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ABSTRACT 

 

Evaluation of traditional classroom has led to electronic classroom i.e. e-learning. Growth 

of traditional classroom doesn’t stop at e-learning or distance learning. Next step to electronic 

classroom is a smart classroom. Most popular features of electronic classroom is capturing 

video/photos of lecture content and extracting handwriting for note-taking. Numerous techniques 

have been implemented in order to extract handwriting from video/photo of the lecture but still the 

deficiency of few techniques can be resolved, and which can turn electronic classroom into smart 

classroom.  

In this thesis, we present a real-time IoT system to convert handwritten text into editable 

format by implementing hand gesture recognition (HGR) with Raspberry Pi and camera. Hand 

Gesture Recognition (HGR) is built using edge detection algorithm and HGR is used in this system 

to reduce computational complexity of previous systems i.e.  removal of redundant images and 

lecture’s body from image, recollecting text from previous images to fill area from where lecture’s 

body has been removed. Raspberry Pi is used to retrieve, perceive HGR and to build a smart 

classroom based on IoT. Handwritten images are converted into editable format by using OpenCV 

and machine learning algorithms. In text conversion, recognition of uppercase and lowercase 

alphabets, numbers, special characters, mathematical symbols, equations, graphs and figures are 

included with recognition of word, lines, blocks, and paragraphs. With the help of Raspberry Pi 

and IoT, the editable format of lecture notes is given to students via desktop application which 

helps students to edit notes and images according to their necessity. 
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CHAPTER 1 

INTRODUCTION 

 Introduction chapter contains the concise presentation of the proposed system, description of 

motivation to build this system, problem statement and research methodology of the system.  

1.1 Introduction 

In this world of technology, traditional class method is rarely being utilized as most of the 

lectures are being taught through Power Point slides (PPTs). Job of lectures has been soothed aged 

ago since when PPTs came into pictures and students stressed has been reduced to recollect what 

was explained in class since world wide web has come into picture. With the help of PPTs, video 

capturing, internet and websites job of lecturer and students has got relief as electronic classroom 

came in picture. Electronic classroom provides all the class materials, homework, class video 

recordings are posted on websites. Form here the growth of classroom technologies stared evolving 

electronic which led to smart classrooms. 

With the advent of the technology, to take notes of lectures needs much less work since the 

recording and synchronization are all automated. Many useful tools for improving accessibility of 

lectures have been established. With the help of that tools lectures are now termed as “Multimedia 

lectures” as students can refer to lecture in the form of video, audio and text.   

Advances have been connected to naturally translate educator's lecture and process the 

interpretation to secure close verbatim lecture transcripts for students [47], [45], [46]. The 

advantages of creating lecture transcripts have appeared to improve both learning and educating. 

Students could compensate for missed lecture and additionally to verify the exactness of their own 
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notes amid the lectures they took. Combined with a recorded sound/video lecture track and 

duplicates of the lecture slides, students could reproduce the lecture material for imitating the 

lecture at their own learning pace. These lecture transcripts and extra sight and sound chronicles 

likewise empower educators to audit their own teaching performance and lecture substance to help 

them to enhance singular instructional method [47].  

1.2 Motivation 

Doubtlessly, technology has made classroom environment “smart” but these all technology has 

soothed the job of lecturer. Whether the lecture videos stored and shared via clouds or lectures are 

taught in class with the help of power point presentation or smart board application, still students 

need to note down what they have grasped from the lecture. Students got stuck in the middle of 

taking complete notes and giving careful consideration to the instructor. This implies students 

invest quite a bit of their time and efforts on taking notes [24], [47], [45], [46]. Most of the time 

students try to note down entire speech spoken by the teacher but if they fail to write entire speech 

of instructor then they will definitely try to make brief notes on emphasized or importance 

sentences spoken by instructor [24]. Hence, by making the process of lecture note automated we 

can add one more fascinating feature in building of smart classroom. Numerous techniques have 

been implemented in order to extract handwriting from video/photo of the lecture but still the 

deficiency of few techniques can be resolved. Existing systems has deficiency like complex 

computation, high cost to build system, less accuracy of image to text conversion, less efficiency 

of hardware tools used, fail to convert mathematical formulas, figure, graphs along with entire text 

blocks, fail to provide editable text notes. Consequently, taking this situation as an inspiration we 

propose a simplest, cheapest and more accurate framework that helps students to get lecture notes 

in editable format, which will be useful to students to sort out, condense, and better understand 
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lecture data, recording content for later contemplating, self-directed learning through the dynamic 

procedure of note taking, and essentially remaining mindful amid class. Moreover, the proposed 

framework will assist numerous students with inabilities that can't compose lecture notes without 

human help. 

In this thesis, we present an Internet of Things (IoT) system to convert handwritten text into 

editable format by implementing hand gesture recognition(HGR) with Raspberry Pi and camera. 

Hand Gesture Recognition (HGR) is built using edge detection algorithm and HGR is used in this 

system to reduce computational complexity of previous systems i.e.  removal of redundant images 

and lecture’s body from image, recollecting text from previous images to fill area from where 

lecture’s body has been removed. Raspberry Pi is used to retrieve, perceive HGR and to build a 

smart classroom based on IoT. Handwritten images are converted into editable format by using 

OpenCV and machine learning algorithms. In text conversion, recognition of uppercase and 

lowercase alphabets, numbers, special characters, mathematical symbols, equations, graphs and 

figures are included with recognition of word, lines, blocks, and paragraphs. With the help of 

Raspberry Pi and IoT, the editable format of lecture notes is given to students via desktop 

application which helps students to edit notes and images according to their necessity. 

 

1.3 Problem Statement 

Motivated by converting traditional handwriting notes into editable electronic notes which can 

be shared among students, we propose to design and implement the following system: 

    Given the photos of the recorded handwriting to Raspberry Pi as an input, Raspberry Pi can 

convert them into editable electronic notes, save them on the private clouds, and share among 

students via desktop application. To be specific, we propose to use static hand gesture as a signal 



 

 
14 

 

to Raspberry Pi to take an image of blackboard. By using Optical Character Recognition(OCR) 

the taken images will be converted into editable text files and also will be uploaded on a private 

cloud. Moreover, a desktop application is built to provide electronic notes to the students, where 

they can download notes, upload their own edition of electronic notes into group forum. 

1.4 Research methodology 

The steps mentioned below has been performed to pursue research: 

1. Perform comprehensive literature research on gesture reorganization, 

2. Perform comprehensive literature research on converting natural hand writing images into 

text, 

3. Identify weaknesses in existing system to get lecture notes and find better approaches for 

proposed system to work efficiently, 

4. Explore different image to text conversion algorithms and choose the most optimal image 

to text conversion technique using machine learning, 

5. Explore the technique to capture static hand gestures through Raspberry Pi and Raspberry 

Pi Camera Module, 

6. Build the desktop application, 

7. Assemble the system, solder the components using IoT concept, 

8. Evaluate the proposed framework for performance, accuracy and efficiency. 

1.5 Contribution 

Each of the issues described in the problem statement are thoroughly addressed. The contribution 

of this thesis is as follows: 

1. With scrutiny, the static hand gesture recognition is implemented. A new approach and 

term has been defined to improve deficiency of existing algorithm of hand gesture 
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recognition. Our new method helps in recognizing all 31 combinations of hand fingers 

gestures with clear differentiation among “OK” gesture, 3 fingers gesture, clear 

background, one finger, fist and thumb. This gesture recognition has been implemented on 

continuous video streaming. 

2. For image to text conversion deep machine learning algorithm have been used.  A 

convolutional neural network has been designed, trained and tested by our own to 

recognize Letters (A to Z, a to z), numbers (0 to 9), special characters (&, *, ^ etc.), with 

recognition of blocks, lines, paragraphs and words. For figures (ex: mathematical figures), 

mathematical formulas and graphs, we have used image processing technique by using 

Open CV and tesseract.  

3. The extracted text and equations are letter appended to editable text format. This editable 

text format is called as data files in our system. Providing this data file to students in their 

desktop application is as a totally new approach that we have introduced to distinguish our 

system form existing system. 

4. To make cheapest and efficient IoT based smart classroom, Raspberry Pi 3B has been used. 

Raspberry Pi, student’s computer and google drive have been connected to one internet 

network. Hence, “input images” and editable format of “data file” will be stored in google 

drive via Raspberry Pi so that all the student in class can get input images and data files 

into their desktop application. 

5. A desktop application will be built for students where they get input images and data files 

within fraction of time in class itself and they can alter and store according to their 

individual preferences without losing concentration towards lecturer’s explanation.   

6. The accuracy of hand gesture recognition, accuracy of handwritten images to text 
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conversion, accuracy and efficacy of entire system has been improved in comparison with 

existing systems.  

1.6 Organization of Thesis 

 In this thesis, chapter 2 presents the literature review. Chapter 3 presents the architecture 

of system and technical challenges encountered during designing the system. Chapter 4 presents 

the implementation of the system. Chapter 5 provides evaluation and results of the system followed 

by conclusion and future work. 
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CHAPTER 2 

LITRATURE REVIEW 

This chapter provides literature review. The sub section of this chapter gives literature review on 

hand gesture recognition and handwritten image to text conversion. 

2.1 Hand Gesture Recognition 

For 2D and 3D hand gesture recognition there are numerous methods and techniques 

available. In these numerous techniques there few frequently used techniques are: vision based 

approaches, depth based approaches, instrumented(data) glove approaches, colored markers 

approaches and convexity depth approaches. To see in more detail about all the 2D in 3D hand 

gesture recognition techniques, method and tools refer our own survey paper [1]. The subsection 

2.1.1 shows the literature review of hand gesture recognition techniques used by different 

researchers and the subsection 2.1.2 shows the deficiency existing method of hand gesture 

recognition and what we are doing to remove that deficiency of existing methods. 

2.1.1 Literature review on Hand gesture recognition   

In paper [57] they used Fusing frame images approach. Hierarchical identification model 

is used for recognition. But this approach is only able to find rough hand gesture recognition. And 

the accuracy of this approach is 90%. In [57] SVM classifier is used and the accuracy of this 

approach is 99.2%. In [59] they used Hidden Markov model (HMM) technique and they also 

include machine learning in that. By applying some modification in normal system, they got 93.7% 

correct recognition. 

In [35] images are captured to communicate between human and computers. In vision 

based approach only camera(s) are required to capture images no requirement for other devices. 

Digital cameras are used to capture hand images. Captured images are further processed and 
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analyzed by using the vision based techniques. Different kind of cameras can be used like 

monocular, fish eye, time of flight and infrared cameras etc. [35].  

In paper [34], researchers have  used vision baes technique, through vision based 

techniques, recognition of the represented alphabets and numbers are being so easy. This approach 

is very easy, natural and well-situated to use so this approach is very popular [34]. Here human 

and computer interact directly. In contrast, many gesture challenges [28] are raised. Variations of 

lights, other object which are of skin color, illumination changes, complex background are such 

challenges in this approach. Besides that, recognition time, robustness, velocity and computational 

efficiency [27] are more challenging task here. 

In papers [28] [29] [30], for capturing hand position and motion sensor devices are used in 

instrumented data glove approach. Numerous kinds of sensors are existing like mount bases, multi-

touch screen and vision based sensors. Coordinates which are exactly provide palm and finger’s 

location; orientation and configuration are perfectly calculated in this approach [28] [29] [30]. 

Reaction speed is fast and it has high accuracy rate. Main requirement of this approach [30] is 

physically the user must be connected with computer. This limitation is barrier to interaction 

between users and computers. These devices are very costly [30] and not much efficient for virtual 

reality. 

In paper [31], to locate palm and fingers and to direct tracking process, human hand is worn 

with some colors in colored marker approach [31]. For forming hand shape necessary geometric 

features are extracted using this functionality [31]. The color glove shape has small regions with 

different colors. Three different colors are used to represent the finger and palms as applied in [32] 

where a wool grove is used. It’s very easy to use and quite cheap compare to instrumented data 
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glove [32]. Still human computer interaction is not that much natural in this technology [31]. That’s 

the main limitation of this approach. 

In paper [62] Statistic learning theory is used with nonlinear SVM and Bag features. This 

approach is much effective and got accuracy up to 97%. But it has some limitation that it not need 

segmentation and hand tracking. In [52] distance measurement is done between two hand gestures 

based on shape and texture. For that they are using Novel distance metric to overcome the partial 

matching problem. This approach is 98% appropriate for all kind of input data. 

In paper [22], the convexity defect approach has been used to identify hand gesture 

recognition.  To recognize hand palm first contour function has been applied then after extracting 

hand region, convex hull algorithm has been applied to find hand area, 6 convexity defects points 

are used for hand figure recognition, tightness of hand gesture (⸹) has been counted for feature 

extraction. 

In paper [33] also the convexity defect approach has been used to identify hand gesture 

recognition. In this paper to recognize hand gestures after image acquisition of hand they have 

applied skin color detection method to acquired images. After that they have used erode and 

dilation noise removal methods. After noise removal, they have found contours and convex hull 

foe hand region. After finding convex hull, they have found 7 convexity defects to recognize 

fingers of the hands. 

