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ABSTRACT: 

Highway-rail grade crossings (HRGCs) are critical spatial locations of transportation safety because crashes at HRGCs 

are often catastrophic, potentially causing several injuries and fatalities. Every year in the United States, a significant 

number of crashes occur at these crossings, prompting local and state organizations to engage in safety analysis and 

estimate crash frequency prediction models for resource allocation. These models provide valuable insights into safety 

and risk mitigation strategies for HRGCs. Furthermore, the estimation of these models is based on inventory details of 

HRGCs, and their quality is crucial for reliable crash predictions. However, many of these models exclude crossings 

with missing inventory details, which can adversely affect the precision of these models. In this study, a random sample 

of inventory details of 2000 HRGCs was taken from the Federal Railroad Administration’s HRGCs inventory database. 

Data filters were applied to retain only those crossings in the data that were at-grade, public and operational (N=1096). 

Missing values were imputed using various statistical and machine learning methods, including Mean, Median and 

Mode (MMM) imputation, Last Observation Carried Forward (LOCF) imputation, K-Nearest Neighbors (KNN) 

imputation, Expectation-Maximization (EM) imputation, Support Vector Machine (SVM) imputation, and Random 

Forest (RF) imputation. The results indicated that the crash frequency models based on machine learning imputation 

methods yielded better-fitted models (lower AIC and BIC values). The findings underscore the importance of obtaining 

complete inventory data through machine learning imputation methods when developing crash frequency models for 

HRGCs. This approach can substantially enhance the precision of these models, improving their predictive capabilities, 

and ultimately saving valuable human lives.  
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1 INTRODUCTION 

 

Missing data imputation becomes essential when it is crucial to utilize all the available information and avoid 

discarding records containing missing values. Missing values in data can pose significant challenges in predictive 

modelling, particularly in the context of crash frequency modelling. Crash frequency modelling is a crucial aspect of 

highway safety analysis, as it helps identify high-risk areas and allocate resources effectively for preventive measures. 

However, the presence of missing values in crash data can lead to biased estimates and inaccurate predictions, making it 

essential to explore and evaluate different missing data treatments to improve the performance of predictive models in 

crash severity modelling.  

 

When there are missing values in the data points, they create gaps in the dataset, which can lead to a smaller 

sample size and introduce potential bias in the findings. As a consequence, the accuracy and reliability of predictive 

models can be adversely affected, as they may not be able to fully capture the complete patterns and relationships within 

the data. Moreover, missing values can introduce noise and distort the statistical properties of the dataset, affecting the 

model's ability to make accurate predictions. Several statistical and machine learning approaches have been created to 

tackle this issue. Upon reviewing the existing literature, it becomes apparent that the effectiveness of these methods is 

heavily influenced by the problem's domain characteristics, such as the number of cases, variables involved, and the 

patterns of missing data. Consequently, no definitive evidence points to a single method as superior to others (Royston 

2004; Ye & Wang, 2018; Abdulhafedh, 2016; Deb & Liew, 2016; Imprialou & Quddus, 2018; Asgharpour et al., 2023; 

Farooq, 2023; Farooq et al., 2023).  

 

 

In the context of crash prediction, one common approach to handling missing data is complete-case analysis 

(CC), which involves discarding crash records with missing information on any of the variables (Ye & Wang, 2018). 

While this approach is straightforward, it may result in a loss of valuable data and potentially biased estimates. Another 

approach is inverse probability weighting (IPW), which adjusts for bias by including weights in estimation based on the 

probability of a crash-record being a complete case (Ye & Wang, 2018). This method can help mitigate the impact of 

missing values but relies on assumptions about the missing data mechanism. Furthermore, Multiple imputation (MI) is 

another widely used method for handling missing data, where missing values are imputed based on the conditional 

distribution of the variable with missing information (Royston, 2004; Ye & Wang, 2018). In comparison to CC and IPW, 

MI takes a more versatile approach. It preserves the information present in the incomplete records and creates multiple 

imputed datasets to effectively handle the uncertainty associated with the imputation process. However, existing literature 

shows that efforts to enhance crash prediction modelling through data imputation have been conducted for highway-crash 

data in the past. Nevertheless, there has been a noticeable absence of studies exploring missing value data imputation and 

its association with crash frequency prediction modelling, specifically for Highway-rail grade crossings (HRGCs) 

inventory data. 

