keep Raspberry

Pi in front of board covering entire board with constant power supply.

Constant Power

Supply to

Raspberry Pi

46

 (a) (b)

Fig 3.14(a): Mounting of Raspberry Pi through chair.

Fig 3.14(b): Example of mounting device

Figure 3.14(a) shows that Raspberry Pi is mounted in front of board covering entire board

with constant power supply. Figure 3.14(b) shows an example of mounting device that

can be used in future to mount Raspberry Pi in every class.

3.3 Handwritten image to text

To extract text from Handwritten images we are using machine learning algorithms:

3.3.1 Motivation to use Deep machine learning

In our system we are extracting text from handwritten images hence we need a proper recognition

of character with higher accuracy. Also, it is a well-known fact that Machine learning gives proper

accuracy and perfect result. Hence, we are using machine learning algorithms in our system. Below

subsection mentions the strength of machine learning.

47

3.3.3.1 Basics of neural network

Artificial neural network has been use in many fields of study such as image processing,

document clustering, segmentation, biology system, geography, chemistry, decision-making, data

mining, optical character recognition (OCR), pattern recognition and many other interesting fields

of research [31].

Warren McCulloch and Walter Pitts introduced a binary threshold as a computational model for

neural network in 1943 [32]. Neural network is the most popular choice for developing character

recognition system, which this network could learn well and provide high accuracy and speed for

character identification. Neural network has been using to solve many character recognition

problem; such as Chinese character recognition.

The area of Artificial Neural Network derives its basis from the way neurons interacts and

function in human brain. The human brain is known to operate in a parallel manner for recognition,

reasoning and damage recovery. Because of the ability of ANN to deal with above kind of

processes, it can be used from simple applications to the complex applications like pattern

recognition algorithms. One neuron in the network at one time is able to link with more than 10,000

other neurons to generate and share new knowledge. Neurons are linked with other neurons in the

network through links known as synapse. Neurons in the network receive many inputs either from

other neurons or directly as original data. Each neuron has a single threshold value also.

Neural Networks receive an input (a single vector), and transform it through a series of

hidden layers. Each hidden layer is made up of a set of neurons, where each neuron is fully

connected to all neurons in the previous layer, and where neurons in a single layer function

completely independently and do not share any connections. The last fully-connected layer is

48

called the “output layer” and in classification settings it represents the class scores.

They are made up of neurons that have learnable weights and biases. Each neuron receives some

inputs, performs a dot product and optionally follows it with a non-linearity. The whole network

still expresses a single differentiable score function: from the raw image pixels on one end to class

scores at the other. And they still have a loss function (e.g. SVM/Softmax) on the last (fully-

connected) layer and all the tips/tricks we developed for learning regular Neural Networks still

apply.

3.3.1.2 Convolutional Neural Network

Pattern or object recognition is usually done with feature extraction and classification. The

feature extraction typically uses a variety of methods to get a representation of the data and then

use the classifier to classify the data. The process is conducted manually and separately. Lately,

the feature extraction and classification integrated automatically in one process or method. The

method used to model high-level abstractions in data [4]. It is often called as deep learning

techniques.

Convolutional Neural Network (CNN) is one of the deep learning architecture. It can

extract multiple features from low-features to high-features automatically. Convolutional Neural

Network is also called as ConvNet. Currently, CNN is a state of the art of handwriting characters

recognition.

ConvNet architectures make the explicit assumption that the inputs are images, which

allows us to encode certain properties into the architecture. These then make the forward function

more efficient to implement and vastly reduce the number of parameters in the network.

49

Some problems in handwriting recognition are due to the high uncertainty of the input data, as the

written characters of each person are different, some characters have a very similar shape,

disconnected or distortion characters, the written characters have a different thickness and use of

various scanners.

Regular Neural Nets don’t scale well to full images. The fully-connected structure of

regular Neural Network does not scale to larger images. For example, an image of more respectable

size, e.g. 200x200x3, would lead to neurons that have 200*200*3 = 120,000 weights. Moreover,

we would almost certainly want to have several such neurons, so the parameters would add up

quickly. The fully connectivity of Regular NN leads to wastage of memory and the huge number

of parameters would quickly lead to overfitting. While, in CNN images are passed smaller in size

compare to Regular NN.

Convolutional Neural Networks take advantage of the fact that the input consists of images

and they constrain the architecture in a more sensible way. Unlike a regular Neural Network, the

layers of a ConvNet have neurons arranged in 3 dimensions: width, height, depth. (Note: The word

depth here refers to the third dimension of an activation volume, not to the depth of a full Neural

Network, which can refer to the total number of layers in a network.)

For example, the input images have an input volume of activations, and the volume has

dimensions 32x32x3 (width, height, depth respectively). The neurons in a layer will only be

connected to a small region of the layer before it, instead of all of the neurons in a fully-connected

manner. Moreover, the final output layer has dimensions 1x1x10, because by the end of the

ConvNet architecture, the full image would be reduced to single vector of class scores, arranged

along the depth dimension.

50

Here is a visualization:

Fig 3.15: Regular 3- layer Neural Network

Fig 3.16: Convolutional Neural Network

In figure 3.15, A regular 3-layer Neural Network is shown. In figure 3.16, A ConvNet

arranges its neurons in three dimensions (width, height, depth), as visualized in one of the layers.

51

Every layer of a ConvNet transforms the 3D input volume to a 3D output volume of neuron

activations. In this example, the red input layer holds the image, so its width and height would be

the dimensions of the image, and the depth would be 3 (Red, Green, Blue channels)

3.3.2 Challenges of Text Conversion

Image to text conversion has below mentioned difficulties:

• A Neural Network needs to be trained with different types of handwriting to make it robust

and to get higher accuracy in character recognition.

• The classic difficulty of being able to correctly recognize language symbols is the

complexity and the irregularity among the pictorial representation of characters due to

variation in writing styles, size of symbols etc.

• Text conversion needs some pre-processing, segmentation, feature extraction etc.

• Variation in handwriting among different writers occurs since each writer possesses own

speed of writing, different styles, sizes or positions for characters or text. Variation in

handwriting styles also exists within individual person’s handwriting. This variation may

take place due to: writing in various situations that may or may not be comfortable to writer;

different moods of writer; style of writing same characters with different shapes in different

situations or as a part of different words; using different kinds of hardware for handwriting.

To reduce the difficulty level of text conversion all the possible ways are considered while

training dataset and a CNN model. The further detailed description of CNN model training has

been provided in chapter 4.

52

CHAPTER 4

IMPLEMENTATION OF SYSTEM

This chapter gives thorough explanation of how all components of the system have been

designed and implemented.

4.1 Gesture Recognition

Our very first step for the entire system is to recognize the pre-set gesture and capture a

photo of white board. Hence, capturing gesture is very first stage for implementation. This chapter

gives thorough knowledge of how we have implemented gesture recognition. In paper [22], [33] ,

[44] convexity defect method has been used to recognize finger. We have also used convexity

defect method to recognize finger but our approach is quite different then approach of papers [22],

[33], [44].

Comparison of our approach with existing approach

In paper [22] , [33] , [44] and in our system to recognize hand gesture , convexity defect

approach has been used. In this approach , the convexity defect is found to calculate numbers of

fingers shown in gesture. The gap between two finger is called as a finger angle and one point is

drawn in this gap is called as the convexity defect (see figure 4.1). Hence, the convexity defect

between fingers is used to calculate numbers of fingers shown in gestures. So , for five fingers we

will have four gaps among fingers hence we will have 4 convexity defect points, for four fingers

we will have 3 gaps hence our convexity defect is 3. So , for the number of fingers we show in

gesture , we will have one less number of convexity defect. For one finger convexity defect = 0 ,

for two fingers convexity defect =1 , for three fingers convexity defect = 2 , for four fingers

convexity defect = 3 , for five fingers convexity defect = 4. Problem raise for convexity defect

53

approach when we don’t show any gesture , when we show fist and when we show one finger. For

all these gestures we will have convexity defect = 0 since there is no gap between fingers. So ,

how to differentiate between thumb , first finger and clear back ground. We are using area ratio

to come out of this problem. In comparison with paper [22] , [33] , [44] we are clearly

distinguishing clear background, one finger , thumb , fist , three fingers and “OK” gesture by using

new approach of area ratio.

Fig 4.1 Convexity Defect

Figure 4.1 shows the red dot in between finger gap. The red dot called as convexity defect.

The algorithm that we have followed to capture hand gesture is shown in figure 17:

54

Fig: 4.2 Our approach for Hand gesture recognition

Figure 4.2 shows the algorithm designed by us for hand gesture recognition. Highlighted steps

show our contribution in designing algorithm.

