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INTRODUCTION SHOULD ANY DATA STRATEGY BE JOINT?  
 

The Data Strategy designed by NRP FY20 Broad Area Study [1] has been designed for the purpose 

on “describe how the Navy will analyze and transmit data in the future distributed fleet” [2]. The 

author of [1] also stipulated “Since information and knowledge quality depend so heavily on data 

management, the latter is viewed by DoD innovators as the cornerstone for the future digital 

mission data architecture in the Joint Forces battlespace, since information and knowledge quality 

depend so heavily on it.” In the final sub-chapter in [1], “Areas of the Future Research”, the author 

concluded that “… executing this strategy will enable the Navy to join whatever Joint data is 

formulated in support of JADC2 and other current concepts.” 

 

This study is an opportunity to further advance an idea that earlier proposed Naval Data Strategy 

is, indeed, fits “joinable” requirements. However, with regards to “data management” strategy 

offered by JS J6 for JADC2, our team believes the time is right to look at “data” with strategic 

perspective in mind. We view JS J6 to work with the best thinkers to evolve “data management” 

strategy to support the requirements prescribed by the past and earlier Data Strategy efforts. We 

firmly believe “data management” strategy should take an important, but still a backseat by 

opening a stage to a knowledge strategy. We believe the latter not to be cast in stone but will be 

an alive mechanism providing warfighters at the tactical edge and decision making supporting 

their operations with knowledge-understanding capabilities to prevail in the joint battlespace by 

outmaneuvering and outsmarting adversaries in overly complex and uncertain decisioning space. 

 
The final thought we want to share in the “Introduction” section of current Broad Area Study is to 

recognize that any Data Strategy must include provisions to be a “joint” one. Prior to the invention 

of JADC2 each service and agency had been and still continuing to operate as a “joint” force. 

Naval Data Strategy is “joint” organically as Navy and Marines are, with few possible exceptions, 

operate in a joint manner. However, Navy had been on joint missions shared with all other Services 

like Army and Airforce. The same applies to Navy Seals who are coordinated their efforts with 

other branches of the Special Operations Forces (SOF). It goes without saying that Naval service 

is tightly coupled with Space Forces, and such intelligence agencies as NSA, NRO and NGA. 
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PROBLEM STATEMENT IS IT KNOWLEDGE REPRESENTATION PROBLEM? 
 
  
“Naval Integration into Joint Data Strategies in JADC2” broad area study topic assumes the data 

strategy for Naval and Joint Staff’s domains are able to support the concept of “jointness”. 

Otherwise, if naval data strategy is not capable to support the concept of “jointness”, it would be 

impossible for it to be of a benefit to a joint community at any tier: tactical, operational, or strategic. 

The concept of “jointness”, essentially, adds more organizational dimensions to “joint cubes” 

abstraction where each cube is built over dimensions which represent organizational entities 

involved in a particular mission or set of missions. It is assumed that mission or multi-missions 

are necessary for conducting an operation. 

What is a difference between naval and joint all-domain command & control data strategies? It is, 

simply, in a greater number of commands like services, intel, agencies, coalition partners, and any 

other entities required for inclusion into JADC2 and, naturally, a greater number of domains 

supported within each of the commands. 

What is then the real problem for a “jointness” challenge? Each reader, likely, has a good 

understanding what entails to support Machine Learning and Deep Learning (ML/DL) paradigm.  

The answer revolves around whatever is necessary to develop the models from the data training 

and algorithmic point of view. Considering our focus being on a data side, a focus then is on 

organization for the data to get trained. What is the impact of such focus on “jointness” in JADC2? 

The answer is rather unspectacularly brief. ML/DL are looking for a data to generate information. 

Any data must be validated and labeled. Different data streams might require fusion. Such 

requirement is not unique to “Joint” type of analysis. It is there for non-joint SoSs as well. 

A presented hypothesis what a primary challenge is to decide what kind of data is critical for the 

success of JADC2 joint operations. Our philosophy is that the data which is paramount for such 

success is not “raw data” from “sensored environments” but rather continuously derived 

knowledge and understanding. It means “joint crown jewel” data strategy requirement is to have 

“joint” common shared representation/reasoning structures/methods to store/derive knowledge 

and understanding. 



 

Pedro Domingos in [99] organized all Five Tribes of the Artificial Intelligence the 

following way: 

 

Figure 1  From Representation to Evaluation to Optimization 

 Professor Pedro Domingos has suggested using canonical knowledge representation based 

on Markov Logic Network (MLN) to represent any knowledge for all five tribes of AI including 

Symbolists, Connectionists, Evolutionaries, Bayesians and Analogizers. With the advent of Causal 

tribe, MLN can represent “directed causal graphs” as well. Sharing knowledge via MLN-enabled 

container opens a new chapter on merging knowledge across all domains in Command & Control. 

JADC2 knowledge integration is straightforward if compared with the data and storage integration.  



 

EXECUTIVE SUMMARY 
Joint All Domain Command and Control (JADC2) is not a new problem. Each US service and 

intelligence agency has been fighting as joint in the past and in the present. It’s just there was never 

a challenge that integration among organizations had to be using uniform means of integration as 

opposed to proprietary ones as defined by organization leading the joint mission. As usual, there 

is always a need for highly horizontal integration. What seems to be new is to ensure vertical 

integration between hierarchically organized roles in each of the tiers of JADC2 scales greatly via 

elegant and highly effective design. This is needed not only due to a joint cross-organizational 

structure. Due to the battlespace complexity, there is a critical need for each role of the command 

to be easily substitutable in case of casualties including reduction in human readiness. 

 We are convinced that Situation Awareness (SA) rooted in the knowledge of the evolution 

of each situation, from the point of origination to the point of deprecation, is essential. It is a must 

prerequisite for supporting significant volatility of the situations in the modern battlespace. 

Knowing situations ensures our knowledge of the battlespace is both contextual and adaptive to 

the dynamic ad-hoc natures of the world. We must continuously account for not only relations 

between situations’ participants (subjects and objects) and actions which change the states of the 

world model’s state machine. It is imperative to realize the environments we are fighting in, such 

as METOC, EMW, Acoustic, are highly dynamic, resulting in changing conditions, and effects in 

the form of environmental events. These external threshold events contribute to pro-active 

generation of external factors resulting in new conditions due to continuously changing causes to 

the situations and ongoing planning and replanning activities. We are confident concurrent 

environments play significant roles in the formation of mission contexts under continuously 

evolving situations. 

 We believe designing the enterprise bottom-up from the tactical edge is essential due to the 

knowledge of situations and contexts which may be obtained exclusively from the tactical edge. 

Sharing contextual knowledge with higher roles at the tactical tier and tiers above (i.e., operational, 

and strategic/national, is the only strategy to manage SA to ensure a comprehension of currently 

assessed and projected situations. Our team is firmly believing that imaginary ‘what-if’ questions 

are critical as they reveal causal relations by uncovering counterfactuals. In fact, “counterfactuals” 

is a mechanism to detect novel situations which is a necessary prerequisite to situations’ detection. 