In paper [44] the convexity defect approach is used to identify hand gesture recognition, 

same procedure as paper [22], [33] has been used but in paper [44] 5 convexity defect point has 

used to recognize fingers but the position of convexity defect point is totally different than paper 

[22]. 
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2.1.2 Our approach for hand gesture recognition 

We are using convexity defect points method to recognize fingers as paper [22], [33], [44] 

but our convexity defect point is totally different form theirs , we are using area ratio and hand 

area to clearly distinguish among “OK” gesture , 3 finger gesture , thumb , one finger, fist , clear 

background with 100% accuracy of recognition. 

2.2 Image to text conversion 

 

2.2.1 Literature review of Image to text conversion 

In paper [81], Singh, Gurpreet, and Manoj Sachan have presented a technique for the 

recognition of isolated offline handwritten characters of Gurmukhi script. They have presented a 

technique based on Multi-Layer Perceptron (MLP) Neural Network model as it uses generalized 

delta learning rules and easily gets trained in less number of iterations. The proposed method in 

this paper detect graphical symbols by identifying lines and characters from the image. The 

performance rate is upto 98.96 %. 

In paper [83], Meng, Hann, and Daniel Morariu has presented Khmer Character 

Recognition (KCR) system. The system is integration of two artificial neural network techniques 

to work together namely self-organization map (SOM) and multilayer perceptron. They have used 

backpropagation algorithm to make the machine learn. The system is being implemented in matlab 

environment. The average recognition of trained dataset resulted 65% of correct predictions and 

untrained dataset is approximately only 30% correct prediction with noise rate. The KCR system 

is expected to be able to work with offline handwritten Khmer character. 

In paper [84], Fanany, Mohamad Ivan proposed a workflow and a machine learning model 
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for recognizing handwritten characters on form document. The learning model is based on 

Convolutional Neural Network (CNN) as a powerful feature extraction and Linear Support Vector 

Machines (SVM) as a high-end classifier. The proposed method is more efficient than modifying 

the CNN with complex architecture. The recognition rate achieved by the proposed method are 

98.85% on numeral characters, 93.05% on uppercase characters, 86.21% on lowercase characters, 

and 91.37% on the merger of numeral and uppercase characters. The pre-processing, segmentation 

and character recognition are integrated into one system.  The output of the system is converted 

into an editable text.  

In paper [85], Impact of grid based approach in offline handwritten word recognition is 

experimented. The study is experimented on handwritten word comprising of 28 district names of 

Karnataka state. The proposed method first divides the input word into four grids and for each grid 

the popular subspace learning approach i.e., Principal Component Analysis is applied for better 

representation. For classification purpose, distance measure technique i.e., Euclidean distance is 

computed. The experiment result revealed that the proposed grid based approach with subspace 

learning approach outperforms standard PCA approach.  

In paper [86], Nair, Pranav P., Ajay James and C. Saravanan have implemented a 

handwritten Malayalam character recognition system. The proposed method uses CNN to extract 

and classify Malayalam characters. This method is different from the conventional method that 

requires handcrafted features that needs to be used for finding features in the text. The 

classification of 6 malayalam characters is being done. They have stated that both Sample 

generation and CNN modelling are time consuming tasks and it also requires a CUDA enabled 

GPU for parallel processing. CNN provides higher accuracy for malayalam characters. 
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In paper [82], Kajale, Renuka, Soubhik Das, and Paritosh Medhekar has proposed a method 

for intelligent character recognition using classifiers and transferring the data to excel sheet. For 

hand written character recognization, they have used supervised machine learning. It gives 

accurate results even when the dataset becomes extensively large due to multiple language 

scripts.They have used a dataset of 200 samples for 36 alpha numerals and further 100 for special 

characters. The result shows upto 95 % accuracy for alpha numerals and special characters.   

Vani, M. Shyni Beaulah and R. Deepalakshmi [87] has created an application interface for 

OCR using artificial neural network as a back end to achieve high accuracy in recognition of 

characters. They have used isolated character database consisting of English characters, digits and 

keyboard special characters for training and testing. The system can classify 30 characters per 

second. The network of connections and weights obtained by back propagation learning is readily 

implementable on commercial digital signal processing hardware. Preliminary results on 

alphanumeric characters show that the method can be extended to larger tasks. 

In paper [88], Roy, Partha Pratim, Youssouf Chherawala, and Mohamed Cheriet have 

presented a verification based re-ranking approach using Deep Belief Networks (DBNs) for 

handwritten word recognition. A recurrent neural network based sequential text recognition system 

is used at first to provide the N-best recognition hypotheses of word images. Word hypotheses are 

aligned with the word image to obtain the character boundaries. Then a verification approach using 

a DBN classifier is performed for each character segments. DBNs are recently proved to be very 

effective for a variety of machine learning problems. Finally, the N-best recognition hypotheses 

list is reranked according to the new score. 

The numeric representation of a 2D image is known as a Digital image. Advanced pictures 
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go about as a fundamental and key medium for passing on, extricating data and utilizing the data 

as an essential contribution for machine learning and machine vision applications. Optical 

Character Recognition (OCR) is the sub-space of Pattern Recognition domain. OCR in early days 

mainly use for two problems, first was utilized to extend the use of telecommunication and also it 

was utilized as a guide for the visually impaired. The examination and research of character 

recognition began in 1870 when C.R Carrey of Massachusetts created the retina scanner which 

was image transmission framework. Current and progress OCR version did not show up until 1940. 

In business and industries, the data processing played most important role during year 

1950. At that time punch cards were used to feed data in to computers. Machines were so large 

and require so many installations. Moreover, their maintenance cost is so high and at the same 

time they were so slow. To overcome some limitations of that from1960 to 1965 the first-

generation OCR system was developed which contain some limited character shapes.  

Then second generation came with the system which able to recognize machine and hand printed 

characters. But it had very limited number of character sets. Systems in middle 1970s represent 

the third generation OCR system. These was able to overcome the problems of previous era 

machine but still was very luxurious and limited to marketable use. Today the OCR is used 

commercially and also available for the people. OCR system been feasible for economical purpose 

but still the OCR system are not able to match the human reading ability and development is still 

going on. 

Ravina Mithe [11] developed new system where the functionality of Optical Character 

Recognition and Speech Synthesis are combined. They conclude that environment variation in real 

photo is affecting the reliability of OCR system. They also elaborate process and usage of this 

system. Réjean Plamondon [12] done survey on both the modes of OCR called online mode and 
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offline mode. The nature of handwritten language is briefly discussed in this paper.  Fred W. M. 

Stentiford [4] provided deep analysis on feature extraction stage of an OCR application. If we add 

some tilted as well as unscaled character data at the time of training, the efficiency and flexibility 

of the system is increased.  

Amarjot Singh [5] performed the survey of application of OCR system in different fields. 

This paper concentrated majorly on three applications of OCR defeating CAPTCHA, storage of 

data for institutional or business purposes, musical note recognition. Youjie Qiu [7] proposed an 

algorithm for license plate extraction based on vertical edge detection and morphological 

operations. License plate is extracted by finding Region of Interest (ROI) in this paper. After that 

outer shape feature analysis is performed and finding texture feature of the license plate. 

Patrik Berggren [8] studied and researched various Sudoku solving algorithms in their thesis. This 

thesis considered and evaluated three algorithms: Backtracking, Advance Backtracking with rule 

based solving technique and Boltzmann machine. The thesis also analyzes the difficulty rating of 

Sudoku and ways to generate a Sudoku Puzzle. 

  Researcher always wants to make the efficient and robust system for recognition just 

because of that OCR system matters a lot for them. They always concentrate on one area like 

normal OCR or segmentation, though the task of focusing on Intelligent Character Recognition 

(ICR) [21] is too tough. Dynamic template creation and matching is requiring for that. They have 

to convert character to text very accurately. A texture character of microscopic image which is 

related to roughness of surface is discussed and various approaches for that is also mentioned in 

[25] there. According to surface roughness various parameters have been change regularly. They 

also perform so many efforts to capture characters from paper forms. 
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It is very difficult to develop a system in which recognize character automatically transfer 

to excel sheet. Most important phase in character recognition is Segmentation. So many efforts are 

made to improve accuracy of this phase. Segmentation is discussed in [28] in which they used 

trained classifier to segment the connected characters in text-based CAPTCHAs.  Modified form 

of SVM [30] in which freedom chain is used is discussed and features are extracted using this 

SVM in [30]. 

Krishnamurthy [29] and the team members are discussing the hybrid approach with both 

the classifier (supervised and unsupervised). They used fuzzy k-Nearest Neighbor and fuzzy c-

means as base classifiers for individual feature sets in this hybrid approach. Final feature vector 

for the k-NN classifier is formed using this both classifiers. 

One of the best deep learning architecture is Convolutional Neural Network (CNN). Currently, 

CNN is become a state of the art of handwriting characters recognition. Modified CNN is used in 

[26] with two training feedbacks, one is reconstruction feedback and second is classification 

feedback. They got 99.59% accuracy on MNIST dataset. 

Elleuch [23] combines a CNN with another end classifier. For recognizing hand-written 

Arabic character, the kernel SVM is used as an end classifier. Hey slightly modify the architecture 

of CNN and also the SVM approach. SVM is better just because it has good generalization ability 

than neural network on standard CNN. Neural network is working with the Empirical Risk 

Minimization (ERM) principle while SVM working with Structural Risk Minimization (SRM) 

principle. 

Some learning changes the CNN with a variety of advancement to increasing the accuracy 

rate and the practice time. Some of them change the input data to get better the accuracy rate of 

CNN method. Mega et al. [7] have joint GLCM (Gray- Level Co-occurrence Matrix) and CNN for 
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cattle classification. Feature Extraction uses a GLCM method to extract contrast, energy, and 

homogeneity feature of the image and it is used as input of CNN. Kwolek [8] has changed the 

architecture of CNN by merging CNN and Gabor filter to detect the facial region. The proposed 

method gives classification performance better than original CNN. 

2.2.2 Our approach for image to text conversion. 

 We have built, trained and tested our Convolutional Neural Network for classification of 

handwritten images.    

2.3 Existing Systems for transcribing lecture notes 

 There have been numerous researches performed to provide lecture content to students in 

many different formats such as audio, video and audio to text, lecture images to text. Section 2.3.1 

describes various lecture transcribing lecture notes. 

2.3.1 Existing system  

F. H. Yeh and his team [8] introduce robust handwriting extraction and lecture video 

summarization technique. Researchers have implemented a system to extract the handwriting from 

blackboard. This system efficiently extracts handwritings from blackboard even if there is a 

variation of light in classroom or instructor stands in front of blackboard. The system summarizes 

and indexes video so that videos can be used for e-learning application. To locate the boundary of 

the blackboard, K-mean segmentation has been used in each frame of video. The image in lecture 

videos are convert from RGB color space to CIELAB color space (L* a* b*) color space. For 

blackboard, two-color channels (a* and b*) have been used. Connected component technique has 

been applied to extract lecture’s body.  

The adaptive thresholding has been used to extract handwriting from the blackboard. Time 

sequence information from video has been used to extract accurate handwriting and to remove 
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noise from the images. Some disadvantage of this system is, they have to remove lectures body in 

order to get proper result of handwriting extraction, they have to check when the lecturer erased 

entire board and new writing started. Moreover, there will be many handwriting images for same 

theory until and unless that theory is not erased. So, many redundant images will be generated for 

same theory. Only the last image which is captured before erasing the board will contain entire 

theory. Hence, except last picture all the captured pictures will be in vain. The images of extracted 

handwriting are not in editable format. 

Markus Wienecke, Gernot A. Fink and Gerhard Sagerer [9] proposed new approach 

towards automatic video-based whiteboard reading. This paper has mentioned all the technical 

challenges of handwriting extraction. They have also introduced that how to recognize lines, 

blocks, paragraph from the image. This paper has procedure steps for handwriting conversion as: 

Extracting Text Regions, Preprocessing, Feature Extraction, and Statistical Modeling & 

Recognition. Character error rate is of 29.5%. The accuracy of text conversions is low. 

Conversation of mathematical formula is not mentioned. Appropriate results of image to text 

conversion have not been shown so that one cannot judge how accurately the system works. 

Zhengyou Zhang and Li-wei He [7] proposed new system for note taking with a camera: 

with whiteboard scanning and image enhancement. In this paper they use digital camera and scan 

the entire white board and then enhances the images. They have made a user interface where they 

give images to students. After that students are free to take photo of that. Boundary of whiteboard 

is automatically located and region belongs to whiteboard are crops out. That region is rectifying 

into a rectangle, and corrects the color to make the whiteboard completely white. They used robust 

technique to stitch multiple overlapping image if single image is not enough to get information. 
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Ali Shariq Imran, Faouzi Alaya Cheikh [6] introduce lecture content classification tool.  In 

that paper researchers have detected figures, formulas and text from the handwritten text of the 

blackboard. In this paper researchers only can recognize which content is text, which is figure and 

which is formula. They cannot convert this recognized text, figures, formulas into electronic 

editable text format. They have also made user interface tool which can only extract figures, text 

and formulas form the handwritten content of blackboard. 

Seiji Okuni and his team member [5] proposed robust approach for video Scene 

Segmentation Using the State Recognition of Blackboard for Blended Learning. In this paper, 

unnecessary video content are removed by researcher from the entire lecture video. Lecturer 

behavior is recognized such as up down movement of hands. That is considering as the sign of 

content segmentation for students. Event time is noted down and using that segmentation is done 

from lecture movie to some shots. They done experiment on various real lectures and got 97% 

accurate segmentation. 