Now let’s illustrate each step of algorithm.

4.1.1 Capture frames and Draw ROI

We are using gesture recognition to avoid blockage of text on white-board due to lecture’s

body. To avoid this situation, we are drawing a Region of Interest (ROI) box on a video streaming.

ROI are samples within a data set identified for a particular purpose (see figure 4.3 ,4.4). In our

system, when hand is shown as a gesture then from entire hand data our ROI is only palm hand

and fingers. We do not need entire hand for hand gesture recognition.

55

Fig 4.3: Hand Gesture

Fig 4.4: Region of Interest for hand gesture

Figure 4.3 shows that professor is showing full hand to show a gesture but form that hand we just

need palm area to recognize. Figure 4.4 shows the Region of Interest for palm hand.

In this system, our main motivation to use hand gesture recognition is to reduce

computational complexity. Hence, whenever lecturer is done writing on board he will show a hand

gesture to camera to take a picture. Now, the problem is lecturer can make hand gestures to explain

some stuff to students. We do not want a false hand gesture to be detected by our system. Also,

we do not want to stop a lecturer to explain stuff by moving body or hand. Hence, we found a

Region of

Interest.

56

solution that whenever lecturer is done explaining and writing something on board, he can show a

gesture to particular box at particular area of board. That particular box is called as “Gesture input

box” in our system.

 Raspberry Pi will initially do continuous video streaming with ROI drawn on it. This ROI

will be kept at one corner of board. Our system will not detect any hand gesture until and unless it

is not shown in Gesture Input box and our system will not take any pictures also until and unless

the hand gesture is not shown in Gesture Input box. Hence, lecturer can freely move anywhere in

class and can freely make hand/body movements while explaining. If lecturer’s body by mistake

blocks or enters into ROI box then also our system will not detect false gesture and will not take

false images because our ROI is only hand not any other body part or objects. The only constrain

for lecturer is they have to show a gesture to particular Gesture input box area. This constrain is

benefitting our system in below mentioned aspects:

• It allows lecturer to explain theory with hand/body movements which is very important in

a class with handicaps and disable students.

• It is not capturing images with lecturer’s body in it as the Gesture input box has kept in

such way that lecture’s body cannot block the white-board text.

• Our ROI only take palm hand so it will not detect any false hand gesture made by professor

while explaining. Consequently, we will not have extra or unnecessary images of white-

board since taking of images directly linked to accurate hand gestures.

Our Region Of Interest (ROI) is the palm hand region, so the palm of the hand are captured.

As an example, the portion of the frame in which we are further interested is only to know that

whether this pixel is in our interest area or not means just as binary image (see figure 4.5, 4.6).

57

Fig 4.5: Region of Interest kept above the white board.

Fig 4.6: ROI box beside board

Figure 4.5 and 4.6 shows the ROI box can be kept at any corner of one board but it should be

kept before the board area starts.

ROI

58

4.1.2 Finding skin color area

The by default color space of OpenCV is BGR (blue, green, red). In this system we are

mainly working with hand palm region. Hence, we need to convert BGR color space to HSV (Hue,

Saturation, Vision) color space. After that we defined the skin color range to detect the hand palm

within then range. Then we are finding a mask value which will be 0 or 1, the region which has

skin color will be 0 value and of white color rest will be 1 value and black color.

4.1.3 Blur and dilate frame

We blur the frame for smoothing and to reduce noise like shadow and details from the

image (see figure 4.7). We are not interested in the details of the image but in the shape of the

object to track. We are dilating a frame to enlarge few areas of hands when we have captured few

gestures in improper or poor lightning [29].

I've used Gaussian Blurring on the original image. Gaussian blur is the result of blurring

an image by a Gaussian function. It is a widely used effect in graphics software, typically to

reduce image noise and reduce detail. The equation of a Gaussian function in two dimensions is

[29]:

𝐺(𝑥, 𝑦) =
1

2𝜋𝜎2
𝑒

𝑥2+𝑦2

2𝜎2 Eq. (1)

where x is the distance from the origin in the horizontal axis, y is the distance from the origin in

the vertical axis, and σ is the standard deviation of the Gaussian distribution.

Fig 4.7: Shadow in hand gesture

https://en.wikipedia.org/wiki/Gaussian_function
https://en.wikipedia.org/wiki/Image_noise
https://en.wikipedia.org/wiki/Standard_deviation

59

Figure 4.7 shows that even though there is a shadow while capturing hand gesture it is clearly

recognition hand gesture due to removing noise of hand gesture.

4.1.3 Image segmentation

Segmentation is perform using thresholding. Thresholding creates binary images from

grey-level ones by turning all pixels below some threshold to zero and all pixels about that

threshold to one. If g (x, y) is a threshold version of f (x, y) at some global threshold T, it can be

defined as [26]:

g (x, y) = 1 if f (x, y) ≥ T

 = 0 otherwise Eq. (2)

Thresholding operation is defined as:

T = M [x, y, p (x, y), f (x, y)] Eq. (3)

In this equation, T stands for the threshold; f (x, y) is the grey value of point (x, y) and p(x,

y) denotes some local property of the point such as the average grey value of the neighborhood

centered on point (x, y). Otsu method is used for thresholding [26].

In Otsu's method we exhaustively search for the threshold that minimizes the intra-class variance

(the variance within the class), defined as a weighted sum of variances of the two classes:

𝜎𝜔
2 (𝑡) = 𝜔0(𝑡)𝜎0

2(𝑡) + 𝜔1(𝑡)𝜎1
2(𝑡) Eq. (4)

Weights ω0 and ω1 are the probabilities of the two classes separated by a threshold t,

and σ0
2and σ1

2 are variances of these two classes (see figure 4.8).

The class probability ω0,1(t) is computed from the L bins of the histogram:

𝜔0(𝑡) = ∑ 𝑝(𝑖)𝑡−1
𝑖=0 Eq. (5)

𝜔1(𝑡) = ∑ 𝑝(𝑖)𝐿−1
𝑖=𝑡 Eq. (6)

60

Otsu shows that minimizing the intra-class variance is the same as maximizing inter-class variance:

𝜎𝑏
2 (𝑡) = 𝜎2 − 𝜎𝜔

2 (𝑡) = (𝜔0 𝜇0 − 𝜇𝑇)2 + 𝜔1(𝜇1 − 𝜇𝑇)2

= 𝜔0(𝑡)𝜔1(𝑡)[𝜇0(𝑡) − 𝜇1(𝑡)]2 Eq. (7)

which is expressed in terms of class probabilities ω and class means µ.While the class

mean 𝜇0, 1, 𝑇(𝑡) is [26]:

𝜇0(𝑡) =
∑ 𝑖𝑝(𝑖)𝑡−1

𝑖=0

𝜔0(𝑡)
 Eq. (8)

𝜇1(𝑡) =
∑ 𝑖𝑝(𝑖)𝐿−1

𝑖=𝑡

𝜔1(𝑡)
 Eq. (9)

𝜇𝑇 = ∑ 𝑖𝑝(𝑖)𝐿−1
𝑖=0 Eq. (10)

The following relations can be easily verified:

𝜔0𝜇0 + 𝜔1𝜇1 = 𝜇𝑇 Eq. (11)

𝜔0 + 𝜔1 = 1 Eq. (12)

The class probabilities and class means can be computed iteratively. This idea yields an effective

algorithm.

Algorithm [26]

1. Compute histogram and probabilities of each intensity level

2. Set up initial ωi(0) and µi(0)

3. Step through all possible thresholds t=0, 1, 2…. maximum intensity

1. Update ωi and µi

2. Compute 𝜎𝑏
2(𝑡)

4. Desired threshold corresponds to the maximum 𝜎𝑏
2(𝑡)

61

Otsu’s method exhibits the relatively good performance if the histogram can be assumed to have

bimodal distribution and assumed to possess a deep and sharp valley between two peaks.

Fig 4.8 After applying thresholding

Figure 4.8 shows the thresholded frame.

By performing above step hand is easily detected. The next task is to extract features from

that hand to recognize gestures related with that. Quality of extracted features decides accuracy

and efficiency of gesture recognition system.

4.1.4 Draw Contours and convex hull

Contours can be explained simply as a curve joining all the continuous points (along the

boundary), having same color or intensity (see figure 4.9). The contours are a useful tool for shape

analysis and object detection and recognition. Before finding contours, apply threshold or canny

edge detection on the image [31].

findContours() function is used to find contours in image. Since OpenCV 3.2, this function

no longer modifies the source image but returns a modified image as the first of three return

Thresholding

https://docs.opencv.org/3.3.1/d3/dc0/group__imgproc__shape.html#ga17ed9f5d79ae97bd4c7cf18403e1689a

62

parameters. In OpenCV, finding contours is like finding white object from black background. So,

remember, object to be found should be white and background should be black. Contour

Approximation will remove small curves, there by approximating the contour more to straight line.