 

In this work, different statistical and artificial intelligence-based data imputation techniques are applied to 

address the issue of missing values in HRGCs inventory data. Statistical methods, such as mean, mode, and median 

imputation, along with iterative Expectation-Maximization (EM) imputation and Last Observation Carried Forward 

(LOCF) imputation, have been employed. Furthermore, artificial intelligence-based techniques, including K-Nearest 

Neighbor (KNN) imputation, Support Vector Machines (SVM), and Random Forest (RF) imputation, have been utilized 

to effectively handle the missing values in the HRGCs inventory dataset. Using these imputations, Zero-inflated Negative 

Binomial (ZINB) models are estimated for each imputed dataset, and their model fitness is compared based on Akaike 

Information Criterion (AIC), and Bayesian Information Criterion (BIC) values. This analysis seeks to ascertain the most 

effective imputation method for generating optimally fitted crash prediction models. The objective of this study is to 

enhance the precision of predictive analyses concerning crashes at HRGCs, thereby facilitating improved policymaking 

for enhancing the safety of HRGCs. The next section discusses in detail statistical and machine learning-based data 

imputation techniques, followed by description on inventory dataset and filtration process. The next section covers 
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methodology and gives details on packages and functions used in R (open-source programming language) for data 

imputation. The subsequent sections present the results of the ZINB model based on different imputed datasets. Finally, 

the last section discusses the conclusions and recommendations. 

 

2 DATA IMPTUATION USING STATISTICAL METHODS 

 

Statistical methods for data imputations are essential for dealing with missing values in datasets, enabling 

researchers to utilize complete data for analysis and predictive modeling. Several techniques are commonly employed for 

this purpose. Mean/Mode/Median imputation replaces missing values with the mean, mode, or median of the observed 

data in the same column (Royston, 2009). Regression imputation builds a regression model using complete data as the 

dependent variable and other variables as predictors to predict missing values. This technique is commonly used in data 

analysis and is especially valuable when dealing with large datasets that have missing values, as it preserves as much 

information as possible while handling the missing entries. The process of regression imputation involves several steps. 

First, the dataset is divided into two groups: the complete cases, which contain all the required variables without any 

missing values, and the cases with missing values that need to be imputed. The complete cases are used to train the 

regression model, with the dependent variable being the one with missing values, and the other variables serving as 

predictors. Once the regression model is trained, it can be applied to the cases with missing values to predict their values 

based on the relationships learned from the complete data. The predicted values are then used to replace the missing 

entries, effectively imputing the missing data. However, it's essential to acknowledge that regression imputation has its 

limitations. For instance, it assumes that the relationships between variables remain constant across the complete and 

incomplete cases. If this assumption is not met, the imputed values might not accurately reflect the true missing data 

(Royston, 2009; Templ et al., 2011).  

 

Furthermore, Multiple imputation (MI) generates multiple plausible imputed datasets and combines results to 

provide more accurate estimates and measures of uncertainty (Royston, 2009; Puri & Gupta, 2017). Expectation-

Maximization (EM) imputation iteratively estimates missing values based on available data and updates the imputed 

values until convergence (Royston, 2009). Bayesian imputation uses probabilistic models, incorporating prior knowledge 

about the data generating process and uncertainty (Royston, 2009; Buuren, 2007; Jerez et al., 2010). Furthermore, Time 

Series (TS) imputation is used when dealing with time-series data. It involves using historical data or neighboring time 

points to impute missing values in the time series (Afrifa‐Yamoah et al. 2020). In advance statistical methods, one notable 

method of data imputation is Last Observation Carried Forward imputation (LOCF), where the last observed value before 

the missing entry is carried forward to fill the gap (Woolley et al., 2009; Waljee et al., 2013; Hedeker et al., 2007). While 

numerous statistical imputation methods exist in current practice, their application is contingent upon the type and 

complexity of the dataset. It is expected that detailed-understanding of the dataset will aid in selecting the most appropriate 

statistical imputation methods to be employed.  

 

 

3 DATA IMPUTATION USING MACHINE LEARNING METHODS 

 

 

Machine learning and artificial intelligence-based missing data methods offer powerful approaches for 

imputing missing values in datasets (Waljee et al., 2013). For instance, K-Nearest Neighbors (KNN) imputation 

leverages the similarity between data points to impute missing values (Waljee et al., 2013; Malarvizhi & Thanamani, 

2012; Pujianto et al., 2019; García-Laencina et al., 2009). It identifies the k-nearest neighbors of a sample with missing 

data and computes the average or weighted average of their values to fill in the missing entry (Waljee et al., 2013). 