 

 We are confident our study is making significant contribution to decision-making actors at 

different roles across tactical, operational, and strategic/national tiers. Our conviction is that 

decision-ready knowledge must be delivered to all decision-making actors without any further 

transformation. This knowledge will be in context at a proper level of granularities for every 

decision-maker. This automatic push-driven streaming delivery will ensure the timeliness of 

providing valuable knowledge with an opportunity to decision to ask for me by querying the back 

end based on the provided contexts equipped with the knowledge of situations.  

 Making knowledge delivery requires back end understanding on what decision makers 

view as valuable knowledge for their respective Areas of Responsibilities (AORs). There is also a 

need to support a concept of “knowledge in-situ” for extracted knowledge at the tactical edge. This 

requires imbedding collected observations and persisted novel detected situations into intelligent 

information-knowledge structures suitable for reasoning by various logics including causal, 

situation, action, event and any others, if necessary. If “smart data-information structures” is 

employed moving information-knowledge will be limited to a bare minimum which is of 

paramount importance for limited network bandwidth at the edge. 

 Considering a need to summarize captured information and knowledge is beneficial to a 

multitude of decision-makers, there are couple of preconditions to realize it. First of all, intelligent 

information-data structures must be embedded into the “summarization containers” designed to 

summarize graphs, other structures capable of capturing smart structures, events and world model. 

Secondly, all “smart information-knowledge structures” must support composability. Making it 

happen requires employing ontological “type system” to types are representable as compositions. 

 Presented executive summary touches upon a variety of interdisciplinary concepts. This is 

a necessity as information and knowledge for the logical world model is highly heterogenous, 

multi-dimensional and hierarchical. “Type system” is a foundational concept that is absolutely 

necessary to represent complex ever-changing world model. We are convinced JADC2 requires 

employment of the summarization aggregation engine to feed knowledge to all decision-makers. 
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CHAPTER 1 SURVEYING KNOWLEDGE REPRESENTATIONS 
Knowledge Representation and Reasoning (KRR) is pursued by a group of AI scientists doing 

research on classical AI focused on symbolic reasoning. These scientists offer a prove that 

symbolic reasoning is critical for decision-making enabled by AI. The authoritative, most-used AI 

textbooks, adopted by over 1500 schools, were written by John Sowa [2] and Peter Norvig [3]. 

Based on initial literature research, Knowledge Representation (KR) may be classified into the 

following categories: 

 Logics-based Knowledge Representation 
 Semantic Network 
 Frames 
 Rule-based Engine 

 

Due to study’s research focused on JADC2, research team finds Logics-based KRR as the most 

appropriate to JADC2 due to the ad-hoc nature of causally induced events, actions with 

deterministic and non-deterministic effects on missions’ situations. Therefore, sections will be 

dedicated to Logics-based KRR.  

Semantic Network has been discounted as it uses first-order logic predicate calculus 

provided non-advanced reasoning over entity relations in the graphs. Frames logic (F-Logic) 

stands in the same relationship to object-oriented programming (OOP) as classical relational 

calculus stands to relational database programming [4]. Research team views OOP is pursuing the 

goals that are not congruent with the goals and operational specifics of JADC2 described at the 

onset of this paragraph. 

Nonmonotonic Reasoning 
Classical logic is monotonic in the following sense: whenever a sentence A is a logical consequence 

of a set of sentences T, then A is also a consequence of an arbitrary superset of T. In other words, 

adding information never invalidates any conclusions. 

Commonsense reasoning is different. We often draw plausible conclusions based on the 

assumption that the world in which we function and about which we reason is normal and as 

expected. This is far from being irrational. To the contrary, it is the best we can do in situations in 

which we have only incomplete information. However, as unexpected as it may be, it can happen 



 

that our normality assumptions turn out to be wrong. New information can show that the situation 

actually is abnormal in some respect. In this case we may have to revise our conclusions. 

For example, let us assume that Professor Jones likes to have a good espresso after lunch 

in a campus cafe. You need to talk to her about a grant proposal. It is about 1:00 pm and, under 

normal circumstances, Professor Jones sticks to her daily routine. Thus, you draw a plausible 

conclusion that she is presently enjoying her favorite drink. You decide to go to the cafe and meet 

her there. As you get near the student center, where the cafe is located, you see people streaming 

out of the building. One of them tells you about the fire alarm that just went off. The new piece of 

information invalidates the normality assumption and so the conclusion about the present location 

of Professor Jones, too. 

Such reasoning, where additional information may invalidate conclusions, is called 

nonmonotonic. It has been a focus of extensive studies by the knowledge representation 

community since the early eighties of the last century. This interest was fueled by several 

fundamental challenges facing knowledge representation such as modeling and reasoning about 

rules with exceptions or defaults and solving the frame problem. [5] 

The frame problem 
To express effects of actions and reason about changes in the world they incur, one has to indicate 

under what circumstances a proposition whose truth value may vary, a fluent, holds. One of the 

most elegant formalisms to represent change in logic, situation calculus, uses situations 

corresponding to sequences of actions to achieve this. For instance, the fact that Fred is in the 

kitchen after walking there, starting in initial situation S0, is represented as  

holds (in (Fred, Kitchen), do (walk (Fred, Kitchen), S0)). 

The predicate holds allows us to state that a fluent, here in (Fred, Kitchen), holds in a particular 

situation. The expression walk (Fred, Kitchen) is an action, and the expression do (walk (Fred, 

Kitchen), S0) is the situation after Fred walked to the kitchen, while in situation S0. 

In situation calculus, effects of actions can easily be described. It is more problematic, 

however, to describe what does not change when an event occurs. For instance, the color of the 

kitchen, the position of chairs, and many other things remain unaffected by Fred walking to the 

kitchen. The frame problem asks how to represent the large number of non-changes when 

reasoning about action. [6] 



 

Answer Sets 
Answer Set Prolog is a language for knowledge representation and reasoning based on the answer 

set/stable model semantics of logic programs [7, 8]. The language has roots in declarative 

programing [9, 10], the syntax and semantics of standard Prolog [11], disjunctive [12, 13] and 

nonmonotonic logic [14, 15, 16]. Unlike “standard” Prolog it allows us to express disjunction and 

“classical” or “strong” negation. It differs from many other knowledge representation languages 

by its ability to represent defaults, i.e., statements of the form “Elements of a class C normally 

satisfy property P”. Answer Set Prolog provides a powerful logical model of this process. Its 

syntax allows for the simple representation of defaults and their exceptions, its consequence 

relation characterizes the corresponding set of valid conclusions, and its inference mechanisms 

often allow a program to find these conclusions in a reasonable amount of time. 

There are other important types of statements which can be nicely expressed in Answer Set 

Prolog. This includes the causal effects of actions (“statement F becomes true as a result of 

performing an action a”), statements expressing a lack of information (“it is not known if statement 

P is true or false”), various completeness assumptions “statements not entailed by the knowledge 

base are false”, etc. 