Marcus LIWICKI and Horst BUNKE [4] introduced new concept for handwriting 

Recognition of Whiteboard Notes. They used eBeam interface based on infrared sensing. Rather 

than using video camera, this system is much easier to use.  Along with that this system is less 

vulnerable to problems which occurring due to poor lighting conditions, self-occlusion and low 

image resolution. 

Szil´ard Vajda [2] introduces a prototype model for recognizing and visualizing mind maps 

which are written on white board. This approach acquire image by a camera. Next, they performed 

binarization and extraction of connected component is done. Without conceited about any prior 

information about the document, its style, layout, etc., the examination starts with connected 

components. Then labelling is applying as text, lines, circles or arrows according to trained 
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classifier of neural network based on features. Detection of word is done after identified the patches 

of text. According to gravity centre of text it was modelled. Density based clustering is used to 

group them into possible words. Hidden Markov Model (HMM) recognizer is applying to 

recognize grouped connected components. Average recognition rate of neural network for 

different connected components are 95.7%.  

Tiecheng Liu and Chekuri Choudary [3] proposed a new technique to extract and 

summarize the textual content of teaching videos for recognizing hand writing, provide indexing 

and some other applications related with e-learning. For indexing and retrieval most, suitable 

elements are the characters and figures which are written on boards. Video summarization is used 

to extract small set of key frames. One frame is only process per every 150 frames because 

instructional videos are highly redundant in content. To partition instructional video frames into 

over-segmented regions, mean shift segmentation is used. Largest region is finding from that 

frame. Distribution parameters are estimated for largest frame regions. Total numbers of pixels are 

calculated and using some proper threshold value two regions is merged. Luminance (L) and color 

components (a and b) are treats separately in this model.  

Video key frames are extracted after analyzing the content fluctuation curve. Local maxima 

of that curve are located through shifting window algorithm. Using that candidate key frame is 

extracted. Further elimination is done based on redundant frames by applying matching the text in 

the candidate frames based on the Kth Hausdorff distance between content pixels. Experimentation 

is performed on three instructional videos which are recorded in real classrooms. According to that 

results they conclude that, proposed algorithm is highly effective in extracting and summarizing 

the content of instructional videos. 
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Nael Hirzallah [11] introduced new alternative solution to e-boards. Extraction of lecture 

notes which are added or removed by lecturer is implemented using web camera and video 

processing. Results of this algorithm are demonstrated under two different scenarios. One is adding 

soft notes presented on projector through lecturer and the second one is adding text which are 

displayed on white board which are located behind that projector. Brightness variation is the 

normal effect occurs during the transition of slides. This was taken as consideration in first scenario 

of this algorithm.  

 In second scenario movement of lecturer in front of white board is taken in consideration. 

Snapshot is taken when lecturer is added or removed notes. However, the lecturer is considered as 

an absent in the snapshot. First image is saved as layer zero. In next step one can only take the 

difference between successive snapshots. Successive information is represented by the addition of 

the layer two, three and so on. To diminish unhelpful action of this algorithm, an effort was made 

to eliminate the brightness section and work on the IQ part of the YIQ colour space. Main 

advantages of using this algorithm is that, it was applicable for both with and without slide show 

as well as white and black boards. Solution given in this paper was much cheaper as $15 worth of 

a PC camera and simpler to install if match up with that of the e-boards. 

2.3.2 Our proposed system 

 Existing systems has deficiency like complex computation, high cost to build system, less 

accuracy of image to text conversion, less efficiency of hardware tools used, fail to convert 

mathematical formulas, figure, graphs along with entire text blocks, fail to provide editable text 

notes to students. Hence, we designed a system to improve all these deficiency and provide high 

accuracy and efficiency. The architecture of proposed system is described in next chapter. 
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CHAPTER 3 

ARCHITECTURE OF SYSTEM & CHALLANGES 

This chapter will give thorough description of the architecture of system, technical 

challenges encountered while constructing the system.  

The first step of the proposed system is capturing hand gesture. The hand gesture will be 

captured and perceived by Raspberry Pi (see figure 3.1 & 3.2). After the gesture is perceived by 

Raspberry Pi, the picture of blackboard will be taken by camera attached with Raspberry Pi to 

avoid capturing unnecessary images of board. The conversion of handwritten images to text is 

done via machine learning programs installed in Raspberry Pi. The hand-written images captured 

by camera is called as input images and the text file generated after extracting text from images is 

called as data files. The input images and data files are sent to google drive via Raspberry Pi. 

Students will have a desktop application installed in their laptops in order to receive the input 

images and data file in to their laptops or PC. 

 

 

     

Fig 3.1: Architecture of Proposed System  
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Figure 3.1 depicts the system architecture. The detail description of all the system component is 

described in sub section of this chapter.  

                             
                        (a) (b) 

Fig 3.2(a) : Hand gesture 

Fig 3.2(b) Raspberry Pi 

Figure 3.2: Visual representation of system architecture 

Figure 3.2 shows visual representation of system architecture. Figure 3.2(a) shows that how a 

lecture should give Hand gestures to a Raspberry Pi camera. Also, Figure 3.2(a) shows the 

arrangement of Raspberry Pi to capture a gesture. Figure 3.2(b) shows the visual representation 

of Raspberry Pi and attachment of camera in Raspberry Pi. 

All the subsection mentioned below gives thorough description of all components of 

system architecture. 

Camera 
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3.1 Gesture Recognition:  

3.1.1 Motivation to use Gesture Recognition 

The major deficiencies of previous systems are computational complexity and delivering 

editable format of lecture notes. For efficient handwriting extraction, systems [3], [8] had 

performed few complex techniques in order to remove redundant and unwanted images/video 

content, remove lecture’s body form images, recollecting text from previous images which has 

been missed from the area where lecture’s body has been removed. Figures 3 and 4 clearly 

describes the complexity issue of systems [3], [8] . 

  

Fig 3.3(a): Lecture’s body hides few text of board [8]. 

Fig 3.3(b): Locating Lecture’s body and removing it [8]. 

Fig 3.3(c): Few text is missed because of lecture’s body removal [8]. 

 

Fig 3.4(a): Lecture’s body hides few text of board [3]. 

Fig 3.4(b): Locating lecture’s body in removing it [3]. 

Fig 3.4(c): Text is recollected which is missed after lecture’s body removal [3]. 



 

 
34 

 

Figure 3 shows that lecture’s body is hiding text of the blackboard. When the lectures’ 

body is removed few text is also missing. Figure 4 depicts the same situation. The only difference 

between figure 3.3 and 3.4 is “text re-collection”. In figure 3.3(c) few text is missing from where 

lecture’s body is missing but in Figure 3.4(c) the missing text because of lecturer body is regained.   

In system [2], [8], [5] the time frame has been set in camera to take picture or videos i.e. 1 

minute. As per time frame, camera will take pictures at every 1 minute. Hence, there is a possibility 

of having text and lecture’s body or only text or only lecture’s body in image. Also, if professor is 

explaining some content and he has not written anything on board till 5 minutes then there is 

possibly of having 5 same pictures since camera takes picture at every 1 minute. This scenario 

clearly shows that researches have to do more complex computation in order to remove lecture’s 

body and redundant images. Alternative and very simple solution to reduce this complexity is to 

use hand gesture recognition. Whenever lecturer is done writing and explaining entire theorem 

then he can show a hand gesture. So that, camera will take picture after recognizing valid gesture. 

Hence, gesture recognition will remove most of the computation like: locating lecture’s body in 

image, removing lecture’s body from image, capturing redundant images, removing redundancy 

of images, sorting out important content of lecture and removing unwanted content, recollecting 

text from previous images in order to fill area from where lecture’s body has been removed.  

3.1.2 Methodology used for gesture recognition 

The main motive to use hand gesture in our system is to remove computation that existing 

system do in order to remove lecture’s body from image. Hence, we have used hand gesture 

recognition to reduce this computational complexity. This subsection clearly mentions what 

methodology we have used in order to remove the computational complexity.  
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1. The Raspberry Pi and its camera is kept exactly in front of the board (see figure 3.5). So 

that lecturer can show the gesture to Raspberry Pi.  

 

Fig 3.5: Arrangement of board and Raspberry Pi 

Figure 3.5 shows the arrangement of board and Raspberry Pi. The Distance between 

Raspberry and board has been reduced in order to take proper picture. Picture has been taken 

from top view so that we can clearly see Raspberry Pi and camera. 

2. To capture gesture, the video streaming of Raspberry Pi camera is utilized. The contours 

are drawn on video streaming (see figure 3.6). The contours drawn on video streaming will 

look for a gesture to arrive in a contour box. The moment gestures are captured, the video 

Raspberry Pi Camera 

Raspberry Pi 
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streaming will close and camera will turn on to capture photo of board. The detailed 

description of drawing contours and capturing gesture is described in chapter 4.  

 

 (a)  (b) 

Fig 3.6(a) : Contours on video streaming 

Fig 3.6(b): Hand gesture on countour box 

Figure 3.6 shows the contours drwan on video streaming and hand gesture captured in countour 

box. 

3.1.3 Challenges of Gesture Recognition  

Hand gesture recognition has several technical challenges while implementing. The 

challenges we mainly faced in order to implement hand gesture recognition are mentioned below. 

The recovery of challenges has been thoroughly described in chapter 4.  

1. Shadow of Hand 

When there is a poor lightning or if lecturer is standing opposite to light than we can have 

shadow of hand (see figure 3.7). While perceiving gestures if we have not programmed the 

hand recognition properly then there is a possibility of perceiving shadow as a second hand. 

Hence, according to attached figure below, poor hand gesture recognition program can 

perceive 8 fingers including shadow. Shadow may lead to inaccurate hand gesture recognition. 
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To remove this hand shadow, we are using blurring technique. Detail description of hand 

gesture recognition implementation is described in chapter 4.  

 

Fig 3.7: Hand Shadow 

Figure 3.7 shows the hand and its shadow when there is poor lighting.  

2. Improper Lighting 

Lightning is a very important factor while in computer vision. If we do not have 

proper light on object that we want to detect then we may end up detecting object with 

lowest accuracy (see figure 3.8). Also, pre-processing steps to reduce noise will be 

increased in order to detect object with proper features. Hence, lightning plays very crucial 

role in this system in order to detect object properly. Chapter 4 describes all pre-processing 

steps used in our system to detect hand very accurately even though there is poor lightning.   

 

Fig 3.8: Improper Lightning 
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Figure 3.8 shows poor lightning while capturing gesture.  

3. Showing gestures 

While showing hand gestures, few people may have long, short, fat, skinny fingers. 

If person is handicap or have some natural disabilities then he might can show only few 

fingers. Hence, if we show hand gesture for number one then accurate hand gesture 

recognition system should recognize all the combination of fingers. We can show 1 finger, 

2 fingers, 3 fingers in many different ways (see figure 3.9). An accurate hand gesture 

recognition should recognize all five fingers clearly.  

 
 (a)  (b)  (c)  (d)  (e) 

Fig 3.9(a), 3.9(b): Alternative way to show number 1 with hand gesture 

Fig 3.9(c): Alternative way to show number 2 with hand gesture 

Fig 3.9(d): Alternative way to show number 4 with hand gesture 

Fig 3.9(e): Alternative way to show number 3 with hand gesture 

Figure 3.9 shows different alternative ways to show hand gestures for number 1, 2, 3, 4 

Number of combinations to show hand gestures are calculated as below:  

• Number one 

By using permutation combination, with five fingers if we want to show two fingers then we 

will have 5 combinations (5𝐶1 =
5

1
= 5) . We aim to recognize all 5 combinations.  
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• Number two 

By using permutation combination, with five fingers if we want to show two fingers then we 

will have 10 combinations( 5𝐶2 =
5×4

1×2
 = 10). We aim to recognize all 10 combinations. 

• Number three 

By using permutation combination, with five fingers if we want to show three fingers then 

we will have 10 combinations (5𝐶3 =
5×4×3

1×2×3
= 10). We aim to recognize all 10 

combinations. 

• Number four 

By using permutation combination, with five fingers if we want to show four fingers then we 

will have 5 combinations (5𝐶4 =
5∗4∗3∗2

1∗2∗3∗4
= 5). We aim to recognize all 5 combinations. 

• Number five 

By using permutation combination, with five fingers if we want to show five fingers then we 

will have 1 combination (5𝐶5 =
5∗4∗3∗2∗1

1∗2∗3∗4∗5
= 1). We aim to recognize all 5 combinations. 

4. Movement of lecture’s hand 

It is very natural to have some hand movements while lecturer is explaining some stuff in 

class. It is also normal to have finger pointing to some pictures or object while explaining. 

Lecturer cannot control his body movements while explaining. If there a class with having all 

handicap and disable students then it is very obvious that lecturer may can use sign language 

to explain. 

 In our system, we use hand gesture recognition to click picture of board. Hence, we need 

to identify that which gesture lecturer made to capture picture and which gesture lecturer made 

to explain some stuff.  We first thought to use motion sensors to capture gestures. If we use 
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motion sensor for hand gesture recognition then it will sense all the hand gestures made by 

lecturer. If senor senses all the movements then camera will take thousands of unnecessary 

white-board images including lecture’s body in images. Hence, we discarded the idea of using 

motion sensor as it is not fulfilling our motivation to reduce computation complexity of 

existing system. Instead of reducing computation complexity, motion sensors are increasing 

our computational complexity by taking many pictures of whiteboard and including lecture’s 

body. Hence, we decided to recognize hand gesture with camera that can provide continuous 

video streaming. Also, by implementing Region of Hand (ROI), we are allowing lecturer to 

make as many movement of hand they want to make while explaining a theorem to student. 