Random Forest (RF) imputation utilizes the Random Forest algorithm to predict missing values by considering other 

features in the dataset as predictors (Jing et al., 2022; Tang & Ishwaran, 2017; Waljee et al., 2013; Pantanowitz & 

Marwala, 2009). RF constructs multiple decision trees and aggregates their predictions to impute missing values more 

accurately (Waljee et al., 2013). Other machine learning-based methods include Support Vector Machines (SVM) 

imputation, which uses SVM to predict missing values, and Deep Learning imputation, where deep neural networks are 

trained to impute missing data points (Waljee et al., 2013; Pelckmans et al., 2005; Zhang & Liu, 2009). These AI-driven 

approaches have proven effective in handling missing data and enhancing the reliability of analyses and modeling tasks 

(Waljee et al. 2013). However, it is crucial to carefully consider the suitability of each method for specific data types 

and research objectives to achieve accurate imputations (Waljee et al., 2013).  

 

 

 

 

 

 



 

4 DATA DESCRIPTION 

 

Present study utilized FRA-provided inventory and crash data (2018-2022) for HRGCs. Initially, 2000 

crossing’s data points were randomly selected from the national database, representing all 50 states. Subsequently, 

filters were applied to include only public, at-grade, operational crossings that intersected a highway. This step yielded 

a total of 1096 rows of data on physical and dynamic characteristics of HRGCs (N=1096). Subsequently, the 'naniar' 

package in R (open-source programming language) was utilized to create heat maps of missing values, providing 

insight into the distribution of missing data and the percentage of missing values within the dataset. Figure 1 shows one 

of such heatmaps that was generated to explore the percentage of missing values in the inventory dataset. While the 

inventory dataset contains numerous physical and dynamic factors of HRGCs, the detailed investigation into missing 

values was limited to variables that had been previously studied or were part of the FRA 2020 Accident Prediction 

Model (Brod et al., 2020; Farooq, 2023; Khattak & Farooq, 2023).  

 

 

 

                          Figure 1. Sample Heatmap of Missing Values in HRGCs Inventory Data 

 

 

 

Table 1 also presents the number and percentage of missing values for key variables in the datasets that had 

been previously observed to be associated with crash frequency at HRGCs. 

 

Table 1. Range of Key Variables and their Percentage of Missing Values (N=1096) 

Key Variables Range (‘i’ for 

indicator variables) 

Number of Missing 

Values 

Percentage of Missing 

Values 

In/Near City  0-1 (i) 0 0% 

Development Type 0-18  0 0% 

Number of passenger train per day 0-180 66 6.02% 

Latitude - 0 0.00% 

Longitude - 0 0.00% 

Total Daylight Thru Trains 0-120 1 0.09% 

Total Nighttime Thru Trains 0-120 1 0.09% 

Total Switching Trains 0-40 1 0.09% 

Total Transit Trains 0-180 21 1.92% 

Movements Per Day Code 0-1 (i) 23 2.10% 

Trains Per Week 1-30 889 81.11% 

Maximum Timetable Speed 0-75 2 0.18% 

Typical Minimum Speed Over Crossing 0-60 2 0.18% 

Typical Maximum Speed Over Crossing 0-60 2 0.18% 

Number Of Main Tracks 0-4 1 0.09% 

Number Crossbuck Assemblies 0-7 0 0.00% 

Number Stop Signs 0-4 1 0.09% 



 

Pavement Marking  1-3 642 58.58% 

ENS Sign Displayed 0-1 (i) 15 1.37% 

Count Roadway Gate Arms 0-6 141 12.86% 

Gate Configuration 1-3 141 12.86% 

Count Of Flashing Light Pairs 1-18 0 0.00% 

Highway Traffic Signals 0-1 (i) 447 40.78% 

Storage Distance 0-62 937 85.49% 

Traffic Lanes 0-7 2 0.18% 

Traffic Lane Type 1-3 440 40.14% 

Highway Paved 0-1 (i) 4 0.36% 

Count of Bells 1-6 2 0.18% 

Crossing Surface IDs 1-20   1 0.09% 

Road At Crossing (Rural/Urban) 0-1 (i) 7 0.64% 

Road At Crossing Type 1-7 9 0.82% 

Highway Speed Limit 0-65 209 19.07% 

Annual Average Daily Traffic Count 1-37,900 0 0.00% 

Estimated Percent Trucks 0-95 27 2.46% 

School Bus Route 0-1 (i) 13 1.19% 

Principal Warning Device 1-8 0 0.00% 

Note: Some indicator variables are derived from categorical variables in data.  

