40 research outputs found

    Fuzzy Maximum Satisfiability

    Full text link
    In this paper, we extend the Maximum Satisfiability (MaxSAT) problem to {\L}ukasiewicz logic. The MaxSAT problem for a set of formulae {\Phi} is the problem of finding an assignment to the variables in {\Phi} that satisfies the maximum number of formulae. Three possible solutions (encodings) are proposed to the new problem: (1) Disjunctive Linear Relations (DLRs), (2) Mixed Integer Linear Programming (MILP) and (3) Weighted Constraint Satisfaction Problem (WCSP). Like its Boolean counterpart, the extended fuzzy MaxSAT will have numerous applications in optimization problems that involve vagueness.Comment: 10 page

    Real-Time Physiological Simulation and Modeling toward Dependable Patient Monitoring Systems

    Get PDF
    We present a novel approach to describe dependability measures for intelligent patient monitoring devices. The strategy is based on using a combination of methods from system theory and real-time physiological simulations. For the first time not only the technical device but also the patient is taken into consideration. Including the patient requires prediction of physiology which is achieved by a real-time physiological simulation in a continuous time domain, whereby one of the main ingredients is a temporal reasoning element. The quality of the reasoning is expressed by a dependability analysis strategy. Thereby, anomalies are expressed as differences between simulation and real world data. Deviations are detected for current and they are forecasted for future points in time and can express critical situations. By this method, patient specific differences in terms of physiological reactions are described, allowing early detection of critical states

    A History of Until

    Get PDF
    Until is a notoriously difficult temporal operator as it is both existential and universal at the same time: A until B holds at the current time instant w iff either B holds at w or there exists a time instant w' in the future at which B holds and such that A holds in all the time instants between the current one and w'. This "ambivalent" nature poses a significant challenge when attempting to give deduction rules for until. In this paper, in contrast, we make explicit this duality of until to provide well-behaved natural deduction rules for linear-time logics by introducing a new temporal operator that allows us to formalize the "history" of until, i.e., the "internal" universal quantification over the time instants between the current one and w'. This approach provides the basis for formalizing deduction systems for temporal logics endowed with the until operator. For concreteness, we give here a labeled natural deduction system for a linear-time logic endowed with the new operator and show that, via a proper translation, such a system is also sound and complete with respect to the linear temporal logic LTL with until.Comment: 24 pages, full version of paper at Methods for Modalities 2009 (M4M-6

    Naval Integration into Joint Data Strategies and Architectures in JADC2

    Get PDF
    NPS NRP Technical ReportAs Joint capabilities mature and shape into the Joint All Domain C2 Concept, Services, COCOMs and Coalition Partners will need to invest into efforts that would seamlessly integrate into Joint capabilities. The objective for the Navy is to study the options for Navy, including Naval Special Warfare Command under SOCOM, on how to integrate Navy's data strategy and architecture under the unifying JADC2 umbrella. The other objectives are to explore alternatives considered by the SOCOM and the Air Force, which are responsible for JADC2 Information Advantage and Digital Mission Command & Control. A major purpose of Joint, Services/COCOMs, agencies and Coalition Partners capabilities is to provide shared core of integrated canonical services for data, information, and knowledge with representations for vertical interoperability across all command levels and JADC2, lateral interoperability between Naval Service/COCOMs, and any combination of JADC2 constituents, agencies, and coalition partners. Our research plan is to explore available data strategy options by leveraging previous NRP work (NPS-20-N313-A). We will participate in emerging data strategy by Navy JADC2 project Overmatch. By working with MITRE our team will explore Air Force JADC2 data strategy implemented in ABMS DataOne component. Our goal is to find a seamless integration between Naval Data Strategy and data strategies behind JADC2 Information Advantage and Digital Mission Command & Control capabilities. Our plan includes studying Service-to-Service and Service-to-COCOM interoperability options required for Joint operations with a goal to minimize OODA's loop latency across sensing, situation discovery & monitoring, and knowledge understanding-for-planning, deciding, and acting. Our team realizes JADC2 requires virtual model allowing interoperability between subordinate C2 for services, agencies, and partner. Without such flexible 'joint' intersection organizational principal hierarchical structure it would be impossible to define necessary temporal and spatial fidelities for each level of organizational command required for implanting JADC2. Research deliverables will document the results of the exploration of Joint, COCOM, Agency and Partner Data Strategies approaches as JADC2 interoperability options to the emerging JADC2. We strive for standard JADC2 interface. Keywords: JADC2, ABMS, DataOne, Information Advantage, Digital Mission Command, IntegrationN2/N6 - Information WarfareThis research is supported by funding from the Naval Postgraduate School, Naval Research Program (PE 0605853N/2098). https://nps.edu/nrpChief of Naval OperationsĀ (CNO)Approved for public release. Distribution is unlimited.

    Ontologies as Backbone of Cognitive Systems Engineering

    Get PDF
    Cognitive systems are starting to be deployed as appliances across the technological landscape of modern societies. The increasing availability of high performance computing platforms has opened an opportunity for statistics-based cognitive systems that perform quite as humans in certain tasks that resisted the symbolic methods of classic artificial intelligence. Cognitive artefacts appear every day in the media, raising a wave of mild fear concerning artificial intelligence and its impact on society. These systems, performance notwithstanding, are quite brittle and their reduced dependability limips their potential for massive deployment in mission-critical applications -e.g. in autonomous driving or medical diagnosis. In this paper we explore the actual possibility of building cognitive systems using engineering-grade methods that can assure the satisfaction of strict requirements for their operation. The final conclusion will be that, besides the potential improvement provided by a rigorous engineering process, we are still in need of a solid theory -possibly the main outcome of cognitive science- that could sustain such endeavour. In this sense, we propose the use of formal ontologies as backbones of cognitive systems engineering processes and workflows

    A Partitioning Algorithm for Detecting Eventuality Coincidence in Temporal Double recurrence

    Full text link
    A logical theory of regular double or multiple recurrence of eventualities, which are regular patterns of occurrences that are repeated, in time, has been developed within the context of temporal reasoning that enabled reasoning about the problem of coincidence. i.e. if two complex eventualities, or eventuality sequences consisting respectively of component eventualities x0, x1,....,xr and y0, y1, ..,ys both recur over an interval k and all eventualities are of fixed durations, is there a subinterval of k over which the occurrence xp and yq for p between 1 and r and q between 1 and s coincide. We present the ideas behind a new algorithm for detecting the coincidence of eventualities xp and yq within a cycle of the double recurrence of x and y. The algorithm is based on the novel concept of gcd partitions that requires the partitioning of each of the incidences of both x and y into eventuality sequences each of which components have a duration that is equal to the greatest common divisor of the durations of x and y. The worst case running time of the partitioning algorithm is linear in the maximum of the duration of x and that of y, while the worst case running time of an algorithm exploring a complete cycle is quadratic in the durations of x and y. Hence the partitioning algorithm works faster than the cyclical exploration in the worst case

    Temporal Data Modeling and Reasoning for Information Systems

    Get PDF
    Temporal knowledge representation and reasoning is a major research field in Artificial Intelligence, in Database Systems, and in Web and Semantic Web research. The ability to model and process time and calendar data is essential for many applications like appointment scheduling, planning, Web services, temporal and active database systems, adaptive Web applications, and mobile computing applications. This article aims at three complementary goals. First, to provide with a general background in temporal data modeling and reasoning approaches. Second, to serve as an orientation guide for further specific reading. Third, to point to new application fields and research perspectives on temporal knowledge representation and reasoning in the Web and Semantic Web
    corecore