The detail description of ROI is given in chapter 4. 

3.2. Raspberry Pi 

3.2.1 Motivation to use Raspberry Pi 

This section will give the main motivation to use Raspberry Pi in this system. 

1. Price 

With the help of Raspberry Pi we can build project in any field of computer science. For 

example, IoT based projects, computer vision projects and many more. We are using 

Raspberry Pi in our system to build highly inexpensive IoT based smart classroom. The 

price of Raspberry Pi model 3B is 35$ and price of Raspberry Pi 5 mega pixel camera is 

15$. Hence, the total cost to build this system is 50$. Now let say we want to install this 

system into 10 class then total price will be 500$ which much cheaper than the price of 

smart interactive white board. The price range of smart interactive white board is 1000$- 

7000$* per class. Hence, interactive smart white board will be very costly to install in every 

class. 
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Figure 3.10: Raspberry Pi with Camera 

Figure 3.10 Raspberry Pi model 3B & 5 mega pixel camera 

*Price range information has been taken from: https://homeschoolbase.com/smart-board-cost/ 

 

2. Size 

With the help of internet and Raspberry Pi we can connect all the devices available in entire 

classroom to one network and all the devices can interact with each other. There is no need 

of using computers with high computational quality and long wires to connect sensors, 

cameras and other devices of classroom like smart chairs, e-boards to a computer. 

Raspberry Pi is as strong as computer with smaller size like a credit card.  

3. Raspberry Pi specification 

Raspberry Pi has below mentioned technical specification: 

• CPU: Broadcom BCM2837 SOC 64-bit quad-core  

• Memory:  1 GB of RAM 

• Wi-Fi Support: 802.11n Wireless LAN 

• Bluetooth: 4.1 Bluetooth Low Energy (BLE) 

• USB Ports: 4-USB ports to connect mouse, keyboards etc.  

https://homeschoolbase.com/smart-board-cost/


 

 
42 

 

• Ethernet Port: Ethernet port to use internet and set up Raspberry Pi for the first time 

with monitor. 

• GPIO Pins: Raspberry Pi 3 supports 40 GPIO Pins General Purpose Input Output. 

These digital input/output pins can be used to drive LED, Switches, and Sensors 

etc. 

• Full HDMI Port: Support HDMI port (High-Definition Multimedia Interface) 

which can be used to quickly connect raspberry pi to HDMI Monitor. With HDMI 

Cable and Monitor we can add Screen to Raspberry Pi. 

• Micro SD card slot: The Micro SD Card will hold the operating system which will 

boot while we power on Raspberry Pi 3. In next tutorial, we will learn how to setup 

and prepare SD card with Raspbian OS. 

• Audio/Video: Combined 3.5mm audio jack and composite video 

• Display interface (DSI): enable us to interface Display Module 

• Camera interface (CSI): enable us to interface Camera Module 

• Graphics Support: Video Core IV 3D graphics core for advance graphics 

capabilities. 

3.2.2 Initial Installation of programs into Raspberry Pi   

In this system Raspberry Pi is a very crucial device. All programs of this system are installed 

in Raspberry Pi such as gesture recognition program, image to text conversion program, 

connection to google drive program (see figure 3.11). To initially install all the programs into 

Raspberry Pi, we are connecting Raspberry Pi to the laptop via Ethernet. After that, to monitor the 

functionality of installed programs, we are connecting laptop to LED (Liquid Crystal Display) TV.  
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 (a)  (b) 

  

Fig 3.11(a): Raspberry Pi, Laptop connection to ethernet 

Fig 3.11(b): Laptop connection to LED TV 

3.2.3 Utilization of Raspberry Pi 

Raspberry Pi is used in this system to capture gestures and images of white-board. As 

mentioned in section 3.1.2, Raspberry Pi is kept in front of white-board. The lecturer will show 

gestures in contour box of video streaming. As soon as the gesture is captured and perceived, the 

Raspberry Pi will capture the image of board. The captured images through Raspberry Pi is called 

as “input images” in our system. Machine learning programs installed in Raspberry Pi will extract 

text from the input images. This extracted text will later be stored in editable format of text file 

which we call as “data file” in our system.  

This data files and input images are now provided to student’s desktop application. A small 

Internet of Things system (IoT) is created by connecting Raspberry Pi, Google Drive and Student’s 

desktop to one network (see figure 3.12). Raspberry Pi transfers data file to google drive, and 

students retrieve data file from google drive. From capturing gestures till sending data file to 

google drive all the process are done with the help of Raspberry Pi. Hence, Raspberry Pi is very 

important device in this system. 
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Fig 3.12: IoT system built to transfer data file 

Figure 3.12 shows the architecture of IoT system. The Raspberry Pi, Google Drive and Desktop 

Application is connected through one network (Wi-Fi). Raspberry Pi will send data files and input 

images to google drive. Students will retrieve the input images and data files form google drive 

via desktop application. 

3.2.4 Challenges of Raspberry Pi 

       1. Constant Electricity Supply 

Raspberry Pi needs to be constantly connected to power supply till it is working. Hence, if 

we want to install this system in every classroom then we need to make sure that there 

should be a power supply to a Raspberry Pi. In this system, Raspberry Pi should be kept in 

front of board hence if power outlet is not nearby then we can use spike busters to give 

power supply to Raspberry Pi (see figure 3.13). 

Wi-Fi 

Raspberry Pi Google Drive Desktop  Application 

Data File Data File 
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Fig 3.13: Constant Power Supply to Raspberry Pi 

Figure 3.13 shows that Raspberry Pi needs constant power supply till it is working. 

2. Mounting of Raspberry Pi 

In this system, Raspberry Pi needs to be in front of board with constant power 

supply. Hence, Raspberry Pi should be mounted in such way that it can capture entire board 

image. Also, while doing such arrangement we need to keep in mind that Raspberry Pi is 

constantly connected with power supply. Right now, our system is in experimental phase, 

hence we are using chair to keep Raspberry Pi (see figure 3.14). While utilizing this system 

professionally in every class we may need some mounting devices that can keep Raspberry 

Pi in front of board covering entire board with constant power supply.  

Constant  Power 

Supply to 

Raspberry Pi 
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 (a)  (b) 

Fig 3.14(a): Mounting of Raspberry Pi through chair. 

Fig 3.14(b): Example of mounting device 

Figure 3.14(a) shows that Raspberry Pi is mounted in front of board covering entire board 

with constant power supply. Figure 3.14(b) shows an example of mounting device that 

can be used in future to mount Raspberry Pi in every class.   

3.3 Handwritten image to text 

To extract text from Handwritten images we are using machine learning algorithms: 

3.3.1 Motivation to use Deep machine learning 

In our system we are extracting text from handwritten images hence we need a proper recognition 

of character with higher accuracy. Also, it is a well-known fact that Machine learning gives proper 

accuracy and perfect result. Hence, we are using machine learning algorithms in our system. Below 

subsection mentions the strength of machine learning. 
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3.3.3.1 Basics of neural network 

Artificial neural network has been use in many fields of study such as image processing, 

document clustering, segmentation, biology system, geography, chemistry, decision-making, data 

mining, optical character recognition (OCR), pattern recognition and many other interesting fields 

of research [31].  

Warren McCulloch and Walter Pitts introduced a binary threshold as a computational model for 

neural network in 1943 [32]. Neural network is the most popular choice for developing character 

recognition system, which this network could learn well and provide high accuracy and speed for 

character identification. Neural network has been using to solve many character recognition 

problem; such as Chinese character recognition. 

The area of Artificial Neural Network derives its basis from the way neurons interacts and 

function in human brain. The human brain is known to operate in a parallel manner for recognition, 

reasoning and damage recovery. Because of the ability of ANN to deal with above kind of 

processes, it can be used from simple applications to the complex applications like pattern 

recognition algorithms. One neuron in the network at one time is able to link with more than 10,000 

other neurons to generate and share new knowledge. Neurons are linked with other neurons in the 

network through links known as synapse. Neurons in the network receive many inputs either from 

other neurons or directly as original data. Each neuron has a single threshold value also. 

Neural Networks receive an input (a single vector), and transform it through a series of 

hidden layers. Each hidden layer is made up of a set of neurons, where each neuron is fully 

connected to all neurons in the previous layer, and where neurons in a single layer function 

completely independently and do not share any connections. The last fully-connected layer is 
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called the “output layer” and in classification settings it represents the class scores. 

They are made up of neurons that have learnable weights and biases. Each neuron receives some 

inputs, performs a dot product and optionally follows it with a non-linearity. The whole network 

still expresses a single differentiable score function: from the raw image pixels on one end to class 

scores at the other. And they still have a loss function (e.g. SVM/Softmax) on the last (fully-

connected) layer and all the tips/tricks we developed for learning regular Neural Networks still 

apply. 

3.3.1.2 Convolutional Neural Network 

Pattern or object recognition is usually done with feature extraction and classification. The 

feature extraction typically uses a variety of methods to get a representation of the data and then 

use the classifier to classify the data. The process is conducted manually and separately. Lately, 

the feature extraction and classification integrated automatically in one process or method. The 

method used to model high-level abstractions in data [4]. It is often called as deep learning 

techniques. 

Convolutional Neural Network (CNN) is one of the deep learning architecture. It can 

extract multiple features from low-features to high-features automatically. Convolutional Neural 

Network is also called as ConvNet. Currently, CNN is a state of the art of handwriting characters 

recognition.  

ConvNet architectures make the explicit assumption that the inputs are images, which 

allows us to encode certain properties into the architecture. These then make the forward function 

more efficient to implement and vastly reduce the number of parameters in the network. 
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Some problems in handwriting recognition are due to the high uncertainty of the input data, as the 

written characters of each person are different, some characters have a very similar shape, 

disconnected or distortion characters, the written characters have a different thickness and use of 

various scanners. 

Regular Neural Nets don’t scale well to full images. The fully-connected structure of 

regular Neural Network does not scale to larger images. For example, an image of more respectable 

size, e.g. 200x200x3, would lead to neurons that have 200*200*3 = 120,000 weights. Moreover, 

we would almost certainly want to have several such neurons, so the parameters would add up 

quickly. The fully connectivity of Regular NN leads to wastage of memory and the huge number 

of parameters would quickly lead to overfitting. While, in CNN images are passed smaller in size 

compare to Regular NN. 

Convolutional Neural Networks take advantage of the fact that the input consists of images 

and they constrain the architecture in a more sensible way. Unlike a regular Neural Network, the 

layers of a ConvNet have neurons arranged in 3 dimensions: width, height, depth. (Note: The word 

depth here refers to the third dimension of an activation volume, not to the depth of a full Neural 

Network, which can refer to the total number of layers in a network.) 

For example, the input images have an input volume of activations, and the volume has 

dimensions 32x32x3 (width, height, depth respectively). The neurons in a layer will only be 

connected to a small region of the layer before it, instead of all of the neurons in a fully-connected 

manner. Moreover, the final output layer has dimensions 1x1x10, because by the end of the 

ConvNet architecture, the full image would be reduced to single vector of class scores, arranged 

along the depth dimension.  
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Here is a visualization: 

 

Fig 3.15: Regular 3- layer Neural Network 

 

Fig 3.16: Convolutional Neural Network 

In figure 3.15, A regular 3-layer Neural Network is shown. In figure 3.16, A ConvNet 

arranges its neurons in three dimensions (width, height, depth), as visualized in one of the layers. 



 

 
51 

 

Every layer of a ConvNet transforms the 3D input volume to a 3D output volume of neuron 

activations. In this example, the red input layer holds the image, so its width and height would be 

the dimensions of the image, and the depth would be 3 (Red, Green, Blue channels) 

3.3.2 Challenges of Text Conversion 

Image to text conversion has below mentioned difficulties:  

• A Neural Network needs to be trained with different types of handwriting to make it robust 

and to get higher accuracy in character recognition. 

• The classic difficulty of being able to correctly recognize language symbols is the 

complexity and the irregularity among the pictorial representation of characters due to 

variation in writing styles, size of symbols etc.  

• Text conversion needs some pre-processing, segmentation, feature extraction etc. 

• Variation in handwriting among different writers occurs since each writer possesses own 

speed of writing, different styles, sizes or positions for characters or text. Variation in 

handwriting styles also exists within individual person’s handwriting. This variation may 

take place due to: writing in various situations that may or may not be comfortable to writer; 

different moods of writer; style of writing same characters with different shapes in different 

situations or as a part of different words; using different kinds of hardware for handwriting. 

To reduce the difficulty level of text conversion all the possible ways are considered while 

training dataset and a CNN model. The further detailed description of CNN model training has 

been provided in chapter 4. 
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CHAPTER 4 

IMPLEMENTATION OF SYSTEM 

This chapter gives thorough explanation of how all components of the system have been 

designed and implemented.   

4.1 Gesture Recognition 

Our very first step for the entire system is to recognize the pre-set gesture and capture a 

photo of white board. Hence, capturing gesture is very first stage for implementation. This chapter 

gives thorough knowledge of how we have implemented gesture recognition. In paper [22], [33] , 

[44] convexity defect method has been used to recognize finger. We have also used convexity 

defect method to recognize finger but our approach is quite different then approach of papers [22], 

[33], [44]. 