 

From Table 1, it can be observed that most key variables for crash prediction modeling have a low percentage 

of missing values in the dataset sample. However, a few variables showed a higher percentage of missing values, such 

as posted highway speed, storage distance, highway traffic signals, and pavement markings near HRGCs. Additionally, 

some key variables did not have any missing values, such as Average Annual Daily Traffic (AADT), development type, 

HRGCs location (latitude and longitude), and the number of crossbuck assemblies. For modeling purposes, several 

categorical variables were converted into indicator variables, and missing values were imputed for instances with absent 

categorical data. 

 

5 METHODOLOGY 

 

In this study, a comprehensive comparative analysis is undertaken to address missing data in HRGCs inventory 

data. Both statistical and machine learning-based methods are employed for imputation. For the statistical methods, 

mean, median, and mode imputation are performed using the "zoo" package in R, specifically the "na.aggregate" 

function. Three different samples of imputed data are obtained using these three imputation techniques. Additionally, 

two more advanced statistical imputation methods, namely Last Observation Carried Forward (LOCF) Imputation and 

Expectation Maximization (EM) Imputation, were utilized. These methods were implemented using the "imputeTS" 

and "impute" packages in R (open-source programming language), respectively. Furthermore, three machine 

learning imputation methods, namely K-Nearest Neighbor (KNN) Imputation, Random Forest (RF) Imputation, and 

Support Vector Machines (SVM) Imputation, were employed to obtain three additional imputed datasets of crash data. 

To carry out these imputations, “imputeTS", "impute", and "randomForest" packages were used.  Table 2 displays the R 

functions utilized for the imputation of missing values. 

 
Table 2. Description of R-Programming Language Packages and Functions Used for Missing Value Imputations 

Type Of Imputation Packages Used  Functions Used 

Mean Imputation “zoo” na.aggregate() 

Example: na.aggregate(Impute1, FUN = mean) 

Median Imputation “zoo” na.aggregate() 

Example: na.aggregate(Impute1, FUN = median) 

Mode Imputation “zoo” na.aggregate() 

Example: na.aggregate(Impute1, FUN = mode) 

Last Observation Carried 

Forward (LOCF) 

Imputation 

“zoo” na.locf()  

Example: na.locf(Impute1, na.rm = FALSE) . “False” is to insure NAs are 

not removed. 

Expectation Maximization 

(EM) Imputation  

"imputeTS" imputeEM() 

Example: imputeEM(Impute1) 

K-Nearest Neighbor (KNN) 

Imputation 

"impute" knn() 

Example:  

Time=1096 

Value= C( 1,2, NA, NA, .., 4) 

data_imputed <- knn(Impute1, k = 3), ‘k’ = the number of nearest neighbors 

considered 



 

Random Forest (RF) 

Imputation 

"randomForest" randomForest() 

Example:  

Data frame with missing values: 

Impute_1_no_missing <- Impute_1[complete.cases(Impute_1), ] 

Data frame without missing values: 

Impute_1_missing <- Impute_1[!complete.cases(Impute_1), ] 

Train the RF  

# Train the Random Forest model 

rf_model <- randomForest(value ~ time, data = Impute_1_no_missing) 

Predict Missing 

# Predict the missing values 

Impute_1_missing$value <- predict(rf_model, newdata = 

Impute_1_missing) 

Support Vector Machines 

(SVM) Imputation 

“imputeTS” imputeSVM() 

Example:  

Impute_1_imputed <- imputeSVM(Impute_1) 

 

 

Subsequently, Zero-inflated Negative Binomial (ZINB) models were estimated based on all eight imputed 

datasets. The selection of ZINB models was driven by the over-dispersion observed in the response variable, which 

represents the number of crashes at HRGCs from 2018-2022. Model performance comparison was based on AIC and 

BIC values (Khattak et al., 2023; Farooq & Khattak, 2023). Figure 2 presents several attributes, limitations, and 

assumptions of the ZINB model. Transportation safety analysts commonly prefer the use of Zero-inflated (ZI) models 

when analyzing crash data due to their demonstrated superiority in achieving a better statistical fit compared to 

traditional Poisson and Negative Binomial (NB) models. ZI models explicitly address the issue of excess zeros often 

present in crash data, enabling them to yield more precise and dependable estimates of the actual crash frequency. 