The method of solving various combinatorial problems by reducing them to finding the 

answer sets of Answer Set Prolog programs which declaratively describe the problems is often 

called the answer set programming paradigm (ASP) [17, 18]. It has been used for finding solutions 

to a variety of programming tasks, ranging from building decision support systems for the Space 

Shuttle [19] and program configuration [20], to solving problems arising in bioinformatics [21], 

zoology and linguistics [22]. On the negative side, Answer Set Prolog in its current form is not 

adequate for reasoning with complex logical formulas—the things that classical logic is good at—

and for reasoning with real numbers. 

There is a substantial number of natural and mathematically elegant extensions of the 

original Answer Set Prolog. A long-standing problem of expanding answer set programming by 

aggregates—functions on sets—is approaching its final solution in [23, 24, 25, 26, 27]. The rules 

of the language are generalized [28] to allow nested logical connectives and various means to 

express preferences between answer sets [29, 30, 31]. Weak constraints and consistency restoring 

rules are introduced to deal with possible inconsistencies [32, 33]. The logical reasoning of Answer 



 

Set Prolog is combined with probabilistic reasoning in [34] and with qualitative optimization in 

[35]. All of these languages have at least experimental implementations and an emerging theory 

and methodology of use.  

Reasoning in Dynamic Domains 
We assume that such a domain is modeled by a transition diagram with nodes corresponding to 

possible states of the domain, and arcs labeled by actions. An arc (σ1, a, σ2) indicates that 

execution of an action a in state σ1 may result in the domain moving to the state σ2. If for every 

state σ1 and action a, the diagram contains at most one arc (σ1, a, σ2) then the domain is called 

deterministic. The transition diagram contains all possible trajectories of the domain. Its particular 

history is given by a record of observations and actions. Due to the size of the diagram, the problem 

of finding its concise specification is not trivial and has been a subject of research for a 

comparatively long time. Its solution requires a good understanding of the nature of causal effects 

of actions in the presence of complex interrelations between fluents—propositions whose truth 

value may depend on the state of the domain. An additional level of complexity is added by the 

need to specify what is not changed by actions. The latter, known as the frame problem [36], is 

often reduced to the problem of finding a concise and accurate representation of the inertia 

axiom—a default which says that things normally stay as they are. The search for such a 

representation substantially influenced AI research during the last twenty years. An interesting 

account of history of this research together with some possible solutions can be found in [37]. 

There is also a substantial cross-fertilization between answer set based reasoning about 

actions and change and other similar formalisms including Situation Calculus [38, 39], Event 

Calculus [40, 41], and various temporal logics. There are, for instance, logic programming-based 

counterparts of Situation Calculus, which allow elegant solutions to the frame and ramification 

problem. Original versions of Event Calculus were directly expressed in the language of logic 

programming. The ability of temporal logic to reason about properties of paths is modeled by logic 

programming-based specification of goals in [42]. There is an example of the use of Answer Set 

Prolog and its reasoning methods for representing and reasoning about commonsense and 

linguistic knowledge needed for intelligent question answering from natural language texts. There 

are several interesting efforts of combining Answer Sets with Bayesian net based probabilistic 

reasoning, which substantially increases expressive power of both knowledge representation 



 

languages and promises to lead to efficient algorithms for answering some forms of probabilistic 

queries. Finally, new results establishing some relationship between Description Logic and 

Answer Sets [43] may open the way for interesting applications of Answer Sets to Semantic Web. 

[44] 

Qualitative Modeling 
Qualitative modeling concerns representation and reasoning about continuous aspects of entities 

and systems in a symbolic, human-like manner. People who have never heard of differential 

equations successfully reason about the common-sense world of quantities, motion, space, and 

time. They do so often in circumstances offering little information, using the ability to characterize 

broad categories of outcomes to ascertain what might happen. For many tasks this is enough: 

Knowing that a valuable fragile object might be pushed off a table is sufficient reason to rearrange 

things so that it cannot happen. For other tasks, knowing the possible outcomes suggests further 

analyses, perhaps involving more detailed models. For example, an engineer designing a tea 

warmer must keep the tea at a drinkable temperature, while not allowing it to boil. Reasoning 

directly with qualitative models can capture important behavior patterns, automatically producing 

descriptions that are closer to the level of what people call insights about system behavior, making 

them useful for science, engineering, education and decision-support. Capturing the 

representational and reasoning capabilities that enable robust reasoning about continuous systems 

is the goal of qualitative modeling. 

 Qualitative modeling is today most commonly referred to in the literature as qualitative 

reasoning, but we use qualitative modeling here to emphasize that the representational work in this 

area shared equal importance with work on reasoning techniques per se. (As will be seen below, 

the tradeoffs in them are deeply intertwined.) Qualitative physics has often been used for research 

in this area as well, since understanding physical systems has been a central focus of much of the 

work in the area. However, this term has become less popular as the applicability of these ideas to 

areas such as finance, ecology, and natural language semantics have been explored. 

  



 

Bayesian Networks 
A Bayesian network is a tool for modeling and reasoning with uncertain beliefs. A Bayesian 

network consists of two parts: a qualitative component in the form of a directed acyclic graph 

(DAG), and a quantitative component in the form conditional probabilities. Intuitively, the DAG 

of a Bayesian network explicates variables of interest (DAG nodes) and the direct influences 

among them (DAG edges). The conditional probabilities of a Bayesian network quantify the 

dependencies between variables and their parents in the DAG. Formally though, a Bayesian 

network is interpreted as specifying a unique probability distribution over its variables. Hence, the 

network can be viewed as a factored (compact) representation of an exponentially sized probability 

distribution. The power of Bayesian networks as a representational tool stem both from this ability 

to represent large probability distributions compactly, and the availability of inference algorithms 

that can answer queries about these distributions without necessarily constructing them explicitly. 

 There are two interpretations of a Bayesian network structure, a standard interpretation in 

terms of probabilistic independence and a stronger interpretation in terms of causality. According 

to the stronger interpretation, the Bayesian network specifies a family of probability distributions, 

each resulting from applying an intervention to the situation of interest. These causal Bayesian 

networks lead to additional types of queries and require more specialized algorithms for computing 

them. The directed nature of Bayesian networks can be used to provide causal semantics for these 

networks, based on the notion of intervention [45], leading to models that not only represent 

probability distributions, but also permit one to induce new probability distributions that result 

from intervention. In particular, a causal network, intuitively speaking, is a Bayesian network with 

the added property that the parents of each node are its direct causes. For example, Cold → 

HeadAche is a causal network whereas HeadAche → Cold is not, even though both networks are 

equally capable of representing any joint distribution on the two variables. [46] 

Temporal Representation and Reasoning 
This section is about representing knowledge in all its various forms. Yet, whatever phenomenon 

we aim to represent, be it natural, computational, or abstract, it is unlikely to be static. The natural 

world is always decaying or evolving. Thus, computational processes, by their nature, are dynamic, 

and most abstract notions, if they are to be useful, are likely to incorporate change. Consequently, 

the notion of representations changing through time is vital. And so, we need a clear way of 



 

representing both our temporal basis, and the way in which entities change over time. This is 

exactly what this chapter is about. 