This is done using cv2.approxPolyDP() function. So, when you try to find the contours, you will

get all the curves also. But with contour approximation, you can avoid all those problems and

approximates it to a perfect square [31].

Fig 4.9. Image with Contours

Figure 4.9 shows the contours of hand gesture frame.

Once the approximation is over, finding convex Hull is the next step. This will look similar

to contour approximation, but it is not same. Here, cv2.convexHull() function checks a curve for

convexity defects and corrects it. Generally speaking, convex curves are the curves which are

always bulged out, or at-least flat [31]. And if it is bulged inside, it is called convexity defects.

Any deviation of the object from this hull can be considered as convexity defect (see figure 4.10).

OpenCV comes with a ready-made function for this, cv2.convexityDefects().

Contours

63

hull =cv2.convexHull(cnt,returnPoints =False)

defects =cv2.convexityDefects(cnt, hull)

Notice that "returnPoints = False" in first line to get indices of the contour points, because

input to convexityDefects() should be these indices, not original points. It returns a defects

structure, an array of four values - [start point, end point, farthest point, approximate distance to

farthest point]. We can visualize it using an image [31]. We draw a line joining start point and end

point, then draw a circle at the farthest point.

Fig 4.10: Convex hull

Figure 4.10 shows a green pentagon around the hand region. That pentagon is called as convex

hull.

4.1.5 Convexity Defect

After finding convex hull it is very important to find convex hull area and hand area. With

the help of these two areas we can find the area ratio. Every gesture will have their own unique

area ration according that only we can clearly identify all gestures. Hence why, finding area ratio

is important [31].

Area ratio=((areahull-areacnt)/areacnt) *100 Eq. (13)

Where, areahull is the area of convex hull, areacnt is area of hand.

We will now find the convex points and the defect points. The convex points are generally,

the tip of the fingers. But there is other convex point too [31]. So, we find convexity defects, which

is the deepest point of deviation on the contour (see figure 4.11). By this we can find the number

64

of fingers extended and then we can perform different functions according to the number of fingers

extended. The gap between two fingers called as an angle between two fingers. This angle will

never be more than 90 degrees [31]. Hence, if we find the angle greater 90 degrees in convex hull

will be discarded and if we find the angle less than 90 degree then we will draw a convexity defect

point between fingers.

Fig 4.11: Convexity Defect

Figuer 4.11 shows the red point inside green pentagone. The red points are called as Convexity

defetcs.

 If person will have fat and short fingers then the gap between fingers will be very less or

if person don’t extend the fingers proprely then aslo the the gap between the finger will be very

less. At this point of time to find a convexity difect the minimum distance between finger angle

and convex hull border will be counted [31]. The figure 4.12 help in understaning this scenario

better.

Convexity defect

is at more depth.

Convexity Depth is at lesser depth than other

two fingers.

Minimum

distance

65

Fig 4.12: Gap affects the height of convexity depth

Figure 4.12 shows that there is a more gap between 1st and 2nd finger so the convexity defect is at

lowest depth of the gap. There is a less gap between 2nd and 3rd fingers so the convexity defect is

at little higher distance then other two fingers [31]. In this case, the minimum distance between

finger angle and convex hull border will be calculated to locate convexity defect point [31]. The

arrow labeled as minimum distance shows the gap between finger angle and convex hull [31].

Fig 4.13 Shows the code snippet

Figure 4.32 shows the code snippet to find number convexity defects, to find minimum distance

between convex hull and convexity defect, to find angle between two fingers [31].

66

4.1.6 Finger detection

Till now we understood that we are calculating angle between fingers and finding

convexity defect. Now, we will see how convexity defect is helpful in detecting fingers. If we want

to detect two fingers then we will have one angle (one gap) between two fingers means we will

have one convexity defect. Same for three fingers, we will have two angles (two gaps) between

three fingers means we will have two convexity defects [31]. For four fingers, we will have three

angles (three gap) between four fingers that means we will have three convexity defects between

four fingers. For five fingers we will have four angles (four gap) between five fingers hence we

will have four convexity defects (see figure 4.14, 4.15, 4.16, 4.17). Hence by this we understood

that the number of fingers we show, we will have one less number of convexity defects from the

number of fingers shown [31].

67

Fig 4.14: two finger gesture.

Figure 4.14 shows that if we show two fingers then we will have one convexity defect (highlighted

with circle).

Fig 4.15: three finger gesture

Figure 4.15 shows that if we show three fingers then we will have two convexity defects

(highlighted with circle).

68

Fig 4.16: four finger gesture.

Figure 4.16 shows that if we show four fingers then we will have three convexity defects

(highlighted with circle).

69

Fig 4.17: five finger gestures.

Figure 4.17 shows that if we show five fingers then we will have four convexity defects

(highlighted with circle).

After seeing this we can understand that if we are showing one finger or fist then there will

not have any gap or angle hence the complexity defect count will be zero. Hence, for five fingers

we will have only 4 complexity defects. Now, the challenge is if ROI will not have any gestures

and ROI box will be empty then we will have complexity defect as zero. If we show one finger or

fist also then the complexity defect will be zero. So, how to detect that ROI box is empty or ROI

box has one finger or fist. To clearly identify the difference between empty ROI box, one finger

and fist we are using hand area and area ratio. We have done numerous trial and error methods and

70

we found accurate number to clearly find the difference between empty ROI box, one finger, fist

and thumb. For all these four-scenario complexity defect will be 0. Same situation is with 3 fingers

also. In 3 fingers for “OK” gesture also there will 2 convexity defects and for three fingers also

there will be 2 convexity defects [31].

To clearly distinguish all these gestures, we are fixing area ratio and hand area values. This

value will work with all kind of fingers [31]. To recognize only an empty ROI box, we are using

hand area because there will not be any hand for empty box or hand area will be very minimal

[31]. Hence for Hand area =2000 we are getting empty box. Rest of all gestures to clearly

distinguish all gestures we are using area ratio values which is mentioned in table 4.1 (for result

see chapter 6).

Gestures Area Ratio Hand Area

ROI empty box - <2000

Fist <12 -

Thumb <17.5 -

One finger >18 -

Three <27 -

OK >27 -

Table 4.1: Calculated values to clearly distinguish all same gestures [31].

Table 4.1 shows value of area ratio assigned for a particular gesture to recognize.

71

Now, after recognizing all the fingers correctly, we need to print messages for the detected fingers

and all the functions assigned with gesture should work when particular gesture is shown . We

have assigned messages which is mentioned in table 4.2 to all gestures.

Gestures Message Print Function

ROI empty box Show gesture

One finger One finger shown

Two Fingers Two fingers shown

Three Fingers Three fingers shown Takes picture for

mathematic Formula

conversion

Four Finger Four Fingers shown Take picture for Image to

text conversion

Five Fingers Five Fingers shown

Fist Fist shown

Ok It’s okay

Thumb All is well Exit from entire system

Table 4.2: Message displayed when gestures are recognized.

Table 4.2 shows the messages that display while gesture is recognized. Also, table shows a task

system has to perform while a particular gesture is shown.

 Raspberry Pi takes picture of white-board after the third and fourth gestures are shown.

Four fingers are shown when lecturer has written special characters, numbers, alphabets and

simple mathematical formulas. Three finger gestures are shown when complex mathematical

72

formulas are written on board. To understand simple and complex mathematical function for our

system see subsection 4.2.

4.2 Deep machine learning for image to text conversion

After capturing images through Raspberry Pi, next task is to extract text from images (see figure

4.18). For classification of text we have built, trained and tested a convolutional neural network.

Fig 4.18: Steps followed for image to text conversion

Figure 4.18 shows the procedure followed to extract text from captured images. Highlighted step

shows that we have built convolutional neural network to classify text in images.

73

4.2.1 Image Acquisition:

This is the way toward gaining advanced arrangement pictures from physical record or

image that can be additionally subjected to image handling procedures and can be additionally

utilized as a part of the application. In our system image is acquired through Raspberry Pi.

4.2.2About characters to be recognized

The modern English alphabet is a Latin alphabet consisting of 26 letters, each having an

uppercase and a lowercase form. The English language was first written in the Anglo-Saxon

futhorc runic alphabet, in use from the 5th century. This alphabet was brought to what is now

England, along with the promo-form of the language itself, by Anglo-Saxon settlers.

