
Ontologies as Backbone of
Cognitive Systems Engineering

Ricardo Sanz1 and Julita Bermejo1 , Juan Morago1 and Carlos Hernández2

Abstract. Cognitive systems are starting to be deployed as appli-
ances across the technological landscape of modern societies. The
increasing availability of high performance computing platforms has
opened an opportunity for statistics-based cognitive systems that per-
form quite as humans in certain tasks that resisted the symbolic meth-
ods of classic artificial intelligence. Cognitive artefacts appear every
day in the media, raising a wave of mild fear concerning artificial
intelligence and its impact on society. These systems, performance
notwithstanding, are quite brittle and their reduced dependability
limips their potential for massive deployment in mission-critical ap-
plications —e.g. in autonomous driving or medical diagnosis. In this
paper we explore the actual possibility of building cognitive systems
using engineering-grade methods that can assure the satisfaction of
strict requirements for their operation. The final conclusion will be
that, besides the potential improvement provided by a rigorous engi-
neering process, we are still in need of a solid theory —possibly the
main outcome of cognitive science— that could sustain such endeav-
our. In this sense, we propose the use of formal ontologies as back-
bones of cognitive systems engineering processes and workflows.
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1 INTRODUCTION
These days we are seeing in the media a continuous flow of reports
about self-driving cars, mobile phone natural language assistants or
machines that win at games traditionally considered reserved to hu-
mans (e.g. Go or Texas hold ’em poker). Artificial intelligence (AI)
seems to be re-flourishing and this is raising a global awareness of its
potential and a global concern of its risks. The recently created Part-
nership for AI3 has been “Established to study and formulate best
practices on AI technologies, to advance the public’s understanding
of AI, and to serve as an open platform for discussion and engage-
ment about AI and its influences on people and society.”

The current flourishing of AI is characterised by an availability of
high performance computing platforms that has opened an new op-
portunity for statistics-based cognitive systems. These systems can
perform quite as humans in certain tasks that resisted approaches
based on the symbolic methods of classic artificial intelligence and
the formal representation approaches of cognitive science. More or
less cognitive artefacts are appearing every day in the media, raising
a wave of mild fear concerning artificial intelligence and its poten-
tial impact in society —both positive and negative. However, from
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a real-world systems usability perspective —the perspective of sys-
tems engineers— these systems are still quite brittle and their re-
duced dependability is seriously limiting their potential for massive
deployment in mission-critical applications. A clear example are au-
tonomous cars, where this intrinsic brittleness when deployed in real
roads is limiting their widespread deployment.

In this paper we will analyse the issue of the engineering of de-
pendable cognitive systems. A transition from pre-engineering to
true-engineering methods is in need. The construction of a cogni-
tive system (CS) in the past has always been a form of craftsmanship
and not an instantiation of proven, repeatable engineering processes.
Most CSs have not gone beyond the research phase. In a sense, all
CSs that we have seen are one-of-a-kind systems. The customer-
oriented repeatability of engineering methods has not been mani-
fested at all in the domain of CS construction. Even the reuse of
“commercial” cognitive technologies as IBM’s Watson is still a kind
of hacking. This being said, the achievement of a systematic use of
engineering-grade methods for CS implementation is very important,
because it could enable the strict fulfilment of user-centric require-
ments for their operation. This is a need for real-world deployable
systems, from the dual perspective of their capability and their de-
pendability.

This is a position paper in which we analyse the role that ontolo-
gies can play in this transition. Anticipating the final conclusion of
our analysis we believe that, to achieve the potential improvement
provided by using a rigorous engineering process to build CSs, we
are in need of a deeper, unified cognitive science —a solid theory of
mental processes— that could sustain such endeavour. Engineering
methods based on this science of the mind will lead to the synthesis
of the two classes of engineering assets that are necessary for CS en-
gineering (CSEng): design patterns —structural/behavioural aspects
for cognitive architectures— and ontologies —concepts to bind i) the
minds of the engineers and system stakeholders; ii) the mind of the
engineer to the CS under construction; and iii) the mind of the CS to
its world and the world of its user.