Comparison of our approach with existing approach 

In paper [22] , [33] , [44] and in our system to recognize hand gesture , convexity defect 

approach has been used. In this approach , the convexity defect is found to calculate numbers of 

fingers shown in gesture. The gap between two finger is called as a finger angle and one point is 

drawn in this gap is called as the convexity defect ( see figure 4.1). Hence, the convexity defect 

between fingers is used to calculate numbers of fingers shown in gestures. So , for five fingers we 

will have four gaps  among fingers hence we will have 4 convexity defect points, for four fingers 

we will have 3 gaps hence our convexity defect is 3. So ,  for the number of fingers we show in 

gesture , we will have one less number of convexity defect. For one finger convexity defect = 0 , 

for two fingers convexity defect =1 , for three fingers convexity defect = 2 , for four fingers 

convexity defect = 3 , for five fingers convexity defect = 4. Problem raise for convexity defect 
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approach when we don’t show any gesture , when we show fist and when we show one finger. For 

all these gestures we will have convexity defect = 0 since there is no gap between fingers. So , 

how to differentiate between thumb , first finger  and clear back ground. We are using area ratio 

to come out of this problem. In comparison with paper [22] , [33] , [44] we are clearly 

distinguishing clear background, one finger , thumb , fist , three fingers and “OK” gesture by using 

new approach of  area ratio. 

 

Fig 4.1 Convexity Defect 

Figure 4.1 shows the red dot in between finger gap. The red dot called as convexity defect. 

 

The algorithm that we have followed to capture hand gesture is shown in figure 17: 
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Fig: 4.2 Our approach for Hand gesture recognition 

Figure 4.2 shows the algorithm designed by us for hand gesture recognition. Highlighted steps 

show our contribution in designing algorithm.  

Now let’s illustrate each step of algorithm. 

4.1.1 Capture frames and Draw ROI  

We are using gesture recognition to avoid blockage of text on white-board due to lecture’s 

body. To avoid this situation, we are drawing a Region of Interest (ROI) box on a video streaming. 

ROI are samples within a data set identified for a particular purpose (see figure 4.3 ,4.4). In our 

system, when hand is shown as a gesture then from entire hand data our ROI is only palm hand 

and fingers. We do not need entire hand for hand gesture recognition. 
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Fig 4.3: Hand Gesture 

 
 

Fig 4.4: Region of Interest for hand gesture 

Figure 4.3 shows that professor is showing full hand to show a gesture but form that hand we just 

need palm area to recognize. Figure 4.4 shows the Region of Interest for palm hand.  

In this system, our main motivation to use hand gesture recognition is to reduce 

computational complexity. Hence, whenever lecturer is done writing on board he will show a hand 

gesture to camera to take a picture. Now, the problem is lecturer can make hand gestures to explain 

some stuff to students. We do not want a false hand gesture to be detected by our system. Also, 

we do not want to stop a lecturer to explain stuff by moving body or hand. Hence, we found a 

Region of 

Interest.  
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solution that whenever lecturer is done explaining and writing something on board, he can show a 

gesture to particular box at particular area of board.  That particular box is called as “Gesture input 

box” in our system.  

 Raspberry Pi will initially do continuous video streaming with ROI drawn on it. This ROI 

will be kept at one corner of board. Our system will not detect any hand gesture until and unless it 

is not shown in Gesture Input box and our system will not take any pictures also until and unless 

the hand gesture is not shown in Gesture Input box. Hence, lecturer can freely move anywhere in 

class and can freely make hand/body movements while explaining. If lecturer’s body by mistake 

blocks or enters into ROI box then also our system will not detect false gesture and will not take 

false images because our ROI is only hand not any other body part or objects. The only constrain 

for lecturer is they have to show a gesture to particular Gesture input box area. This constrain is 

benefitting our system in below mentioned aspects:  

• It allows lecturer to explain theory with hand/body movements which is very important in 

a class with handicaps and disable students.   

• It is not capturing images with lecturer’s body in it as the Gesture input box has kept in 

such way that lecture’s body cannot block the white-board text. 

• Our ROI only take palm hand so it will not detect any false hand gesture made by professor 

while explaining. Consequently, we will not have extra or unnecessary images of white-

board since taking of images directly linked to accurate hand gestures. 

Our Region Of Interest (ROI) is the palm hand region, so the palm of the hand are captured. 

As an example, the portion of the frame in which we are further interested is only to know that 

whether this pixel is in our interest area or not means just as binary image (see figure 4.5, 4.6).  



 

 
57 

 

 

Fig 4.5: Region of Interest kept above the white board. 

 

Fig 4.6: ROI box beside board 

Figure 4.5 and 4.6 shows the ROI box can be kept at any corner of one board but it should be 

kept before the board area starts.  

 

 

ROI 
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4.1.2 Finding skin color area 

The by default color space of OpenCV is BGR (blue, green, red). In this system we are 

mainly working with hand palm region. Hence, we need to convert BGR color space to HSV (Hue, 

Saturation, Vision) color space. After that we defined the skin color range to detect the hand palm 

within then range. Then we are finding a mask value which will be 0 or 1, the region which has 

skin color will be 0 value and of white color rest will be 1 value and black color. 

4.1.3 Blur and dilate frame 

We blur the frame for smoothing and to reduce noise like shadow and details from the 

image (see figure 4.7). We are not interested in the details of the image but in the shape of the 

object to track. We are dilating a frame to enlarge few areas of hands when we have captured few 

gestures in improper or poor lightning [29].   

I've used Gaussian Blurring on the original image. Gaussian blur is the result of blurring 

an image by a Gaussian function. It is a widely used effect in graphics software, typically to 

reduce image noise and reduce detail. The equation of a Gaussian function in two dimensions is 

[29]: 

𝐺(𝑥, 𝑦) =  
1

2𝜋𝜎2 
𝑒  

𝑥2+𝑦2

2𝜎2       Eq. (1) 

where x is the distance from the origin in the horizontal axis, y is the distance from the origin in 

the vertical axis, and σ is the standard deviation of the Gaussian distribution. 

 

Fig 4.7: Shadow in hand gesture 

https://en.wikipedia.org/wiki/Gaussian_function
https://en.wikipedia.org/wiki/Image_noise
https://en.wikipedia.org/wiki/Standard_deviation
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Figure 4.7 shows that even though there is a shadow while capturing hand gesture it is clearly 

recognition hand gesture due to removing noise of hand gesture. 

4.1.3 Image segmentation 

Segmentation is perform using thresholding. Thresholding creates binary images from 

grey-level ones by turning all pixels below some threshold to zero and all pixels about that 

threshold to one. If g (x, y) is a threshold version of f (x, y) at some global threshold T, it can be 

defined as [26]: 

g (x, y) = 1 if f (x, y) ≥ T 

                       = 0 otherwise     Eq. (2) 

Thresholding operation is defined as: 

T = M [x, y, p (x, y), f (x, y)]   Eq. (3) 

In this equation, T stands for the threshold; f (x, y) is the grey value of point (x, y) and p(x, 

y) denotes some local property of the point such as the average grey value of the neighborhood 

centered on point (x, y). Otsu method is used for thresholding [26]. 

In Otsu's method we exhaustively search for the threshold that minimizes the intra-class variance 

(the variance within the class), defined as a weighted sum of variances of the two classes: 

𝜎𝜔
2 (𝑡) = 𝜔0(𝑡)𝜎0

2(𝑡) + 𝜔1(𝑡)𝜎1
2(𝑡) Eq. (4)  

Weights ω0 and ω1 are the probabilities of the two classes separated by a threshold t, 

and  σ0
2and σ1

2 are variances of these two classes ( see figure 4.8). 

The class probability ω0,1(t) is computed from the L bins of the histogram:  

𝜔0(𝑡) =  ∑ 𝑝(𝑖)𝑡−1
𝑖=0      Eq. (5) 

𝜔1(𝑡) = ∑ 𝑝(𝑖)𝐿−1
𝑖=𝑡       Eq. (6) 
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Otsu shows that minimizing the intra-class variance is the same as maximizing inter-class variance: 

𝜎𝑏 
2 (𝑡) =  𝜎2 − 𝜎𝜔

2 (𝑡) = (𝜔0 𝜇0 − 𝜇𝑇)2 +  𝜔1(𝜇1 − 𝜇𝑇)2 

=  𝜔0(𝑡)𝜔1(𝑡)[𝜇0(𝑡) − 𝜇1(𝑡)]2              Eq. (7) 

which is expressed in terms of class probabilities ω and class means µ.While the class 

mean   𝜇0, 1, 𝑇(𝑡) is [26]:  

𝜇0(𝑡) =  
∑ 𝑖𝑝(𝑖)𝑡−1

𝑖=0

𝜔0(𝑡)
     Eq. (8) 

𝜇1(𝑡) =  
∑ 𝑖𝑝(𝑖)𝐿−1

𝑖=𝑡

𝜔1(𝑡)
     Eq. (9) 

𝜇𝑇 =  ∑ 𝑖𝑝(𝑖)𝐿−1
𝑖=0       Eq. (10) 

The following relations can be easily verified: 

𝜔0𝜇0 +  𝜔1𝜇1 =  𝜇𝑇      Eq. (11) 

𝜔0 +  𝜔1 = 1                 Eq. (12) 

The class probabilities and class means can be computed iteratively. This idea yields an effective 

algorithm. 

Algorithm [26] 

1. Compute histogram and probabilities of each intensity level 

2. Set up initial ωi(0) and µi(0) 

3. Step through all possible thresholds t=0, 1, 2…. maximum intensity 

1. Update  ωi and µi 

2. Compute 𝜎𝑏
2(𝑡) 

4. Desired threshold corresponds to the maximum 𝜎𝑏
2(𝑡) 
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Otsu’s method exhibits the relatively good performance if the histogram can be assumed to have 

bimodal distribution and assumed to possess a deep and sharp valley between two peaks. 

 

Fig 4.8 After applying thresholding 

Figure 4.8 shows the thresholded frame. 

By performing above step hand is easily detected. The next task is to extract features from 

that hand to recognize gestures related with that. Quality of extracted features decides accuracy 

and efficiency of gesture recognition system. 

4.1.4 Draw Contours and convex hull 

Contours can be explained simply as a curve joining all the continuous points (along the 

boundary), having same color or intensity (see figure 4.9). The contours are a useful tool for shape 

analysis and object detection and recognition. Before finding contours, apply threshold or canny 

edge detection on the image [31]. 

findContours() function is used to find contours in image. Since OpenCV 3.2, this function 

no longer modifies the source image but returns a modified image as the first of three return 

Thresholding 

https://docs.opencv.org/3.3.1/d3/dc0/group__imgproc__shape.html#ga17ed9f5d79ae97bd4c7cf18403e1689a
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parameters. In OpenCV, finding contours is like finding white object from black background. So, 

remember, object to be found should be white and background should be black. Contour 

Approximation will remove small curves, there by approximating the contour more to straight line. 

This is done using cv2.approxPolyDP() function. So, when you try to find the contours, you will 

get all the curves also. But with contour approximation, you can avoid all those problems and 

approximates it to a perfect square [31]. 

 

Fig 4.9. Image with Contours 

Figure 4.9 shows the contours of hand gesture frame.  

Once the approximation is over, finding convex Hull is  the next step. This will look similar 

to contour approximation, but it is not same. Here, cv2.convexHull() function checks a curve for 

convexity defects and corrects it. Generally speaking, convex curves are the curves which are 

always bulged out, or at-least flat [31]. And if it is bulged inside, it is called convexity defects. 

Any deviation of the object from this hull can be considered as convexity defect (see figure 4.10). 

OpenCV comes with a ready-made function for this, cv2.convexityDefects(). 

Contours 
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hull =cv2.convexHull(cnt,returnPoints =False) 

defects =cv2.convexityDefects(cnt, hull) 

Notice that "returnPoints = False" in first line to get indices of the contour points, because 

input to convexityDefects() should be these indices, not original points. It returns a defects 

structure, an array of four values - [ start point, end point, farthest point, approximate distance to 

farthest point]. We can visualize it using an image [31]. We draw a line joining start point and end 

point, then draw a circle at the farthest point. 

 

Fig 4.10: Convex hull 

Figure 4.10 shows a green pentagon around the hand region. That pentagon is called as convex 

hull. 

4.1.5 Convexity Defect 

After finding convex hull it is very important to find convex hull area and hand area. With 

the help of these two areas we can find the area ratio. Every gesture will have their own unique 

area ration according that only we can clearly identify all gestures. Hence why, finding area ratio 

is important [31]. 

Area ratio=((areahull-areacnt)/areacnt) *100     Eq. (13) 

Where, areahull is the area of convex hull, areacnt is area of hand. 

We will now find the convex points and the defect points. The convex points are generally, 

the tip of the fingers. But there is other convex point too [31]. So, we find convexity defects, which 

is the deepest point of deviation on the contour (see figure 4.11). By this we can find the number 



 

 
64 

 

of fingers extended and then we can perform different functions according to the number of fingers 

extended. The gap between two fingers called as an angle between two fingers. This angle will 

never be more than 90 degrees [31]. Hence, if we find the angle greater 90 degrees in convex hull 

will be discarded and if we find the angle less than 90 degree then we will draw a convexity defect 

point between fingers. 