Capital Alphabets

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Small Alphabets

a b c d e f g h i j k l m n o p q r s t u v w x y z

Table 4.3: alphabets

Table 4.3 shows the alphabets supported in our system for image to text conversion.

The exact shape of printed letters varies depending on the typeface (and font). The shape of

handwritten letters can differ significantly from the standard printed form (and between

individuals), especially when written in cursive style.

Numerals

0 1 2 3 4 5 6 7 8 9

Table 4.4: numerals

Table 4.4 shows the numerals that are supported in our system for image to text conversion.

74

Special Characters

~ ` ! @ # $ % ^ & * () _ - + = { } [] : ; ' " | \ < > , . ? /

Table 4.5: Special Character

Table 4.5 shows the special characters that are supported in our system for image to text

conversion.

So, the total number of characters to be recognized are 64 in that 26 Capital Alphabets, 26 small

alphabets, 10 numerals.

4.2.3 About dataset

For training and testing purpose, two types of datasets are used which are

• The MNIST dataset

• The EMNIST Database

The MNIST Database

The MNIST database (Modified National Institute of Standards and Technology database)

is a large database of handwritten digits that is commonly used for training various image

processing systems (see figure 4.19) [1][2]. The database is also widely used for training and

testing in the field of machine learning [3][4]. It was created by "re-mixing" the samples from

NIST's original datasets. The creators felt that since NIST's training dataset was taken from

American Census Bureau employees, while the testing dataset was taken from American high

school students, it was not well-suited for machine learning experiments [5]. Furthermore, the

black and white images from NIST were normalized to fit into a 28x28 pixel bounding box and

anti-aliased, which introduced grayscale levels [5].

75

Fig 4.19: Sample Images from MNIST test dataset

The figure 4.19 shows the Sample of MNIST dataset.

The MNIST database contains 10 million images.Half of the training set and half of the

test set were taken from NIST's training dataset, while the other half of the training set and the

other half of the test set were taken from NIST's testing dataset [7]. The digits have been size-

normalized and centered in a fixed-size image.

EMNIST dataset:

The EMNIST dataset is a set of handwritten character digits derived from the NIST Special

Database 19 and converted to a 28x28 pixel image format and dataset structure that directly

matches the MNIST dataset. Special Database 19 contains NIST's entire corpus of training

materials for handprinted document and character recognition. It publishes Handprinted Sample

Forms from 3600 writers, 810,000-character images isolated from their forms, ground truth

classifications for those images, reference forms for further data collection, and software utilities

for image management and handling (see figure 4.20).

76

Fig 4.20: Sample of EMNIST dataset.

Figure 4.20 shows the sample of EMNIST dataset.

77

The features of this database are:

• Final accumulation of NIST's handprinted sample data

• Full page HSF forms from 3600 writers

• Separate digit, upper and lower case, and free text fields

• Over 800,000 images with hand checked classifications

 It is a suite of six datasets intended to provide a more challenging alternative to the MNIST

dataset. The characters of the NIST Special Database 19 were converted to a format that matches

that of the MNIST dataset, making it immediately compatible with any network capable of

working with the original MNIST dataset.

4.2.4 Line, Word and Character Segmentation:

It is compulsory to convert the given input text image into lines then to words and then segmented

to individual characters, so that we easily recognize these individual characters. For that we

required to find connected components. Here we are giving labels to each and every connected

component (see figure 4.21 to 24) . The pixels which are connected with the same values are

labeled with same number. Horizontal projection and vertical projection are also included here to

segment the text into lines and then words. For that histogram is used. Histogram of horizontal and

vertical projections is plot. This histogram has peaks and valleys. Peaks means the pixels which

are in white color and valley include black portion of image. So that valley gives the boundary of

the line and words. Hand writing text recognition requires all three segmentations [36].

78

Fig 4.21: Original Image

Fig 4.22: Line Segmentation

79

Fig 4.23 : word segmentation

Fig 4.24: Character Segmentation

Figure 4.21 – 4.24 shows the process of Line, word , Character Segmentation. Figure 4.21 show

the original image. Figure 4.22 shows the line segmentation of original image. Figure 4.23 shows

the word segmentation of original image. Figure 4.24 shows the Character segmentation of

original image

80

4.2.5 Pre-processing:

The gained image is of no utilization in the event that it isn't subjected to the pre-preparing stage.

This stage makes the image reasonable for advance examination and work to be performed on that.

Pre-preparing incorporates a few application particular strategies. A portion of the systems utilized

in this undertaking are:

Binarization

The procedure of binarization [26] includes transformation of examined image into a grayscale

image which thusly is changed over into parallel or bi-level picture. This progression is critical to

recognize the foundation which is set to white and frontal area, the content to be perceived which

is set to dark. Means the background is set to white and the interested region means the text on

which we are working is set in black color (see figure 25). To perform this binarization we are

using thresholding technique which is already discussed in the gesture recognition.

Fig 4.25: binarization of original images.

81

Figure 4.25 shows the binarization of original image.

Gap Correction

In segmentation, the position of the object i.e., the character in the image is found out and

the size of the image is cropped to that of the template size. Segmentation can be external and

internal. External segmentation is the isolation of various writing units, such as paragraphs,

sentences or words. In internal segmentation an image of sequence of characters is decomposed

into sub-images of individual character.

Figure 4.26: Segmented Image

Figure 4.26 shows the segmented Image for original image I.

Scale down/ scale up

The output image of the segmentation step is input to this operation. The input image can

be of any size. In convolutional Neural Network, the size of input image is 28x28. To make the

image of a fixed size of 28x28, this operation is performed. If the image is smaller than the decided

size (28x28), then up sampling (scale up) operation is performed. If the image is bigger than the

decided fixed size, then down sampling (scale down) operation is performed. The output of this

task is an image of 28x28 size.

82

4.2.6. Classification through Conventional Neural Network:

After segmenting entire image into single characters, we need to classify that in which class

each character belongs. The segmented character may belong to alphabets, numbers or character.

Now., let’s understand how the classification of character works.

4.2.6.1 Model of Convolutional Neural Network

 To classify the character, we have built a Convolutional neural network. The model of

convolutional neural network is shown in figure.

Figure 4.27: Model of Convolutional Neural Network

In figure 4.27, the convolutional layers are labelled Cx, Sub-sampling layers are labelled Sx and

Fully connected layers are labelled Fx, where x is the layer index.

As shown in figure 4.27, the model of CNN comprises 8 layers excluding input layer. All

of which contains trainable parameters (weights).

83

Figure: 4.28 Convolutional layer and input layer

Figure 4.28 shows the Convolutional layer and input layer.

The input is a 28x28 pixel image. This is significantly larger than the largest character in

the database. The size of the input is chosen 28x28 because the size of training samples in MNIST

and EMNIST dataset is also 28x28. INPUT layer will hold the raw pixel values of the image, in

this case an image of width 28, height 28 with single color channel as the input image is pre-

processed and binarized. With the local receptive fields (filters), neurons can extract elementary

visual features such as oriented edges, end-point corners.

These features are then combined by sub sequent layers in order to detect higher order

features. Distortions or shifts of the input can cause the position of salient features to vary. In

addition, elementary feature detectors that are useful on one part of the image are likely to be useful

across the entire image. This knowledge can be applied by forcing a set of units, whose receptive

fields are located at different places on the image, to have identical weight vectors.

Units in a layer are organized in planes within which all the units share same kind of

weights. The set of output in of the units in such a plane is called feature map. Unit in a feature

map are all constrained to perform the same operation on different parts of the image.

A complete convolutional layer is a composed of several feature maps (with different

weight vectors), so that multiple features can be extracted at each location. As shown in figure

84

4.30, a unit in a feature map has 25 inputs connected to a 5 by 5 area in the input called the receptive

field of the input. Each unit has 25 inputs and therefore 25 trainable coefficients plus a trainable

bias. The receptive fields of the contiguous units in a feature map are central on correspondingly

contiguous units in the previous layer. Therefore, receptive fields of the neighboring field overlap.

Figure 4.29: 5x5 input connected to single unit of a feature map.

Figure 4.29 shows the 5*5 input connected to single unit of a feature map.

All the units in the feature map share the set of 25 weights and the same bias so it detects

the same features at all the possible locations on the input. The other feature maps in the same

layer uses different sets of weights and biases, thereby extracting different types of features from

the same image is possible. In our model, at each input location 6 different types of features are

extracted by 6 units in identical locations in the 6 feature maps. With the local receptive fields,

neurons can extract elementary visual features such as oriented edges, end-point corners.

A sequential implementation of a feature map would scan the input image with a single unit that

has a local receptive field, and store the states of this unit at corresponding locations in the feature

map. This operation is equivalent to a convolution, followed by an additive bias and a squashing

function.