We aim to provide an overview of many of the ways temporal phenomena can be modelled, 

described, reasoned about, and applied. In this, we will often overlap with other chapters in this 

collection. Some of these topics we will refer to very little, as they will be covered directly by 

other chapters, for example, temporal action logic [47], situation calculus [48], event calculus 

[49], qualitative spatial representation and reasoning [50], temporal constraint programming 

[51], automated planning [47, 52], and qualitative modeling [53]. Other topics will be described 

in this chapter at a high-level: 

• automated reasoning, 

• description logics, in [54]; and 

• natural language 

The topics, such as reasoning about knowledge and belief [55], query answering [56] and multi-

agent systems [57], will only be referred to very briefly. 

This section is not intended to be a comprehensive survey of all approaches to temporal 

representation and reasoning, it does outline many of the most prominent ones, though necessarily 

at a high-level. If more detail is required, many references are provided. Indeed, the first volume 

of the Foundations of Artificial Intelligence series, in which this collection appears, contains much 

more detail on the use of temporal reasoning in Artificial Intelligence [58] while [59, 60, 61, 62, 

63] all provide an alternative logic-based view of temporal logics. [64] 

Qualitative Spatial Representation and Reasoning 
Space is multidimensional and is not in general adequately represented by a single scalar quantity. 

Early attempts at qualitative spatial reasoning within the QR community led to the ‘poverty 

conjecture’ [65]. Although purely qualitative representations were quite successful in reasoning 

about many physical systems [66], there was much less success in developing purely qualitative 

reasoners about spatial and kinematic mechanisms and the poverty conjecture is that this is in fact 

impossible—there is no purely qualitative spatial reasoning mechanism. [50] 

‘Poverty conjecture” suggests that spatial representations consist of two parts: a metric 

diagram, which includes quantitative information and thus provides a substrate that can support 

perceptual-like processing, and a place vocabulary, which makes explicit qualitative distinctions 



 

in shape and space relevant to the current task. The metric diagram can use floating-point numbers, 

algebra, or even high-precision arrays – whatever it uses, there must be enough detail to support 

answering spatial queries by calculation, and it must be capable of supporting the construction of 

place vocabularies. Place vocabularies consist of places, contiguous regions of space where some 

important property is constant. Computing the place vocabulary according to the needs of the 

problem ensures that the relevant distinctions are made. Defining the places in terms of elements 

in the metric diagram makes the diagram a good communication medium for diverse 

representations.1 

We pay attention in this section specifically to qualitative spatial, and spatio-temporal 

reasoning (henceforth QSR). The challenge of QSR then is to provide calculi which allow a 

machine to represent and reason with spatial entities without resort to the traditional quantitative 

techniques prevalent in, for, e.g., the computer graphics or computer vision communities. 

 There has been an increasing amount of research in recent years which tends to refute, or 

at least weaken the ‘poverty conjecture’. Qualitative spatial representations addressing many 

different aspects of space including topology, orientation, shape, size and distance have been put 

forward. [50] 

 

Reasoning about Knowledge and Belief 
An agent operating in a complex environment can benefit from adapting its behavior to the 

situation at hand. The agent’s choice of actions at any point in time can, however, be based only 

on its local knowledge and beliefs. When many agents are present, the success of one’s agent’s 

actions will typically depend on the actions of the other agents. These, in turn, are based on the 

other agents’ own knowledge and beliefs. It follows that to operate effectively in a setting 

containing other agents, an agent must, in addition to its knowledge about the physical features of 

the outside world, consider its knowledge about another agent’s knowledge. This line of reasoning 

can be extended to justify the need for using deeper levels of knowledge, of course. Moreover, the 

task of obtaining relevant knowledge and that of affecting the knowledge of other agents, become 

important goals in many applications. This crucial connection between knowledge and action is 

what makes knowledge and belief two of the most frequently used notions in everyday discourse. 

 
1 https://www.qrg.northwestern.edu/ideas/qsidea.htm  

https://www.qrg.northwestern.edu/ideas/qsidea.htm


 

It also suggests that rigorous frameworks for reasoning about knowledge and belief can be of value 

when analyzing scenarios involving multiple agents. [55] 
 The topic of reasoning about knowledge and belief is described in detail in the book 

Reasoning about Knowledge [67]. 

Situation Calculus 
The situation calculus is a logical language for representing changes. It was first introduced by 

McCarthy in 1963, [68] and described in further details by McCarthy and Hayes [69] in 1969. 

The basic concepts in the situation calculus are situations, actions and fluents. Briefly, 

actions are what make the dynamic world change from one situation to another when performed 

by agents. Fluents are situation-dependent functions used to describe the effects of actions. There 

are two kinds of them, relational fluents and functional fluents. The former ha only two values: 

true or false, while the latter can take a range of values. For instance, one may have a relational 

fluent called “handempty” which is true in a situation if the robot’s hand is not holding anything. 

We may need a relation like this in a robot domain. One may also have a functional fluent called 

battery-level whose value in a situation is an integer between 0 and 100 denoting the total battery 

power remaining on one’s laptop computer. 

According to McCarthy and Hayes [69], a situation is “the complete state of the universe 

at an instance of time”. But for Reiter [70], a situation is the same as its history which is the finite 

sequence of actions that has been performed since the initial situation S0. We shall discuss Reiter’s 

foundational axioms that make this precise later. Whatever the interpretation, the unique feature 

of the situation calculus is that situations are first-order objects that can be quantified over. This is 

what makes the situation calculus a powerful formalism for representing change and distinguishes 

it from other formalisms such as dynamic logic [71]. 

To describe a dynamic domain in the situation calculus, one has to decide on the set of 

actions available for the agents to perform, and the set of fluents needed to describe the changes 

these actions will have on the world. For example, consider the classic blocks world where some 

blocks of equal size can be arranged into a set of towers on a table. The set of actions in this domain 

depends on what the imaginary agent can do. [48] 

 



 

Event Calculus 
The event calculus [72, 73, 74, 37, 75] is a formalism for reasoning about action and change. Like 

the situation calculus, the event calculus has actions, which are called events, and time-varying 

properties or fluents. In the situation calculus, performing an action in a situation gives rise to a 

successor situation. Situation calculus actions are hypothetical, and time is tree-like. In the event 

calculus, there is a single timeline on which actual events occur. 

A narrative is a possibly incomplete specification of a set of actual event occurrences [76, 

37]. The event calculus is narrative-based, unlike the standard situation calculus in which an exact 

sequence of hypothetical actions is represented. 

Like the situation calculus, the event calculus supports context-sensitive effects of events, 

indirect effects, action preconditions, and the commonsense law of inertia. Certain phenomena are 

addressed more naturally in the event calculus, including concurrent events, continuous time, 

continuous change, events with duration, nondeterministic effects, partially ordered events, and 

triggered events. [49] 

Temporal Action Logics 
The study of frameworks and formalisms for reasoning about action and change [77, 78, 79, 37, 

80, 81, 41] has been central to the knowledge representation field almost from the inception of 

Artificial Intelligence as a general field of research [82, 83]. 

