1,111 research outputs found

    Monitoring land use changes using geo-information : possibilities, methods and adapted techniques

    Get PDF
    Monitoring land use with geographical databases is widely used in decision-making. This report presents the possibilities, methods and adapted techniques using geo-information in monitoring land use changes. The municipality of Soest was chosen as study area and three national land use databases, viz. Top10Vector, CBS land use statistics and LGN, were used. The restrictions of geo-information for monitoring land use changes are indicated. New methods and adapted techniques improve the monitoring result considerably. Providers of geo-information, however, should coordinate on update frequencies, semantic content and spatial resolution to allow better possibilities of monitoring land use by combining data sets

    Geospatial Information Research: State of the Art, Case Studies and Future Perspectives

    Get PDF
    Geospatial information science (GI science) is concerned with the development and application of geodetic and information science methods for modeling, acquiring, sharing, managing, exploring, analyzing, synthesizing, visualizing, and evaluating data on spatio-temporal phenomena related to the Earth. As an interdisciplinary scientific discipline, it focuses on developing and adapting information technologies to understand processes on the Earth and human-place interactions, to detect and predict trends and patterns in the observed data, and to support decision making. The authors – members of DGK, the Geoinformatics division, as part of the Committee on Geodesy of the Bavarian Academy of Sciences and Humanities, representing geodetic research and university teaching in Germany – have prepared this paper as a means to point out future research questions and directions in geospatial information science. For the different facets of geospatial information science, the state of art is presented and underlined with mostly own case studies. The paper thus illustrates which contributions the German GI community makes and which research perspectives arise in geospatial information science. The paper further demonstrates that GI science, with its expertise in data acquisition and interpretation, information modeling and management, integration, decision support, visualization, and dissemination, can help solve many of the grand challenges facing society today and in the future