The paper is structured as follows: first we analyse the concepts of
system, mission and cognition in the domain of CSs; then we provide
an overview of the engineering task of building CSs; after this, we
offer a brief analysis of fundamental architectural aspects of these
systems; a section on the question of dependability, resilience and
trust follows; next a discussion of the need of CS-specific engineer-
ing methods; finally we include the core analysis of the need of a
solid theory of cognition —based on patterns and ontologies— to
support the engineering life-cycle of CSs. The paper ends with some
conclusions and future perspectives.



2 ENGINEERING COGNITIVE SYSTEMS
The issue that we stress in this paper is the need of having system-
atic engineering methods to build custom cognitive systems and the
critical role that ontologies will play in achieving this.

2.1 Systems and Missions
AI is artificial not because it is not natural, but because, as described
by Simon [63], things are built to satisfy a purpose. Real-word sys-
tems4 should be useful to people; their users. Users expect that the
systems will be able to fulfil their missions as planned.

When we ask Siri to find a nearby Spanish restaurant we expect
i) to get an answer; ii) that the restaurant suggested is close to our
position; and iii) that it is indeed a Spanish restaurant and not a Mex-
ican one or a New-yorkean tapas bar. Good engineering is always
concerned about building systems that reliably fulfil their missions
[39].

The use of AI techniques in any kind of systems help these sys-
tems deal with complex problems and situations. We call these sys-
tems cognitive because they “know”, i.e. hey exploit some form of
knowledge5 in the performance of their missions6. AI systems have
been able to progress in problem solving steadily [46], overcoming
many of the predicted limits [24]. Most of the envisioned limits of
AI are related to aspects of the human mind that are considered par-
ticularly peculiar like creativity and consciousness. These and other,
simpler aspects of human minds are the essential focus of Cognitive
Science (CogSci) and are explored in the heterogeneous ways and
domains that characterise CogSci [71].

Computer implementations of CSs have always been focused on
essentially two parallel but different purposes: i) the evaluation by
computer simulation of cognitive theories of the biological mind
(esp. human); and ii) the construction of artefacts able to intelligently
deal with their complex worlds. In some cases these two threads are
mixed —e.g. when implementing cognitive anthropoids— leading to
confusion about the purposes and the degree of success of the devel-
opment of the CS.

Precise statement of system goals and operational requirements is
a strong principle (almost a dogma) of systems engineering and is
badly needed in the context of CS construction; otherwise projects
get lost into disparaged explorations sometimes concerned about the
mission of the system, sometimes about properly mimicking human
features, and sometimes about the exploration of the elusive land-
scapes of cognitive capabilities.

In the domain of Cognitive Systems Engineering (CSEng)7 it is
necessary to focus on the mission that the CS shall perform, trying
to avoid vagaries into its human resemblances. On the other hand,
mimicking humans is a perfectly valid class of mission. So, we can
indeed undertake the mission of modelling the human mind using

4 We use the term real-world to refer to systems that are deployed to serve a
specific purpose, in contrast to research-oriented systems.

5 While knowledge and belief are obviously different things, for practical
reasons in this paper we do not make a strong distinction between them.

6 Note that this conception of cognitive somehow departs for a widespread
understanding of the term that equates it with having some resemblance of
human mental processes. This conception of cognition is excessively an-
thropomorphic and lessens the possibility of advancing in a general cogni-
tive science.

7 The term Cognitive Systems Engineering has been used by other authors
[36, 55, 72] to refer to systems that include humans doing cognitive work
—see next Section— but we use this term here to refer to the engineering
of (maybe artificial) cognitive systems like those mentioned before —e.g.
Siri or the Tesla autonomous car.

engineering-grade methods, but this requieres a precise statement of
this goal and a method of verification, i.e. his needs an objective test
of human-likeness. However, this specification of an objective Turing
test is however still a dream.