The phrase “Temporal Action Logics” represents a class of logics for reasoning about 

action and change that evolved from Sandewall’s book on Features and Fluents [79] and owes 

much to this ambitious project. There are essentially three major parts to Sandewall’s work. He 

first developed a narrative-based logical framework for specifying agent behavior in terms of 

action scenarios. The logical framework is state-based and uses explicit time structures. He then 

developed a formal framework for assessing the correctness (soundness and completeness) of 

logics for reasoning about action and change relative to a set of well-defined intended conclusions, 

where reasoning problems were classified according to their ontological or epistemological 

characteristics. Finally, he proposed a number of logics defined semantically in terms of definitions 

of preferential entailment2 and assessed their correctness using his assessment framework. 

 
2 Preferential entailment reduces the set of classical models of a theory by only retaining those models that are minimal 
according to a given preference relation, a strict partial order over logical interpretations [84] 



 

Several of these logics were intended to correspond directly to existing logics of action and 

change proposed by others at the time, while the rest were new and were intended to characterize 

broad classes of reasoning problems which subsumed some of the existing approaches. Each of 

these definitions of preferential entailment were then analyzed using the assessment framework, 

giving upper and lower bounds in terms of the classes of reasoning problems for which they 

produced exactly the intended conclusions. Much insight was gained both in terms of advantages 

and limitations of previously proposed logics of action and change and in how one might go about 

proposing new logics of action and change in a principled manner with formal assessments 

included. [47] 

Nonmonotonic Causal Logic 
In the last 15 years, there have been many reasoning about action proposals incorporating more 

explicitly causal notions. The nonmonotonic causal logic described in this chapter was introduced 

in [85]. The most relevant prior work appears in [86, 87, 88]. A much fuller account of causal 

theories was published in 2004 [89]. 

An implementation of causal theories—the Causal Calculator (CCALC)—is publicly-available, 

and many of the above-cited papers describe applications of it. The key to this implementation is 

an easy reduction from (a subclass of) causal theories to classical propositional logic, by a method 

introduced in [85]. Thus, automated reasoning about causal theories can be carried out via standard 

satisfiability solvers. (The initial version of CCALC was due primarily to Norm McCain and is 

described in his PhD thesis [90]. Since then, it has been maintained and developed by Vladimir 

Lifschitz and his students at the University of Texas at Austin.) 



 

CHAPTER 2 NEURO-SYMBOLIC LEARNING AND REASONING 
Neuro-Symbolic field is focused on seamless unification of AI and ML to eliminate all the Cons 

of AI and ML to stay with Pros only for unified AI and ML. This field is actively researched since 

2020. There are many ideas. Dr. Arabshahi, as neuro-symbolic algorithms developer, describes 

several research interests [91] which neural-symbolic army of researchers is tackling with. We find 

Interpretability as a critical area of research. 

Interpretability: Despite the data-driven algorithms’ success, current machine learning 
models struggle to extract commonsense knowledge from data alone. This is because data 
contains little information about the commonsense knowledge that went into labeling or 
annotating it. On the other hand, model-driven algorithms (e.g., rule-based systems) that 
are programmed for a specific task, explicitly represent commonsense knowledge in terms 
of interpretable rules. But these models often lack coverage and are susceptible to 
uncertainty. To use the best of both worlds, I develop novel Neuro-Symbolic learning 
algorithms, which are hybrid models that leverage the robustness of connectionist 
methods and the soundness of symbolic reasoning to effectively integrate learning and 
reasoning. 

Dr. Forough Arabshahi envisions that the major benefit of neuro-symbolic learning and 

reasoning is in the rapid ability to extract and generate commonsense knowledge via the hybrid 

neuro-symbolic models. Discovered insights are made available, through a feedback loop, back to 

neuro-symbolic model for pretrained language models (LMs.) 

ATOMIC-2020 is a new general-purpose commonsense knowledge graph (CSKG) that is 

not readily available in pretrained LMs. ATOMIC20-20 is a novel commonsense knowledge graph 

containing tuples whose relations are specifically selected to be challenging for pretrained 

language models to express. Empirical studies demonstrate that ATOMIC20-20 contains high-

accuracy knowledge tuples across multiple novel relations not found in existing CSKGs or 

expressible by Language Models. ATOMIC20-20 can be effectively used as a training set for 

adapting language models as knowledge models to generate high quality tuples on-demand. [93]. 

It is not surprising why Dr. Yejin Choi asked Dr. Forough Arabshahi to present her research 

findings to Allen Institute for AI [92]. It is likely that integrating neuro-symbolic algorithms 

developed by a team led by Dr. Arabshahi into ATOMIC-2020 will lead to discovering new 

common sense novel knowledge for ATOMIC-2020 CSKG. 



 

CoLlision Events for Video REpresentation and Reasoning (CLEVRER) 
The ability to reason about temporal and causal events from videos lies at the core of human 

intelligence. Most video reasoning benchmarks, however, focus on pattern recognition from 

complex visual and language input, instead of on causal structure. The study is focused on the 

complementary problem, exploring the temporal and causal structures behind videos of objects 

with simple visual appearance. CLEVRER is a diagnostic video dataset for systematic evaluation 

of computational models on a wide range of reasoning tasks. This dataset was introduced by the 

authors of the paper titled “CLEVRER: Collision Events for Video Representation and 

Reasoning.” [94] Motivated by the theory of human causal judgment, CLEVRER includes four 

types of question: descriptive (e.g., ‘what color’), explanatory (‘what’s responsible for’), 

predictive (‘what will happen next’), and counterfactual (‘what if’). Evaluation includes various 

state-of-the-art models for visual reasoning on a benchmark. While these models thrive on the 

perception-based task (descriptive), they perform poorly on the causal tasks (explanatory, 

predictive and counterfactual), suggesting that a principled approach for causal reasoning should 

incorporate the capability of both perceiving complex visual and language inputs, and 

understanding the underlying dynamics and causal relations.  

  

Approach of various state-of-the-art visual reasoning models on CLEVRER 
While these models perform well on descriptive questions, they lack the ability to perform causal 

reasoning and struggle on the explanatory, predictive, and counterfactual questions. We therefore 

identify three key elements that are essential to the task: recognition of the objects and events in 

the videos; modeling the dynamics and causal relations between the objects and events; and 

understanding of the symbolic logic behind the questions. As a first-step exploration of this 

principle, we study an oracle model, Neuro-Symbolic Dynamic Reasoning (NS-DR), that 

explicitly joins these components via a symbolic video representation and assess its performance 

and limitations. 

