184 research outputs found

    Effect of selected luminescent layers on CCT, CRI, and response times

    Get PDF
    Phosphors have been used as wavelength converters in illumination for many years. When it is excited with blue light, the frequently used yttrium aluminium garnet doped with cerium (YAG:Ce) phosphor converts a part of blue light to a wideband yellow light, resulting in the generated light having a white color. By combining an appropriate concentration of the YAG:Ce phosphor and blue excitant light, white light of a desired correlated color temperature (CCT) can be obtained. However, this type of illumination has a lower color rendering index value (CRI). In an attempt to improve the CRI value, we mixed the YAG:Ce phosphor with europium-doped calcium sulfide phosphor (CaS:Eu), which resulted in a considerably increased CRI value. This article examines an experiment with luminescent layers consisting of a mixture of selected phosphors and polydimethylsiloxane (PDMS). Different thicknesses in these layers were achieved by changing the speed of rotation during their accumulation onto laboratory glass using the method of spin coating. The spectral characteristics of these luminescent layers as they were excited with blue light emitting diode (LED) and laser diode (LD) were then determined. A suitable combination of the YAG:Ce phosphor with a phosphor containing europium, as it was excited with a blue LED, yielded a source of white light with a CRI value of greater than 85. The response time in the tested luminescent layers to a rectangular excitant impulse (generated by a signal generator and transmitted by LD) was also measured in order to examine their potential use in visible light communications (VLC).Web of Science1213art. no. 209

    ISCEV guidelines for calibration and verification of stimuli and recording instruments (2023 update)

    Get PDF
    This document developed by the International Society for Clinical Electrophysiology of Vision (ISCEV) provides guidance for calibration and verification of stimulus and recording systems specific to clinical electrophysiology of vision. This guideline provides additional information for those using ISCEV Standards and Extended protocols and supersedes earlier Guidelines. The ISCEV guidelines for calibration and verification of stimuli and recording instruments (2023 update) were approved by the ISCEV Board of Directors 01, March 2023

    Review of Display Technologies Focusing on Power Consumption

    Get PDF
    Producción CientíficaThis paper provides an overview of the main manufacturing technologies of displays, focusing on those with low and ultra-low levels of power consumption, which make them suitable for current societal needs. Considering the typified value obtained from the manufacturer’s specifications, four technologies—Liquid Crystal Displays, electronic paper, Organic Light-Emitting Display and Electroluminescent Displays—were selected in a first iteration. For each of them, several features, including size and brightness, were assessed in order to ascertain possible proportional relationships with the rate of consumption. To normalize the comparison between different display types, relative units such as the surface power density and the display frontal intensity efficiency were proposed. Organic light-emitting display had the best results in terms of power density for small display sizes. For larger sizes, it performs less satisfactorily than Liquid Crystal Displays in terms of energy efficiency.Junta de Castilla y León (Programa de apoyo a proyectos de investigación-Ref. VA036U14)Junta de Castilla y León (programa de apoyo a proyectos de investigación - Ref. VA013A12-2)Ministerio de Economía, Industria y Competitividad (Grant DPI2014-56500-R

    Smart Glasses for Visually Evoked Potential Applications: Characterisation of the Optical Output for Different Display Technologies

    Get PDF
    Off-the-shelf consumer-grade smart glasses are being increasingly used in extended reality and brain–computer interface applications that are based on the detection of visually evoked potentials from the user’s brain. The displays of these kinds of devices can be based on different technologies, which may affect the nature of the visual stimulus received by the user. This aspect has substantial impact in the field of applications based on wearable sensors and devices. We measured the optical output of three models of smart glasses with different display technologies using a photo-transducer in order to gain insight on their exploitability in brain–computer interface applications. The results suggest that preferring a particular model of smart glasses may strongly depend on the specific application requirements

    Utilization of Smartphones in Experiments of Measurement of Electron-Mass Charge Ratio

    Get PDF
    In this work, the strength of the magnetic field produced by a Helmholtz coil was measured using a magnetic sensor on a smartphone and the Kelmscott Gauss meter app. The e/m ratio measurement is a well-known experiment in the physics curriculum. We demonstrate that the strength of the magnetic fields involved may be accurately measured by cell phones. In an electron diffraction experiment, the diameter of a circular ring can theoretically be determined using the same method. Our findings indicate that reliable measurements of the charge-to-mass ratio of electrons can be achieved using cell phone cameras and image processing software. When teaching contemporary physics, smartphones and image analysis software trackers can be extremely helpful resources
    • …
    corecore