In essence, CSEng seeks to properly use artificial intelligence at
the service of improving mission-level capability. Cognitive systems
are able to see, perceive objects and affordances, making good deci-
sions and acting properly in the world in the service of a pre-specified
mission —all this driven by knowledge available to the agent or
gained through the senses. Besides having intrinsic capability —e.g.
the capability of following a path— cognitive systems must also be
dependable. Trust and usability rely both on dependability.

Robustness —the capability of tolerating disruption— and re-
silience —the capability of functional recovery— [35] are hence crit-
ical aspects for real-world systems and one the main negative aspects
of research-grade CSs.

2.2 Engineering Life-cycles for Cognitive Systems
The expression Cognitive Systems Engineering (CSE)8 has been used
by other authors to refer to the engineering of systems that include
humans performing cognitive tasks. In essence it is used to refer to
a special discipline of human factors in systems development that
addresses the design of human-cognitive socio-technical systems (a
system in which humans are the providers of essential capability
related to perceiving, evaluating, deciding, planning and executing
[36, 55, 72]. CSE is in essence the system analysis and design ef-
fort necessary to support the cognitive requirements of human work
inside socio-technical systems [41, 48].

In this paper, however, we will use the term Cognitive Systems En-
gineering to refer to the wider discipline of building systems that are
cognitive (e.g. including humans, AIs or both) in support of the mis-
sion itself. Inside this large domain, we are specifically interested in
artificial systems that are cognitive by themselves, not by being in
relation with humans who are the thinkers. Obviously, the character-
isation of what is cognitive and what is not deserves special attention
[1], and, while it is not the central aspect of this paper, it will be
necessarily addressed later in the section on the need of a deeper
cognitive science (see Section 3).

Cognition is a general capability ( i.e. ot exclusively human or
biological) that can be provided by machines, hence the inclusion of
humans is not a necessary condition for a system to be cognitive. Nor
it is necessary for a system to behave like a human to be cognitive.
In our work at the UPM Autonomous Systems Laboratory, we are
specifically interested in CSs that do not depend on cognitive capa-
bilities of other agents —esp. humans— to fulfil their missions. We
are interested in autonomous CSs. Cognition in artefacts can span a
wide range: from minimal cognition [8] to human-like performance
in specific tasks [66].

This wide spectrum of cognition apparently implies that there is no
possibility of having a single, established engineering process and
cognitive system life-cycle. This process and life-cycle would sim-
plify the construction process and provide improvements concerning
the predictable fulfilment of user requirements. A systematic engi-
neering methodology for CSEng is needed [14] and it shall be based
on the right architectural patterns and reusable assets [19].

Figure 1 summarily depicts a part of the engineering processes and
system assets that are performed and appear along the life-cycle of a
cognitive system. It shows the two/three major phases in a CS life-
cycle: i) engineering —design and construction— and ii) operation.
8 Note that this is different from CSEng described before.
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Figure 1. The cognitive system engineering life-cycle. Systems concepts support the whole process, providing a framework for analysis, design, construction
and operation of targeted cognitive systems. Ontologies capture the concepts in the mind of engineers and their formalisations can be used to synthesise parts of

the architecture of the target cognitive system including the representations used for its mental content: perceptions and reflections of the CS’s world.

Resilient CSs use runtime models of their operational environment
and models of themselves to sustain their activity. The CS is built
from assets realised by transformation of the CS engineering models
and reusable assets in the form of ontologies and patterns. In this
paper we focus on the role of ontologies. Details will be given later
(in Section 4).

2.3 Cognitive Systems Designs

The literature on cognitive systems is full of examples of architec-
tures for cognition [43]. Some of them are focused on very specific
tasks while others are postulated as almost universal [42, 4]. Some of
these architectures come with associated engineering methods that
can be applied to build custom systems using the reusable assets that
the architecture provides [2]. However, from a perspective of gen-
eral CSEng, these architectures come with excessive a priori com-
mitments that limit the decisions that a cognitive system architect
may take [62].

There is a need of lowering the sophistication and completeness
of descriptions of generic cognitive systems, going back from full
creatures [12, 22] to focused functional patterns [3, 15, 49] that can
provide specific capabilities (e.g. recognition, learning, metacogni-
tion, etc.). From the CSEng perspective, there is a need of moving
back from the search of unified theories of cognition proposed by
Newell [50] into a search of unifiable patterns of cognition.