Additionally, these models play a crucial role in identifying the contributing factors to crashes on the surface 

transportation network, providing valuable insights for improving transportation safety (Khattak & Farooq, 2023; 

Sharma & Landge, 2013). 

 

 

Figure 2. Key Attributes, Assumptions and Limitations of ZINB model (Farooq 2023) 

 

A Zero-inflated Negative Binomial (ZINB) model assumes that zero outcomes arise from two distinct 

underlying processes. For instance, in the context of crashes at HRGCs, these processes are characterized as follows: 

(1) the occurrence of a crash at HRGCs and (2) the absence of a crash at HRGCs. In the absence of crashes at HRGCs, 

the outcome is confined to zero, while the occurrence of a crash is treated as a count process. The zero-inflated model 

comprises two components: a binary model, often a logit model, responsible for determining the process associated 

with the zero outcome, and a count model, specifically a negative binomial model, employed to characterize the count 

process for crashes at HRGCs. The anticipated count is represented as a fusion of the two processes. It is essential to 

highlight that the ZI-Poisson model bears resemblance to the ZINB model; however, the former assumes that non-zero 

counts adhere to a Poisson distribution, while the latter assumes a Negative Binomial distribution for non-zero counts 

(Brod et al., 2020). 

 



 

      The general formula for ZINB model according to Miaou (1994) is presented as: 
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𝜆𝑖  = 𝑒𝛽𝑖𝑥𝑖

                                                                                            (2) 

 

                where 𝑥𝑖 is 𝑖th  independent variable, and 𝛽𝑖 is the coefficient of regression 

For Zero-inflated Negative Binomial regression 

                     𝑦𝑖 = 0, with probability 𝑝0 + (
1

1+𝛼∗𝜆𝑖
)

1

𝛼
                                                       (3) 

where p0 illustrates the probability model that includes the effects of independent variables, such as logit 

model. 

                                                            𝑝0 =
𝑒𝑟′𝑤𝑖

1+𝑒𝑟′𝑤𝑖
                                                                         (4) 

𝑟 is the matrix’s coefficient, and wi is the ith  independent variable. Furthermore, Γ(.) is Gamma function; and 

 𝛼 represents the rate of over dispersion. 

 

 Maximum likelihood estimation (MLE) is a widely used method for estimating parameters in Poisson, 

Negative Binomial, and Zero-inflated regression models (Farooq, 2023). This method involves finding the parameter 

values that maximize the likelihood function, which measures the probability of the observed data given the model. The 

MLE method is favored because it has been demonstrated to be effective for a variety of statistical models and offers 

precise and effective estimates of the model parameters (Farooq, 2023; Sharma and Landge, 2013). Furthermore, to 

evaluate the performance of the ZINB models, the Akaike Information Criterion (AIC) and BIC (Bayesian Information 

Criterion) are commonly used. The AIC is a measure of the quality of a model, considering both the goodness of fit and 

the complexity of the model. A lower AIC value indicates a better model fit, as it penalizes models with a larger 

number of parameters. However, the idea behind BIC is that the best model is the one that maximizes the likelihood of 

the data while penalizing for the number of parameters in the model. Therefore, AIC and BIC are often used to compare 

varied models and select the one that best fits the data (Sharma & Landge, 2013; Anderson et al., 2020; Farooq et al., 

2021; Farooq, 2023).  

 

Description of Imputed Data 

 

Table 3 and Table 4 provide descriptive statistics of imputed candidate variables that had missing values in the 

selected dataset. It was noted that employing mean, median, and mode imputation methods for statistical imputation did 

not result in a significant change; for some candidate variables, the values of mean and standard deviation remained the 

same. However, imputation based on EM and LOCF resulted in significantly different means and standard deviations for 

these variables.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 3.  Descriptive Statistics of Imputed Candidate Variables (Statistical Imputation) 

 

Variable Name 

 

Variable 
Description 

Miss 

Val. 