The kernel of the convolution is the set of connection weights used by the units in the

feature map. Layer C1 is a convolutional layer with 6 feature maps. Each unit in each feature map

is connected to a 5x5 neighborhood in the input.

85

C1 contains 156 [(5x5x6) +6] trainable parameters. Where 5x5 is the size of receptive field.

There are 6 receptive fields (filters) and for every receptive field there is one trainable coefficient

called bias. Bias is used to adjust the values of the training parameters. The size of the feature map

is 24x24 which prevents connection from the input from falling of the boundary. Once a feature

has been detected, its exact location becomes less important. Only its approximate position relative

to another feature map is relevant.

A simple way to reduce precision with which the positions of the distinctive features are

encoded in a feature map is to reduce the spatial resolution of the feature map. This can be achieved

with a so- called sub-sampling layer which performs a local averaging and sub sampling, reducing

the resolution of the feature map and reducing the sensitivity of the output to shifts and its

distortions. Sub sampling layer is also known as POOL layer. Here max pooling is used.

Layer S2 is a sub-sampling layer with 6 feature maps of size 12x12. This layer comprises

feature maps, one for each feature map in the previous layer. Each unit in each feature map is

connected to a 2x2 neighborhood in the corresponding feature map in C1. The four inputs to a unit

in S2 are averaged, then multiplied by a trainable coefficient, and added to a trainable bias. The

result is passed through a sigmoidal function. The 2x2 receptive field are non-overlapping

therefore feature maps in S2 have half the number of rows and columns as feature maps in C1.

The trainable coefficient and bias control the effect of the sigmoid non-linearity. If the

coefficient is small then the unit operates in a quasi-linear mode and the sub sampling layer merely

blurs the input. If the coefficient is large, sub sampling units can be seen as performing a “noisy

OR” or a “noisy AND” function depending on the value of the bias. Layer S2 has 70 trainable

parameters.

86

Layer C3 is a conventional layer with 6 feature maps of size 8x8. Each unit in each feature

map is connected to several 5x5 neighborhoods at identical locations in a subset of S2’s feature

map.

Layer S4 is a sub-sampling layer with 6 feature maps of size 4x4. Each unit in each feature map is

connected to a 2x2 neighborhood in the corresponding feature map in C3, in a similar way as C1

and S2.

 Layer C5 is a conventional layer with 6 feature maps of size 4x4. This layer comprises

feature maps, one for each feature map in the previous layer. From pool layer to convolutional

layer C5 mapping is 2x2.

 Layer 6 and 7 are fully connected layers. First fully connected layer contains 96 neurons

and second fully connected layer contains 64 neurons.

Since, all the weights are learned with back- propagation, convolutional networks can be

seen as synthesizing their own feature extractor. The weight sharing technique has the interesting

side effect of reducing the capacity of the machine and reducing the gap between test errors and

training error.

As in classical neural networks, units in layers up to F7 compute a dot product between

their input vector and their weight vector. And a bias is also added to balance the output.

This weighted sum denoted as ai for unit i, is then passed through a sigmoid squashing

function to produce the state of unit I, denoted by xi

𝑥𝑖 = 𝑓(𝑎𝑖) Eq. (14)

The squashing function is a scaled hyperbolic tangent.

F(a) = A tanh (Sa) Eq. (15)

87

Where A is a amplitude of the function and S determines the slope of the origin. The function f is

odd, with horizontal asymptotes at +A and –A. The constant A is chosen to be 10 x e-6.

Finally, the output layer contains 64 neurons. After experimenting the batch sizes. 64 batch

size is chosen. The SoftMax function is often used in the final layer of a neural network-based

classifier [34]. SoftMax Regression is a generalization of logistic regression that we can use for

multi-class classification.

These are commonly trained under a log loss (or cross-entropy) regime, giving a non-linear

variant of multinomial logistic regression [34].

 Eq. (16)

where we define the net input z as

Eq. (17)

Here w is the weight vector, x is the feature vector of 1 training sample, and w0 is the bias

unit.

4.2.6.2 Training , testing and validation Module

In training module, we have taken 100,000 images from MNIST dataset and 100,000

images from EMNIST dataset. We total 200,000 images and 64 classes hence, each class will

have approximately 3000 images. The number epochs (no. of iteration we need to train a machine)

our machine needed to generate proper result is nearly 1000. Our batch size to train a machine is

64. The batch size is defined as number of images needed to train. The learning rate of my machine

is 10*e-6. Batches , epochs and learning rate all are hyper parameters. We have tried training

88

machine first with 16 batch size then 32 then 64. For batch size 64 we got desired output. Similarly

for machine learning rate we got best results for e-6 after seeing results for e-2 , e-4.

Testing module deals with the test images. Test images are obtained by splitting the dataset.

Here MNIST and EMNIST datasets are used to train the conventional neural network. Total

200,000 images are used for training and 20,000 images are used for testing purpose. It will first

pre-process the input image and it will classify the unlabeled test data. Test data is not labelled in

the sense it should be recognized by the machine. Labels are assigned to each of test images by

the network and then the accuracy is measured.

In the post processing stage of the proposed system, CNN outputs mapped to the character

Unicode. The output of the classifier will be some integer labels. This integer label should be

converted into corresponding character Unicode. The Unicode is written in a text file.

4.3 Mathematic Equations

To convert mathematical equation into text we are using steps shown in figure.

Fig 4.30 Image to text conversion for mathematical equation.

Figure 4.30 shows the procedure followed to convert mathematical equations into text.

89

4.3.1 Image Acquisition

To capture images, we are using Raspberry Pi camera, when lecturer shows three fingers

Raspberry Pi will take a picture of white board.

4.3.2 Pre- processing

 After picture is captured we are converting image to grayscale, and after converting to

grayscale , we are removing noise with median filter , then we binarization a picture (see figure).

(a) (b) (c)

Fig 4.31 Pre-processing Task

Figure 4.31 shows the pre-processing task of image processing. Figure 4.31(a) shows the original

image. Figure 4.31(b) shows the gray scale image. Figure 4.31 (c) shows the binary image.

4.3.3 Symbol Segmentation

To segment each and every symbol we are applying canny edge detector by using OpenCV

(see figure 4.32).

Fig 4.32 Symbol Segmentation

90

Figure 4.32 shows the canny edge detector segmentation for all the symbols.

4.3.4 Symbol recognition

 For recognizing segmented symbols, we are using “Mathpix” tool [55]. Mathpix is an open

source OCR engine. We integrated it into our system to identify the symbol within every

segmented symbol box.

4.3.5 Image to text conversion.

 After recognizing each symbol, the entire mathematical equation is provided in latex

format in notepad.

Fig 4.33

Figure 4.33 shows that E=mc2 equation is converted into latex format and retrieved in notepad

file.

4.4 Text file Conversion

After recognizing each character and combining all characters, words and line together

next step is to put all the results in text file. All the extracted text has been stored in the text file.

In our system we call text file as a data file. The Raspberry Pi, google cloud and desktop application

is connected through one network. Figure 3.12 shows the diagram of IOT system. Raspberry Pi

stores all the datafiles in folder named “CLASSROOM” which is in google drive. Students laptops

are synced with same internet connection and same google drive account in which Raspberry Pi is

91

connected. Hence, students can directly access to CLASSROOM folder from google drive and can

retrieve all datafiles and input images through desktop application.

Desktop Application

Desktop application is specially designed for students (see figure 4.34). It is designed in VB.net.

For our system we have made the desktop application which can only support windows machines.

Through desktop application students can retrieve data files and input images in their laptop.

Desktop application facilitates students to edit data files and images both. Desktop application has

two buttons “EDIT_TEXT” and “EDIT_IMAGE” button. If student clicks on “EDIT_TEXT”

button then desktop application will open notepad to edit text file. If students click on

“EDIT_IMAGE” button then paint will open to edit an image. After editing they can store their

file to laptop or google drive CLASSROOM folder. Hence, the desktop application allows students

to get lecture content on their personal device within fraction of time.

Fig 4.34 Desktop Application

Window One

Window four Window three

Window two

92

Figure 4.34 shows the screenshot of desktop application. Window one shows the list of data files

retrieved. Window two shows the data file content. Window three shows the list of input images

retrieved. Windows four shows the input images content. Down to all windows there are two

buttons “EDIT_TEXT” and “EDIT_IMAGE” which helps in student edit the text and image in

editing.

93

CHAPTER 5

 RESULTS

5.1. Entire system results

This subsection shows the arrangement of entire system and result of all the components of

system architecture.