    Path planning for first responders in the presence of moving obstacles

    Get PDF
    Navigation services have gained much importance for all kinds of human activities ranging from tourist navigation to support of rescue teams in disaster management. However, despite the considerable amount of route guidance research that has been performed, many issues that are related to navigation for first responders still need to be addressed. During disasters, emergencies can result in different types of moving obstacles (e.g., fires, plumes, floods), which make some parts of the road network temporarily unavailable. After such incidents occur, responders have to go to different destinations to perform their tasks in the environment affected by the disaster. Therefore they need a path planner that is capable of dealing with such moving obstacles, as well as generating and coordinating their routes quickly and efficiently. During the past decades, more and more hazard simulations, which can modify the models with incorporation of dynamic data from the field, have been developed. These hazard simulations use methods such as data assimilation, stochastic estimation, and adaptive measurement techniques, and are able to generate more reliable results of hazards. This would allow the hazard simulation models to provide valuable information regarding the state of road networks affected by hazards, which supports path planning for first responders among the moving obstacles. The objective of this research is to develop an integrated navigation system for first responders in the presence of moving obstacles. Such system should be able to navigate one or more responders to one or multiple destinations avoiding the moving obstacles, using the predicted information of the moving obstacles generated from by hazard simulations. In this dissertation, the objective we have is expressed as the following research question: How do we safely and efficiently navigate one or more first responders to one or more destinations avoiding moving obstacles? To address the above research questions, this research has been conducted using the following outline: 1). literature review; 2). conceptual design and analysis; 3). implementation of the prototype; and 4). assessment of the prototype and adaption. We investigated previous research related to navigation in disasters, and designed an integrated navigation system architecture, assisting responders in spatial data storage, processing and analysis.Within this architecture, we employ hazard models to provide the predicted information about the obstacles, and select a geo-database to store the data needed for emergency navigation. Throughout the development of the prototype navigation system, we have proposed: a taxonomy of navigation among obstacles, which categorizes navigation cases on basis of type and multiplicity of first responders, destinations, and obstacles; a multi-agent system, which supports information collection from hazard simulations, spatio-temporal data processing and analysis, connection with a geo-database, and route generation in dynamic environments affected by disasters; data models, which structure the information required for finding paths among moving obstacles, capturing both static information, such as the type of the response team, the topology of the road network, and dynamic information, such as changing availabilities of roads during disasters, the uncertainty of the moving obstacles generated from hazard simulations, and the position of the vehicle; path planning algorithms, which generate routes for one or more responders in the presence of moving obstacles. Using the speed of vehicles, departure time, and the predicted information about the state of the road network, etc., three versions (I, II, and III) of Moving Obstacle Avoiding A* (MOAAStar) algorithms are developed: 1). MOAAstar– I/Non-waiting, which supports path planning in the case of forest fires; 2). MOAAstar–II/Waiting, which introduces waiting options to avoid moving obstacles like plumes; 3). MOAAstar–III/Uncertainty, which can handle the uncertainty in predictions of moving obstacles and incorporate the profile of responders into the routing. We have applied the developed prototype navigation system to different navigation cases with moving obstacles. The main conclusions drawn from our applications are summarized as follows: In the proposed taxonomy, we have identified 16 navigation cases that could occur in disaster response and need to be investigated. In addressing these navigation problems, it would be quite useful to employ computer simulations and models, which can make reliable predicted information about responders, the targets, and obstacles, in finding safe routes for the responders. The approach we provide is general and not limited to the cases of plumes and fires. In our data model, the data about the movement of hazards is represented as moving polygons. This allows the data model to be easily adjusted to merge and organize information from models of different types of disasters. For example, the areas that are affected by floods can also be represented as moving polygons. To facilitate the route calculation, not only the data of obstacles but also the information about the state of road networks affected by obstacles need to be structured and stored in the database. In planning routes for responders, the routing algorithms should incorporate the dynamic data of obstacles to be able to avoid the hazards. Besides, other factors, such as the operation time of tasks, the required arrival time, and departure time, also need to be considered to achieve the objectives in a rescue process, e.g., to minimize the delays caused by the moving obstacles. The profile of responders is quite important for generation of feasible routes for a specific disaster situation. The responders may have different protective equipment that allows them to pass through different types of moving obstacles, and thus can have different classification of risk levels to define the state of the road network. By taking into account the profile of the responders, the navigation system can propose customized and safe routes to them, which would facilitate their disaster response processes. On the basis of our findings, we suggest the following topics for future work: As presented Wang and Zlatanova (2013c), there are still a couple of navigation cases that need to be addressed, especially the ones that involve dynamic destinations. More algorithms would be needed to solve these navigation problems. Besides, some extreme cases (e.g., the obstacle covers the target point during the course of an incident) also need to be investigated. Using standard Web services, an Android navigation application, which can provide navigation services in the environment affected by hazards, needs to be developed and tested in both the daily practice and real disasters. In this application, a user interface with various styling options should also be designed for different situations, e.g., waiting and moving, day and night, and urgent and non-urgent. Because the communication infrastructure may not be available or work properly during a disaster response, a decentralized method is needed to allow different users to negotiate with each other and to make local agreements on the distribution of tasks in case there is no support from the central planning system. Another type of multi-agent system would be needed to handle this situation. Introduce variable traveling speed into the re-routing process. The vehicle speed plays an important role in generation of routes avoiding moving obstacle, and can be influenced by many factors, such as the obstacles, the type of vehicles, traffic conditions, and the type of roads. Therefore, it would be needed to investigate how to derive the current and future speed from trajectories of vehicles. Apply the system to aid navigation in various types of natural disasters, using different hazard simulation models (e.g., flood model). More types of agents would be needed and integrated into the system to handle heterogeneous data from these models. Extensions of the data model are also required to meet a wider range of informational needs when multiple disasters occur simultaneously

    Handling Data Consistency through Spatial Data Integrity Rules in Constraint Decision Tables

    Get PDF

    An Evolutionary Approach to Adaptive Image Analysis for Retrieving and Long-term Monitoring Historical Land Use from Spatiotemporally Heterogeneous Map Sources