Mean Imputation Median 

Imputation  

Mode Imputation EM Imputation LOCF Imputation 

Mean  S.D Mean  S.D Mean  S.D Mean  S.D Mean  S.D 

NOCr_18_22  No. of HRGC 
Crashes in 5-

year Period 

(2018-2022) 

No - - - - - - - - - - 

Nearcity  HRGC situated 

near city 

indicator (1 if 
yes, 0 

otherwise) 

No - - - - - - - - - - 

ComrclDvlp HRGC in a 
Commercial 

Development 

(1 if yes, 0 

otherwise) 

No - - - - - - - - - - 

TotalTrains Total Number 

of Day and 
Night Trains 

Yes 6.922 11.276 6.922 11.276 6.922 11.276 6.827 11.911 6.827 11.911 

MaxTtSpeed Maximum 

Timeable 
Speed 

Yes 31.66 7.524 30.12 6.954 32.11 7.114 31.77 7.81 32.11 7.887 

SgnOSgnl Presence of 

Signals or 
Signs (1 if yes, 

0 otherwise) 

Yes 0.9571 0.202 0.871 0.204 0.912 0.274 0.966 0.194 0.9334 0.214 

NofCrsAsmb Number of 

Crossbuck 

Assemblies  

Yes 1.416 1.060 1.411 1.041 1.614 1.321 1.514 1.364 1.301 0.960 

PvmtMrkg Pavement 

Markings (1 if 

yes, 0 
otherwise) 

Yes 0.4142 0.492 0.522 0.510 0.400 0.412 0.431 0.471 0.471 0.568 

Gates Presence of 

Gates (1 if yes, 

0 otherwise) 

Yes 0.378 0.485 0.410 0.515 0.378 0.485 0.314 0.397 0.412 0.588 

FlsLight Presence of 

Flashing lights 
(1 if yes, 0 

otherwise) 

No - - - - - - - - - - 

XwBells Crossings with 
Bells (1 if yes, 

0 otherwise) 

Yes 0.543 0.464 0.543 0.464 0.543 0.464 0.514 0.421 0.510 0.401 

HwyTrSngl Highway with 
traffic signals 

(1 if yes, 0 

otherwise) 

Yes 0.078 0.269 0.061 0.197 0.064 0.231 0.054 0.112 0.071 0.255 

Traffic Lanes Number of 

Traffic Lanes 

Yes 2.071 1.091 2.071 1.091 2.031 1.042 2.031 1.094 2.071 1.091 

TwoWyTrfc Two-way 

traffic (Derived 

from Traffic 
Lane Type) 

Yes 0.511 0.432 0.511 0.432 0.511 0.432 0.577 0.464 0.590 0.512 

Rural HRGC in a 

rural area – 

derived from 

Road at 
Crossing (1 if 

yes, 0 

otherwise) 

Yes 0.622 0.485 0.611 0.477 0.628 0.471 0.635 0.417 0.674 0.427 

SpG50 Posted speed 

limit greater 

than 50 mph (1 
if yes, 0 

otherwise) 

Yes 0.585 0.492 0.521 0.401 0.497 0.400 0.287 0.487 0.511 0.408 

AADT AADT No - - - - - - - - - - 

 

 



 

Table 4 provides descriptions for the same variables but imputed using machine-learning methods. It is observed that 

the imputations based on machine learning techniques resulted in noticeably different means and standard deviations for 

the candidate variables used in the crash frequency models.  

Table 4.  Descriptive Statistics of Imputed Candidate Variables (Machine Learning Imputation) 

 
Variable Name 

 
Variable 

Description 

Presence of 
Missing 

Values 

K-Nearest Neighbor 
(KNN) Imputation  

Random Forest (RF) 
Imputation  

Support Vector Machines 
(SVM) 

Imputation 

Mean  S. D Mean  S. D Mean  S. D 

NOCr_18_22  No. of HRGC 
Crashes in 5-year 

Period (2018-2022) 

No - - - - - - 

Nearcity  HRGC situated 
near city indicator 

(1 if yes, 0 
otherwise) 

No - - - - - - 

ComrclDvlp HRGC in a 

Commercial 
Development (1 if 

yes, 0 otherwise) 

No - - - - - - 

TotalTrains Total Number of 
Day and Night 

Trains 

Yes 6.900 11.012 6.978 11.281 6.501 11.264 

MaxTtSpeed Maximum 
Timeable Speed 

Yes 31.67 7.728 29.21 6.287 32.79 7.678 

SgnOSgnl Presence of Signals 

or Signs (1 if yes, 0 

otherwise) 