  

Conclusion by evaluating team of CLEVRER with 4 types of questions  
We present a systematic study of temporal and causal reasoning in videos. This profound and 

challenging problem deeply rooted to the fundamentals of human intelligence has just begun to be 



 

studied with ‘modern’ AI tools. We introduce a set of benchmark tasks to better facilitate the 

research in this area. We also believe video understanding and reasoning should go beyond passive 

knowledge extraction and focus on building an internal understanding of the dynamics and causal 

relations, which is essential for practical applications such as dynamic robot manipulation under 

complex causal conditions. Our newly introduced CLEVRER dataset and the NS-DR model are 

preliminary steps toward this direction. We hope that with recent advances in graph networks, 

visual predictive models, and neuro-symbolic algorithms, the deep learning community can now 

revisit this classic problem in more realistic setups in the future, capturing true intelligence beyond 

pattern recognition.  

 

Modular enhancements to neuro-symbolic dynamic reasoning model 
Mao et al. [95] introduced the CLEVRER 1 dataset for systematic evaluation of computational 

models on descriptive, explanatory, predictive, and counterfactual questions about the movement 

of several objects with various shapes, colors, and materials. Noting that the state-of-the-art neural 

models had difficulty reasoning about temporal and causal structures for answering those 

questions, they proposed a neuro-symbolic model called NS-DR [95], which outperforms the 

previous models by using symbolic representation to allow for compositionality of vision, 

language, and dynamics. The result advocates that the use of explicit symbolic representation, 

combined with neural network perception, could significantly improve reasoning about complex 

visual events. On the other hand, this point is challenged by Ding et al. [96], who demonstrate that 

an end-to-end attention-based neural model with the right inductive bias could outperform NS-

DR. Does this imply that neuro-symbolic models are inferior to end-to-end neural models for 

visual causal and temporal reasoning, contrary to what they were thought to be promising at? This 

note revisits the neuro-symbolic baseline model NS-DR. With the incorporation of more explicit 

causal and temporal constraints, we show that the enhanced model outperforms the previous 

models. This note briefly describes how we made modular improvements to NS-DR. 

Our updates to NS-DR are relatively simple, thanks to its modular design. Without 

retraining the neural network models in NS-DR, the main reason for the improvement could be 

attributed to using explicit symbolic reasoning in ASP to determine what intermediate results the 

attention should be paid to and augmenting the mistakes in perception to follow physical 



 

constraints. Our main improvement on counterfactual QA utilizes answer set programming (ASP) 

[97], a declarative logic programming paradigm that could encode various kinds of complex 

knowledge, including causal and temporal knowledge. For the CLEVRER task, we encode causal 

relationships among collision events. 

  



 

CHAPTER 3  “COGENT WAY” KNOWLEDGE STRATEGY 
“Cogent Way” (CW) project had been launched by Joint Staff Futures (JSF) J28 in early 2022. 

The main idea is to make data machine-interpretable, decision-ready, and actionable on par with 

how data is human-understandable and actionable. Without data architected for machine-

interpretability/decision-readiness/actionability, none of the approaches described in this 

document as applied to AI/ML are possible. We believe this challenge requires utilization of 

Natural Language Processing (NLP) and using Deep Learning for training Natural Language (NL) 

Models combined with the Common- Sense Knowledge Graph (CSKG) introduced earlier in 

Chapter 2. 

 CW, at its core foundation, is focused on utilizing open knowledge standards based on 

Semantic Web Technologies approved and commercialized under World Wide Web Consortium 

(W3C) standard body. The crux of an interest to the CW project are semantic web ontologies and 

their integration with the Resource Definition Framework (RDF) and related standards (RDFS, 

RDF*, OWL, SPARQL/Geo-SPARQL, SWRL and others. CW project also sets as a major goal 

the integration of Labeled Property Graphs (LPG) with RDF/RDF* graphs being in-focus of the 

CW project. This includes a highly popular graph databases including Neo4j LPG graph database. 

  



 

CHAPTER 4  NPS/NAVWAR KNOWLEDGE STRATEGY EXTENSION 
 

Battlespace Situations and Context for Battlespace Situation 
NPS team’s focus was on “Naval Integration into Joint Data Strategies and Architectures in 

JADC2.” Our team was predominantly focused on the Tactical Tier paying the greatest attention 

to the Tactical Edge. This critical part is, usually, excluded from the Enterprise System 

Architecture due to the organizations or standard bodies not having sufficient level of expertise at 

this critical organizational complexity where all warfighting engagement is, actually, taking place. 

 Therefore, Chapter 4 is devoted to what the real crux of the knowledge strategy at the 

tactical edge is. We believe that the amalgam of CW enabling infrastructure at the foundation and 

extension of CW for the tactical edge leads to a proper understanding on how to build the 

Enterprise for all tiers, starting from the higher-level tiers (e.g., Operational, Strategic/National) 

based on a Tactical Tier as an essential foundation. Tactical Tier’s enabling infrastructure is a must 

for integrating this tier with higher-level Enterprise tiers. Tactical tier should not be excluded from 

the Enterprise Strategy developed by the CDOs from the DoD Services and Intel Agencies. 

Tactical Tier, due to Battlespace Situation-driven Context digitally born there, affects higher tiers. 

 Our NRP study of Naval Operational Architecture (NOA) back in 2019 has concluded that 

knowing knowledge at the tactical edge requires getting the knowledge of the situations. We get 

evidence that our initial determination back 2 years ago was visionary and insightful. This 2020 

study informed the Navy on what truly matters and now, in 2022, be out to use for the benefit of 

JADC2. Our team believes following our recommendations JADC2 will be on its upward 

trajectory towards “joint” capabilities. In fact, we view “situation is a knowledge” main conclusion 

of 2019 study is a key insight for integration between the Navy and the JADC2 to reshape JADC2 

data strategies and architectures while informed by the Navy. This would make it straightforward 

to integrate all warfighting organizations (i.e., DoD services, Coalition Partners) under JADC2 

umbrella of data strategies and architectures. 

 During 2020 study we did not know of the existence of scientific approach capable of 

detecting novel situations. Rich Chase, a distinguished colleague from NAVWAR, as a prominent 

member of the team, made a startling discovery that nonmonotonic causal logic may track 

emerging threats by connecting threatening objects/platforms with “threatening effects” (i.e., 



 

missile types) and, through one or more causal links, via intervention DoLogic may compute 

counterfactual effects to defend against the threats.  Such “causal detection of novel situations” 

may be applied to any adversarial actors with multiple level of causal effects in the Area of Interest 

(AOR). Such linkages are expressible by constructing and managing graphs depicting emerging 

situations. Each situation includes multiple “adversarial red objects” and “friendly C5ISR blue 

objects” with all objects interconnected via links that matter. 

 As a side note, it is worth mentioning that situations have to incorporate temporal-spatial 

exploitation cues from higher-level to tactical tier, including the tactical edge. In case of DCGS-N 

(Distributed Common Ground System - Navy), intel analysts recommend specific tactical AOR 

coordinates for consideration during the tactical edge exploitation. “Situation” concept offers 

persistent cuing of “exploitation tactical edge area of interest” between National and Tactical Tiers. 