                                                  

Fig 4.11: Convexity Defect 

Figuer 4.11 shows the red point inside green pentagone. The red points are called as Convexity 

defetcs. 

 If person will have fat and short fingers then the gap between fingers will be very less or 

if person don’t extend the fingers proprely then aslo the the gap between the finger will be very 

less. At this point of time to find a convexity difect the minimum distance between finger angle 

and convex hull border will be counted [31]. The figure 4.12 help in understaning this scenario 

better. 

 

 

Convexity defect 

is at more depth. 

Convexity Depth is at lesser depth than other 

two fingers. 

Minimum 

distance 
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Fig 4.12: Gap affects the height of convexity depth  

Figure 4.12 shows that there is a more gap between 1st and 2nd finger so the convexity defect is at 

lowest depth of the gap. There is a less gap between 2nd and 3rd fingers so the convexity defect is 

at little higher distance then other two fingers [31]. In this case, the minimum distance between 

finger angle and convex hull border will be calculated to locate convexity defect point [31]. The 

arrow labeled as minimum distance shows the gap between finger angle and convex hull [31]. 

 

Fig 4.13 Shows the code snippet  

Figure 4.32 shows the code snippet to find number convexity defects, to find minimum distance 

between convex hull and convexity defect, to find angle between two fingers [31]. 
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4.1.6 Finger detection 

Till now we understood that we are calculating angle between fingers and finding 

convexity defect. Now, we will see how convexity defect is helpful in detecting fingers. If we want 

to detect two fingers then we will have one angle (one gap) between two fingers means we will 

have one convexity defect. Same for three fingers, we will have two angles (two gaps) between 

three fingers means we will have two convexity defects [31]. For four fingers, we will have three 

angles (three gap) between four fingers that means we will have three convexity defects between 

four fingers. For five fingers we will have four angles (four gap) between five fingers hence we 

will have four convexity defects (see figure 4.14, 4.15, 4.16, 4.17). Hence by this we understood 

that the number of fingers we show, we will have one less number of convexity defects from the 

number of fingers shown [31].  
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Fig 4.14: two finger gesture. 

Figure 4.14 shows that if we show two fingers then we will have one convexity defect (highlighted 

with circle). 

 

Fig 4.15: three finger gesture 

Figure 4.15 shows that if we show three fingers then we will have two convexity defects 

(highlighted with circle). 
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Fig 4.16: four finger gesture. 

Figure 4.16 shows that if we show four fingers then we will have three convexity defects 

(highlighted with circle). 
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Fig 4.17: five finger gestures. 

Figure 4.17 shows that if we show five fingers then we will have four convexity defects 

(highlighted with circle). 

After seeing this we can understand that if we are showing one finger or fist then there will 

not have any gap or angle hence the complexity defect count will be zero. Hence, for five fingers 

we will have only 4 complexity defects. Now, the challenge is if ROI will not have any gestures 

and ROI box will be empty then we will have complexity defect as zero. If we show one finger or 

fist also then the complexity defect will be zero. So, how to detect that ROI box is empty or ROI 

box has one finger or fist. To clearly identify the difference between empty ROI box, one finger 

and fist we are using hand area and area ratio. We have done numerous trial and error methods and 
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we found accurate number to clearly find the difference between empty ROI box, one finger, fist 

and thumb. For all these four-scenario complexity defect will be 0. Same situation is with 3 fingers 

also. In 3 fingers for “OK” gesture also there will 2 convexity defects and for three fingers also 

there will be 2 convexity defects [31]. 

To clearly distinguish all these gestures, we are fixing area ratio and hand area values. This 

value will work with all kind of fingers [31]. To recognize only an empty ROI box, we are using 

hand area because there will not be any hand for empty box or hand area will be very minimal 

[31]. Hence for Hand area =2000 we are getting empty box. Rest of all gestures to clearly 

distinguish all gestures we are using area ratio values which is mentioned in table 4.1 (for result 

see chapter 6). 

Gestures Area Ratio Hand Area 

ROI empty box - <2000 

Fist <12 - 

Thumb <17.5 - 

One finger >18 - 

Three <27 - 

OK >27 - 

Table 4.1: Calculated values to clearly distinguish all same gestures [31]. 

Table 4.1 shows value of area ratio assigned for a particular gesture to recognize.  
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Now, after recognizing all the fingers correctly, we need to print messages for the detected fingers 

and all the functions assigned with gesture should work when particular gesture is shown . We 

have assigned messages which is mentioned in table 4.2 to all gestures. 

Gestures Message Print Function  

ROI empty box Show gesture  

One finger One finger shown  

Two Fingers Two fingers shown  

Three Fingers Three fingers shown Takes picture for 

mathematic Formula 

conversion 

Four Finger Four Fingers shown Take picture for Image to 

text conversion 

Five Fingers Five Fingers shown  

Fist Fist shown  

Ok It’s okay  

Thumb All is well Exit from entire system 

Table 4.2: Message displayed when gestures are recognized. 

Table 4.2 shows the messages that display while gesture is recognized. Also, table shows a task 

system has to perform while a particular gesture is shown. 

 Raspberry Pi takes picture of white-board after the third and fourth gestures are shown. 

Four fingers are shown when lecturer has written special characters, numbers, alphabets and 

simple mathematical formulas. Three finger gestures are shown when complex mathematical 
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formulas are written on board. To understand simple and complex mathematical function for our 

system see subsection 4.2. 

4.2 Deep machine learning for image to text conversion 

After capturing images through Raspberry Pi, next task is to extract text from images (see figure 

4.18). For classification of text we have built, trained and tested a convolutional neural network. 

 

Fig 4.18: Steps followed for image to text conversion 

Figure 4.18 shows the procedure followed to extract text from captured images. Highlighted step 

shows that we have built convolutional neural network to classify text in images.  
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4.2.1 Image Acquisition:  

This is the way toward gaining advanced arrangement pictures from physical record or 

image that can be additionally subjected to image handling procedures and can be additionally 

utilized as a part of the application. In our system image is acquired through Raspberry Pi. 

4.2.2About characters to be recognized 

The modern English alphabet is a Latin alphabet consisting of 26 letters, each having an 

uppercase and a lowercase form. The English language was first written in the Anglo-Saxon 

futhorc runic alphabet, in use from the 5th century. This alphabet was brought to what is now 

England, along with the promo-form of the language itself, by Anglo-Saxon settlers. 

Capital Alphabets  

 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

 

Small Alphabets  

 

a b c d e f g h i j k l m n o p q r s t u v w x y z 

 

Table 4.3:  alphabets 

Table 4.3 shows the alphabets supported in our system for image to text conversion. 

The exact shape of printed letters varies depending on the typeface (and font). The shape of 

handwritten letters can differ significantly from the standard printed form (and between 

individuals), especially when written in cursive style. 

Numerals 

 

0 1 2 3 4 5 6 7 8 9 

 

Table 4.4: numerals 

Table 4.4 shows the numerals that are supported in our system for image to text conversion. 
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Special Characters 

 

~ ` ! @ # $ % ^ & *  ( ) _ -  + = { } [ ] : ; ' " | \ < >  , . ? / 

 

Table 4.5: Special Character 

Table 4.5 shows the special characters that are supported in our system for image to text 

conversion. 

So, the total number of characters to be recognized are 64  in that 26 Capital Alphabets, 26 small 

alphabets, 10 numerals.  

 

4.2.3 About dataset 

For training and testing purpose, two types of datasets are used which are 

• The MNIST dataset 

• The EMNIST Database 

The MNIST Database 

The MNIST database (Modified National Institute of Standards and Technology database) 

is a large database of handwritten digits that is commonly used for training various image 

processing systems (see figure 4.19) [1][2]. The database is also widely used for training and 

testing in the field of machine learning [3][4]. It was created by "re-mixing" the samples from 

NIST's original datasets. The creators felt that since NIST's training dataset was taken from 

American Census Bureau employees, while the testing dataset was taken from American high 

school students, it was not well-suited for machine learning experiments [5]. Furthermore, the 

black and white images from NIST were normalized to fit into a 28x28 pixel bounding box and 

anti-aliased, which introduced grayscale levels [5].  
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Fig  4.19: Sample Images from MNIST test dataset 

 

The figure 4.19 shows the Sample of MNIST dataset. 

The MNIST database contains 10 million images.Half of the training set and half of the 

test set were taken from NIST's training dataset, while the other half of the training set and the 

other half of the test set were taken from NIST's testing dataset [7]. The digits have been size-

normalized and centered in a fixed-size image. 

EMNIST dataset:  

The EMNIST dataset is a set of handwritten character digits derived from the NIST Special 

Database 19 and converted to a 28x28 pixel image format and dataset structure that directly 

matches the MNIST dataset. Special Database 19 contains NIST's entire corpus of training 

materials for handprinted document and character recognition. It publishes Handprinted Sample 

Forms from 3600 writers, 810,000-character images isolated from their forms, ground truth 

classifications for those images, reference forms for further data collection, and software utilities 

for image management and handling (see figure 4.20). 
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Fig 4.20: Sample of EMNIST dataset. 

 

Figure 4.20 shows the sample of EMNIST dataset. 
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The features of this database are: 

• Final accumulation of NIST's handprinted sample data 

• Full page HSF forms from 3600 writers 

• Separate digit, upper and lower case, and free text fields 

• Over 800,000 images with hand checked classifications 

   It is a suite of six datasets intended to provide a more challenging alternative to the MNIST 

dataset. The characters of the NIST Special Database 19 were converted to a format that matches 

that of the MNIST dataset, making it immediately compatible with any network capable of 

working with the original MNIST dataset.  

4.2.4 Line, Word and Character Segmentation:  

It is compulsory to convert the given input text image into lines then to words and then segmented 

to individual characters, so that we easily recognize these individual characters. For that we 

required to find connected components. Here we are giving labels to each and every connected 

component (see figure 4.21 to 24) . The pixels which are connected with the same values are 

labeled with same number. Horizontal projection and vertical projection are also included here to 

segment the text into lines and then words. For that histogram is used. Histogram of horizontal and 

vertical projections is plot. This histogram has peaks and valleys. Peaks means the pixels which 

are in white color and valley include black portion of image. So that valley gives the boundary of 

the line and words. Hand writing text recognition requires all three segmentations [36].  
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Fig 4.21: Original Image 

 

Fig 4.22: Line Segmentation 
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Fig 4.23 : word segmentation 

                 

Fig 4.24: Character Segmentation 

Figure 4.21 – 4.24 shows the process of Line, word , Character Segmentation. Figure 4.21 show 

the original image. Figure 4.22 shows the line segmentation of original image. Figure 4.23 shows 

the word segmentation of original image. Figure 4.24 shows the Character segmentation of 

original image 
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4.2.5 Pre-processing:  

The gained image is of no utilization in the event that it isn't subjected to the pre-preparing stage. 

This stage makes the image reasonable for advance examination and work to be performed on that. 

Pre-preparing incorporates a few application particular strategies. A portion of the systems utilized 

in this undertaking are: 

Binarization 

The procedure of binarization [26] includes transformation of examined image into a grayscale 

image which thusly is changed over into parallel or bi-level picture. This progression is critical to 

recognize the foundation which is set to white and frontal area, the content to be perceived which 

is set to dark. Means the background is set to white and the interested region means the text on 

which we are working is set in black color (see figure 25). To perform this binarization we are 

using thresholding technique which is already discussed in the gesture recognition. 

 

Fig 4.25: binarization of  original images. 
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Figure 4.25 shows the binarization of original image. 

Gap Correction 

In segmentation, the position of the object i.e., the character in the image is found out and 

the size of the image is cropped to that of the template size. Segmentation can be external and 

internal. External segmentation is the isolation of various writing units, such as paragraphs, 

sentences or words. In internal segmentation an image of sequence of characters is decomposed 

into sub-images of individual character.  

 

Figure 4.26: Segmented Image 

 

Figure 4.26 shows the segmented Image for original image I. 

 

Scale down/ scale up 

 

The output image of the segmentation step is input to this operation. The input image can 

be of any size. In convolutional Neural Network, the size of input image is 28x28. To make the 

image of a fixed size of 28x28, this operation is performed. If the image is smaller than the decided 

size (28x28), then up sampling (scale up) operation is performed. If the image is bigger than the 

decided fixed size, then down sampling (scale down) operation is performed. The output of this 

task is an image of 28x28 size. 

 



 

 
82 

 

4.2.6. Classification through Conventional Neural Network:     

After segmenting entire image into single characters, we need to classify that in which class 

each character belongs. The segmented character may belong to alphabets, numbers or character. 

Now., let’s understand how the classification of character works. 

 

4.2.6.1 Model of Convolutional Neural Network 

 

 To classify the character, we have built a Convolutional neural network. The model of 

convolutional neural network is shown in figure. 

 

 

 
Figure 4.27: Model of Convolutional Neural Network 

 

In figure 4.27, the convolutional layers are labelled Cx, Sub-sampling layers are labelled Sx and 

Fully connected layers are labelled Fx, where x is the layer index. 

As shown in figure 4.27, the model of CNN comprises 8 layers excluding input layer. All 

of which contains trainable parameters (weights).  
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Figure: 4.28 Convolutional layer and input layer 

Figure 4.28 shows the Convolutional layer and input layer. 