This means that cognitive systems designs shall be described at
two levels: i) at the whole system level in the form of reference ar-
chitectures and ii) at the functional subsystem level in the form of
specific cognitive patterns [17, 18].

Reference architectures and cognitive patterns are the necessary
design assets for the realisation of the engineering process suggested
in the previous section. Note that the patterns are what provide the
specific capabilities while the architectures provide the framework
for their integration [60]. Note also that autonomous cognitive sys-
tems require both direct capabilities —e.g. face recognition— and
meta capabilities —e.g. learning— to provide the required levels

of autonomy [16]. Note also that patterns for general resilience —
necessary to build up trust— are mostly based on reflection and cog-
nitive self-penetrability of the agent itself [54].

3 A DEEPER COGNITIVE SCIENCE?

The previous analysis implies that there is a need of clarifying “cog-
nition” from the perspective of elementary capabilities. The unifiable
patterns of cognition mentioned earlier should be general systems’
generalisations of the micro-theories that psychology has been build-
ing about cognitive phenomena in humans [51]. Stork [67] claims for
a scientific foundation for engineering cognitive systems but, for the
reasons explained before, this scientific foundation shall also encom-
pass humans —and animals. We need a deeper cognitive science that
can ground the rigorous engineering of cognitive systems.

Identification of common concepts between humans and machines
is critical to provide a grounded integration of humans in cogni-
tive socio-technical systems [53]. The conventional approach of pro-
viding conceptual mappings through the human-machine interface
(HMI) between extremely different human/machine ontologies does
not provide the constructibility, flexibility, and dynamic allocation of
tasks that is needed for mixed autonomy resilient systems [23].

The real possibility of a scientific, unified cognitive science is still
a theme of debate [70, 25]. There is a common thought that “cogni-
tive science” was a different discipline to different groups of schol-
ars, and that even fundamental aspects would remain open forever.
For example, Peterson [52] bewares of unification risks, pointing at
the possibility of empty relabelling of mental phenomena done by
“representational cognitivism” and the practical neglect of different
viewpoints (like enactivism or embodiment). In the same vein, Hus-
bands says that “More than a decade ago, in his fine exploration of
the then burgeoning cognitive science movement [30], Gardner asked
if neuroscience would devour the entire field. His answer was no, for
the same reasons that he could see no prospects for a single unified
discipline: there will always be separate subject areas, we will al-
ways need diverse multi-level descriptions and explanations.” Dale



[20] warns us that “cognitive scientists should take seriously the pos-
sibility that a single, unified framework for all of cognition is an un-
realistic expectation for its diverse interdisciplinary goals and subject
matter”.

However, there is also a generalised feeling of an intrinsic, un-
derlying reality of cognition that shall be captured by a deep cogni-
tive science [59]. For example, Husbands [37] says that “solutions to
the problem of how brains produce adaptive behaviour would nec-
essarily entail (at least implicit) specifications for building artificial
brains [...] being potentially useful practical devices”. This points to
the cognitive patterns mentioned in the previous section.

Cognitive science shall be a science of cognition and not only a
science of human cognition. Obviously, human minds are specially
capable in some contexts and hence their preeminence in cognitive
science. However non-human minds9 are also very relevant for a uni-
versal science, non anthropocentric view [33, 40]. This is of special
importance on the coming years where cognitive artefacts will pro-
gressively take roles reserved to humans. A solid theory of mind —
esp. the artificial mind— is needed to fulfil requirements and to avoid
emergent, disruptive phenomena [11, 44].

The possibility of a unified science of mind may seem remote, but
note that the “computer” mind model seems distant to human minds
due to its digital nature. The sentence “thinking is computation” may
hence be seen as plainly false. It is necessary to stress the fact that
“computation” is not necessarily “digital computation”. A paradig-
matic example of this case are analog computers. Note also that the
brain is both discrete and continuous. In the words of Schadé and
Smith [61]: “Thus one single neuron possesses the qualities of a hy-
brid computer.”