Fig 5.1 : Arrangement of entire system

Figure 5.1 shows the arrangement of white-board and Raspberry Pi. Also, this figure shows the

gesture recognition implemented in this system. The text written on white board will converted to

text and for that results are attached after this image.

94

Fig 5.2 Image to text conversion

Figure 5.2 shows the text extracted from the white board text shown in previous image.

95

Fig 5.3 Image captured by Raspberry Pi

Figure 5.3 shows the white board picture clicked through Raspberry Pi after showing gesture. This

images is stored in google drive folder CLASSROOM. We can see that image is opened from

CLASSROOM folder of google drive.

96

Fig 5.4 Data File

Figure 5.4 shows the data file which contains extracted text from the image. This data file is stored

in google drive folder CLASSROOM. We can see that data file is opened from CLASSROOM

folder of google drive.

97

Fig 5.5 Desktop Application

Figure 5.5 shows the desktop application built for students. In this application students will get

white board picture taken from Raspberry Pi camera and data files. This application allows

students to edit data files and input images.

98

Fig 5.6 Function of “EDIT_TEXT” button

Figure 5.6 shows that when students click on “ EDIT _ TEXT” button of desktop application then

application redirects to notepad to edit the datafile.

99

Fig 5.7 Function of “EDIT_IMAGE” button

Figure 5.7 shows that when students click on “ EDIT_IMAGE” button application redirects to

paint to edit the input image.

100

6.2 Gesture Recognition

We have implemented convexity defect approach to recognize all the fingers. We have 31

combinations of hands and when do not show gesture then we will have clear background. Hence,

we have total 32 test cases for hand gesture recognition.

6.2.2 When Convexity defect is zero:

 When we have convexity defect as zero then we can say that either the background is

clear one finger shown or fist shown. For one finger we have 5 combinations. Among those 5

combinations we differentiate thumb and finger by area ratio.

(a) (b)

 (c) (d)

101

(e) (f)

 (g)

Figure 5.8 (a-g) shows clear background, fist and one figure hand gestures

Figure 5.8 (a) shows when there is no gesture in “Gesture input box” the message printed is:

“show gesture”.

Figure 5.8 (b) shows the fist gesture.

Figure 5.8 (c ,d ,e , g) shows the all combinations of figure one.

Figure 5.8 (g) shows when the thumb is detected it is printing message “ All is well ”

102

6.2.3 Two fingers shown when convexity defect is 1:

All the picture shown in section 6.2.3 are all 10 combinations of finger two.

103

6.2.4 Three fingers shown when convexity defect is 2:

104

105

Fig 5.9 “OK” gesture

Figure 5.9 shows that to show “OK” gesture we have to use three fingers but it is clearly

distinguish between “OK” gestures and three finger gestures.

106

6.2.5 Four fingers shown when our convexity defect is 3:

107

6.2.6 Five fingers shown when convexity defect is 4:

108

6.3 Image to text Conversion

6.3.1 Text images.

In this section all the results of image to text conversion for alphabets , numbers and special

characters has been taken for taste case.

Fig. 5.10 : Simple Text Conversion

Figure 5.10 show the image to text conversion. In the captured image of white board, writer has

attached two letters "t" "l" and "t" "h" so system is taking it as "H". Hence, for words "correctly"

and "think" the output generated by system is " correcHy" and "Hink”. System takes the nearby

analyzed letter in case of confusion. So, in this way it makes few mistakes if there isn’t any clarity.

109

Fig. 5.11 Simple Text Conversion

Figure 5.11 show the image to text conversion. Captured image is correctly getting converted as

the output. System can correctly read all the letters and gave the correct report.

110

Fig. 5.12 Simple Text Conversion

Figure 5.12 show the image to text conversion. Captured image is correctly getting converted as

the output. System can correctly read all the letters and gave the correct report.

111

Fig. 5.13 Simple Text Conversion

Figure 5.13 show the image to text conversion. Captured image is correctly getting converted as

the output. System can correctly read all the letters and gave the correct report.

112

Fig. 5.14 Complex Text Conversion

Figure 5.14 show the image to text conversion. Captured image is correctly getting converted as

the output. System can correctly read all the letters and gave the correct report.

113

Fig. 5.15 Complex Text Conversion

Figure 5.15 show the image to text conversion. In the captured image of white board, writer has

not written in a proper format. Hence the output has many letters missing and many errors. System

takes the nearby analyzed letter in case of confusion. So, in this way it makes few mistakes if there

isn’t any clarity.

114

Fig. 5.16 Complex Text Conversion

Figure 5.16 show the image to text conversion. In the captured image of white board, system

couldn’t analyze none of the words. System simply gave “No Response” output. So the input from

the whiteboard needs to clear to generate some output.

115

Fig. 5.17 Simple Text Conversion

Figure 517 show the image to text conversion. Captured image is correctly getting converted as

the output. System can correctly read all the letters and gave the correct report.

116

Fig 5.18 Simple Text

Figure 5.18 shows the image to text conversion. Captured image is correctly getting converted as

the output. System can correctly read all the letters and gave the correct report.

117

Fig 5.19 Complex Text Conversion

Figure 5.19 shows the image to text conversion. Captured image is correctly getting converted as

the output except word “ perfect” other than that system can correctly read all the letters and gave

the correct report.

118

Fig 5.20 Complex Text Conversion

Figure 5.20 show the image to text conversion. Captured image is correctly getting converted as

the output except word “ ends” other than that system can correctly read all the letters and gave

the correct report.

119

Fig 5.21 Complex Text Conversion

Figure 5.21 show the image to text conversion. Captured image is correctly getting converted as

the output except words “ simply” , “me” and “and” other than that system can correctly read all

the letters and gave the correct report.

120

Fig 5.22 Complex Text Conversion

Figure 5.22show the image to text conversion. Captured image is correctly getting converted as

the output except words “perfect” and “ but” other than that system can correctly read all the letters

and gave the correct report.

121

6.3.2 Mathematical Equation Images to Text Conversion

This section gives result for image to text conversion for Mathematical Equations .

Fig 5.23 Mathematical Equation Image to Text Conversion.

 Figure 5.23 shows the image to text conversion for mathematical equations. Captured image is

correctly getting converted as the output. System can correctly read all the letters and gave the

correct report.

122

 Fig 5.24 Mathematical Equation Image to Text Conversion.

 Figure 5.24 shows the image to text conversion for mathematical equations. Captured image is

correctly getting converted as the output. System can correctly read all the letters and gave the

correct report.

123

Fig 5.25 Mathematical Equation Image to Text Conversion.

 Figure 5.25 shows the image to text conversion for mathematical equations. Captured image is

correctly getting converted as the output. System can correctly read all the letters and gave the

correct report.

124

Fig 6.26 Mathematical Equation Image to Text Conversion.

 Figure 6.26 shows the image to text conversion for mathematical equations. Captured image is

correctly getting converted as the output. System can correctly read all the letters and gave the

correct report.

125

Fig 6.27 Mathematical Equation Image to Text Conversion.

 Figure 6.27 shows the image to text conversion for mathematical equations. Captured image is

correctly getting converted as the output. System can correctly read all the letters and gave the

correct report.

126

Fig 6.28 Mathematical Equation Image to Text Conversion.

 Figure 6.28 shows the image to text conversion for mathematical equations. Captured image is

correctly getting converted as the output. System can correctly read all the letters and gave the

correct report.

127

Fig 6.29 Mathematical Equation Image to Text Conversion.

 Figure 6.29 shows the image to text conversion for mathematical equations. Captured image is

correctly getting converted as the output. System can correctly read all the letters and gave the

correct report.

128

Fig 6.30 Mathematical Equation Image to Text Conversion.

 Figure 6.30 shows the image to text conversion for mathematical equations. Captured image is

correctly getting converted as the output. System can correctly read all the letters and gave the

correct report.

129

Chapter 6

 EVALUATION

The Evolution of entire system is performed using time factor (how much time does system take

to finish the task) , cost factor (how much cost is needed to build a system) and accuracy of entire

system

6.1: Evaluation of system by considering TIME factor

We have calculated time taken by system to convert image into text after the image is

captured by Raspberry Pi. Also, We have calculated time taken by entire system staring form

gesture recognition to sending data file to student’s application . We have taken 100 images for

simple text , 100 images for complex text and 50 images for mathematical equation. We have

calculated average time for text conversion by using following formula.

Time taken by system to convert one image into text = t1.

Hence for 100 images time will be t100

So, Average time T = t1+t2+t3+t4………t100 / 100

So, we have calculated time for each image to be converted into text and then we have

found the average time which is shown in Table 6.1.

For entire system, we have taken 100 image combination of simple text, complex text and

mathematical equation. For each image we have calculated time starting with gesture recognition

to providing data files to student’s application and after that we have found average time for 100

images.