 Now, when graph topology of a situation is known, what is also known is a low-level 

knowledge of all relations between “adversarial red” and “friendly blue objects”. Knowledge of a 

totality of relations in a situation is known as a context of a situation. Now, we possess a knowledge 

of not only high-level situations, but low-level context. Do situations exist during some interval of 

time? Yes, that is how we expect them to behave. Continuous monitoring may conclude of no 

causal relationship between emerging objects and multiple level effects-threats. This will identify 

an emergence of a new situation. In the meantime, existing situation may either continue in time 

or deprecate. It is important to stress that battlespace situations have geo-spatial shape ever 

changing in time. Such shapes may cross different AORs and must be carefully managed in 

defensive and offensive postures. 

 Management of situational context is a critical factor in scaling modern knowledge 

pipeline. After discussion of low-level context, it is essential to introduce high-level context. The 

example of high-level context is elevated to workflows managing situations requiring workflows 

to self-adapt to situations with dynamic context. This means that workflows gain prominence by 

enforcing on-the-fly sequencing by reaching high-reward world model states and situations thus 

accomplishing context-aware semi-optimal adaptation. This has been a long-term goal of DARPA 

from 2017 resulting in a 2-billion-dollar investment. As a consequence, the context management 

accomplishes reduction of contextual volume by summarizing contexts with expanding granularity 

making hierarchically and collaboratively integrated decision-makers getting cohesive.  



 

Summarization of Situations and Situational Context 
The question of “summarization” is triple-edged. What is an input for “summarization and what 

engine would be capable of doing “summarization”? How to ensure “input summarization 

streams” avoid duplication of knowledge by adhering to “knowledge in situ” principal? Finally, 

how to compute “summarization contextual output” to provide value to each role defined within 

JADC2? These questions will be addressed within the next sub-chapter we call “Summarization”. 

We will start from a variety of inputs representing contexts for each causally monitored 

situation. First of all, it is a topology for each situation as it depicts unique context at a given 

timestamp. This reality means that we must embed knowledge of topologies of the situations as 

direct input to summarization engine to ensure there is no movement of topological data from point 

to point. 

Secondly, we must summarize all internal and external inputs applied to the topology of the 

situation. “Internal inputs” are encoded into situation graph as functions which effect maneuvering 

movement at the edge. These functions are usually referred to as “actions”. They, usually, belong 

to one of two categories: moving and shooting. Relatively little attention is placed on “external 

inputs.” They are the events which more than anything else explains the volatility of the world 

model. The events are emanated from either operational environment (e.g., “blue forces are 

retreating due to realization they will be surrounded and made disabled), or from a variety of 

scientific environments which are either God-made (i.e., METOC) or man-made (i.e., EMW.) 

Finally, “summarization engine” must be aware of all organizations in JADC2 and all 

organizational roles with each of the organizations. However, this represents organizations and 

people roles irrespectively of which organization and hierarchical sub-organizations and which 

hierarchically organized roles participate in any given mission. This means each situation and 

corresponding contexts must include a Mission ID. This makes total sense. When situations are 

detected, they must ensure there is a mapping between a situation and a mission situation is 

corresponding to. We arrived to a conclusion that support of JADC2 mission roles requires multi-

dimensional cube with dimension hierarchies. This will provide a capability to associate “mission” 

dimension for any chosen combination of sub-organizations for specific group of roles in JADC2. 

Considering a need to summarize all artifacts (i.e., situations, workflows, objects, actions, events, 

etc.), a data structure of summarization engine must be capable to embed all representations within 



 

a variety of artifacts making it a truly generic “information space” container. We concluded 

“summarization” engine requires to be a model with multi-dimensional and hierarchical 

capabilities within each of the dimensions. Container model be capable of imbedding 4D Cube 

Model for METOC, “situation” and “process graphs”. In addition, container model must embed 

entities, including objects, activities, events. Upon further examination, we may conclude 

container may require ontological embeddings to execute semantic logics-based reasoning. 

Embracing 3rd Wave of AI: Contextual Adaptation 
DARPA Information Innovation Office (I2O) in with visionary Dr. John Launchbury at the helm, 

in February 2017 proclaimed they are pursuing the path towards explanatory models by moving 

from Machine Learning/Deep Learning (ML/DL) to “Contextual Adaptation”. In fact, DARPA 

announced a transition 2nd “statistical” Wave of AI to 3rd “contextual” Wave of AI. We believe 

“Contextual Adaptation” is critically important to JADC2-based battlespace. In addition to 

understanding meaning of features in AI, “world model” should adapt to continuously evolving 

situations, characterized by situational contexts, in the joint battlespace. 

 The question to answer is how to express a need for a change from world model? First of 

all, any adaptation got to be contextual which implies to be mission centric. Secondly, world model 

is asking for relevant adaptation to its state via execution of a meaningful functional event. There 

are different manifestations of a functional event. It could be demanding to execute an action at 

the battlespace. Or react to a specific battlespace event from the operations environment. Finally, 

a change in one of the conditions in surrounding environment (i.e., METOC, EM, Acoustic, others) 

requires re-maneuvering to overcome emerging environmental threats in the physical world. 

 What is a perceived mechanism in the knowledge strategy to generate ad-hoc events based 

on the reasoning in accumulated knowledge for JADC2 operations? Cogent Way project is 

recommending establishing two ‘knowledge class layers” within its knowledge strategy. 

“Contributing Knowledge Class” layer will act as landing zone in Extract-Load-Transform (ELT). 

This is where augmentation across different domains based on harmonization between diverse 

lexicons will be taking place. The 2nd “knowledge class layer” called “Aggregating knowledge 

system class” will be responsible for aggregation-by-linkage operation based on semantic web 

shallow-deep reasoning logic. Whenever deemed necessary, 2nd layer could be further extended 

by introducing the 3rd “deep reasoning knowledge class layer”. Such layer may be necessary for 



 

managing battlespace in near real-time and recommending decisions which require other logics 

than causal inferencing logic. We are confident “automated augmentation” with, potentially, 

human-on-the-loop requires reasoning stack as opposed to viewing this task as a multi-sensor 

fusion. The goal of reasoning layers is to generate operational ad-hoc events to send back to the 

“Contributing Knowledge Class” via a feedback loop, and then, to Producer authoritative systems. 

 Upon concluding of a need of in-time generated events from the “Aggregating Knowledge 

Systems”, there is a need to decide where such events should be distributed to. Our notion is that 

discussed events must be streamed, through a feedback loop, to the “Contributing Knowledge 

Systems” to let the latter type of the Knowledge Graph (KG) group to be responsible to inform 

authoritative systems of their need to adapt mission contexts based on the type and reification of 

real-time ad-hoc events generated by the “Aggregation Knowledge Systems.” Described single or 

collaborative workflow executed from a feedback loop for any combination of domains/sub-

domains is a must to have to accomplish real-time contextual adaptation.  