Yes 0.9501 0.207 0.9214 0.200 0.921 0.187 

NofCrsAsmb Number of 

Crossbuck 

Assemblies  

Yes 1.401 1.070 1.487 1.211 1.463 1.862 

PvmtMrkg Pavement 

Markings (1 if yes, 

0 otherwise) 

Yes 0.471 0.482 0.401 0.421 0.428 0.480 

Gates Presence of Gates 

(1 if yes, 0 

otherwise) 

Yes 0.301 0.447 0.312 0.444 0.357 0.437 

FlsLight Presence of 

Flashing Lights (1 

if yes, 0 otherwise) 

No - - - - - - 

XwBells Crossings with No 

Bells (1 if yes, 0 

otherwise) 

Yes 0.543 0.464 0.521 0.487 0.574 0.411 

HwyTrSngl Highway with 

traffic signals (1 if 

yes, 0 otherwise) 

Yes 0.078 0.269 0.066 0.201 0.077 0.274 

Traffic Lanes Number of Traffic 

Lanes 

Yes 2.071 1.091 2.101 1.141 2.187 1.321 

TwoWyTrfc Two-way traffic 

(Derived from 

Traffic Lane Type) 

Yes 0.487 0.417 0.514 0.471 0.557 0.474 

Rural HRGCs in a rural 

area (1 if yes, 0 

otherwise) 

Yes 0.622 0.485 0.422 0.400 0.412 0.471 

SpG50 Posted speed limit 

greater than 50 

mph (1 if yes, 0 

otherwise) 

Yes 0.585 0.492 0.515 0.724 0.571 0.401 

AADT AADT No - - - - - - 

 

6 RESULTS 

 

The ZINB model was estimated in R (open-source programming language), using the “zeroinfl ()” function from the 

“pscl” package. The output in Table 5 and 6 provides information on model fitness, coefficient estimates, and p-values. 

The first part of the output, "Count model coefficients (negative binomial with log link)", shows the coefficients and 

their p-values for the count part of the model.  The Log(theta) is the logarithm of the dispersion parameter. 

Furthermore, "Zero-inflation model coefficients (binomial with logit link)", shows the coefficients and their p-values 

for the zero-inflation part of the estimated ZINB model based on the imputed datasets.   Furthermore, the dispersion 

parameter is denoted by Theta and its estimated value varies for different imputed datasets. In addition, the optimization 

algorithm used to estimate the coefficients required 100 iterations. The estimated model reveals a positive coefficient 



 

for maximum timetable speed, absence of highway traffic signs, two-way traffic, rural HRGCs and posted speed limit 

greater than 50 mph. However, negative coefficient estimates are observed for flashing lights, and crossing with bells.  

 

 

Table 5. ZINB Results for Predicted Crashes Based on Statistical Imputation 

Variables 
Mean Imputation Median imputation Model Imputation   

EM Imputation LOCF Imputation 

Estimate Pr(>|z|) Estimate Pr(>|z|) Estimate Pr(>|z|) Estimate Pr(>|z|) Estimate Pr(>|z|) 

Count model coefficients (negbin with log link)     

(Intercept) -2.714 0.000 -2.974 0.000 -2.014 0.000 -2.540 0.000 -2.836 0.000 

MaxTtSpeed 0.017 0.010 0.021 0.044 0.010 0.021 0.078 0.000 0.015 0.014 

FlsLight -0.057 0.000 -0.071 0.010 - - -0.080 0.061 -0.060 0.021 

XwBells - - -0.074 0.041 -0.005 0.000 -0.044 0.019 -0.005 0.048 

NHwyTrSngl 0.935 0.002 0.935 0.002 0.935 0.002 0.935 0.002 0.935 0.002 

TwoWyTrfc 0.114 0.000 0.127 0.004 0.117 0.000 0.144 0.012 0.125 0.000 

Rural - - - - - - - - -0.434 0.028 

SpG50 - - 0.514 0.000 0.514 0.000 0.554 0.000 0.506 0.018 

Log(theta) 0.758 0.397 0.974 0.300 0.912 0.310 0.987 0.025 0.731 0.384 

Zero-inflation model coefficients (binomial with logit link)     

(Intercept) 1.285 0.000 1.201 0.033 1.547 0.011 1.284 0.012 1.285 0.025 

TotalTrains -0.218 0.004 -0.287 0.010 -0.288 0.017 -0.298 0.001 -0.218 0.015 

Theta 2.384 2.745 2.199 2.124 2.079 

Log-likelihood -178.85 -187.25 -198.74           -250.2             -259.9 

AIC 571.87 591.14 578.17 547.74 541.74 

BIC 621.27 608.74 619.77 612.01 596.72 

 

From Tables 5 and 6, it can be observed that intuitive parameters are obtained. Past research has also revealed 

that warning devices decrease the likelihood of crashes at HRGCs, while factors such as higher posted speed limits, 

rural areas, higher train speeds, and two-way traffic increase the likelihood of crashes at HRGCs (Khattak & Farooq 

2023; Bord et al. 2020).  