The input is a 28x28 pixel image. This is significantly larger than the largest character in 

the database. The size of the input is chosen 28x28 because the size of training samples in MNIST 

and EMNIST dataset is also 28x28. INPUT layer will hold the raw pixel values of the image, in 

this case an image of width 28, height 28 with single color channel as the input image is pre-

processed and binarized. With the local receptive fields (filters), neurons can extract elementary 

visual features such as oriented edges, end-point corners. 

These features are then combined by sub sequent layers in order to detect higher order 

features. Distortions or shifts of the input can cause the position of salient features to vary. In 

addition, elementary feature detectors that are useful on one part of the image are likely to be useful 

across the entire image. This knowledge can be applied by forcing a set of units, whose receptive 

fields are located at different places on the image, to have identical weight vectors. 

Units in a layer are organized in planes within which all the units share same kind of 

weights. The set of output in of the units in such a plane is called feature map. Unit in a feature 

map are all constrained to perform the same operation on different parts of the image. 

A complete convolutional layer is a composed of several feature maps (with different 

weight vectors), so that multiple features can be extracted at each location. As shown in figure 
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4.30, a unit in a feature map has 25 inputs connected to a 5 by 5 area in the input called the receptive 

field of the input. Each unit has 25 inputs and therefore 25 trainable coefficients plus a trainable 

bias. The receptive fields of the contiguous units in a feature map are central on correspondingly 

contiguous units in the previous layer. Therefore, receptive fields of the neighboring field overlap. 

 

Figure 4.29: 5x5 input connected to single unit of a feature map. 

Figure 4.29 shows the 5*5 input connected to single unit of a feature map. 

All the units in the feature map share the set of 25 weights and the same bias so it detects 

the same features at all the possible locations on the input. The other feature maps in the same 

layer uses different sets of weights and biases, thereby extracting different types of features from 

the same image is possible. In our model, at each input location 6 different types of features are 

extracted by 6 units in identical locations in the 6 feature maps. With the local receptive fields, 

neurons can extract elementary visual features such as oriented edges, end-point corners. 

A sequential implementation of a feature map would scan the input image with a single unit that 

has a local receptive field, and store the states of this unit at corresponding locations in the feature 

map. This operation is equivalent to a convolution, followed by an additive bias and a squashing 

function. 

The kernel of the convolution is the set of connection weights used by the units in the 

feature map. Layer C1 is a convolutional layer with 6 feature maps. Each unit in each feature map 

is connected to a 5x5 neighborhood in the input. 
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C1 contains 156 [(5x5x6) +6] trainable parameters. Where 5x5 is the size of receptive field. 

There are 6 receptive fields (filters) and for every receptive field there is one trainable coefficient 

called bias. Bias is used to adjust the values of the training parameters. The size of the feature map 

is 24x24 which prevents connection from the input from falling of the boundary. Once a feature 

has been detected, its exact location becomes less important. Only its approximate position relative 

to another feature map is relevant. 

A simple way to reduce precision with which the positions of the distinctive features are 

encoded in a feature map is to reduce the spatial resolution of the feature map. This can be achieved 

with a so- called sub-sampling layer which performs a local averaging and sub sampling, reducing 

the resolution of the feature map and reducing the sensitivity of the output to shifts and its 

distortions. Sub sampling layer is also known as POOL layer. Here max pooling is used. 

Layer S2 is a sub-sampling layer with 6 feature maps of size 12x12. This layer comprises 

feature maps, one for each feature map in the previous layer. Each unit in each feature map is 

connected to a 2x2 neighborhood in the corresponding feature map in C1. The four inputs to a unit 

in S2 are averaged, then multiplied by a trainable coefficient, and added to a trainable bias. The 

result is passed through a sigmoidal function. The 2x2 receptive field are non-overlapping 

therefore feature maps in S2 have half the number of rows and columns as feature maps in C1. 

The trainable coefficient and bias control the effect of the sigmoid non-linearity. If the 

coefficient is small then the unit operates in a quasi-linear mode and the sub sampling layer merely 

blurs the input. If the coefficient is large, sub sampling units can be seen as performing a “noisy 

OR” or a “noisy AND” function depending on the value of the bias. Layer S2 has 70 trainable 

parameters. 
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Layer C3 is a conventional layer with 6 feature maps of size 8x8. Each unit in each feature 

map is connected to several 5x5 neighborhoods at identical locations in a subset of S2’s feature 

map. 

Layer S4 is a sub-sampling layer with 6 feature maps of size 4x4. Each unit in each feature map is 

connected to a 2x2 neighborhood in the corresponding feature map in C3, in a similar way as C1 

and S2.  

 Layer C5 is a conventional layer with 6 feature maps of size 4x4. This layer comprises 

feature maps, one for each feature map in the previous layer. From pool layer to convolutional 

layer C5  mapping is 2x2. 

 Layer 6 and 7 are fully connected layers. First fully connected layer contains 96 neurons 

and second fully connected layer contains 64 neurons.  

Since, all the weights are learned with back- propagation, convolutional networks can be 

seen as synthesizing their own feature extractor. The weight sharing technique has the interesting 

side effect of reducing the capacity of the machine and reducing the gap between test errors and 

training error. 

As in classical neural networks, units in layers up to F7 compute a dot product between 

their input vector and their weight vector. And a bias is also added to balance the output. 

This weighted sum denoted as ai for unit i, is then passed through a sigmoid squashing 

function to produce the state of unit I, denoted by xi  

𝑥𝑖  = 𝑓(𝑎𝑖)    Eq. (14) 

The squashing function is a scaled hyperbolic tangent. 

F(a) = A tanh (Sa)  Eq. (15) 
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Where A is a amplitude of the function and S determines the slope of the origin. The function f is 

odd, with horizontal asymptotes at +A and –A. The constant A is chosen to be 10 x e-6.  

Finally, the output layer contains 64 neurons. After experimenting the batch sizes. 64 batch 

size is chosen. The SoftMax function is often used in the final layer of a neural network-based 

classifier [34]. SoftMax Regression is a generalization of logistic regression that we can use for 

multi-class classification. 

These are commonly trained under a log loss (or cross-entropy) regime, giving a non-linear 

variant of multinomial logistic regression [34]. 

            Eq. (16)   

where we define the net input z as 

Eq. (17) 

Here w is the weight vector, x is the feature vector of 1 training sample, and w0 is the bias 

unit. 

4.2.6.2 Training , testing and validation Module 

In training module, we have taken 100,000 images from MNIST dataset and 100,000 

images from EMNIST dataset. We total 200,000 images and  64 classes hence, each class will 

have approximately 3000 images. The number epochs ( no. of iteration we need to train a machine) 

our machine needed to generate proper result is nearly 1000. Our batch size to train a machine is 

64. The batch size is defined as number of images needed to train. The learning rate of my machine 

is 10*e-6.  Batches , epochs and learning rate all are hyper parameters. We have tried training 
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machine first with 16 batch size then 32 then 64. For batch size 64 we got desired output. Similarly 

for machine learning rate we got best results for e-6 after seeing results for e-2 , e-4.  

Testing module deals with the test images. Test images are obtained by splitting the dataset. 

Here MNIST and EMNIST datasets are used to train the conventional neural network. Total 

200,000 images are used for training and 20,000 images are used for testing purpose. It will first 

pre-process the input image and it will classify the unlabeled test data. Test data is not labelled in 

the sense it should be recognized by the machine. Labels are assigned to each of test images by 

the network and then the accuracy is measured. 

In the post processing stage of the proposed system, CNN outputs mapped to the character 

Unicode. The output of the classifier will be some integer labels. This integer label should be 

converted into corresponding character Unicode. The Unicode is written in a text file. 

4.3 Mathematic Equations 

To convert mathematical equation into text we are using steps shown in figure.  

 

Fig 4.30 Image to text conversion for mathematical equation. 

Figure 4.30 shows the procedure followed to convert mathematical equations into text. 
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4.3.1 Image Acquisition  

To capture images, we are using Raspberry Pi camera, when lecturer shows three fingers 

Raspberry Pi will take a picture of white board. 

4.3.2 Pre- processing 

 After picture is captured we are converting image to grayscale, and after converting to 

grayscale , we are removing noise with median filter , then we binarization a picture (see figure). 

   

(a) (b) (c) 

 

Fig 4.31 Pre-processing Task 

Figure 4.31 shows the pre-processing task of image processing. Figure 4.31(a) shows the original 

image. Figure 4.31(b) shows the gray scale image. Figure 4.31 (c) shows the binary image. 

4.3.3 Symbol Segmentation 

To segment each and every symbol we are applying canny edge detector by using OpenCV 

(see figure 4.32). 

 

Fig 4.32 Symbol Segmentation 
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Figure 4.32 shows the canny edge detector segmentation for all the symbols. 

4.3.4 Symbol recognition 

 For recognizing segmented symbols, we are using “Mathpix” tool [55]. Mathpix is an open 

source OCR engine. We integrated it into our system to identify the symbol within every 

segmented symbol box. 

 

4.3.5 Image to text conversion. 

 After recognizing each symbol, the entire mathematical equation is provided in latex 

format in notepad. 

 

Fig 4.33 

Figure 4.33 shows that E=mc2 equation is converted into latex format and retrieved in notepad 

file.  

 

4.4 Text file Conversion 

After recognizing each character and combining all characters, words and line together 

next step is to put all the results in text file. All the extracted text has been stored in the text file. 

In our system we call text file as a data file. The Raspberry Pi, google cloud and desktop application 

is connected through one network. Figure 3.12 shows the diagram of IOT system. Raspberry Pi 

stores all the datafiles in folder named “CLASSROOM” which is in google drive. Students laptops 

are synced with same internet connection and same google drive account in which Raspberry Pi is 
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connected. Hence, students can directly access to CLASSROOM folder from google drive and can 

retrieve all datafiles and input images through desktop application. 

Desktop Application  

Desktop application is specially designed for students (see figure 4.34). It is designed in VB.net. 

For our system we have made the desktop application which can only support windows machines. 

Through desktop application students can retrieve data files and input images in their laptop. 

Desktop application facilitates students to edit data files and images both. Desktop application has 

two buttons “EDIT_TEXT” and “EDIT_IMAGE” button. If student clicks on “EDIT_TEXT” 

button then desktop application will open notepad to edit text file. If students click on 

“EDIT_IMAGE” button then paint will open to edit an image. After editing they can store their 

file to laptop or google drive CLASSROOM folder. Hence, the desktop application allows students 

to get lecture content on their personal device within fraction of time.  

 

Fig 4.34 Desktop Application 

Window One 

Window four Window three 

Window two 
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Figure 4.34 shows the screenshot of desktop application. Window one shows the list of data files 

retrieved. Window two shows the data file content. Window three shows the list of input images 

retrieved. Windows four shows the input images content. Down to all windows there are two 

buttons “EDIT_TEXT” and “EDIT_IMAGE” which helps in student edit the text and image in 

editing. 
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CHAPTER 5 

 RESULTS 

5.1.  Entire system results 

This subsection shows the arrangement of entire system and result of all the components of 

system architecture. 

 

Fig 5.1 : Arrangement of entire system 

Figure 5.1 shows the arrangement of white-board and Raspberry Pi. Also, this figure shows the 

gesture recognition implemented in this system. The text written on white board will converted to 

text  and for that results are attached after this image. 
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Fig 5.2 Image to text conversion 

Figure 5.2 shows the text extracted from the white board text shown in previous image. 
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Fig 5.3 Image captured by Raspberry Pi 

Figure 5.3 shows the  white board picture clicked through Raspberry Pi after showing gesture. This 

images is stored in google drive folder CLASSROOM. We can see that image is opened from 

CLASSROOM folder of google drive. 
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Fig 5.4 Data File 

Figure 5.4 shows the  data file which contains extracted text from the image. This data file is stored 

in google drive folder CLASSROOM. We can see that data file is opened from CLASSROOM 

folder of google drive. 
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Fig 5.5 Desktop Application 

Figure 5.5 shows the desktop application built for students. In this application students will get 

white board picture taken from Raspberry Pi camera and data files. This application allows 

students to edit data files and input images. 
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Fig 5.6 Function of “EDIT_TEXT” button 

Figure  5.6 shows that when students click on “ EDIT _ TEXT” button of desktop application then 

application redirects to notepad to edit the datafile.  
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Fig 5.7 Function of “EDIT_IMAGE” button 

Figure 5.7 shows that when students click on “ EDIT_IMAGE” button application redirects to 

paint to edit the input image. 
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6.2 Gesture Recognition 

We have implemented convexity defect approach to recognize all the fingers. We have 31 

combinations of hands and when do not show gesture then we will have clear background. Hence, 

we have total 32 test cases for hand gesture recognition. 

6.2.2 When Convexity defect is zero:  

  

 When we have convexity defect as zero then we can say that either the background is 

clear one finger shown or fist shown. For one finger we have 5 combinations. Among those 5 

combinations we differentiate thumb and finger by area ratio.  

 
(a) (b) 

  

      

 (c)  (d) 
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(e)  (f) 

 
 

 

 

 

 

 

 (g) 

Figure 5.8 (a-g) shows clear background, fist and one figure hand gestures 

Figure 5.8 (a) shows when there is no gesture in “Gesture input box” the message printed is: 

“show gesture”. 

Figure 5.8 (b) shows the fist gesture. 