    Get PDF
    Land use changes have become a major contributor to the anthropogenic global change. The ongoing dispersion and concentration of the human species, being at their orders unprecedented, have indisputably altered Earth’s surface and atmosphere. The effects are so salient and irreversible that a new geological epoch, following the interglacial Holocene, has been announced: the Anthropocene. While its onset is by some scholars dated back to the Neolithic revolution, it is commonly referred to the late 18th century. The rapid development since the industrial revolution and its implications gave rise to an increasing awareness of the extensive anthropogenic land change and led to an urgent need for sustainable strategies for land use and land management. By preserving of landscape and settlement patterns at discrete points in time, archival geospatial data sources such as remote sensing imagery and historical geotopographic maps, in particular, could give evidence of the dynamic land use change during this crucial period. In this context, this thesis set out to explore the potentials of retrospective geoinformation for monitoring, communicating, modeling and eventually understanding the complex and gradually evolving processes of land cover and land use change. Currently, large amounts of geospatial data sources such as archival maps are being worldwide made online accessible by libraries and national mapping agencies. Despite their abundance and relevance, the usage of historical land use and land cover information in research is still often hindered by the laborious visual interpretation, limiting the temporal and spatial coverage of studies. Thus, the core of the thesis is dedicated to the computational acquisition of geoinformation from archival map sources by means of digital image analysis. Based on a comprehensive review of literature as well as the data and proposed algorithms, two major challenges for long-term retrospective information acquisition and change detection were identified: first, the diversity of geographical entity representations over space and time, and second, the uncertainty inherent to both the data source itself and its utilization for land change detection. To address the former challenge, image segmentation is considered a global non-linear optimization problem. The segmentation methods and parameters are adjusted using a metaheuristic, evolutionary approach. For preserving adaptability in high level image analysis, a hybrid model- and data-driven strategy, combining a knowledge-based and a neural net classifier, is recommended. To address the second challenge, a probabilistic object- and field-based change detection approach for modeling the positional, thematic, and temporal uncertainty adherent to both data and processing, is developed. Experimental results indicate the suitability of the methodology in support of land change monitoring. In conclusion, potentials of application and directions for further research are given

    Towards Mobility Data Science (Vision Paper)

    Full text link
    Mobility data captures the locations of moving objects such as humans, animals, and cars. With the availability of GPS-equipped mobile devices and other inexpensive location-tracking technologies, mobility data is collected ubiquitously. In recent years, the use of mobility data has demonstrated significant impact in various domains including traffic management, urban planning, and health sciences. In this paper, we present the emerging domain of mobility data science. Towards a unified approach to mobility data science, we envision a pipeline having the following components: mobility data collection, cleaning, analysis, management, and privacy. For each of these components, we explain how mobility data science differs from general data science, we survey the current state of the art and describe open challenges for the research community in the coming years.Comment: Updated arXiv metadata to include two authors that were missing from the metadata. PDF has not been change

    Towards development of fuzzy spatial datacubes : fundamental concepts with example for multidimensional coastal erosion risk assessment and representation