130

 Process Average Time

1 Text conversion 20.61 sec

2 Over all system 1 min 20 sec

 Table 6.1 Require time for execution

 In results we have clearly mentioned which is simple text , which is complex text. Simple

text has clear , readable and neat handwriting. Complex text has attached letters and not clear

handwritings.

 Input images Number of

input images

Average Time

1 Simple Text 100 19.20 sec

2 Complex Text 100 20.68 sec

3 Mathematical Equations 50 21.95 sec

 Total 250 20.61 sec

Table 6.2 Average time for text conversion

131

Figure 6.1 (a) Average Time for Text Conversion (with number of inputs)

Fig 6.1 (b) Average Time for Text Conversion

Average recognition time is shown here. In figure 6.1 (a) we show the average time with

number of inputs. In that our x-axis contain the information about the number which kind of data

1
0

0

1
0

0

5
0

1
9

.2

2
0

.6
8

2
1

.9
5

S I M P L E T E X T C O M P L E X T E X T M A T H E M E T I C A L E Q U A T I O N

AVARAGE TIME OF TEXT CONVERSION IN
SECONDS

Input Image Average Time

17

18

19

20

21

22

Simple Text Complex Text Mathematical
Equations

Average Time (Sec)

Average Time (Sec)

132

is there and y-axis gives the information about number of input and the average time for that inputs.

Same is mention in figure 6.2. But we only show the information about average time.

Simple text has clear , neat and readable handwritings and complex text has attached letters

and not readable handwritings hence, the time taken for simple text is lesser than the time taken

by complex text. For mathematical equations the output is provided in latex format hence the time

taken by system to convert mathematical equation is high.

6.2 Evaluation of system by COST factor.

Rather than using all the complicated things for capturing image which are so costly, we

are using raspberry PI 3B to capture image. We display overall cost require in our system below

and then mention the requirement of other systems for this process.

 Device Price

1 Raspberry pi Model 3B $35

2 5-volt 2Amp power Adaptor $10

3 Raspberry pi Mega Pixel Camera module $15

4 Minimum 16GB MicroSD card $7-15

 Total Cost $67-95

Table 6.3 Cost of System

133

While other systems require:

• Software Licensing Fees (One-Time Charge)

• Annual Software Maintenance Fees (annual license fee for software maintenance/periodic

functional releases, etc.)

• Planning: Solution Requirements, Reviewing Business & IT environments, User Profiles,

Testing, Training and Support Plans

• Installation, Configuration and Enrollment (Training Speakers)

• Training Material Creation & Delivery (Train-the –Trainer Model) (Assumes training &

skills transfer for 5 people): End User, System Administrators, Client Support Help Desk

or On-Line Support Line)

• Testing & Customer acceptance

• Post-installation support (for 2-year period up to 80 hours)

6.3 Evaluation of system by ACCURACY factor.

Two main modules are there in our system.

1. Gesture recognition

2. Text conversion

We have to find the accuracy of both this module. Following are measurements which are used

to obtain accuracy for gesture recognition.

Accuracy = (TP + TN) / (TP + TN + FP + FN)

Here,

➢ TP is True Positive: test result is one that detects the condition when the condition is

present.

134

➢ TN is True Negative: test result is one that does not detect the condition when the condition

is absent.

➢ FP is False Positive: test result is one that detects the condition when the condition is

absent.

➢ FN is False Negative: test result is one that does not detect the condition when the condition

is present.

Condition

Present Absent

Test

Positive True Positive False Positive

Negative False Negative True Negative

 Table 6.4 Accuracy Parameter

1..Gesture Recognition Accuracy.

For gesture recognition we take all the combination which is possible for 5 fingers. For one

finger we have 5 combinations, for 2 fingers we have 10 combinations, for 3 fingers we have 10

combinations, for 4 fingers we have 5 combinations and for 5 we have only one possibility.

According to this we have 31 different gestures to recognize.

 Parameter Value

1 Input images 32

2 TP 32

3 TN 00

4 FP 00

5 FN 00

135

Table 6.5 Results for gesture recognition

Table 6.5 shows the accuracy results for all the true positive, true negative , false positive, false

negative parameters.

According to this result the final accuracy is

 Accuracy ={(32+ 00)/ (32 + 00 + 00 + 00)*100}

 Accuracy = 100%

2..Text Conversion Accuracy

For text conversion we are taking all the possibilities for A-Z and a-z alphabet, for

numbers and for mathematical equations system’s overall accuracy is 92% which is average

calculation of simple text conversion’s accuracy, complex text conversion accuracy and

mathematical equations conversion accuracy (see table 6.6).

 Parameter Simple Text Complex Text

Mathematical

Equations

1 Input images 100 100 50

2 TP 100 94 42

3 TN 00 00 00

4 FP 00 00 04

5 FN 00 06 04

6 Accuracy 100% 94% 84%

Table 6.6 Results for Text Conversion

Table 6.6 shows the image to text conversion Accuracy for simple text, complex text ,

mathematical equations.

136

Fig 6.2 Results for Text Conversion

Here figure 6.2 shows the results for text conversion. X-axis contains the information about which

kind of input we are taken and y-axis contains information about number of inputs, TP, TN, FP

and FN vales for all the three-different kind of inputs.

100 100

0 0 0

100
94

0 0
6

50

42

0
4 4

0

20

40

60

80

100

120

Input Images TP TN FP FN

Image to Text Conversion Accuracy

Simple Text Complex Text Mathemetical Eqation

137

Fig 6.3 Accuracy for Text Conversion

Figure 6.3 shows the information about accuracy of text recognition. Here x-axis contains the

information about the kind of inputs and y-axis gives the accuracy for that inputs. The Simple text

are easy to convert as it has clear hand writing hence the system’s accuracy is 100% , the complex

text has attached letters so system gives false output to convert complex text. Hence, system’s

accuracy is 94% for complex text conversion. In mathematical equations the equations needed to

be converted into latex format hence the accuracy is 84%.

100%

94%

84%

Accuracy

Simpale Text Complex Text Mathemetical Equation

138

CHAPTER 7

CONCLUSION & FUTURE WORK

In conclusion we would like to say that we have built a system to convert white board

handwritten text images into editable format by following a unique approach from existing

systems. We have tried to remove deficiency of existing system and made more accurate and

efficient system. We have used hand gesture recognition to capture image of white board. To

implement hand gesture recognition we have used our unique algorithm that gives 100% accuracy

of hand gesture recognition. For image to text conversion we have built our own convolutional

neural network that gives conversion accuracy of 92%. Also , we have built a system with very

less cost of $50. Hence, we have built a cheapest and accurate system to provide lecture images

into editable format for students.

FUTURE WORK

We have to make this system more advanced by converting mathematical equation images

into text using machine learning algorithms. We want to implement voice to text conversion with

hand gesture recognition for lecture video to text conversion.

139

REFERENCES

[1] Nidhibahen Patel, Selena He ,“A survey on hand gesture recognition techniques, methods and

tools”, in International Journal of Research in Advent and Technology, Volume 6 , Issue 6 , June

2018.

[2] Gangaputra, Sachin. "Handwritten digit database". Retrieved 17 August 2013.

[3] Qiao, Yu (2007). "THE MNIST DATABASE of handwritten digits". Retrieved 18 August

2013.

[4] Platt, John C. (1999). "Using analytic QP and sparseness to speed training of support vector

machines" (PDF). Advances in Neural Information Processing Systems: 557–563. Retrieved 18

August 2013.

[5] LeCun, Yann; Corinna Cortes; Christopher J.C. Burges. "MNIST handwritten digit database,

Yann LeCun, Corinna Cortes and Chris Burges". Retrieved 17 August 2013.

[6] Kussul, Ernst; Tatiana Baidyk (2004). "Improved method of handwritten digit recognition

tested on MNIST database". Image and Vision Computing. 22 (12): 971–981.

doi:10.1016/j.imavis.2004.03.008.

[7] Zhang, Bin; Sargur N. Srihari (2004). "Fast k -Nearest Neighbor Classification Using Cluster-

Based Trees" (PDF). IEEE Transactions on Pattern Analysis and Machine Intelligence. 26 (4):

525–528. doi:10.1109/TPAMI.2004.1265868. PMID 15382657. Retrieved 18 August 2013.

[8] "Support vector machines speed pattern recognition - Vision Systems Design". Vision Systems

Design. Retrieved 17 August 2013.

[9] https://wikipedia.org/wiki/Otsu%27s_method

[10] Ravina Mithe, Supriya Indalkar and Nilam Divekar, “Optical character recognition”,

International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-

2, Issue-1, pp 72-75 March 2001.

