33 research outputs found

    Mean field variational Bayesian inference for support vector machine classification

    Full text link
    A mean field variational Bayes approach to support vector machines (SVMs) using the latent variable representation on Polson & Scott (2012) is presented. This representation allows circumvention of many of the shortcomings associated with classical SVMs including automatic penalty parameter selection, the ability to handle dependent samples, missing data and variable selection. We demonstrate on simulated and real datasets that our approach is easily extendable to non-standard situations and outperforms the classical SVM approach whilst remaining computationally efficient.Comment: 18 pages, 4 figure

    Towards transparent machine learning models using feature sensitivity algorithm

    Get PDF
    Despite advances in health care, diabetic ketoacidosis (DKA) remains a potentially serious risk for diabetes. Directing diabetes patients to the appropriate unit of care is very critical for both lives and healthcare resources. Missing data occurs in almost all machine learning models, especially in production. Missing data can reduce the predictive power and produce biased estimates of models. Estimating a missing value around a 50 percent probability may lead to a completely different decision. The objective of this paper was to introduce a feature sensitivity score using the proposed feature sensitivity algorithm. The data were electronic health records contained 644 records and 28 attributes. We designed a model using a random forest classifier that predicts the likelihood of a developing patient DKA at the time of admission. The model achieved an accuracy of 80 percent using five attributes; this new model has fewer features than any model mentioned in the literature review. Also, Feature sensitivity score (FSS) was introduced, which identifies within feature sensitivity; the proposed algorithm enables physicians to make transparent, and accurate decisions at the time of admission. This method can be applied to different diseases and datasets

    Adaptive imputation of missing values for incomplete pattern classification

    Get PDF
    In classification of incomplete pattern, the missing values can either play a crucial role in the class determination, or have only little influence (or eventually none) on the classification results according to the context. We propose a credal classification method for incomplete pattern with adaptive imputation of missing values based on belief function theory. At first, we try to classify the object (incomplete pattern) based only on the available attribute values. As underlying principle, we assume that the missing information is not crucial for the classification if a specific class for the object can be found using only the available information. In this case, the object is committed to this particular class. However, if the object cannot be classified without ambiguity, it means that the missing values play a main role for achieving an accurate classification. In this case, the missing values will be imputed based on the K-nearest neighbor (K-NN) and self-organizing map (SOM) techniques, and the edited pattern with the imputation is then classified. The (original or edited) pattern is respectively classified according to each training class, and the classification results represented by basic belief assignments are fused with proper combination rules for making the credal classification. The object is allowed to belong with different masses of belief to the specific classes and meta-classes (which are particular disjunctions of several single classes). The credal classification captures well the uncertainty and imprecision of classification, and reduces effectively the rate of misclassifications thanks to the introduction of meta-classes. The effectiveness of the proposed method with respect to other classical methods is demonstrated based on several experiments using artificial and real data sets

    A Comparative Study of Machine Learning Approaches- SVM and LS-SVM using a Web Search Engine Based Application

    Get PDF
    Abstract — Semantic similarity refers to the concept by which a set of documents or words within the documents are assigned a weight based on their meaning. The accurate measurement of such similarity plays important roles in Natural language Processing and Information Retrieval tasks such as Query Expansion and Word Sense Disambiguation. Page counts and snippets retrieved by the search engines help to measure the semantic similarity between two words. Different similarity scores are calculated for the queried conjunctive word. Lexical pattern extraction algorithm identifies the patterns from the snippets. Two machine learning approaches- Support Vector Machine and Latent Structural Support Vector Machine are used for measuring semantic similarity between two words by combining the similarity scores from page counts and cluster of patterns retrieved from the snippets. A comparative study is made between the similarity results from both the machines. SVM classifies between synonymous and non-synonymous words using maximum marginal hyper plane. LS-SVM shows a much more accurate result by considering the latent values in the dataset

    Pointed subspace approach to incomplete data

    Get PDF
    Incomplete data are often represented as vectors with filled missing attributes joined with flag vectors indicating missing components. In this paper, we generalize this approach and represent incomplete data as pointed affine subspaces. This allows to perform various affine transformations of data, such as whitening or dimensionality reduction. Moreover, this representation preserves the information, which coordinates were missing. To use our representation in practical classification tasks, we embed such generalized missing data into a vector space and define the scalar product of embedding space. Our representation is easy to implement, and can be used together with typical kernel methods. Performed experiments show that the application of SVM classifier on the proposed subspace approach obtains highly accurate results

    Exploring Statistical and Machine Learning-Based Missing Data Imputation Methods to Improve Crash Frequency Prediction Models for Highway-Rail Grade Crossings

    Get PDF
    Highway-rail grade crossings (HRGCs) are critical spatial locations of transportation safety because crashes at HRGCs are often catastrophic, potentially causing several injuries and fatalities. Every year in the United States, a significant number of crashes occur at these crossings, prompting local and state organizations to engage in safety analysis and estimate crash frequency prediction models for resource allocation. These models provide valuable insights into safety and risk mitigation strategies for HRGCs. Furthermore, the estimation of these models is based on inventory details of HRGCs, and their quality is crucial for reliable crash predictions. However, many of these models exclude crossings with missing inventory details, which can adversely affect the precision of these models. In this study, a random sample of inventory details of 2000 HRGCs was taken from the Federal Railroad Administration’s HRGCs inventory database. Data filters were applied to retain only those crossings in the data that were at-grade, public and operational (N=1096). Missing values were imputed using various statistical and machine learning methods, including Mean, Median and Mode (MMM) imputation, Last Observation Carried Forward (LOCF) imputation, K-Nearest Neighbors (KNN) imputation, Expectation-Maximization (EM) imputation, Support Vector Machine (SVM) imputation, and Random Forest (RF) imputation. The results indicated that the crash frequency models based on machine learning imputation methods yielded better-fitted models (lower AIC and BIC values). The findings underscore the importance of obtaining complete inventory data through machine learning imputation methods when developing crash frequency models for HRGCs. This approach can substantially enhance the precision of these models, improving their predictive capabilities, and ultimately saving valuable human lives

    Processing of missing data by neural networks

    Full text link
    We propose a general, theoretically justified mechanism for processing missing data by neural networks. Our idea is to replace typical neuron's response in the first hidden layer by its expected value. This approach can be applied for various types of networks at minimal cost in their modification. Moreover, in contrast to recent approaches, it does not require complete data for training. Experimental results performed on different types of architectures show that our method gives better results than typical imputation strategies and other methods dedicated for incomplete data
    corecore