 

Table 6. ZINB Results for Predicted Crashes Based on Machine Learning Imputation 

 

 

Variables 

K-Nearest Neighbor (KNN) 

Imputation 

Random Forest (RF) 

Imputation 

Support Vector Machines 

(SVM) Imputation 

Estimate Pr(>|z|) Estimate Pr(>|z|) Estimate Pr(>|z|) 

Count model coefficients (negbin with log link) 

(Intercept) -2.104 0.000 -1.710 0.000 -1.640 0.000 

MaxTtSpeed 0.024 0.004 0.004 0.001 0.015 0.004 

FlsLight - - - - -0.057 0.000 

XwBells -0.001 0.248 -0.001 0.000 -0.002 0.041 

NHwyTrSngl 0.997 0.000 0.174 0.000 0.900 0.040 

TwoWyTrfc - - 0.101 0.004 - - 

Rural -0.477 0.037 - - -0.600 0.048 

SpG50 0.517 0.018 0.787 0.071 - - 

Log(theta) 0.517 0.018 0.500 0.000 0.587 0.000 

Zero-inflation model coefficients (binomial with logit link) 

(Intercept) 1.200 0.015 1.324 0.005 1.474 0.005 

TotalTrains -0.278 0.005 -0.214 0.004 -0.211 0.040 

Theta 3.198 2.190 2.170 

Log-likelihood -219.978 -207.204 -204.74 

AIC 502.74 512.70 527.14 

BIC 512.872 528.807 547.800 



 

 

However, it is interesting to note that the models performed well when missing data was imputed using LOCF 

imputation, as evident from AIC and BIC values. The best overall fitness of the ZINB model was observed for the 

dataset in which the missing values were imputed using KNN imputation. Additionally, when other machine learning-

based datasets were fitted using ZINB, they also showed better fitness performances compared to statistical 

imputations. Figure 3 presents a visual comparison of AIC and BIC values derived from ZINB models based on 

datasets imputed using statistical and machine learning-based imputation techniques. 

 

 

 

Figure 3: AIC and BIC values obtained from ZINB models based on imputed eight datasets 

  

7 CONCLUSIONS 

 

In this study, a comparison of statistical and machine learning data imputation methods was carried out to 

evaluate the fitness of crash prediction models for HRGCs. For this purpose, randomly selected inventory and crash 

datasets (2018-2022) involving 2000 HRGCs were obtained from the national FRA HRGC database. These two 

datasets were aggregated to combine information on the past crash history and inventory details for every crossing. 

Using the aggregated dataset, a detailed investigation of missing values was conducted by examining heat maps and 

estimating the percentage of missing data for each variable in the dataset. Furthermore, eight different statistical and 

machine learning methods were applied to impute the missing values in the dataset. These methods included mean, 

median, mode, EM, LOCF, KNN, RF, and SVM imputations. The process revealed that after missing value imputation, 

the means and standard deviations of the variables started to differ. Based on these eight imputed datasets, zero-inflated 

negative binomial models were applied, and the models were compared based on fitness parameters such as AIC and 

BIC. The modeling revealed that overall, there wasn't a significant difference between the statistically imputed data's 

ZINB model performance. However, the machine-learning imputed data, particularly the KNN imputed dataset, 

provided a better-fitted ZINB model. This study underscores the importance of using high-quality and missing-value-

free datasets for HRGC crash prediction modeling. With better datasets, the reliability of crash prediction models can be 

improved, significantly aiding correct decision-making regarding resource allocation and safety interventions at 

HRGCs. Moreover, this study advocates the application of machine learning-based data imputation techniques to 

elevate data quality, thereby enhancing crash prediction modeling for HRGCs. Notwithstanding the absence of 

significant distinctions in model performances between imputed data based on KNN, RF, and SVM imputation, the 

findings unequivocally indicated superior model performance for datasets in which missing values were imputed 

through machine-learning approaches when compared to classical statistical methods. 
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