[11] Réjean Plamondon and Sargur N. Srihari, “On-line and off-line handwriting recognition: a

comprehensive survey”, IEEE Transactions On Pattern Analysis And Machine Intelligence, VOL.

22, NO. 1, pp 63- 84, JANUARY 2000.

[12] Fred W. M. Stentiford, “Automatic feature design for optical character recognition using an

evolutionary search procedure”, IEEE Transactions On Pattern Analysis And Machine

Intelligence, VOL. PAMI7, NO. 3, pp 349-355, MAY 1985.

https://wikipedia.org/wiki/Otsu%27s_method

140

[13] Mulindwa, Desire Burume, Shengzhi Du, and Jacobus A. Jordaan. "An intelligent character

recognition system for automatic mark capturing." Image and Signal Processing (CISP), 2014 7th

International Congress on. IEEE, 2014.

[14] HGRYanan Xu, Dong-Won Park and GouCholPok, “ Hand Gesture Recognition Based on

Convex Defect Detection”, International Journal of Applied Engineering Research ISSN 0973-

4562 Volume 12, Number 18 (2017) pp. 7075-7079.

[15] M. Elleuch, R. Maalej, and M. Kherallah, “A New Design Based - SVM of the CNN Classifier

Architecture with Dropout for Offline Arabic Handwritten Recognition,” Procedia - Procedia

Computer Science, vol. 80, pp. 1712–1723, 2016.

[16] B. Kwolek, “Face Detection Using Convolutional Neural Networks and Gabor Filters,”

Artificial Neural Networks - ICANN, pp. 551–556, 2005.

[17] Zhenzhen, Guan, et al. "Intelligent recognition for surface roughness based on microscopic

image texture characters." Measurement, Information and Control (MIC), 2012 International

Conference on. Vol. 1. IEEE, 2012.

[18] L. Chen, S. Wang, W. Fan, J. Sun, and N. Satoshi, “Reconstruction combined training for

convolutional neural networks on character recognition,” 2015 13th International Conference on

Document Analysis and Recognition (ICDAR). pp.431–435, 2015.

[19] M. M. Santoni, D. I. Sensuse, A. M. Arymurthy, and M. I. Fanany, “Cattle Race Classification

Using Gray Level Co-occurrence Matrix Convolutional Neural Networks,” Procedia Comput. Sci.,

vol. 59, no. October, pp. 493–502, 2015.

[20] Hussain, Rafaqat, et al. "Recognition based segmentation of connected characters in text

based CAPTCHAs." Communication Software and Networks (ICCSN), 2016 8th IEEE

International Conference on. IEEE, 2016.

[21] Mehta, Honey, Sanjay Singla, and Aarti Mahajan. "Optical character recognition (OCR)

system for Roman script & English language using Artificial Neural Network (ANN) classifier."

Research Advances in Integrated Navigation Systems (RAINS), International Conference on.

IEEE, 2016.

[22] Singh, Dipti, et al. "An application of SVM in character recognition with chain code."

Communication, Control and Intelligent Systems (CCIS), 2015. IEEE, 2015.

[23] Harpreet Kauri and Jyoti Rani, “A Review: Study of Various Techniques of Hand Gesture

Recognition”, IEEE International Conference on Power Electronics, Intelligent Control and

Energy Systems (ICPEICES), 2016.

141

[24] Mokhtar M. Hasan, and Pramod K. Mishra, “Hand Gesture Modeling and Recognition using

Geometric Features: A Review”, Canadian Journal on Image Processing and Computer Vision,

2012, Volume 3, Issue 1.

[25] Srinivas Ganapathyraju, “Hand Gesture Recognition Using Convexity Hull Defects to Control

an Industrial Robot”, 2013 3rd International Conference on Instrumentation Control and

Automation (ICA) , Bali, Indonesia, August 28-30, 2013.

[26] Chun-Yao Wang, Ying-Chin Lin, Han Yuan Tan, Jing-Yun Zeng,” Understanding

Mathematical Expressions from Camera Image” , in The 33rd Workshop on Combinatorial

Mathematics and Computation Theory.

[27] J. S. Sonkusare, N. B. Chopade, R. Sor, and S. L. Tade, "A Review on Hand Gesture

Recognition System, " 2015 Int. Conf Comput. Commun. Control Autorn., pp. 790-794, 2015.

[28] D. Q. J. Dqg, V. lurp, L. Pdun, O. Kdqg, H. W. Lv, K. Kinect, H. G. Recognition, Z. Fdq, E.

H. Fodvvlilhg, E. S. Fodvvlilhuv, and V. Dv, "using Kinect Depth Camera, " pp. 5-8,2015.

[29] G. R. S. Murthy & R. S. Jadon, 2009. A Review if Vision Based Hand Gestures Recognition,

International Journal of Information Technology and Knowledge Management, vol. 2(2), pp. 405-

410.

[30] Laura Dipietro, Angelo M. Sabatini, and Paolo Dario, 2008. Survey of Glove-Based Systems

and their applications, IEEE Transactions on systems, Man and Cybernetics, Part C: Applications

and reviews, vol. 38(4), pp. 461-482, doi: 10.1109/TSMCC.2008.923862

[31] https://www.youtube.com/watch?v=v-XcmsYlzjA

[31]Tiecheng Liu and Chekuri Choudary,” CONTENT EXTRACTION AND

SUMMARIZATION OF INSTRUCTIONAL VIDEOS”, in ICIP 2006, pp 149-152.

[32] HGR , SoukainaChraaMesbahi, “Hand gesture recognition based on convexity approach and

background subtraction”, 2018 International Conference on Intelligent Systems and Computer

Vision (ISCV).

[33] Seiji Okuni, Shinji Tsuruoka, Glenn P. Rayat, Hiroharu Kawanaka, Tsuyoshi Shinogi, “Video

Scene Segmentation Using the State Recognition of Blackboard for Blended Learning”, in IEEE

2007 International Conference on Convergence Information Technology, pp 2437-2442.

[34] Ali Shariq Imran, Faouzi Alaya Cheikh, “LECTURE CONTENT CLASSIFICATION

TOOL” ,in Proceedings of the 5th International Symposium on Communications, Control and

Signal Processing, ISCCSP 2012, Rome, Italy, 2-4 May 2012.

[35] Zhengyou Zhang and Li-wei He, “NOTETAKING WITH A CAMERA: WHITEBOARD

SCANNING AND IMAGE ENHANCEMENT”, in ICAPPS 2004, pp. III-533 to III-536.

142

[36] F. H. Yeh, G. C. Lee, I. J. Chen and C. H. Liao, “Robust Handwriting Extraction and Lecture

Video Summarization”, in 2014 Tenth International Conference on Intelligent Information Hiding

and Multimedia Signal Processing, pp 357-360.

[37] Markus Wienecke, Gernot A. Fink and Gerhard Sagerer, “Towards Automatic Video-based

Whiteboard Reading”, in IEEE 2003.

[38] Marcus LIWICKI and Horst BUNKE,” Handwriting Recognition of Whiteboard Notes”.

[39] Luigi Lamberti& Francesco Camastra, 2011. Real-Time Hand Gesture Recognition Using a

Color Glove, Springer 16th international conference on Image analysis and processing: Part I

(ICIAP'11), pp. 365-373.

[40] S. Mitra, T. Acharya. “Gesture Recognition: A Survey”, IEEE Transactions on Systems, Man,

and Cybernetics, Part C: Applications and Reviews, pp. 311-324, 2007.

[41] K. Ryba, T. Mcivor, M. Shakir, and D. Paez, “Liberated Learning: Analysis of University

Students’ Perceptions and Experiences with Continuous Automated Speech Recognition,” E-J.

Instructional Science and Technology, vol. 9, no. 1, Mar. 2006

[42] J. Alon, V. Athitsos, Q. Yuan, and S. Sclaroff, “A unified framework for gesture recognition

and spatiotemporal gesture segmentation,” Pattern Analysis and Machine Intelligence, IEEE

Transactions on, vol. 31, no. 9, pp. 1685–1699, 2009.

[43] Kajale, Renuka, Soubhik Das, and ParitoshMedhekar. "Supervised machine learning in

intelligent character recognition of handwritten and printed nameplate." In Advances in

Computing, Communication and Control (ICAC3), 2017 International Conference on, pp. 1-5.

IEEE, 2017.

	Kennesaw State University
	DigitalCommons@Kennesaw State University
	Summer 8-3-2018

	An IoT System for Converting Handwritten Text to Editable Format via Gesture Recognition
	Nidhi patel
	Recommended Citation

	tmp.1533312619.pdf.bSrvf