 

  



 

Moving from Metadata Catalog to Contextual Data Catalog 
Two members of our team attended JADC2 Architecture Symposium back in March 2022 in 

Suffolk, Virginia. The biggest impression from this high-level event was hearing about high stakes 

JADC2 has placed on a “Data Fabric”. The concept of a data fabric has been defined as “a DoD 

federated data environment for sharing information through interfaces and services to discover, 

understand and exchange data with partners across all domains, security levels and echelons.” [98] 

 Being knowledge-understanding-wisdom-and-beyond centric, our team feels JADC2 is not 

the right project where DoD should be experimenting with Data-Information quagmire. We, 

simply, have no time to be in the “coal mines”. Our goal is to build “skyscrapers”. We should be 

well on the ground and as high as we could be. We should not perfect “coal mines”. They are not 

going to help us to produce another kind of energy. There is lot of comparison between data and 

oil. We hear expression “data is a new oil”. We should not focus on data, we should climb a ladder 

to “knowledge”, “understanding”, “wisdom” and beyond. Should we rather move from coal 

mining onto gold mining? If, according to RADM Danelle Barrett, “Data is Oil”, then our team 

proclaims that “Knowledge is Gold.” 

                                     

Figure 2  Data is Coal and Knowledge is Gold 

This moves us to a discussion if Metadata Catalog is so robust to be carried into the future. 

According to a Data Fabric presentation, everything there rotates around the Metadata Catalog. It 

is like our galactic with planets rotating around the Sun. Is it really so “bullet proof” to be a 

foundation for all tiers of the Enterprise including the Tactical Edge? 

  

  



 

Stepping into the World of Contextual Data Catalog 
 

One example could easily destroy a myth of a power of Metadata Catalog. Is it contextually 

aware? If we have tracks passing by in a close vicinity from each other in 4-D area, are they focused 

on the same mission, or just decided to take a short route over deconflicted areas to get faster to 

their point of destination. They could be humans, or ordnance, including various missile types. 

 Are these objects intervening in conducting the mission? Of course, they do. Fire Support 

Coordinators (FSC) just finished the deconfliction. Surprise, surprise, Somebody is flying over. 

Are they red, or blue, or white? We need to follow the rules of engagement to avoid fratricide. All 

the calculation for deconflicting the space must start all over again. Blue assets were not supposed 

to be here! This is what knowledge of context helps with. And Metadata Catalogs cannot do that! 

 

                                        
 

Figure 3 Metadata Catalog (single track) vs Contextual Data Catalog 

  

 What is the difference between the images on the left and right? The left image depicts a 

flight of space station in the outer space. There is no background or, in general, context to relate 

to. All we see is a track made by a space station. We could identify such station as it has visible 

features. The image on the right is different. In addition to two warriors, male and female, there 

are visible surrounding objects and landscapes. One may see large white stone and even larger 

white tock. There is a tall grass and flowers with one of them, on the left, being red. Finally, behind 

the large field of grass (or, potentially, some grain plants), there are dark green woods. All of these 

additions to two warriors depict the context. In general, context could be meaningful relations 

between objects. Battlespace object relations is a good representation of a context, but it’s not all. 



 

CHAPTER 5  CONCLUSIONS 
  

This study has focused on significance of a knowledge strategy for not only the Naval 

Operational Architecture, including continuous efforts by Overmatch, but for the success of the 

whole of the JADC2. The main conclusion of our study is that Joint Missions must have a 

Knowledge Strategy at its foundation. The best way Knowledge Strategy shows its significance is 

for JADC2. In a sense, Knowledge Strategy and JADC2 have a symbiotic relationship. 

The reason it’s the case is because acting as a Joint Force requires a knowledge of validated 

data. Attempt to lead forces in a Joint mode without a knowledge of a data is like blind walking in 

the park. It’s critical to have a shared understanding of what knowledge is. Specifically, knowledge 

of what. Our study, by applying abstractions of knowledge and associated context, declared a thesis 

‘knowledge’ of situations is what is paramount in kinetic and non-kinetic battlespaces. This makes 

‘context’ a knowledge of significant relations of subjects-objects participating in a given situation. 

The study made it quite certain that causality based on causal diagram developed by the 

SMEs is a key to understanding situation and corresponding context. Due to situations and contexts 

changing continuously in a rapid fashion, causal inferencing must also run continuously in the 

background. Our team is also making an argument that causal and other logics related to 

situations/contexts, movements and events must be all non-monotonic. A logic is non-monotonic 

if some conclusions can be invalidated by adding more knowledge. 

Our further conclusion is that for data to act as an input to knowledge, all data must have a 

property of “mergeable”. Otherwise, a data piece that cannot be merged with other pieces of data 

can not affect eventual knowledge derived from the merged data. The same applies to “knowledge” 

as it also must have a “mergeable” property. Otherwise, it will not be possible to create knowledge 

out of knowledge which is a must to do in a role hierarchy. There is a need for two powerful 

operators executed in one step: “Merge and Summarize”. The reason why Knowledge Graphs 

(KGs) are adopted by knowledge projects like Cogent Way is due to a power that triplets in a given 

Knowledge Graph (KG) are mergeable with some of the triples in other KGs. This will be always 

true in triplets are guaranteed not to be lossy. KG algorithms ensure none of the algorithms won’t 

exhibit “loss of data” algorithmic property.  

  



 

LIST OF ACRONYMS 

AI     Artificial Intelligence 

AI/ML    Artificial Intelligence / Machine Learning 

AOR(s)    Area(s) Of Responsibility 

ASP (1st acronym)   Answer Set Prolog 

ASP (2nd acronym)   Answer Set Programming Paradigm 

C5ISR Command, Control, Computers, Communications, 

Cyber, Intelligence, Surveillance, Reconnaissance 

CCALC    Causal CALCulator 

CSKG    CommonSense Knowledge Graph 

CW     Cogent Way project initiated by Joint Staff Futures 

DAG     Direct Acyclic Graph 

DARPA    Defense Advanced Research Projects Agency 

DCGS-N    Distributed Command Ground System – Navy 

ELT     Extract, Load, Transform 

EMW     ElectroMagnetic Warfare 

GeoSPARQL Interface to support representing and querying 

geospatial data on the semantic web    

JADC2    Joint All-Domain Command and Control 

JS J6     Joint Staff Joint Command & Control Branch 

KG(s)     Knowledge Graph(s) 

KRR     Knowledge Representation and Reasoning 

LMs     Language Models 

LPG     Labeled Property Graph 

METOC    Meteorology and Oceanography  

ML     Machine Learning 



 

ML/DL    Machine Learning / Deep Learning 

MLN     Markov Logic Network 

NAVWAR    Naval Information Warfare Systems Command 

Neo4j     Graph DBMS developed by Neo4j 

NGA     National Geospatial-Intelligence Agency 

NRO     National Reconnaissance Office 

NSA     National Security Agency 

NS-DR    Neuro-Symbolic Dynamic Reasoning 

OOP     Object-Oriented Programming 

OWL     Web Ontology Language 

Prolog    Programming Language frequently used within AI 

QA     Query Answering 

QSR     Qualitative Spatial Reasoning 

RDF     Resource Description Framework 

RDFS     Resource Description Framework Schema 

RDF-star or RDF*   RDF extension 

SA     Situation Awareness 

SOF     Special Operations Forces 

SPARQL    SPARQL Protocol And RDF Query Language 

SWRL    Semantic Web Rule Language 
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