Figure 5.8 (c ,d ,e , g) shows   the all combinations of figure one.  

Figure 5.8 (g) shows when the thumb is detected it is printing message “ All is well ” 
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6.2.3 Two fingers shown when convexity defect is 1: 

 

All the picture shown in section 6.2.3 are all 10 combinations of finger two. 
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6.2.4 Three fingers shown when convexity defect is 2: 
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Fig 5.9  “OK” gesture 

 
Figure 5.9 shows that to show “OK” gesture we have to use three fingers but it is clearly 

distinguish between “OK” gestures and three finger gestures.  
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6.2.5 Four fingers shown when our convexity defect is 3: 
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6.2.6 Five fingers shown when convexity defect is 4:     
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6.3 Image to text Conversion 

 

6.3.1 Text images. 

  

In this section all the results of image to text conversion for alphabets , numbers and special 

characters has been taken for taste case. 

 

 
 

Fig. 5.10 : Simple Text Conversion 

 

Figure 5.10 show the image to text conversion. In the captured image of white board, writer has 

attached two letters "t" "l" and "t" "h" so system is taking it as "H". Hence, for words "correctly" 

and "think" the output generated by system is " correcHy" and "Hink”. System takes the nearby 

analyzed letter in case of confusion. So, in this way it makes few mistakes if there isn’t any clarity. 
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Fig. 5.11 Simple Text Conversion 

 

Figure 5.11 show the image to text conversion. Captured image is correctly getting converted as 

the output. System can correctly read all the letters and gave the correct report. 
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Fig. 5.12 Simple Text Conversion 

 

Figure 5.12 show the image to text conversion. Captured image is correctly getting converted as 

the output. System can correctly read all the letters and gave the correct report. 
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Fig. 5.13 Simple Text Conversion 

 

Figure 5.13 show the image to text conversion. Captured image is correctly getting converted as 

the output. System can correctly read all the letters and gave the correct report. 
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Fig. 5.14 Complex Text Conversion 

 

Figure 5.14 show the image to text conversion. Captured image is correctly getting converted as 

the output. System can correctly read all the letters and gave the correct report. 
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Fig. 5.15 Complex Text Conversion 

 
Figure 5.15 show the image to text conversion. In the captured image of white board, writer has 

not written in a proper format. Hence the output has many letters missing and many errors. System 

takes the nearby analyzed letter in case of confusion. So, in this way it makes few mistakes if there 

isn’t any clarity. 
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Fig. 5.16 Complex Text Conversion 

 

Figure 5.16 show the image to text conversion. In the captured image of white board, system 

couldn’t analyze none of the words. System simply gave “No Response” output. So the input from 

the whiteboard needs to clear to generate some output. 
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Fig. 5.17 Simple Text Conversion 

 

Figure 517 show the image to text conversion. Captured image is correctly getting converted as 

the output. System can correctly read all the letters and gave the correct report. 
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Fig 5.18 Simple Text 

 

Figure 5.18 shows the image to text conversion. Captured image is correctly getting converted as 

the output. System can correctly read all the letters and gave the correct report. 
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Fig 5.19 Complex Text Conversion 

 

Figure 5.19 shows the image to text conversion. Captured image is correctly getting converted as 

the output except word “ perfect” other than that system can correctly read all the letters and gave 

the correct report. 

 
 
 
 



 

 
118 

 

 
 
 
 

 
 

Fig 5.20 Complex Text Conversion 

 

Figure 5.20 show the image to text conversion. Captured image is correctly getting converted as 

the output except word “ ends” other than that system can correctly read all the letters and gave 

the correct report. 
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Fig 5.21 Complex Text Conversion 

 

Figure 5.21 show the image to text conversion. Captured image is correctly getting converted as 

the output except words “ simply” , “me” and “and” other than that system can correctly read all 

the letters and gave the correct report. 
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Fig 5.22 Complex Text Conversion 

 

Figure 5.22show the image to text conversion. Captured image is correctly getting converted as 

the output except words “perfect” and “ but” other than that system can correctly read all the letters 

and gave the correct report. 
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6.3.2 Mathematical Equation Images to Text Conversion 

This section gives result for image to text conversion for Mathematical Equations . 

 

Fig 5.23 Mathematical Equation Image to Text Conversion. 

 

 Figure 5.23 shows the image to text conversion for mathematical equations. Captured image is 

correctly getting converted as the output. System can correctly read all the letters and gave the 

correct report. 
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 Fig 5.24 Mathematical Equation Image to Text Conversion. 

 

 Figure 5.24 shows the image to text conversion for mathematical equations. Captured image is 

correctly getting converted as the output. System can correctly read all the letters and gave the 

correct report. 
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Fig 5.25 Mathematical Equation Image to Text Conversion. 

 

 Figure 5.25 shows the image to text conversion for mathematical equations. Captured image is 

correctly getting converted as the output. System can correctly read all the letters and gave the 

correct report. 
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Fig 6.26 Mathematical Equation Image to Text Conversion. 

 

 Figure 6.26 shows the image to text conversion for mathematical equations. Captured image is 

correctly getting converted as the output. System can correctly read all the letters and gave the 

correct report. 
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Fig 6.27 Mathematical Equation Image to Text Conversion. 

 

 Figure 6.27 shows the image to text conversion for mathematical equations. Captured image is 

correctly getting converted as the output. System can correctly read all the letters and gave the 

correct report. 
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Fig 6.28 Mathematical Equation Image to Text Conversion. 

 

 Figure 6.28 shows the image to text conversion for mathematical equations. Captured image is 

correctly getting converted as the output. System can correctly read all the letters and gave the 

correct report. 
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Fig 6.29 Mathematical Equation Image to Text Conversion. 

 

 Figure 6.29 shows the image to text conversion for mathematical equations. Captured image is 

correctly getting converted as the output. System can correctly read all the letters and gave the 

correct report. 
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Fig 6.30 Mathematical Equation Image to Text Conversion. 

 

 Figure 6.30 shows the image to text conversion for mathematical equations. Captured image is 

correctly getting converted as the output. System can correctly read all the letters and gave the 

correct report. 
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Chapter 6 

 EVALUATION 

The Evolution of entire system is  performed using time factor ( how much time does system take 

to finish the task) , cost factor  ( how much cost is needed to build a system) and accuracy of entire 

system 

6.1: Evaluation of system by considering TIME factor 

We have calculated time taken by system to convert image into text after the image is 

captured by Raspberry Pi. Also, We have calculated time taken by entire system staring form 

gesture recognition to sending data file to student’s application . We have taken 100 images for 

simple text , 100 images for complex text and 50 images for mathematical equation. We have 

calculated average time for text conversion by using following formula. 

Time taken by system to convert one image into text = t1.  

Hence for 100 images time will be t100 

So, Average time T = t1+t2+t3+t4………t100  / 100 

So, we have calculated time for each image to be converted into text and then we have 

found the average time which is shown in Table 6.1. 

For entire system, we have taken 100 image combination of simple text, complex text and 

mathematical equation. For each image we have calculated time starting with gesture recognition 

to providing data files to student’s application and after that we have found average time for 100 

images. 
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 Process Average Time 

1 Text conversion 20.61 sec 

2 Over all system 1 min 20 sec 

   Table 6.1 Require time for execution 

 In results we have clearly mentioned which is simple text , which is complex text. Simple 

text has clear , readable and neat handwriting. Complex text has attached letters and not clear 

handwritings. 

 

 Input images Number of 

input images 

Average Time 

1 Simple Text 100 19.20 sec 

2 Complex Text 100 20.68 sec 

3 Mathematical Equations 50 21.95 sec 

 Total 250 20.61 sec 

Table 6.2 Average time for text conversion 
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Figure 6.1 (a) Average Time for Text Conversion (with number of inputs)  

 

Fig 6.1 (b) Average Time for Text Conversion 

Average recognition time is shown here. In figure 6.1 (a) we show the average time with 

number of inputs. In that our x-axis contain the information about the number which kind of data 
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is there and y-axis gives the information about number of input and the average time for that inputs. 

Same is mention in figure 6.2. But we only show the information about average time.  

Simple text has clear , neat and readable handwritings and complex text has attached letters 

and not readable handwritings hence, the time taken for simple text is lesser than the time taken 

by complex text. For mathematical equations the output is provided in latex format hence the time 

taken by system to convert mathematical equation is high. 

6.2  Evaluation of system by COST factor. 

Rather than using all the complicated things for capturing image which are so costly, we 

are using raspberry PI 3B to capture image. We display overall cost require in our system below 

and then mention the requirement of other systems for this process. 

 

 

 

 Device Price 

1 Raspberry pi Model 3B $35 

2 5-volt 2Amp power Adaptor $10 

3 Raspberry pi Mega Pixel Camera module $15 

4 Minimum 16GB MicroSD card $7-15 

 Total Cost $67-95 

Table 6.3 Cost of System 
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While other systems require: 

• Software Licensing Fees (One-Time Charge) 

• Annual Software Maintenance Fees (annual license fee for software maintenance/periodic 

functional releases, etc.) 

• Planning: Solution Requirements, Reviewing Business & IT environments, User Profiles, 

Testing, Training and Support Plans 

• Installation, Configuration and Enrollment (Training Speakers) 

• Training Material Creation & Delivery (Train-the –Trainer Model) (Assumes training & 

skills transfer for 5 people): End User, System Administrators, Client Support Help Desk 

or On-Line Support Line) 

• Testing & Customer acceptance 

• Post-installation support (for 2-year period up to 80 hours) 

6.3 Evaluation of system by ACCURACY factor. 

Two main modules are there in our system. 

1. Gesture recognition 

2. Text conversion 

We have to find the accuracy of both this module. Following are measurements which are used 

to obtain accuracy for gesture recognition. 

Accuracy = (TP + TN) / (TP + TN + FP + FN) 

Here, 

➢ TP is True Positive: test result is one that detects the condition when the condition is 

present. 
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➢ TN is True Negative: test result is one that does not detect the condition when the condition 

is absent. 

➢ FP is False Positive: test result is one that detects the condition when the condition is 

absent. 

➢ FN is False Negative: test result is one that does not detect the condition when the condition 

is present. 

 

Condition 

Present  Absent 

Test 

Positive True Positive False Positive 

Negative False Negative True Negative 

   Table 6.4 Accuracy Parameter 

1..Gesture Recognition Accuracy. 

For gesture recognition we take all the combination which is possible for 5 fingers. For one 

finger we have 5 combinations, for 2 fingers we have 10 combinations, for 3 fingers we have 10 

combinations, for 4 fingers we have 5 combinations and for 5 we have only one possibility. 

According to this we have 31 different gestures to recognize. 

 Parameter Value 

1 Input images 32 

2 TP 32 

3 TN 00 

4 FP 00 

5 FN 00 
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Table 6.5 Results for gesture recognition 

Table 6.5 shows the accuracy results for all the true positive, true negative , false positive, false 

negative parameters. 

According to this result the final accuracy is  

 Accuracy ={(32+ 00)/ (32 + 00 + 00 + 00)*100} 

 Accuracy = 100% 

2..Text Conversion Accuracy 

For text conversion we are taking all the possibilities for A-Z and a-z alphabet, for 

numbers and for mathematical equations system’s overall accuracy is 92% which  is average 

calculation of simple text conversion’s accuracy, complex text conversion accuracy and 

mathematical equations conversion accuracy (see table 6.6). 

 Parameter Simple Text Complex Text 

Mathematical 

Equations 

1 Input images 100 100 50 

2 TP 100 94 42 

3 TN 00 00 00 

4 FP 00 00 04 

5 FN 00 06 04 

6 Accuracy 100% 94% 84% 

Table 6.6 Results for Text Conversion 

Table 6.6 shows the image to text conversion Accuracy for simple text, complex text , 

mathematical equations. 
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Fig 6.2 Results for Text Conversion 

Here figure 6.2 shows the results for text conversion. X-axis contains the information about which 

kind of input we are taken and y-axis contains information about number of inputs, TP, TN, FP 

and FN vales for all the three-different kind of inputs. 
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Fig 6.3 Accuracy for Text Conversion 

Figure 6.3 shows the information about accuracy of text recognition. Here x-axis contains the 

information about the kind of inputs and y-axis gives the accuracy for that inputs. The Simple text 

are easy to convert as it has clear hand writing hence the system’s accuracy is 100% , the complex 

text has attached letters so system gives false output to convert complex text. Hence, system’s 

accuracy is 94% for complex text conversion. In mathematical equations the equations needed to 

be converted into latex format hence the accuracy is 84%. 
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CHAPTER 7 

CONCLUSION & FUTURE WORK 

In conclusion we would like to say that we have built a system to convert white board 

handwritten text images into editable format by following a unique approach from existing 

systems. We have tried to remove deficiency of existing system and made more accurate and 

efficient system. We have used hand gesture recognition to capture image of white board. To 

implement hand gesture recognition we have used our unique algorithm that gives 100% accuracy 

of  hand gesture recognition. For image to text conversion we have built our own convolutional 

neural network that gives conversion accuracy of 92%. Also , we have built a system with very 

less cost of $50. Hence, we have built a cheapest and accurate system to provide lecture images 

into editable format for students. 

FUTURE WORK 

We have to make this system more advanced by converting mathematical equation images 

into text using machine learning algorithms. We want to implement voice to text conversion with 

hand gesture recognition for lecture video to text conversion. 
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