There is a strong need of finding the right framework where to
build the definite theory of mind10. The theoretical frameworks we
are using today to formalise system structure and behaviour are quite
disjoint. For example, when reasoning about temporal dynamics of
system state, consider the difference between representing change by
means of temporal logic [27] or systems dynamics [45]. The models
that we use are sometimes seen as mere rough approximations [64].

While it may seem difficult to achieve a theoretical agreement on
a universal theory of cognition, most present theories are not too far
from each other. The cognitive science debates are grounded not on
theoretical issues but on attachments to disciplinary practices and
languages, excessive targeting of full-fledged human cognition or ex-
cessive narrowing on specific cognitive tasks and feats. For example,
when analysed in terms of general systems theory, classical cogni-
tivism, embodied cognitive science or enactivist cognition are not so
far from each other [47]. In fact, if we eliminate representation, what
remains is mindless body; it may be performant, but only in a singu-
lar task11. If there is no information, there is no adaptation. We must
be able to separate what minds are from what happens when minds
are attached to a particular environment.

4 ONTOLOGIES AS BACKBONE
The essential question is: What are the bricks to build the edifice of
the deep cognitive science described in the previous section? What is

9 In this context, “mind” shall not be understood as a full-fledged human
psyche. A mind is an information-driven controller for a system. These
appear in all the biological and artificial spectrum in different degrees of
capability, consciousness and self-awareness [57].

10 A single account for human, animal and artificial minds.
11 Arguments about the possibility of non-representational minds (e.g. [13])

are easily deflated by simple pointing at the representations used in the
proposed “representationless” architectures.

the theoretical substrate that grounds the description of architectures
and patterns needed for cognitive systems engineering? The answer
is simple: concepts [5, 29]. Fundamental concepts about mental phe-
nomena will provide the necessary assets to build the cognitive ca-
pability theories and the patterns and architectures that reify them.
Ontologies —as conceptual structures— will be the backbone that
will sustain the cognitive systems engineering processes of the fu-
ture, because they will both support the human engineering activities
and the operation of the cognitive systems themselves.

It must be noted that these ontologies shall not be restricted to
mind internals, but must also capture the realities outside cognitive
agents [?]. The CS environment shall be formally addressed in onto-
logical work to enable both the engineering of single-CS activity and
multi-CS cooperation. Note also that these ontologies and their use
must be flexible enough as to be able to accommodate differences
and inconsistencies between different CS (or even between the the
ontologies themselves). Ontologies shall move to use less rigid logi-
cal frameworks (capable of addressing belief, uncertainty and
emphinconsistency).

Within computer science and software engineering, an ontology
defines a set of ontological elements as representational primitives
that can be used to model a domain of knowledge [31], [32]. The
underlying idea is that ontologies provide a common vocabulary with
explicit semantics [65].

Ontologies would act as a foundation for system science, where
they facilitate organising the domain knowledge and formalising the
different engineering artefacts or entities (e.g stakeholder, require-
ment, function, scenario, etc.) and their relationships, to resolve am-
biguities and check for consistency and completeness [10], [38]. As
examples of this approach, ontologies have been used to: assist the
systems engineering process when it comes to establishing require-
ments [28]; drive the specification of the structural, functional, be-
havioural knowledge for a domain–specific system design [6]; or es-
tablish a set of common and shared concepts identified and agreed
upon for autonomous systems representation and engineering [7].

When ontologies are reified as mental assets for autonomous CSs
they will play both roles of defining the meaning of terms and
grounding the understanding of the world ( i.e. he CS itself and
its environment including other CSs). Ontologies would act as a
representation-based mechanism expressible in a computational lan-
guage, to describe the different entities participating in the design
and operation of the system. Concepts will then become computa-
tional elements in knowledge models that would exist through their
representations in software, such as UML diagrams [26] or ontology-
related languages such as OWL [68]. Concepts in engineering minds
and engineering models will also be reified as physical elements in
the CS or in its environment. This accounts for the modelling relation
that underlies life and cognition [56]. As a consequence, the knowl-
edge models will no longer be characterised by the usual high level
of arbitrariness or difficult reuse, as it happens when knowledge is
formalised as vocabularies expressed in natural language —the usual
practice in cognitive science. How the meanings of concepts defined
in the ontologies are understood by different components of the cog-
nitive system is as much the focus as how the different actors in the
CS life-cycle can use a common conceptualisation of the problem
under scrutiny, to come up with a possible solution.