    Get PDF
    Les systèmes actuels de base de données géodécisionnels (GeoBI) ne tiennent généralement pas compte de l'incertitude liée à l'imprécision et le flou des objets; ils supposent que les objets ont une sémantique, une géométrie et une temporalité bien définies et précises. Un exemple de cela est la représentation des zones à risque par des polygones avec des limites bien définies. Ces polygones sont créés en utilisant des agrégations d'un ensemble d'unités spatiales définies sur soit des intérêts des organismes responsables ou les divisions de recensement national. Malgré la variation spatio-temporelle des multiples critères impliqués dans l’analyse du risque, chaque polygone a une valeur unique de risque attribué de façon homogène sur l'étendue du territoire. En réalité, la valeur du risque change progressivement d'un polygone à l'autre. Le passage d'une zone à l'autre n'est donc pas bien représenté avec les modèles d’objets bien définis (crisp). Cette thèse propose des concepts fondamentaux pour le développement d'une approche combinant le paradigme GeoBI et le concept flou de considérer la présence de l’incertitude spatiale dans la représentation des zones à risque. En fin de compte, nous supposons cela devrait améliorer l’analyse du risque. Pour ce faire, un cadre conceptuel est développé pour créer un model conceptuel d’une base de donnée multidimensionnelle avec une application pour l’analyse du risque d’érosion côtier. Ensuite, une approche de la représentation des risques fondée sur la logique floue est développée pour traiter l'incertitude spatiale inhérente liée à l'imprécision et le flou des objets. Pour cela, les fonctions d'appartenance floues sont définies en basant sur l’indice de vulnérabilité qui est un composant important du risque. Au lieu de déterminer les limites bien définies entre les zones à risque, l'approche proposée permet une transition en douceur d'une zone à une autre. Les valeurs d'appartenance de plusieurs indicateurs sont ensuite agrégées basées sur la formule des risques et les règles SI-ALORS de la logique floue pour représenter les zones à risque. Ensuite, les éléments clés d'un cube de données spatiales floues sont formalisés en combinant la théorie des ensembles flous et le paradigme de GeoBI. En plus, certains opérateurs d'agrégation spatiale floue sont présentés. En résumé, la principale contribution de cette thèse se réfère de la combinaison de la théorie des ensembles flous et le paradigme de GeoBI. Cela permet l’extraction de connaissances plus compréhensibles et appropriées avec le raisonnement humain à partir de données spatiales et non-spatiales. Pour ce faire, un cadre conceptuel a été proposé sur la base de paradigme GéoBI afin de développer un cube de données spatiale floue dans le system de Spatial Online Analytical Processing (SOLAP) pour évaluer le risque de l'érosion côtière. Cela nécessite d'abord d'élaborer un cadre pour concevoir le modèle conceptuel basé sur les paramètres de risque, d'autre part, de mettre en œuvre l’objet spatial flou dans une base de données spatiales multidimensionnelle, puis l'agrégation des objets spatiaux flous pour envisager à la représentation multi-échelle des zones à risque. Pour valider l'approche proposée, elle est appliquée à la région Perce (Est du Québec, Canada) comme une étude de cas.Current Geospatial Business Intelligence (GeoBI) systems typically do not take into account the uncertainty related to vagueness and fuzziness of objects; they assume that the objects have well-defined and exact semantics, geometry, and temporality. Representation of fuzzy zones by polygons with well-defined boundaries is an example of such approximation. This thesis uses an application in Coastal Erosion Risk Analysis (CERA) to illustrate the problems. CERA polygons are created using aggregations of a set of spatial units defined by either the stakeholders’ interests or national census divisions. Despite spatiotemporal variation of the multiple criteria involved in estimating the extent of coastal erosion risk, each polygon typically has a unique value of risk attributed homogeneously across its spatial extent. In reality, risk value changes gradually within polygons and when going from one polygon to another. Therefore, the transition from one zone to another is not properly represented with crisp object models. The main objective of the present thesis is to develop a new approach combining GeoBI paradigm and fuzzy concept to consider the presence of the spatial uncertainty in the representation of risk zones. Ultimately, we assume this should improve coastal erosion risk assessment. To do so, a comprehensive GeoBI-based conceptual framework is developed with an application for Coastal Erosion Risk Assessment (CERA). Then, a fuzzy-based risk representation approach is developed to handle the inherent spatial uncertainty related to vagueness and fuzziness of objects. Fuzzy membership functions are defined by an expert-based vulnerability index. Instead of determining well-defined boundaries between risk zones, the proposed approach permits a smooth transition from one zone to another. The membership values of multiple indicators (e.g. slop and elevation of region under study, infrastructures, houses, hydrology network and so on) are then aggregated based on risk formula and Fuzzy IF-THEN rules to represent risk zones. Also, the key elements of a fuzzy spatial datacube are formally defined by combining fuzzy set theory and GeoBI paradigm. In this regard, some operators of fuzzy spatial aggregation are also formally defined. The main contribution of this study is combining fuzzy set theory and GeoBI. This makes spatial knowledge discovery more understandable with human reasoning and perception. Hence, an analytical conceptual framework was proposed based on GeoBI paradigm to develop a fuzzy spatial datacube within Spatial Online Analytical Processing (SOLAP) to assess coastal erosion risk. This necessitates developing a framework to design a conceptual model based on risk parameters, implementing fuzzy spatial objects in a spatial multi-dimensional database, and aggregating fuzzy spatial objects to deal with multi-scale representation of risk zones. To validate the proposed approach, it is applied to Perce region (Eastern Quebec, Canada) as a case study

    Putting the past in place : a conceptual data model for a 4D archaeological GIS

    Get PDF
    • …
    corecore