The complementary element of this ontological vision is the use
of design patterns for description and engineering if system capabil-
ities, as they provide solutions to design problems that happen re-
peatedly [34]. Such design patterns will act as the cornerstones of
reusing CS architectures [60]. These patterns could be either archi-



tectural or domain patterns [15]. Architectural patterns express the
structural organisation of a cognitive system, i.e. hey realise its ar-
chitecture. Domain patterns describe a mechanism to solve a con-
crete but recurring problem in a particular context. These point to-
wards the cognitive micro-theories that populate the literature. Note
that architectural and domain patterns are not usable in isolation; in
a concrete CS both shall be merged to put mind —architecture– to a
task —domain.

It is worth pointing out that these patterns will not be used in-
dependently but having a domain ontology acting as backbone (see
Figure 1). The architectural patterns will describe the cognitive sys-
tem internal organisation and dynamics, based on the interactions
between the ontological elements that describe the system elements
themselves. Domain patterns in turn will describe the interactions
among the cognitive system components, and with the environment,
by using the underlying conceptualisation specified by the ontology,
that represent design solutions so that the behaviour of the cognitive
system fulfils the engineering requirements. Thus all system patterns
will not only be specified from the ontological concepts, but eventu-
ally will become part of the ontology itself, modelling the relations
and interactions between them as designed by the engineers [9].

5 CONCLUSIONS
Dale, Dietrich, and Chemero [21] defend the idea that “ the ‘frame-
work debate’ in cognitive science is unresolvable. The idea that one
theory or framework can singly account for the vast complexity and
variety of cognitive processes seems unlikely if not impossible.”.

In the context of cognitive systems engineering —with and with-
out humans— this idea is untenable for two reasons, one theoretical,
one practical:

• Science advances by unification [69]. This can be considered a
theoretical dogma or just a leitmotif of science. In any case, it is
inalienable in the opinion of these authors because it is needed to
support engineering-grade CS construction (see Section 2).

• Engineering works by using commensurable designs. There are
not —there cannot be— different theoretical frameworks underly-
ing systems of “vast complexity and variety” no matter what level
of complexity they have. This does not mean that there cannot
be different realms, but all them shall integrate seamlessly under
a common framework. For example, mechanical engineering and
electrical engineering address different domains of knowledge and
practice. However, both fall under the physical framework. This is
what enables the construction of solid electromechanical systems
(e.g. the concepts of energy, force and torque are shared in both
realms; this is what enables electrical motors moving machines).

Science and engineering are necessarily bound together under a
common framework. The differences that manifest in different sys-
tems or theories shall be sought for not in the theoretical framework
but in the concrete instantiations of that framework on specific en-
tities. For example, electrical systems theory is a single theory even
when the electrical systems in the US and in Europe have very im-
portant differences. Having a common theoretical framework implies
that differences can be overcome; electrical systems can be intercon-
nected and interoperate as a system-of-systems able to fulfil a single
mission. The same can be said about cognitive systems: differences
shall be found in concrete realisations, not in the theoretical concepts
that underlie them.

Intense work shall be done to identify, clarify and formalise the
concepts and patterns that underlie all classes of cognitive behaviour

beyond the anthropomorphic trap [58]. Their expression in the form
of formal ontologies will then constitute core assets for the engineer-
ing of the trustable autonomous cognitive systems of the future. The
fundamental concepts used by engineers to think about the cognitive
system under construction and the fundamental concepts used by the
cognitive system itself in its interaction with its world —including
itself— will be the same and captured in a formal representation.
This will open a new world of capabilities for cognitive systems that
will be able to deeply adapt to changing worlds in pursue of their
missions.
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